lecture 3 - magnets and transverse dynamics i · lecture 3 - e. wilson –- slide 2 slides for...

26
Lecture 3 - E. Wilson –- Slide 1 Lecture 3 - Magnets and Transverse Dynamics I ACCELERATOR PHYSICS MT 2009 E. J. N. Wilson

Upload: others

Post on 31-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 3 - Magnets and Transverse Dynamics I · Lecture 3 - E. Wilson –- Slide 2 Slides for study before the lecture Please study the slides on relativity and cyclotron focusing

Lecture 3 - E. Wilson –- Slide 1

Lecture 3 - Magnets and Transverse Dynamics I

ACCELERATOR PHYSICS

MT 2009

E. J. N. Wilson

Page 2: Lecture 3 - Magnets and Transverse Dynamics I · Lecture 3 - E. Wilson –- Slide 2 Slides for study before the lecture Please study the slides on relativity and cyclotron focusing

Lecture 3 - E. Wilson –- Slide 2

Slides for study before the lecture

Please study the slides on relativity and cyclotron focusing before the lecture and ask questions to clarify any points not understood

Page 3: Lecture 3 - Magnets and Transverse Dynamics I · Lecture 3 - E. Wilson –- Slide 2 Slides for study before the lecture Please study the slides on relativity and cyclotron focusing

Lecture 3 - E. Wilson –- Slide 3

Relativistic definitions

E m0c2

1 2

p mv m0v

1 2

m0c

1 2

1

1 v c 2

1

1 2

E

E0

E0 m0c2

Energy of a particle at rest

Total energy of a moving particle(definition of )

E E0 m0c2

Another relativistic variable is defined:

Alternative axioms you may have learned

You can prove:

momentum c

energy

pc

E

v

c

pc E m0c2 ( )

Page 4: Lecture 3 - Magnets and Transverse Dynamics I · Lecture 3 - E. Wilson –- Slide 2 Slides for study before the lecture Please study the slides on relativity and cyclotron focusing

Lecture 3 - E. Wilson –- Slide 4

Newton & Einstein

Almost all modern accelerators accelerate particles to speeds very close to that of light.

In the classical Newton regime the velocity of the particle increases with the square root of the kinetic energy.

As v approaches c it is as if the velocity of the particle "saturates"

One can pour more and more energy into the particle, giving it a shorter De Broglie wavelength so that it probes deeper into the sub- atomic world

Velocity increases very slowly and asymptotically to that of light

Page 5: Lecture 3 - Magnets and Transverse Dynamics I · Lecture 3 - E. Wilson –- Slide 2 Slides for study before the lecture Please study the slides on relativity and cyclotron focusing

Lecture 3 - E. Wilson –- Slide 5

dpdt

pddt

pdds

dsdt

p

dsdt

ev B edsdt

B

Magnetic rigidity

1

dds

B pe

pcec

Eec

E0

ec

m0ce

Fig.Brho 4.8

dθ dθ

GeV pc 3356.3

.T.m 1 smc

eVpcecpc

B

Page 6: Lecture 3 - Magnets and Transverse Dynamics I · Lecture 3 - E. Wilson –- Slide 2 Slides for study before the lecture Please study the slides on relativity and cyclotron focusing

Lecture 3 - E. Wilson –- Slide 6

Equation of motion in a cyclotron

Non relativistic

Cartesian

Cylindrical

xyz

zxy

yzx

ByBxqdt

zmddtmvd

BxBzqdt

ymddt

mvd

BzByqdt

xmddtmvd

r

zr

z

BrrBqdt

zmd

BrBzqrmdtmrd

BzBrqmrdt

rmd

2

2

Bvv

qdtmd )(

Fv

dtmd

Page 7: Lecture 3 - Magnets and Transverse Dynamics I · Lecture 3 - E. Wilson –- Slide 2 Slides for study before the lecture Please study the slides on relativity and cyclotron focusing

Lecture 3 - E. Wilson –- Slide 7

For non-relativistic particles (m = m0 ) and with an axial field Bz = -B0

The solution is a closed circular trajectory which has radius

and an angular frequency

Take into account special relativity by

And increase B with to stay synchronous!

Cyclotron orbit equation

20

0

0

2

0

z

z

m r r qr B

m r r qrB

m z

z

pR

qB

w q

m0

B0

0z

qB

m

000 E

Emmm

Page 8: Lecture 3 - Magnets and Transverse Dynamics I · Lecture 3 - E. Wilson –- Slide 2 Slides for study before the lecture Please study the slides on relativity and cyclotron focusing

Lecture 3 - E. Wilson –- Slide 8

Cyclotron focusing – small deviations

See earlier equation of motion

If all particles have the same velocity:

Change independent variable and substitute for small deviations

Substitute

To give

20

0 0z

mvd dm ev B

dt dt

0v z

2 0z

d mrmr q r B zB

dt

000 - x, , BBBdsd

vdtd

zz

00 mvp

0 20 0 0 0

1 10zBd dx x

pmv ds ds B

Page 9: Lecture 3 - Magnets and Transverse Dynamics I · Lecture 3 - E. Wilson –- Slide 2 Slides for study before the lecture Please study the slides on relativity and cyclotron focusing

Lecture 3 - E. Wilson –- Slide 9

From previous slide

Taylor expansion of field about orbit

Define field index (focusing gradient)

To give horizontal focusing

Cyclotron focusing – field gradient

0 20 0 0 0

1 10zBd dx x

pmv ds ds B

........!2

1 22

2

0 xxB

xx

BBB zz

z

xB

Bk z

00

1

011

200

xk

ds

dxp

ds

d

p

Page 10: Lecture 3 - Magnets and Transverse Dynamics I · Lecture 3 - E. Wilson –- Slide 2 Slides for study before the lecture Please study the slides on relativity and cyclotron focusing

Lecture 3 - E. Wilson –- Slide 10

Cyclotron focusing – betatron oscillations

From previous slide - horizontal focusing:

Now Maxwell’s

Determines

hence In vertical plane

Simple harmonic motion with a number of oscillations per turn:

These are “betatron” frequencies

Note vertical plane is unstable if

011

200

xk

dsdx

pdsd

p

xB

z

B zx

0

0 B

kzBBx 00

01

00

kz

dsdz

pdsd

p

kQkQ zx ,1

2

yx QQ ,

2

1

k

Page 11: Lecture 3 - Magnets and Transverse Dynamics I · Lecture 3 - E. Wilson –- Slide 2 Slides for study before the lecture Please study the slides on relativity and cyclotron focusing

Lecture 3 - E. Wilson –- Slide 11

Lecture 3 – Magnets - Contents

Magnet types

Multipole field expansion

Taylor series expansion

Dipole bending magnet

Magnetic rigidity

Diamond quadrupole

Fields and force in a quadrupole

Transverse coordinates

Weak focussing in a synchrotron

Gutter

Transverse ellipse

Alternating gradients

Equation of motion in transverse coordinates

Page 12: Lecture 3 - Magnets and Transverse Dynamics I · Lecture 3 - E. Wilson –- Slide 2 Slides for study before the lecture Please study the slides on relativity and cyclotron focusing

Lecture 3 - E. Wilson –- Slide 12

Dipoles bend the beam

Quadrupoles focus it

Sextupoles correct chromaticity

Magnet types

x

By

x

B y

0

0

Page 13: Lecture 3 - Magnets and Transverse Dynamics I · Lecture 3 - E. Wilson –- Slide 2 Slides for study before the lecture Please study the slides on relativity and cyclotron focusing

Lecture 3 - E. Wilson –- Slide 13

Multipole field expansion

(r ,)Scalar potential obeys Laplace

whose solution is

Example of an octupole whose potentialoscillates like sin 4around the circle

2x2

2y2 0 or

1r2

2 2

1rr

rr

0

nrn sinn

n1

Page 14: Lecture 3 - Magnets and Transverse Dynamics I · Lecture 3 - E. Wilson –- Slide 2 Slides for study before the lecture Please study the slides on relativity and cyclotron focusing

Lecture 3 - E. Wilson –- Slide 14

Taylor series expansion

n

n1

r n sin n

Field in polar coordinates:

Br

r

, B 1

r

Br nnr n1 sinn , B nnr n1 cosn

Bz Br sin B cos

nnrn1 cos cosn sin sin n

nnr n1 cos n 1 nnxn1 (when y 0)

To get vertical field

Taylor series of multipoles

Fig. cas 1.2c

Octupole Sext Quad Dip.

...!3

12

!11

......4.3.2.

33

32

2

2

0

34

2320

xxB

xxB

xx

BB

xxxB

zzz

z

Page 15: Lecture 3 - Magnets and Transverse Dynamics I · Lecture 3 - E. Wilson –- Slide 2 Slides for study before the lecture Please study the slides on relativity and cyclotron focusing

Lecture 3 - E. Wilson –- Slide 15

Diamond dipole

Page 16: Lecture 3 - Magnets and Transverse Dynamics I · Lecture 3 - E. Wilson –- Slide 2 Slides for study before the lecture Please study the slides on relativity and cyclotron focusing

Lecture 3 - E. Wilson –- Slide 16

Bending Magnet

Effect of a uniform bending (dipole) field

If then

Sagitta

/ 2

BB

222sin

BB

2

1616

2cos12

2

Page 17: Lecture 3 - Magnets and Transverse Dynamics I · Lecture 3 - E. Wilson –- Slide 2 Slides for study before the lecture Please study the slides on relativity and cyclotron focusing

Lecture 3 - E. Wilson –- Slide 17

dp

dt p

ddt

pdds

ds

dt

p

ds

dt

ev B edsdt

B

Magnetic rigidity

1 d

ds

B T.m pc eV

c m.s1 3.3356 pc GeV

B pe pc

ec E

ec E0

ec m0c

e

Fig.Brho 4.8

d

Page 18: Lecture 3 - Magnets and Transverse Dynamics I · Lecture 3 - E. Wilson –- Slide 2 Slides for study before the lecture Please study the slides on relativity and cyclotron focusing

Lecture 3 - E. Wilson –- Slide 18

Diamond quadrupole

Page 19: Lecture 3 - Magnets and Transverse Dynamics I · Lecture 3 - E. Wilson –- Slide 2 Slides for study before the lecture Please study the slides on relativity and cyclotron focusing

Lecture 3 - E. Wilson –- Slide 19

Fields and force in a quadrupole

No field on the axis

Field strongest here

B x(hence is linear)

Force restores

Gradient

Normalised:

POWER OF LENS

Defocuses invertical plane

Fig. cas 10.8

1

. yBk

B x f

1

. yBk

B x

x

By

Page 20: Lecture 3 - Magnets and Transverse Dynamics I · Lecture 3 - E. Wilson –- Slide 2 Slides for study before the lecture Please study the slides on relativity and cyclotron focusing

Lecture 3 - E. Wilson –- Slide 20

Transverse coordinates

s

Page 21: Lecture 3 - Magnets and Transverse Dynamics I · Lecture 3 - E. Wilson –- Slide 2 Slides for study before the lecture Please study the slides on relativity and cyclotron focusing

Lecture 3 - E. Wilson –- Slide 21

Weak focussing in a synchrotron

Vertical focussing comes from the curvature of the field lines when the field falls off with radius ( positive n-value)

Horizontal focussing from the curvature of the path

The negative field gradient defocuses horizontally and must not be so strong as to cancel the path curvature effect

The Cosmotron magnet

Page 22: Lecture 3 - Magnets and Transverse Dynamics I · Lecture 3 - E. Wilson –- Slide 2 Slides for study before the lecture Please study the slides on relativity and cyclotron focusing

Lecture 3 - E. Wilson –- Slide 22

Gutter

Page 23: Lecture 3 - Magnets and Transverse Dynamics I · Lecture 3 - E. Wilson –- Slide 2 Slides for study before the lecture Please study the slides on relativity and cyclotron focusing

Lecture 3 - E. Wilson –- Slide 23

Transverse ellipse

/

/. Area

Page 24: Lecture 3 - Magnets and Transverse Dynamics I · Lecture 3 - E. Wilson –- Slide 2 Slides for study before the lecture Please study the slides on relativity and cyclotron focusing

Lecture 3 - E. Wilson –- Slide 24

Alternating gradients

Page 25: Lecture 3 - Magnets and Transverse Dynamics I · Lecture 3 - E. Wilson –- Slide 2 Slides for study before the lecture Please study the slides on relativity and cyclotron focusing

Lecture 3 - E. Wilson –- Slide 25

Equation of motion in transverse co- ordinates

Hill’s equation (linear-periodic coefficients)

where at quadrupoles

like restoring constant in harmonic motion

Solution (e.g. Horizontal plane)

Condition

Property of machineProperty of the particle (beam) Physical meaning (H or V planes)

EnvelopeMaximum excursions

k 1B

dBz

dx

s ds

s

y s ˆ y / s

s

y s sin s 0

d 2yds2 + k s y 0

Page 26: Lecture 3 - Magnets and Transverse Dynamics I · Lecture 3 - E. Wilson –- Slide 2 Slides for study before the lecture Please study the slides on relativity and cyclotron focusing

Lecture 3 - E. Wilson –- Slide 26

Summary

Magnet types

Multipole field expansion

Taylor series expansion

Dipole bending magnet

Magnetic rigidity

Diamond quadrupole

Fields and force in a quadrupole

Transverse coordinates

Weak focussing in a synchrotron

Gutter

Transverse ellipse

Alternating gradients

Equation of motion in transverse coordinates