lecture 3: cmos transistor theory - university of pittsburgh · lecture 3: cmos transistor theory...

58
1 Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004

Upload: nguyenkien

Post on 04-Jun-2018

259 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

1

Introduction toCMOS VLSI

Design

Lecture 3: CMOS Transistor Theory

David Harris

Harvey Mudd CollegeSpring 2004

Page 2: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

2

3: CMOS Transistor Theory Slide 2CMOS VLSI Design

OutlineIntroductionMOS CapacitornMOS I-V CharacteristicspMOS I-V CharacteristicsGate and Diffusion CapacitancePass TransistorsRC Delay Models

Page 3: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

3

3: CMOS Transistor Theory Slide 3CMOS VLSI Design

IntroductionSo far, we have treated transistors as ideal switchesAn ON transistor passes a finite amount of current– Depends on terminal voltages– Derive current-voltage (I-V) relationships

Transistor gate, source, drain all have capacitance– I = C (ΔV/Δt) -> Δt = (C/I) ΔV– Capacitance and current determine speed

Also explore what a “degraded level” really means

Page 4: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

4

© Digital Integrated Circuits2nd Devices

MOS Transistors MOS Transistors -- Types and SymbolsTypes and Symbols

D

S

G

D

S

G

G

S

D D

S

G

NMOS Enhancement NMOS

PMOS

Depletion

Enhancement

B

NMOS withBulk Contact

Page 5: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

5

© Digital Integrated Circuits2nd Devices

The MOS TransistorThe MOS Transistor

Polysilicon Aluminum

Page 6: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

6

© Digital Integrated Circuits2nd Devices

Controlling current flow in an Controlling current flow in an nFETnFET..

Introduction to Circuits, Fourth Edition by Peter Uyemura, Copyright © 2004 John Wiley & Sons. All rights reserved.

Page 7: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

7

© Digital Integrated Circuits2nd DevicesIntroduction to Circuits, Fourth Edition by Peter Uyemura, Copyright © 2004 John Wiley & Sons. All rights reserved.

Controlling current flow in a Controlling current flow in a pFETpFET..

Page 8: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

8

© Digital Integrated Circuits2nd Devices

What is a Transistor?What is a Transistor?

VGS ≥ VT

RonS D

A Switch!

|VGS|

A MOS Transistor

Page 9: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

9

I-V Curves

ResistorI = V/R

DiodeI = Is*exp(k*V-Vt)

Current (I) vs. Voltage (V)I = f(V)

0 0.5 1 1.5 2 2.50

1

2

3

4

5

6x 10-4

VDS

I D(A

)

MOSI = f(Vgs, Vds)

Page 10: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

10

3: CMOS Transistor Theory Slide 10CMOS VLSI Design

Terminal VoltagesMode of operation depends on Vg, Vd, Vs

– Vgs = Vg – Vs

– Vgd = Vg – Vd

– Vds = Vd – Vs = Vgs - Vgd

Source and drain are symmetric diffusion terminals– By convention, source is terminal at lower voltage– Hence Vds ≥ 0

nMOS body is grounded. First assume source is 0 too.Three regions of operation– Cutoff– Linear– Saturation

Vg

Vs Vd

VgdVgs

Vds+-

+

-

+

-

Page 11: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

11

3: CMOS Transistor Theory Slide 11CMOS VLSI Design

MOS CapacitorGate and body form MOS capacitorOperating modes– Accumulation– Depletion– Inversion

polysilicon gate

(a)

silicon dioxide insulator

p-type body+-

Vg < 0

(b)

+-

0 < Vg < Vt

depletion region

(c)

+-

Vg > Vt

depletion regioninversion region

In general, MOS gate capacitance is not constant

Page 12: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

12

© Digital Integrated Circuits2nd DevicesCopyright © 2005 Pearson Addison-Wesley. All rights reserved.

MOS Transistors MOS Transistors –– Operating regions Operating regions

Page 13: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

13

3: CMOS Transistor Theory Slide 13CMOS VLSI Design

nMOS CutoffNo channelIds = 0

+-

Vgs = 0

n+ n+

+-

Vgd

p-type body

b

g

s d

d

s

g

Page 14: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

14

3: CMOS Transistor Theory Slide 14CMOS VLSI Design

nMOS LinearChannel formsCurrent flows from d to s – e- from s to d

Ids increases with Vds

Similar to linear resistor

+-

Vgs > Vt

n+ n+

+-

Vgd = Vgs

+-

Vgs > Vt

n+ n+

+-

Vgs > Vgd > Vt

Vds = 0

0 < Vds < Vgs-Vt

p-type body

p-type body

b

g

s d

b

g

s d Ids

d

s

g

Page 15: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

15

© Digital Integrated Circuits2nd Devices

n+n+

p-substrate

D

SG

B

VGS

xL

V(x) +–

VDS

ID

Linear Region Linear Region VVgsgs>>VVtt & & VVgdgd>>VVtt

Positive Charge on Gate:Channel exists, Current Flows

since Vds > 0Ids = k’(W/L)((Vgs-Vt)Vds-Vds

2/2)

R

Vgd

Vgs

Ids

Vds

I=V/R

R= 1/(k’(W/L)(Vgs-Vt))

Ids

Page 16: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

16

3: CMOS Transistor Theory Slide 16CMOS VLSI Design

nMOS SaturationChannel pinches offIds independent of Vds

We say current saturatesSimilar to current source

+-

Vgs > Vt

n+ n+

+-

Vgd < Vt

Vds > Vgs-Vt

p-type bodyb

g

s d Ids

d

s

g

Page 17: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

17

© Digital Integrated Circuits2nd Devices

n+n+

S

G

VGS

D

VDS > VGS - VT

VGS - VT+-

Saturation: Saturation: VVgsgs>>VVtt & & VVgdgd<<VVtt

Positive Charge on Gate:Channel exists, Current Flows

since Vds > 0But: channel is “pinched off”

Ids = (k’/2)(W/L)(Vgs-Vt)2

Vgd

Vgs

Ids

Ids

Page 18: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

18

3: CMOS Transistor Theory Slide 18CMOS VLSI Design

I-V CharacteristicsIn Linear region, Ids depends on– How much charge is in the channel?– How fast is the charge moving?

Page 19: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

19

© Digital Integrated Circuits2nd DevicesCopyright © 2005 Pearson Addison-Wesley. All rights reserved.

MOS Transistors MOS Transistors –– Regions Transitions Regions Transitions

Page 20: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

20

3: CMOS Transistor Theory Slide 20CMOS VLSI Design

Channel ChargeMOS structure looks like parallel plate capacitor while operating in inversion– Gate – oxide – channel

Qchannel =

n+ n+

p-type body

+

Vgd

gate

+ +source

-

Vgs

-drain

Vds

channel-

Vg

Vs Vd

Cg

n+ n+

p-type body

W

L

tox

SiO2 gate oxide(good insulator, εox = 3.9)

polysilicongate

Page 21: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

21

3: CMOS Transistor Theory Slide 21CMOS VLSI Design

Channel ChargeMOS structure looks like parallel plate capacitor while operating in inversion– Gate – oxide – channel

Qchannel = CVC =

n+ n+

p-type body

+

Vgd

gate

+ +source

-

Vgs

-drain

Vds

channel-

Vg

Vs Vd

Cg

n+ n+

p-type body

W

L

tox

SiO2 gate oxide(good insulator, εox = 3.9)

polysilicongate

Page 22: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

22

3: CMOS Transistor Theory Slide 22CMOS VLSI Design

Channel ChargeMOS structure looks like parallel plate capacitor while operating in inversion– Gate – oxide – channel

Qchannel = CVC = Cg = εoxWL/tox = CoxWLV =

n+ n+

p-type body

+

Vgd

gate

+ +source

-

Vgs

-drain

Vds

channel-

Vg

Vs Vd

Cg

n+ n+

p-type body

W

L

tox

SiO2 gate oxide(good insulator, εox = 3.9)

polysilicongate

Cox = εox / toxCox = 8.6*fF/um2

Page 23: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

23

3: CMOS Transistor Theory Slide 23CMOS VLSI Design

Channel ChargeMOS structure looks like parallel plate capacitor while operating in inversion– Gate – oxide – channel

Qchannel = CVC = Cg = εoxWL/tox = CoxWLV = Vgc – Vt = (Vgs – Vds/2) – Vt

n+ n+

p-type body

+

Vgd

gate

+ +source

-

Vgs

-drain

Vds

channel-

Vg

Vs Vd

Cg

n+ n+

p-type body

W

L

tox

SiO2 gate oxide(good insulator, εox = 3.9)

polysilicongate

Cox = εox / tox

Page 24: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

24

3: CMOS Transistor Theory Slide 24CMOS VLSI Design

Carrier velocityCharge is carried by e-Carrier velocity v proportional to lateral E-field between source and drainv =

Page 25: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

25

3: CMOS Transistor Theory Slide 25CMOS VLSI Design

Carrier velocityCharge is carried by e-Carrier velocity v proportional to lateral E-field between source and drainv = μE μ called mobilityE =

Page 26: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

26

3: CMOS Transistor Theory Slide 26CMOS VLSI Design

Carrier velocityCharge is carried by e-Carrier velocity v proportional to lateral E-field between source and drainv = μE μ called mobilityE = Vds/LTime for carrier to cross channel:– t =

Page 27: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

27

3: CMOS Transistor Theory Slide 27CMOS VLSI Design

Carrier velocityCharge is carried by e-Carrier velocity v proportional to lateral E-field between source and drainv = μE μ called mobilityE = Vds/LTime for carrier to cross channel:– t = L / v

Page 28: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

28

3: CMOS Transistor Theory Slide 28CMOS VLSI Design

nMOS Linear I-VNow we know– How much charge Qchannel is in the channel– How much time t each carrier takes to cross

dsI =

Page 29: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

29

3: CMOS Transistor Theory Slide 29CMOS VLSI Design

nMOS Linear I-VNow we know– How much charge Qchannel is in the channel– How much time t each carrier takes to cross

channelds

QIt

=

=

Page 30: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

30

3: CMOS Transistor Theory Slide 30CMOS VLSI Design

nMOS Linear I-VNow we know– How much charge Qchannel is in the channel– How much time t each carrier takes to cross

channel

ox 2

2

ds

dsgs t ds

dsgs t ds

QIt

W VC V V VL

VV V V

μ

β

=

⎛ ⎞= − −⎜ ⎟⎝ ⎠

⎛ ⎞= − −⎜ ⎟⎝ ⎠

ox = WCL

β μ

Page 31: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

31

© Digital Integrated Circuits2nd Devices

Computed CurvesComputed Curves

Vgs = 5v

Vgs = 4.5v

Vgs = 4.0v

Linear Resistor

Page 32: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

32

3: CMOS Transistor Theory Slide 32CMOS VLSI Design

nMOS Saturation I-VIf Vgd < Vt, channel pinches off near drain– When Vds > Vdsat = Vgs – Vt

Now drain voltage no longer increases current

dsI =

Page 33: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

33

3: CMOS Transistor Theory Slide 33CMOS VLSI Design

nMOS Saturation I-VIf Vgd < Vt, channel pinches off near drain– When Vds > Vdsat = Vgs – Vt

Now drain voltage no longer increases current

2dsat

ds gs t dsatVI V V Vβ ⎛ ⎞= − −⎜ ⎟

⎝ ⎠

Page 34: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

34

3: CMOS Transistor Theory Slide 34CMOS VLSI Design

nMOS Saturation I-VIf Vgd < Vt, channel pinches off near drain– When Vds > Vdsat = Vgs – Vt

Now drain voltage no longer increases current

( )2

2

2

dsatds gs t dsat

gs t

VI V V V

V V

β

β

⎛ ⎞= − −⎜ ⎟⎝ ⎠

= −

Page 35: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

35

3: CMOS Transistor Theory Slide 35CMOS VLSI Design

Computed Curves

Vgs = 5v

Vgs = 4.5v

Vgs = 4.0v

Linear Resistor

Page 36: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

36

3: CMOS Transistor Theory Slide 36CMOS VLSI Design

nMOS I-V Summary

( )2

cutoff

linear

saturatio

0

2

2n

gs t

dsds gs t ds ds dsat

gs t ds dsat

V VVI V V V V V

V V V V

β

β

⎧⎪ <⎪⎪ ⎛ ⎞= − − <⎜ ⎟⎨ ⎝ ⎠⎪⎪

− >⎪⎩

Shockley 1st order transistor models

Page 37: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

37

3: CMOS Transistor Theory Slide 37CMOS VLSI Design

ExampleWe will be using a 0.180 μm process for your project– From TSMC Semiconductor– tox = 40 Å– μ = 180 cm2/V*s– Vt = 0.4 V

Plot Ids vs. Vds

– Vgs = 0, 0.3,…, 1.8 – Use W/L = 4/2 λ

( )14

28

3.9 8.85 10350 120 /100 10ox

W W WC A VL L L

β μ μ−

⎛ ⎞• ⋅ ⎛ ⎞= = =⎜ ⎟⎜ ⎟⋅ ⎝ ⎠⎝ ⎠180

40155

Page 38: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

38

3: CMOS Transistor Theory Slide 38CMOS VLSI Design

pMOS I-VAll dopings and voltages are inverted for pMOSMobility μp is determined by holes– Typically 2-3x lower than

that of electrons μn

Thus pMOS must be wider to provide same current– Often, assume μn / μp = 2

Page 39: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

39

© Digital Integrated Circuits2nd Devices

CurrentCurrent--Voltage RelationsVoltage RelationsLongLong--Channel DeviceChannel Device

Cut-off (VGS – VT < 0) “no current” (not really)

Page 40: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

40

© Digital Integrated Circuits2nd Devices

IIDD versus Vversus VDS DS short channel deviceshort channel device

-4

VDS(V)0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5x 10

I D(A

)

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

0 0.5 1 1.5 2 2.50

1

2

3

4

5

6x 10-4

VDS(V)

I D(A

)

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

Resistive Saturation

VDS = VGS - VT

Long Channel Short Channel

Page 41: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

41

© Digital Integrated Circuits2nd Devices

RabaeyRabaey’’ss unified modelunified modelfor manual analysisfor manual analysis

S D

G

B

Page 42: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

42

© Digital Integrated Circuits2nd Devices

Transistor Model Transistor Model for Manual Analysisfor Manual Analysis

Page 43: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

43

© Digital Integrated Circuits2nd Devices

Simple Model versus SPICE Simple Model versus SPICE

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5x 10

-4

VDS (V)

I D(A

)

VelocitySaturated

Linear

Saturated

VDSAT=VGT

VDS=VDSAT

VDS=VGT

Page 44: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

44

© Digital Integrated Circuits2nd Devices

Even Simpler:Even Simpler:The Transistor as a SwitchThe Transistor as a Switch

VGS ≥ VT

RonS D

ID

VDS

VGS = VD D

VDD/2 VDD

R0

Rmid

Page 45: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

45

© Digital Integrated Circuits2nd Devices

The Transistor as a SwitchThe Transistor as a Switch

This week’s Lab – find Req for our TSMC 180nm process

Page 46: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

46

© Digital Integrated Circuits2nd Devices

Saturation EffectsSaturation Effects

Which is the resistor?

Discharge of 1pf capacitor, with Vgs of 3,4,5 volts. Also, 12k resistor.

d

s

g

Page 47: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

47

3: CMOS Transistor Theory Slide 47CMOS VLSI Design

More on CapacitanceAny two conductors separated by an insulator have capacitanceGate to channel capacitor is very important– Creates channel charge necessary for operation

Source and drain have capacitance to body– Across reverse-biased diodes– Called diffusion capacitance because it is

associated with source/drain diffusion

Page 48: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

48

3: CMOS Transistor Theory Slide 48CMOS VLSI Design

Gate CapacitanceApproximate channel as connected to sourceCgs = εoxWL/tox = CoxWL = CpermicronWCpermicron is typically about 2 fF/μm

n+ n+

p-type body

W

L

tox

SiO2 gate oxide(good insulator, εox = 3.9ε0)

polysilicongate

Page 49: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

49

© Digital Integrated Circuits2nd Devices

The Gate Capacitance The Gate Capacitance

tox

n+ n+

Cross section

L

Gate oxide

xd xd

L d

Polysilicon gate

Top view

Gate-bulkoverlap

Source

n+

Drain

n+W

Page 50: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

50

© Digital Integrated Circuits2nd Devices

DynamicDynamic Behavior of MOS TransistorBehavior of MOS Transistor

DS

G

B

CGDCGS

CSB CDBCGB

Page 51: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

51

© Digital Integrated Circuits2nd Devices

Physical visualization of FET Physical visualization of FET capacitancescapacitances

Introduction to Circuits, Fourth Edition by Peter Uyemura, Copyright © 2004 John Wiley & Sons. All rights reserved.

Page 52: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

52

© Digital Integrated Circuits2nd DevicesCopyright © 2005 Pearson Addison-Wesley. All rights reserved.

MOS Capacitances Behavior !MOS Capacitances Behavior !

Page 53: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

53

© Digital Integrated Circuits2nd Devices

Gate Capacitance Gate Capacitance –– BehaviorBehavior

S D

G

CGC

S D

G

CGCS D

G

CGC

Cut-off Resistive Saturation

Most important regions in digital design: saturation and cut-off

Page 54: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

54

© Digital Integrated Circuits2nd Devices

Measuring the Gate CapMeasuring the Gate Cap

2 1.52 1 2 0.5 0

3

4

5

6

7

8

9

103 102 16

2

VGS (V)

VGS

Gat

e C

apac

itanc

e (F

)

0.5 1 1.5 22 2

I

Page 55: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

55

3: CMOS Transistor Theory Slide 55CMOS VLSI Design

Diffusion CapacitanceCsb, Cdb

Undesirable, called parasitic capacitanceCapacitance depends on area and perimeter– Use small diffusion nodes– Comparable to Cg

for contacted diff– ½ Cg for uncontacted– Varies with process

Page 56: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

56

© Digital Integrated Circuits2nd Devices

Diffusion CapacitanceDiffusion Capacitance

Bottom

Side wall

Side wallChannel

SourceND

Channel-stop implantNA1

Substrate NA

W

xj

L S

Page 57: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

57

© Digital Integrated Circuits2nd Devices

Final construction of the Final construction of the nFETnFET RC RC modelmodel

Introduction to Circuits, Fourth Edition by Peter Uyemura, Copyright © 2004 John Wiley & Sons. All rights reserved.

CG

Page 58: Lecture 3: CMOS Transistor Theory - University of Pittsburgh · Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004. 2 3: CMOS Transistor Theory Slide 2CMOS

58

© Digital Integrated Circuits2nd Devices

Summary of MOSFET Operating Summary of MOSFET Operating RegionsRegions

Strong Inversion VGS > VTLinear (Resistive) VDS < VDSAT

Saturated (Constant Current) VDS ≥VDSAT

Weak Inversion (Sub-Threshold) VGS ≤VTExponential in VGS with linear VDS dependence