lecture 3 - from chemistry to biology

20
Lecture 3 From Chemistry to Biology: Using Energy to Create Order and Complexity Prof. John Bellizzi August 28, 2015 Chemistry 3510 BIOCHEMISTRY I

Upload: ciara-caldwell

Post on 13-Apr-2016

216 views

Category:

Documents


1 download

DESCRIPTION

Lecture 3 - From Chemistry to BiologyProfessor BellizziThe University of ToledoBiochemistry Lecture

TRANSCRIPT

Page 1: Lecture 3 - From Chemistry to Biology

Lecture  3  From  Chemistry  to  Biology:    

Using  Energy  to  Create  Order  and  Complexity

Prof.  John  Bellizzi August  28,  2015

Chemistry  3510 BIOCHEMISTRY  I

Page 2: Lecture 3 - From Chemistry to Biology

From  Chemistry  to  Biology •  Biogenesis  (formation  of  building  blocks) •  Association  to  form  simple  self-­‐‑replicating  

molecules •  Primitive  cells •  Evolution  by  natural  selection Primordial  Earth’s  atmosphere •  very  liIle  O2 •  mostly  H2O,  N2,  CO2  (like  today),  plus  CH4,  

NH3,  H2,  SO2  (all  molecules  found  in  interstellar  space)

•  reducing  environment,  not  oxidizing  environment.

UV  radiation,  lightning  led  to  the  formation  of  water-­‐‑soluble  organic  molecules  from  these  precursors  (including  nucleotides,  amino  acids) Thin  “primordial  soup”  may  have  become  concentrated  in  tide  pools,  shallow  lakes  to  allow  monomers  to  condense  and  form  peptides,  oligonucleotides). Miller-­‐‑Urey  experiment  (1953).

Lecture 3 8/28/15 Biochemistry I Prof. Bellizzi 2

Page 3: Lecture 3 - From Chemistry to Biology

RNA  World  Hypothesis

Modern  biochemistry:   •  DNA  =  information  storage  (no  catalytic  

function) •  Protein  =  catalytic  function  (no  information  

storage) •  RNA  is  the  intermediate  connecting  the  two However,  some  RNA  molecules  can  catalyze  reactions  as  well  as  carry  information. Life  may  have  begun  as  self-­‐‑replicating  catalytic  RNA  molecules,  which  over  time  became  templates  for  protein  synthesis. DNA  is  more  stable  than  RNA,  so  the  adaptation  to  store  sequences  as  DNA  rather  than  RNA  would  have  beIer  preserved  the  information  content.

Lecture 3 8/28/15 Biochemistry I Prof. Bellizzi 3

Page 4: Lecture 3 - From Chemistry to Biology

Equilibrium

•  Many  chemical  reactions  (and  physical  processes)  are  reversible.

•  When  a  reaction  is  at  equilibrium,  the  rate  of  the  forward  reaction  is  exactly  the  same  as  the  rate  of  the  reverse  reaction.

•  At  equilibrium,  there  is  no  net  change  in  the  concentrations  of  reactants  and  products.

•  All  closed  thermodynamic  systems  (no  exchange  of  energy/maIer  with  surroundings)  will  eventually  reach  equilibrium.

Lecture 3 8/28/15 Biochemistry I Prof. Bellizzi 4

Page 5: Lecture 3 - From Chemistry to Biology

Thermodynamics

•  Tells  us  whether  a  given  reaction  or  process  can  occur  spontaneously  

(thermodynamically  favorable),  or  whether  it  needs  an  input  of  energy  to  drive  the  reaction  (thermodynamically  unfavorable).

•  Independent  of  the  path  from  start  to  finish  –  only  the  energies  of  the  starting  materials  and  products

•  Says  nothing  about  the  rate  of  the  reaction/process.

•  Living  organisms  are  open  thermodynamic  systems  (exchange  energy  and  maIer  with  surroundings)!

Lecture 3 8/28/15 Biochemistry I Prof. Bellizzi 5

Page 6: Lecture 3 - From Chemistry to Biology

Spontaneity  and  Equilibrium

A  process  is  spontaneous  (thermodynamically  favorable)  if  it  will  move  the  system  towards  equilibrium.  

•  Keq  =  1:  system  at  equilibrium •  Keq  >1:  forward  reaction  moves  system  towards  equilibrium  (Forward  reaction  

spontaneous) •  Keq  <1:  reverse  reaction  moves  system  towards  equilibrium  (Forward  reaction  

not  spontaneous) Standard  Gibbs  Free  Energy:  ΔG°  =  -­‐‑RT  ln  Keq

•  Keq  =  1  ΔG°  =  0  (system  at  equilibrium) •  Keq  >1  ΔG°  <  0    (spontaneous) •  Keq  <1  ΔG°  >  0  (not  spontaneous)

ΔG°  represents  “standard  conditions”:  25  °C,  1  M  concentrations. ΔG  under  arbitrary  concentrations  is  a  function  of  ΔG°  ,  T  and  starting  concentrations

Lecture 3 8/28/15 Biochemistry I Prof. Bellizzi 6

ΔG = ΔGo +RT ln[C]ic[D]i

d

[A]ia[B]i

b

Page 7: Lecture 3 - From Chemistry to Biology

Thermodynamic  State  Functions

Gibbs  Free  Energy: ΔG  =  ΔH  –  TΔS Enthalpy  (Heat  and  Work): H  

•  1st  Law:  Energy  cannot  be  created  or  destroyed •  Related  to  the  number  and  kinds  of  bonds •  ΔH  reflects  kinds  and  numbers  of  bonds  and  noncovalent  interactions  

formed/broken •  ΔH  <  0  if  heat  is  released  (exothermic)

Entropy  (Randomness,  disorder):  S •  2nd  Law:  For  a  spontaneous  process,  ΔSuniverse  >  0 •  If  local  entropy  decreases,  this  must  be  offset  be  a  greater  increase  of  

entropy  in  the  surroundings •  ΔS  >  0  if  randomness/disorder  increases

A  spontaneous  process  (thermodynamically  favorable  process)  has  ΔG  <  0 •  Free  energy  is  released •  Free  energy  of  products  is  less  than  that  of  starting  materials •  Exergonic  reaction

Note  that  a  thermodynamically  favored  process  may  be  kinetically  very  slow  (more  on  this  later). Lecture 3 8/28/15 Biochemistry I Prof. Bellizzi 7

Page 8: Lecture 3 - From Chemistry to Biology

Lecture 3 8/28/15 Biochemistry I Prof. Bellizzi 8

Page 9: Lecture 3 - From Chemistry to Biology

Dynamic  Steady  State

•  Once  mature,  organism  maintains  a  more  or  less  constant  composition  (steady  state)

•  Are  organisms  at  equilibrium?   •  Systems  at  equilibrium  cannot  do  work •  Living  organism  is  different  in  chemical  

composition  from  surroundings •  If  you  ever  reach  equilibrium,  it  means  you’re  

dead!

•  Living  things  are  steady-­‐‑state  systems,  but  it  is  a  dynamic  steady  state  

•  There  is  a  huge  flux  of  energy  and  maIer  through  a  living  system  (metabolism).

•  This  energy  is  required  to  keep  us  from  reaching  equilibrium  and  to  maintain  a  great  deal  of  biochemical  information  (which  costs  energy….).

Lecture 3 8/28/15 Biochemistry I Prof. Bellizzi 9

Page 10: Lecture 3 - From Chemistry to Biology

We  ingest  high  enthalpy,  low  entropy  nutrients  and  convert  them  to  low  enthalpy,  high  entropy  waste  products. Glucose  oxidation:  C6H12O6  +  6  O2  →  6CO2  +  6  H2O       ΔH°  =  -­‐‑2808  kJ/mol ΔH°<  0 ΔS°  >  0 ΔG°  <  0 Thermodynamically  favorable  (spontaneous)

Lecture 3 8/28/15 Biochemistry I Prof. Bellizzi 10

Page 11: Lecture 3 - From Chemistry to Biology

Energy  Coupling

Reactions  that  are  thermodynamically  unfavorable…. •  Synthesis  of  high  enthalpy,  low  entropy  

molecules •  Chemical,  physical  work …  can  be  driven  by  coupling  them  to  spontaneous  reactions! Rxn  1  –  unfavorable  (ΔG  >  0) Rxn  2  =  favorable  (ΔG  <  0) Couple  the  two  reactions  together  (add  ΔGs) Net  negative  ΔG!

Lecture 3 8/28/15 Biochemistry I Prof. Bellizzi 11

ΔG° kJ/mol

Page 12: Lecture 3 - From Chemistry to Biology

Adenosine  Triphosphate  (ATP)

ATP  is  the  universal  energy  currency  of  life •  Energy  (from  oxidation  of  organic  compounds  or  photosynthesis)  is  used  to  

synthesize  ATP •  The  accumulated  ATP  can  then  be  “spent”  to  drive  endergonic  reactions. Hydrolysis  of  phosphoanhydride  bonds (ATP+H2O→  ADP+Pi)  or (ATP+H2O→  AMP+PPi) Is  highly  exergonic Reasons: •  Reduce  charge-­‐‑charge  repulsion •  Resonance  stabilization •  [ATP]  maintained  much  higher    than  equilibrium  concentration

Lecture 3 8/28/15 Biochemistry I Prof. Bellizzi 12

Page 13: Lecture 3 - From Chemistry to Biology

Thermodynamic  stability  vs.  kinetic  stability Biological  macromolecules  are  thermodynamically  unstable  compared  to  their  monomer  subunits  (energy  has  to  be  input  to  synthesize  them). Sugar  is  very  unstable  relative  to  CO2  and  H2O,  but  it  does  not  spontaneously  combust! Thermodynamically  unstable,  but  kinetically  stable. The  rate  of  reaction  is  immeasurably  slow. In  a  cell,  there  are  many  compounds  that  are  thermodynamically  unstable  but  kinetically  stable,  and  therefore  many  potential  spontaneous  reactions. What  determines  which  reactions  actually  occur,  and  when  and  where?

Lecture 3 8/28/15 Biochemistry I Prof. Bellizzi 13

Page 14: Lecture 3 - From Chemistry to Biology

Enzymes

Enzymes  (biological  catalysts) •  Like  all  catalysts

•  accelerate  reactions  by  lowering  activation  barrier  (ΔG‡) •  do  not  alter  ΔG°  (position  of  equilibrium  unchanged)

•  Routinely  accelerate  rates  by  1012

•  High  specificity •  Ability  to  be  precisely  regulated •  Almost  always  proteins

•  Sometimes  with  coenzymes •  Occasionally  RNA

Of  all  the  possible  reactions  that  are  thermodynamically  favorable  in  a  cell,  the  ones  that  occur  on  a  reasonable  timescale  are  generally  the  ones  that  are  enzyme-­‐‑catalyzed.

Enzymes  also  are  critical  for  coupling  exergonic  reactions  with  endergonic  reactions.

Lecture 3 8/28/15 Biochemistry I Prof. Bellizzi 14

Page 15: Lecture 3 - From Chemistry to Biology

Biochemical  Information

Biomolecules  are  large  and  complex  in  structure  and  have  a  diverse  array  of  functions. These  structures  and  functions  are  not  random  –  they  contain  information. •  The  structure  and  biological  function  of  a  protein  (e.g.  an  enzyme  or  receptor)  is  

dependent  on  the  sequence  of  amino  acids  in  the  polypeptide  chain  (a  string  of  information).

•  That  sequence  of  amino  acids  is  specified  by  the  sequence  of  nucleotides  in  the  DNA  that  makes  up  the  gene  encoding  that  protein.

Life  depends  on  the  ability  of  these  information-­‐‑containing  molecules  to  faithfully  store  and  transmit  this  information  (Genetics). Chemical  and  physical  processes  can  alter  the  information  content.  In  rare  cases,  this  leads  to  individual  organisms  beIer  adapted  to  survive  (Evolution  by  natural  selection). Information  and  complexity  are  related  to  entropy!  They  make  a  significant  contribution  to  ΔG  and  can  be  considered  a  form  of  energy!  

Lecture 3 8/28/15 Biochemistry I Prof. Bellizzi 15

Page 16: Lecture 3 - From Chemistry to Biology

Genetic  Information DNA  is  the  cell’s  repository  of  genetic  information. Information  =  sequence  of  bases  (A,  C,  T,  G)  in  a  single  strand  of  DNA. The  molecular  structure  of  DNA  allows  the  information  encoded  in  the  sequence  of  bases  to  be  replicated  faithfully. •  Specific  hydrogen  bonding  interactions  create  base  

pairs  between  A:T  and  C:G  on  different  strands •  Two  strands  with  complementary  sequences  form  a  

double  helix. •  When  a  cell  divides,  one  strand  of  DNA  can  serve  

as  the  template  for  synthesis  of  a  new  strand  of  complementary  DNA  (DNA  replication)

•  A  strand  of  DNA  can  also  serve  as  the  template  for  synthesis  of  an  RNA  molecule  with  a  complementary  sequence  (DNA  transcription).

•  The  complementary  nature  of  the  two  strands  provides  a  “backup  copy”  allowing  for  repair  if  one  of  the  two  strands  is  damaged.

Lecture 3 8/28/15 Biochemistry I Prof. Bellizzi 16

Page 17: Lecture 3 - From Chemistry to Biology

The  Central  Dogma  of  Molecular  Biology

DNA→  RNA→  Protein Sequence  of  deoxyribonucleotides  in  DNA  encodes  sequence  of  amino  acids  in  protein. Different  proteins  have  different  sequences  of  amino  acids,  different  three-­‐‑dimensional  structures,  different  functions. •  Gene  =  coding  sequence  for  a  

protein •  Coding  sequence  is  transcribed  into  

mRNA. •  Ribosomes  translate  mRNA  to  

protein  (unfolded  polypeptide  chain)

•  Sequence  of  amino  acids  in  protein  lead  to  the  protein  folding  into  a  particular  native  three-­‐‑dimensional  structure.

Lecture 3 8/28/15 Biochemistry I Prof. Bellizzi 17

Page 18: Lecture 3 - From Chemistry to Biology

Comparative  Genomics

Genome  –  complete  sequence  of  genetic  material  of  an  organism. Homologs  –  two  genes/proteins  with  similar  sequence  

•  nucleotide  sequence  in  DNA  or  amino  acid  sequence  in  encoded  protein •  Proteins  encoded  by  homologous  genes  have  same  3D  structure  and  same/

closely  related  function •  The  greater  the  sequence  similarity,  the  closer  the  structure  and  function

Orthologs  –  homologous  genes/proteins  found  in  two  different  species

Example:  human  hexokinase  and  yeast  hexokinase Paralogs  –  homologous  genes/proteins  found  in  same  species

Example:  human  myoglobin  and  human  hemoglobin  A. Similarities/differences  in  DNA  sequences  among  organisms  indicates  descent  from  common  evolutionary  ancestor,  allows  us  to  determine  their  relationship.  

Lecture 3 8/28/15 Biochemistry I Prof. Bellizzi 18

Page 19: Lecture 3 - From Chemistry to Biology

Evolution Enormous  variety  of  life-­‐‑forms  on  earth  is  the  product  of  billions  of  years  of  evolution. •  Chance  genetic  variations  in  population  (mutation) •  Leads  to  individuals  with  improved  fitness  in  environmental  niche  (natural  selection) Change  in  nucleotide  sequence  =  genetic  mutation Can  be  caused  by  physical/chemical  damage  to  a  DNA  molecule  or  by  (very  rare)  unrepaired  error  in  DNA  replication. Mutations  in  somatic  cells  can  lead  to  cell  death  or  cancer Mutations  in  germ  cells  (sperm  or  egg)  can  be  passed  on  to  new  organism •  Most  mutations  are  harmful  or  lethal  (lead  to  defect  in  a  particular  protein) •  Rarely,  a  mutation  causes  a  change  in  the  structure  or  function  of  a  protein  that  is  tolerated  

by  the  new  organism/cell •  In  a  subset  of  those  cases,  the  mutation  beIer  equips  the  offspring  to  survive  in  its  

environment. Example: •  Mutation  in  a  gene  encoding  an  enzyme  that  changes  the  enzyme’s  substrate  specificity. •  The  mutant  offspring  may  be  able  to  metabolize  a  compound  that  the  wild-­‐‑type  cell/

organism  cannot. •  If  that  compound  is  abundant  in  the  environment,  the  mutant  offspring  has  a  source  of  

energy/carbon  that  the  wild  type  cell/organisms  does  not.

Lecture 3 8/28/15 Biochemistry I Prof. Bellizzi 19

Page 20: Lecture 3 - From Chemistry to Biology

Gene  Duplication

Many  mutations  have  arisen  after  a  gene  duplication  event. Defective  replication  can  sometimes  lead  to  duplication  of  large  stretches  of  DNA,  including  entire  genes. This  can  allow  one  copy  of  the  gene  to  mutate  without  compromising  the  activity  of  the  encoded  protein  (because  the  other  copy  of  the  gene  still  supplies  the  code  for  that  protein).

Lecture 3 8/28/15 Biochemistry I Prof. Bellizzi 20