lecture 1f: hotelling’s model - university of minnesota...

22
Model Monopoly Duopoly Nash Equilibrium Oligopoly Econ 460 Urban Economics Lecture 1F: Hotelling’s Model Instructor: Hiroki Watanabe Spring 2012 ©2012 Hiroki Watanabe 1 / 64 Model Monopoly Duopoly Nash Equilibrium Oligopoly 1 Hotelling’s Model 2 Monopoly (N = 1) 3 Duopoly (N = 2) 4 Nash Equilibrium 5 Oligopoly (N 2) 6 Now We Know ©2012 Hiroki Watanabe 2 / 64 Model Monopoly Duopoly Nash Equilibrium Oligopoly 1 Hotelling’s Model Hot Dog Vendors in Rockefeller Plaza 2 Monopoly (N = 1) 3 Duopoly (N = 2) 4 Nash Equilibrium 5 Oligopoly (N 2) 6 Now We Know ©2012 Hiroki Watanabe 3 / 64

Upload: vuongtruc

Post on 22-May-2018

216 views

Category:

Documents


1 download

TRANSCRIPT

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Econ 460 Urban Economics

Lecture 1F: Hotelling’s Model

Instructor: Hiroki Watanabe

Spring 2012

© 2012 Hiroki Watanabe 1 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

1 Hotelling’s Model

2 Monopoly (N = 1)

3 Duopoly (N = 2)

4 Nash Equilibrium

5 Oligopoly (N ≥ 2)

6 Now We Know

© 2012 Hiroki Watanabe 2 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

1 Hotelling’s ModelHot Dog Vendors in Rockefeller Plaza

2 Monopoly (N = 1)

3 Duopoly (N = 2)

4 Nash Equilibrium

5 Oligopoly (N ≥ 2)

6 Now We Know

© 2012 Hiroki Watanabe 3 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Hot Dog Vendors in Rockefeller Plaza

Firm’s location choice (Lecture 1D):Firm A’s location choice affects Firm B via bid rent.Production level y was given.

What if y is endogenous and firm’s location choiceaffects profit of other firms?

© 2012 Hiroki Watanabe 4 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Hot Dog Vendors in Rockefeller Plaza

Hotelling’s model (c.f. Varian Chpt 25 [Var05]).Think of a region in which consumers are uniformlylocated along a line segment [0,1].Each consumer prefers to travel a shorter distanceto a hot dog vendor (homogeneous good).There are N sellers.Where would we expect these sellers to choosetheir locations?

© 2012 Hiroki Watanabe 5 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Hot Dog Vendors in Rockefeller Plaza

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

1

Location (miles)

Pop

ulat

ion

Den

isty

(pe

ople

/mi)

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

1

Location (miles)

Pop

ulat

ion

Den

isty

(pe

ople

/mi)

© 2012 Hiroki Watanabe 6 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Hot Dog Vendors in Rockefeller Plaza

Consumer location is given by (0 ≤ ≤ 1).n-th vendor’s location is given by n (0 ≤ n ≤ 1).

Definition 1.1 (Mill & Delivered Price)

1 is the on-site price of a hot dog. The mill price of then-th vendor is given by pn.

2 is the overall cost that a consumer pays for a hot dog,including trip cost. A consumer at pays

pn︸︷︷︸

mill price of vendor n

+ |− n|︸ ︷︷ ︸

distance to vendor n

.

© 2012 Hiroki Watanabe 7 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Hot Dog Vendors in Rockefeller Plaza

Each consumer buys one hot dog.Normalize pn = 1 for all n.Demand faced by Liz is DL(L, K , · · · ) hot dogs.Demand faced by Kenneth is DK(L, K , · · · ) hotdogs.(Assume the cost is sunk, i.e., the vendor hasalready made enough hot dogs).Liz’s profit is 1 ·DL(L, K , · · · ) = DL(L, K , · · · )dollars.Kenneth’s profit is 1 ·DK(L, K , · · · ) = DK(L, K , · · · )dollars.

© 2012 Hiroki Watanabe 8 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

1 Hotelling’s Model

2 Monopoly (N = 1)

3 Duopoly (N = 2)

4 Nash Equilibrium

5 Oligopoly (N ≥ 2)

6 Now We Know

© 2012 Hiroki Watanabe 9 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Suppose there is a single vendor (monopolist).

Question 2.1 (Location of the Monopolist)

1 What is the demand that the monopolist faces?

2 What is the monopolist’s profit when she locates = 0, .25 and .5?

3 Which location maximizes the vendor’s profit?

4 Which location minimizes total delivered price payed bythe customers?

© 2012 Hiroki Watanabe 10 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Liz solves:

max0≤L≤1πL(L) = 1 ·DL(L).

DL(L) = 1.πL(L) = 1 ·DL(L) = 1.Liz’s profit is 1 regardless of the location L.

© 2012 Hiroki Watanabe 11 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

0 0.25 0.5 0.75 10

0.5

1

1.5

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

Mill(x)=1Delivered(x)=|x−0|

0 0.25 0.5 0.75 10

0.5

1

1.5

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

© 2012 Hiroki Watanabe 12 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

0 0.25 0.5 0.75 10

0.5

1

1.5

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

Mill(x)=1Delivered(x)=|x−.25|

0 0.25 0.5 0.75 10

0.5

1

1.5

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

© 2012 Hiroki Watanabe 13 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

0 0.25 0.5 0.75 10

0.5

1

1.5

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

Mill(x)=1Delivered(x)=|x−.5|

0 0.25 0.5 0.75 10

0.5

1

1.5

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

© 2012 Hiroki Watanabe 14 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Delivered price is location-variant.

Definition 2.2 (Total Delivered Price (TDP))Total delivered price measures the overall price thatconsumers paid to purchase their hot dogs. It isequivalent to vendor’s profit and the aggregate sum of|− L| from = 0 to = 1.

TDP(L = 0) = 1+ .5 = 1.5 = 2416 .

TDP(L = .25) = 1+ 516 =

2116 .

TDP(L = .5) = 1+ 14 =

54 =

2016 .

© 2012 Hiroki Watanabe 15 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

0 0.25 0.5 0.75 10.9

1

1.1

1.2

1.3

1.4

1.5

Vendor Location (xL)

Tot

al D

eliv

ered

Pric

e ($

)

Total Profit

TDP(xL)

0 0.25 0.5 0.75 10.9

1

1.1

1.2

1.3

1.4

1.5

Vendor Location (xL)

Tot

al D

eliv

ered

Pric

e ($

)

© 2012 Hiroki Watanabe 16 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

What is socially optimal for the economy as a wholeis L = .5 (minimizes total cost of trip whilemaintaining the profitability).What is privately optimal for the vendor is any L in[0,1].

Question 2.3 (Profit Maximization and Social Welfare)

Is there any way that Liz chooses L = .5 by herself?Is political intervention necessary to realize L = .5?

© 2012 Hiroki Watanabe 17 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

1 Hotelling’s Model

2 Monopoly (N = 1)

3 Duopoly (N = 2)DuopolyIsoprofit

4 Nash Equilibrium

5 Oligopoly (N ≥ 2)

6 Now We Know

© 2012 Hiroki Watanabe 18 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Duopoly

Suppose there are two vendors (N = 2).Liz solves:

max0≤L≤1πL(L, K) = 1 ·DL(L, K).

Kenneth solves:

max0≤K≤1πK(L, K) = 1 ·DK(L, K).

Note Liz does not solve:

max0≤L≤1,0≤K≤1πL(L, K) = 1 ·DL(L, K).

(why?)What do DL(L, K), DK(L, K) look like?Start with (L, K) = (0,1).

© 2012 Hiroki Watanabe 19 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Duopoly

0 0.25 0.5 0.75 10

0.5

1

1.5

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

Mill(x)=1

DeliveredL(x)=|x−0|

DeliveredK(x)=|x−1|

0 0.25 0.5 0.75 10

0.5

1

1.5

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

© 2012 Hiroki Watanabe 20 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Duopoly

DL(0,1) = .5⇒ πL(0,1) = .5.DK(0,1) = .5⇒ πK(0,1) = .5.Does Liz improve her profit by moving to the east?

© 2012 Hiroki Watanabe 21 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Duopoly

0 0.1 0.450.5 0.8 10

0.5

1

1.5

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

Mill(x)=1

DeliveredL(x)=|x−.1|

DeliveredK(x)=|x−.8|

0 0.1 0.450.5 0.8 10

0.5

1

1.5

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

© 2012 Hiroki Watanabe 22 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Duopoly

DL(.1,1) = 1+.12 = .55

DK(.1,1) = 1− .55 = .45.Does Kenneth improve his profit by moving to thewest?

© 2012 Hiroki Watanabe 23 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Duopoly

0 0.1 0.450.5 0.8 10

0.5

1

1.5

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

Mill(x)=1

DeliveredL(x)=|x−.1|

DeliveredK(x)=|x−.8|

0 0.1 0.450.5 0.8 10

0.5

1

1.5

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

© 2012 Hiroki Watanabe 24 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Duopoly

DL(.1, .8) = .1+.82 = .45.

DK(.1, .8) = 1− .45 = .55.

© 2012 Hiroki Watanabe 25 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Duopoly

1 If L < K ,Liz takes the consumers from 0 to the midpointbetween L and K :

DL(L, K ) =L + K

2.

Kenneth takes the rest:

DK (L, K ) = 1−DL(L, K ) = 1−L + K

2.

© 2012 Hiroki Watanabe 26 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Duopoly

2 If L > K ,Kenneth takes the consumers from 0 to themidpoint between L and K :

DK (L, K ) =L + K

2.

Liz takes the rest:

DL(L, K ) = 1−DK (L, K ) = 1−L + K

2.

3 If L = K , they split the market even:

DL(L, K) = DK(L, K) = .5.

© 2012 Hiroki Watanabe 27 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Isoprofit

© 2012 Hiroki Watanabe 28 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Isoprofit

An isoprofit curve of Liz indicates the set of location(L, K) that results in the same profit.

© 2012 Hiroki Watanabe 29 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Isoprofit

For Liz, isoprofit at .4 is a set of location (L, K)that results in πL(L, K) = .4.

1 If L < K (region above 45◦ line)

πL(L, K ) =L + K

2= .4⇒ K = −L + .8.

2 If L > K (region below 45◦ line)

πL(L, K ) = 1−L + K

2= .4⇒ K = −L + 1.2.

3 If L = K (45◦ line)

πL(L, K ) = .5 , .4

© 2012 Hiroki Watanabe 30 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Isoprofit

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

0.1

0.1

0.2

0.2

0.2

0.2

0.3

0.3

0.3

0.3

0.3

0.3

0.4

0.4

0.4

0.4

0.4

0.4

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.6

0.60.6

0.6

0.6

0.6

0.7

0.7

0.7

0.7

0.7

0.7

0.8

0.8

0.8

0.8

0.9

0.9

xL

xK

Liz′s Isoprofit

© 2012 Hiroki Watanabe 31 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Isoprofit

For Liz, isoprofit at .5 is a set of location (L, K)that results in πL(L, K) = .5.

1 If L < K (region above 45◦ line)

πL(L, K ) =L + K

2= .5⇒ K = −L + 1.

2 If L > K (region below 45◦ line)

πL(L, K ) = 1−L + K

2= .5⇒ K = −L + 1.

3 If L = K (45◦ line)

πL(L, K ) = .5

A crossbuck shape.© 2012 Hiroki Watanabe 32 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Isoprofit

For Kenneth, isoprofit at .4 is a set of location(L, K) that results in πK(L, K) = .4.

1 If L < K (region below 45◦ line)

πK (L, K ) = 1−L + K

2= .4⇒ K = −L + 1.2.

2 If L > K (region above 45◦ line)

πK (L, K ) =L + K

2= .4⇒ K = −L + .8.

3 If L = K (45◦ line)

πK (L, K ) = .5 , .4

© 2012 Hiroki Watanabe 33 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Isoprofit

Question: where is Kenneth’s isoprofit at .5 located?

© 2012 Hiroki Watanabe 34 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Isoprofit

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

0.1

0.1

0.2

0.2

0.2

0.2

0.3

0.3

0.3

0.3

0.3

0.3

0.4

0.40.4

0.4

0.4

0.4

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.6

0.6

0.6

0.6

0.6

0.6

0.7

0.7

0.7

0.7

0.7

0.7

0.8

0.8

0.8

0.8

0.9

0.9

xL

xK

Kenneth′s Isoprofit

© 2012 Hiroki Watanabe 35 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Isoprofit

How does Liz react to Kenneth’s location?If Kenneth is at K = 0, Liz maximizes its profit bylocating slightly to the east of K .(L,0)⇒ L = 0+ ε (ε = an infinitesimally smalldistance).If Kenneth is at K = .2, Liz maximizes its profit bylocating slightly to the east of K .(L, .2)⇒ L = .2+ ε.If Kenneth is at K = .4, Liz maximizes its profit bylocating slightly to the east of K .(L, .4)⇒ L = .4+ ε.

© 2012 Hiroki Watanabe 36 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Isoprofit

(L, .5)⇒ L = .5.(L, .6)⇒ L = .6− ε.(L, .8)⇒ L = .8− ε.(L,1)⇒ L = 1− ε.

© 2012 Hiroki Watanabe 37 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Isoprofit

How does Kenneth react to Liz’s location?(0, K)⇒ K = 0+ ε.(.2, K)⇒ K = .2+ ε.(.4, K)⇒ K = .4+ ε.(.5, K)⇒ K = .5.(.6, K)⇒ K = .6− ε.(.8, K)⇒ K = .8− ε.(1, K)⇒ K = 1− ε.

© 2012 Hiroki Watanabe 38 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Isoprofit

Turn L K

Initial 0 1Liz .99 1

Kenneth .99 .98Liz .97 .98...

Kenneth .52 .51Liz .50 .51

Kenneth .50 .50Liz .50 .50

Kenneth .50 .50

© 2012 Hiroki Watanabe 39 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

1 Hotelling’s Model

2 Monopoly (N = 1)

3 Duopoly (N = 2)

4 Nash EquilibriumNash Equilibrium & Socially Efficient Location

5 Oligopoly (N ≥ 2)

6 Now We Know

© 2012 Hiroki Watanabe 40 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Nash Equilibrium & Socially Efficient Location

Definition 4.1 (Nash Equilibrium)

Nash equilibrium is the location (LNE, KNE) such thatnone of the vendor can profit by unilaterally changingits location.

For duopoly, the Nash equilibrium(LNE, KNE) = (.5, .5).

© 2012 Hiroki Watanabe 41 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Nash Equilibrium & Socially Efficient Location

Is the Nash equilibrium (LNE, KNE) = (.5, .5)socially efficient?Fact: the socially efficient allocation is(L∗, K∗) = (1/4,3/4) or (3/4,1/4).

© 2012 Hiroki Watanabe 42 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Nash Equilibrium & Socially Efficient Location

0 0.25 0.5 0.75 10

0.5

1

1.5

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

Nash Equilibrium Location

Mill(x)=1

DeliveredL(x)=|x−.5|

DeliveredK(x)=|x−.5|

0 0.25 0.5 0.75 10

0.5

1

1.5

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

Nash Equilibrium Location

© 2012 Hiroki Watanabe 43 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Nash Equilibrium & Socially Efficient Location

0 0.25 0.5 0.75 10

0.5

1

1.5

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

Efficient Location

Mill(x)=1

DeliveredL(x)=|x−.25|

DeliveredK(x)=|x−.75|

0 0.25 0.5 0.75 10

0.5

1

1.5

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

Efficient Location

© 2012 Hiroki Watanabe 44 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Nash Equilibrium & Socially Efficient Location

Compare:

Location Profit TDP

Nash (.5, .5) (.5, .5) 1+1/4Socially Efficient (.25, .75) (.5, .5) 1+1/8Socially Efficient (.75, .25) (.5, .5) 1+1/8

© 2012 Hiroki Watanabe 45 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Nash Equilibrium & Socially Efficient Location

0 0.25 0.5 0.75 10

0.25

0.5

0.75

1

xL

xK

Liz′s Isoprofit

© 2012 Hiroki Watanabe 46 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Nash Equilibrium & Socially Efficient Location

Question 4.2 (Socially Inefficient Equilibrium)

Why can’t vendors choose the socially optimal location,when both Nash equilibrium location and sociallyefficient location yield the same profits?

© 2012 Hiroki Watanabe 47 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Nash Equilibrium & Socially Efficient Location

They are indifferent between (LNE, KNE) and(L∗, K∗).Given (L, K) = (.25, .75), Liz will move to alocation slightly to the west of K = .75.(L, K) = (.74, .75)→ (.74, .73)→ (.72, .73)→· · · → (.5, .5).

© 2012 Hiroki Watanabe 48 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

1 Hotelling’s Model

2 Monopoly (N = 1)

3 Duopoly (N = 2)

4 Nash Equilibrium

5 Oligopoly (N ≥ 2)N = 3N ≥ 4

6 Now We Know

© 2012 Hiroki Watanabe 49 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

N = 3

If there are 3 vendors, Liz solves

max0≤L≤1πL(L, K , J) = 1 ·DL(L, K , J).

For N = 3, there is no Nash equilibrium.Consider

1 All the vendors locate at different place.2 L = K = J.3 L = K , J.

© 2012 Hiroki Watanabe 50 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

N = 3

0 0.2 0.6 11

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

0 0.2 0.6 11

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

Mill(x)=1

DeliveredL(x)=|x−.1|

DeliveredK(x)=|x−.3|

DeliveredD(x)=|x−.9|

© 2012 Hiroki Watanabe 51 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

N = 3

0 0.25 0.55 11

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

0 0.25 0.55 11

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

Mill(x)=1

DeliveredL(x)=|x−.2|

DeliveredK(x)=|x−.3|

DeliveredD(x)=|x−.8|

© 2012 Hiroki Watanabe 52 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

N = 3

0 0.2 11

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

0 0.2 11

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

Mill(x)=1

DeliveredL(x)=|x−.2|

DeliveredK(x)=|x−.2|

DeliveredD(x)=|x−.2|

© 2012 Hiroki Watanabe 53 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

N = 3

0 0.25 11

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

0 0.25 11

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

Mill(x)=1

DeliveredL(x)=|x−.2|

DeliveredK(x)=|x−.2|

DeliveredD(x)=|x−.3|

© 2012 Hiroki Watanabe 54 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

N = 3

0 0.5 11

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

0 0.5 11

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

Mill(x)=1

DeliveredL(x)=|x−.2|

DeliveredK(x)=|x−.2|

DeliveredD(x)=|x−.8|

© 2012 Hiroki Watanabe 55 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

N = 3

0 0.25 0.55 11

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

0 0.25 0.55 11

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

0 0.25 0.55 11

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

Mill(x)=1

DeliveredL(x)=|x−.2|

DeliveredK(x)=|x−.3|

DeliveredD(x)=|x−.8|

© 2012 Hiroki Watanabe 56 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

N = 3

Fact: socially efficient location is(L, K , J) = (1/6,3/6,5/6) (not necessarily in thisorder).

© 2012 Hiroki Watanabe 57 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

N = 3

0 1/3 2/3 11

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

0 1/3 2/3 11

2

Location (miles)

Mill

Pric

e an

d D

eliv

ered

Pric

e ($

)

Mill(x)=1

DeliveredL(x)=|x−1/6|

DeliveredK(x)=|x−3/6|

DeliveredD(x)=|x−5/6|

© 2012 Hiroki Watanabe 58 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

N ≥ 4

There are Nash equilibria for N ≥ 4.

© 2012 Hiroki Watanabe 59 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

1 Hotelling’s Model

2 Monopoly (N = 1)

3 Duopoly (N = 2)

4 Nash Equilibrium

5 Oligopoly (N ≥ 2)

6 Now We Know

© 2012 Hiroki Watanabe 60 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Hotelling’s modelSocial optimality vs individual optimality.Nash equilibrium

© 2012 Hiroki Watanabe 61 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

References

Hal R. Varian.Intermediate Microeconomics.Norton, seventh edition, 2005.

© 2012 Hiroki Watanabe 62 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

Map du Jour

Source http://www.worldmapper.org/

© 2012 Hiroki Watanabe 63 /64

Model Monopoly Duopoly Nash Equilibrium Oligopoly

D, demand, 8Delivered price, 7duopoly, 19isoprofit, 29Mill price, 7monopoly, 10N, number of sellers, 5n, vendor, 7Nash equilibrium, 41oligopoly, 50p, price, 7

π, profit, 11, 19private optimum, 17profit, 8social optimum, 17socially efficient allocation,42TDP, see total deliveredpricetotal delivered price, 15, location, 7

© 2012 Hiroki Watanabe 64 /64