lecture 14 - bilkent universitykilyos.ee.bilkent.edu.tr/~eee314/downloads/l14.pdf · announcements...

46
Lecture 14 Ozgur Aktas [email protected] March 20, 2006

Upload: others

Post on 01-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Lecture 14Ozgur Aktas

    [email protected]

    March 20, 2006

  • What we have learnt up to now?

    • Basic semiconductor equations

    • Drawing band diagrams for pn junctions, and npn/pnp transistors

    • RTL/DTL/TTL/ATTL/STTL analysis

    – Analysis for states of each transistor– Transfer characteristics– Power dissipation– Definitions that relate to delay– Input/output currents, voltages– The problems/solutions of charge removal from base

    • ECL basics

    L14

  • Todays overview

    • Announcements

    • Output impedance of Darlington pull-up circuit

    • Finish ECL

    L14

  • Announcements

    • Exam on April 13th

    • HW2 due this Friday (March 24th)

    • Tutorial session on April 10 evening

    L14

  • Output impedance of Darlington pull-up circuit

    The circuit is drawn as follows:

    QP

    RCP

    QP2

    REP

    RC

    Vout

    +5V

    Assuming the output current issmall the transistors QP andQP2 will be active. Then,ignoring Rbb′, the equivalentmodel will be:

    RCP

    REP

    RC

    Vout

    +5V

    IB(QP2)

    β

    IB(QP)

    IB(QP)

    IB(QP2)β

    VBEA

    VBEA

    L14 1

  • Output impedance of Darlington pull-up circuit

    RCP

    REP

    RC

    Vout

    +5V

    IB(QP2)

    β

    IB(QP)

    IB(QP)

    IB(QP2)β

    VBEA

    VBEA

    rout =∂Vo∂Io

    Io = (β + 1)IB(QP2)

    Io = (β + 1)

    (

    (β + 1)IB(QP ) −Vo + 0.7

    REP

    )

    Ignoring the term with REP

    Io = (β + 1)2 VCC − Vo − 2 ∗ VBEA

    RC

    ∂Vo∂Io

    =−RC

    (β + 1)2

    L14 2

  • ECL gates

    The basic circuit forming the basisof ECL gates is the ”emittercoupled current switch”

    VCC

    -VEE

    RCI RCR

    QI QRVref

    Vin

    out

    IRE

    The operation of the currentswitch is based on changingthe transistor through which thecurrent IRE flows. This changeis fast, since the emitter currentof an active npn transistordepens exponentially on thebase-emitter voltage. For each60mV change in the base-emitter bias, the emitter currentof an active npn changes byexp(

    VBEkTq

    )

    L14 1

  • ECL gates

    The basic circuit forming the basisof ECL gates is the ”emittercoupled current switch”

    VCC

    -VEE

    RCI RCR

    QI QRVref

    Vin

    out

    IRE

    Band diagrams of E-Bjunctions of QI and QR.

    < VrefVin

    Vin Vref=

    Vin Vref>

    Emitter Base

    L14 2

  • ECL gates

    Emitter coupled current switch

    VCC

    -VEE

    RCI RCR

    QI QRVref

    Vin

    out

    IRE

    < VrefVin

    Vin Vref=

    Vin Vref>

    Emitter Base

    Assume VIH − VIL = 100mVVin < Vref − 0.05 :: QI is OFF, QR is ACT

    Vin > Vref + 0.05 :: QI is ACT, QR is OFF

    In order to guarantee ACT operation, the resistor,input voltage range, and power supply voltagesmust be selected APPROPRIATELY.

    ECL standart ::VCC = 0V , VEE = −5.2V , Vref = −1.175V

    So:Vin < Vref − 0.05 :: VCQI = VCC

    Vin > Vref + 0.05 :: VCQI = VCC − RCCIRE

    L14 3

  • ECL gates

    ”emitter coupled current switch”

    VCC

    -VEE

    RCI RCR

    QI QRVref

    Vin

    out

    IRE

    Basic ECL gate

    VCC

    -VEE

    RCI RCR

    QI QRVref

    Vin

    IRE

    RORO

    QNINVQINV

    VOUT VOUT(VINV) (VNINV)

    L14 4

  • ECL gates

    Basic ECL gateVCC

    -VEE

    RCI RCR

    QI QRVref

    Vin

    IRE

    RORO

    QNINVQINV

    VOUT VOUT(VINV) (VNINV)

    The emitter followers ( QINV − Ro and QNINV − Ro ) provide extremelylow output impedance. Thereby increasing the capacity to feed highnumber of fan-out gates.

    L14 5

  • ECL gatesOutput impedance of emitter follower

    Emitter follower and model

    VCC

    -VEE

    Vin

    RO

    Qef

    VOUT

    -VEE

    Vin

    RO

    VOUT

    VCC

    IB

    IBβRbb’

    The output resistanceconsists of Rbb′ asseen from the output inparallel with Ro.

    L14 6

  • ECL gatesOutput impedance of emitter follower

    Model of emitter follower

    -VEE

    Vin

    RO

    VOUT

    VCC

    IB

    IBβRbb’

    Derivation HERE

    L14 7

  • ECL inverter transfer characteristic: NINV

    VCC

    -VEE

    RCI RCR

    QI QRVref

    Vin

    IRE

    RORO

    QNINVQINV

    VOUT VOUT(VINV) (VNINV)

    Assume VIH − VIL = 100mV

    Consider node NINV with VIN=logic0VIN < V ref − 0.05 (LOW voltage)

    Now: QI :: OFF, QR::ACT

    IRE =Vref − VBEA − (−VEE)

    RE

    IRCR = αIRE

    IRCR = αVref − VBEA − (−VEE)

    RE

    VBQNINV= 0 − RCR ∗ IRCR

    The node (NINV) is now at logic 0 value, which is:VOL = VBQNINV

    − VBEA = 0 − RCR ∗ IRCR − VBEA

    VOL = VBQNINV−VBEA = 0−RCR∗α

    Vref − VBEA − (−VEE)

    RE−VBEA

    The resistor values and VEE is selected so that VOL ≈ −2 ∗ VBEA

    L14 8

  • ECL inverter transfer characteristic: NINV

    VCC

    -VEE

    RCI RCR

    QI QRVref

    Vin

    IRE

    RORO

    QNINVQINV

    VOUT VOUT(VINV) (VNINV)

    270 300

    1240

    2000 Ω

    ΩΩ

    Ω2000

    Use VBEA = 0.75V for ECL

    NINV with VIN=logic0 (LOW)

    VOL = −RCR ∗ αVref − VBEA − (−VEE)

    RE− VBEA

    VOL = −300 ∗ 0.98 ∗−1.175 − 0.75 − (−5.2)

    1240− 0.75 = −1.526V

    Note that this is for NINV output.

    L14 9a

  • ECL inverter transfer characteristic: NINV

    VCC

    -VEE

    RCI RCR

    QI QRVref

    Vin

    IRE

    RORO

    QNINVQINV

    VOUT VOUT(VINV) (VNINV)

    270 300

    1240

    2000 Ω

    ΩΩ

    Ω2000

    Use VBEA = 0.75V for ECL

    NINV with VIN=logic1 (HIGH)VIN > V ref + 0.05 (LOW voltage)Then, node NINV will be at logic1 (HIGH)VOH = 0 − VBEA = −0.75V

    Note that this is for NINV output.

    L14 9b

  • ECL inverter transfer characteristic: NINV

    VCC

    -VEE

    RCI RCR

    QI QRVref

    Vin

    IRE

    RORO

    QNINVQINV

    VOUT VOUT(VINV) (VNINV)

    270 300

    1240

    2000 Ω

    ΩΩ

    Ω2000

    Use VBEA = 0.75V for ECL

    For (V ref − 0.05) < VIN < (V ref + 0.05)the logic state is indeterminate.QI is switching from OFF to ACT.QR is switching from ACT to OFF.

    Assume V o (NINV) changes linearly as VIN changes fromVref − 0.05 to Vref + 0.05.

    L14 9c

  • ECL inverter transfer characteristic: NINV

    −1.5 −1.4 −1.3 −1.2 −1.1 −1.0 −0.9 −0.8 −0.7−1.6

    −1.5

    −1.4

    −1.3

    −1.2

    −1.1

    −1.0

    −0.9

    −0.8

    −0.7

    ECL characteristics

    Vin

    outp

    uts

    NON−inverting output

    L14 10

  • ECL inverter transfer characteristic: INV

    NINV with VIN = logic0 (LOW)VIN < V ref − 0.05 (LOW voltage)

    Now: QI:: OFF, QR::ACT

    Node INV (Vout) is at logic1 (HIGH)VOH = VCC − VBEA = −0.75V

    Note that this is for INV output.

    VCC

    -VEE

    RCI RCR

    QI QRVref

    Vin

    IRE

    RORO

    QNINVQINV

    VOUT VOUT(VINV) (VNINV)

    270 300

    1240

    2000 Ω

    ΩΩ

    Ω2000

    For(V ref − 0.05) < VIN < (V ref + 0.05)the logic state is indeterminate.QI is switching from OFF to ACT.QR is switching from ACT to OFF.

    When VIN > (V ref + 0.05) QI is ACT.Assume Vo (INV) changes linearly as VIN changes from Vref−0.05to Vref + 0.05.

    L14 11

  • ECL inverter characteristic: NINV & INV

    −1.5 −1.4 −1.3 −1.2 −1.1 −1.0 −0.9 −0.8 −0.7−1.6

    −1.5

    −1.4

    −1.3

    −1.2

    −1.1

    −1.0

    −0.9

    −0.8

    −0.7

    ECL characteristics

    Vin

    outp

    uts

    NON−inverting output inverting output

    L14 12

  • ECL inverter transfer characteristic: INV

    VCC

    -VEE

    RCI RCR

    QI QRVref

    Vin

    IRE

    RORO

    QNINVQINV

    VOUT VOUT(VINV) (VNINV)

    Consider node INV with VIN=logic1VIN > V ref + 0.05 (HIGH)

    Now: QI :: ACT, QR::OFF

    IRE =VIN − VBEA − (−VEE)

    RE

    IRCI = αIRE

    IRCI = αVIN − VBEA − (−VEE)

    RE

    VBQNINV= 0 − RCI ∗ IRCI

    The node (INV) is now at logic 0 value, which is:VOL(INV ) = VBQNINV

    − VBEA = 0 − RCI ∗ IRCI − VBEA

    VOL(INV ) = 0 − RCI ∗ αVIN − VBEA − (−VEE)

    RE− VBEA

    L14 13

  • ECL inverter transfer characteristic: INVVCC

    -VEE

    RCI RCR

    QI QRVref

    Vin

    IRE

    RORO

    QNINVQINV

    VOUT VOUT(VINV) (VNINV)

    270 300

    1240

    2000 Ω

    ΩΩ

    Ω2000

    Use VBEA = 0.75V for ECL

    The resistor value RCI selectedto be smaller than RCR so thatVo = VOL for VIN = VOH

    INV with VIN > (V ref + 0.05)=logic1(HIGH)VOL = 0 − RCI ∗ α

    VIN − VBEA − (−VEE)

    RE− VBEA

    VOL = −270 ∗ 0.98 ∗VIN − 0.75 − (−5.2)

    1240− 0.75

    VOL = −0.213 ∗ VIN − 1.7

    Note that this is for NINV output.

    L14 14

  • ECL inverter characteristic: NINV & INV

    −1.5 −1.4 −1.3 −1.2 −1.1 −1.0 −0.9 −0.8 −0.7−1.6

    −1.5

    −1.4

    −1.3

    −1.2

    −1.1

    −1.0

    −0.9

    −0.8

    −0.7

    ECL characteristics

    Vin

    outp

    uts

    L14 15

  • ECL inverter transfer characteristic: INV

    VCC

    -VEE

    RCI RCR

    QI QRVref

    Vin

    IRE

    RORO

    QNINVQINV

    VOUT VOUT(VINV) (VNINV)

    270 300

    1240

    2000 Ω

    ΩΩ

    Ω2000

    As VIN increases further, QIwill saturate whenVCE(QI) = VCES

    Assume VBCS = 0.7VAssume VCES = 0.05V

    VC(QI) = 0 − RCI ∗ αVIN − VBEA − (−VEE)

    REVE(QI) = VIN − VBEA

    Rather than try to remember Eq. 6.23, just useVCE(QI) = VCES for condition of saturation. When saturation ofQI happensVo = VIN + VBCS − VBEA

    L14 16

  • ECL inverter transfer characteristic: INV

    VCC

    -VEE

    RCI RCR

    QI QRVref

    Vin

    IRE

    RORO

    QNINVQINV

    VOUT VOUT(VINV) (VNINV)

    270 300

    1240

    2000 Ω

    ΩΩ

    Ω2000

    As VIN increases further, QIwill saturate whenVCE(QI) = VCES

    Assume VBCS = 0.7VAssume VCES = 0.05V

    VC(QI) = −270 ∗ 0.98VIN + 4.45

    1240= −0.213 ∗ VIN − 0.95

    VE(QI) = VIN − 0.75

    Solving for VCE(QI) = 0.05VINsat = −0.21V

    L14 17

  • ECL inverter characteristic: NINV & INV

    −1.6 −1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2 −0.0−1.7

    −1.6

    −1.5

    −1.4

    −1.3

    −1.2

    −1.1

    −1.0

    −0.9

    −0.8

    −0.7

    ECL characteristics

    Vin

    outp

    uts

    L14 18

  • ECL inverter characteristic: NINV & INV

    VIN LOGIC Vo (INV) V o (NINV)VIN < −1.180 LOGIC0 -0.75 -1.523VIN > −1.170 LOGIC1 LOW -0.75VIN > −0.21 INVALID SAT -0.75

    L14 19

  • ECL inverter characteristic: Motorola-SPECs

    Typical and AVERAGE characteristics

    L14 20

  • ECL inverter characteristic: Motorola-SPECs

    NML=|VOL(max) − VIL(max)| = | − 1.5 + 1.325| = 0.175VNMH=|VOH(min) − VIH(min)| = | − 0.85 + 1.025| = 0.175V(note that the definitions are somewhat different than the ones used in the book)

    L14 21

  • ECL inverter power dissipation

    ECL power dissipation dominated by DC dissipation.This is an approximation and will not hold at higher frequencies.Still, we will only consider DC dissipation of ECL gates.PL is the DC dissipation when NONINVERTING output is LOW.PH is the DC dissipation when NONINVERTING output is HIGH.

    PL = −(−VEE) ∗ IEE = VEE ∗ IEE = VEE ∗ (IRE + I1 + I2)

    VCC

    -VEE

    RCI RCR

    QI QRVref

    Vin

    IRE

    RORO

    QNINVQINV

    VOUT VOUT(VINV) (VNINV)

    270 300

    1240

    2000 Ω

    ΩΩ

    Ω2000

    IEE

    I1 I2

    L14 1

  • ECL inverter power dissipationVCC

    -VEE

    RCI RCR

    QI QRVref

    Vin

    IRE

    RORO

    QNINVQINV

    VOUT VOUT(VINV) (VNINV)

    270 300

    1240

    2000 Ω

    ΩΩ

    Ω2000

    IEE

    I1 I2

    PL = −(−VEE) ∗ IEE = VEE ∗ IEE = VEE ∗ (IRE + I1 + I2)

    IRE =Vref − VBEA + VEE

    RE

    I1 =VOH + VEE

    RE

    I2 =VOL + VEE

    RE

    L14 2

  • ECL inverter power dissipationVCC

    -VEE

    RCI RCR

    QI QRVref

    Vin

    IRE

    RORO

    QNINVQINV

    VOUT VOUT(VINV) (VNINV)

    270 300

    1240

    2000 Ω

    ΩΩ

    Ω2000

    IEE

    I1 I2

    PH = −(−VEE) ∗ IEE = VEE ∗ IEE = VEE ∗ (IRE + I1 + I2)

    IRE =VOH − VBEA + VEE

    RE

    I1 =VOL + VEE

    RE

    I2 =VOH + VEE

    RE

    L14 2

  • ECL inverter power dissipationVCC

    -VEE

    RCI RCR

    QI QRVref

    Vin

    IRE

    RORO

    QNINVQINV

    VOUT VOUT(VINV) (VNINV)

    270 300

    1240

    2000 Ω

    ΩΩ

    Ω2000

    IEE

    I1 I2

    PDC =PL + PH

    2

    L14 3

  • ECL inverter power dissipationVCC

    -VEE

    RCI RCR

    QI QRVref

    Vin

    IRE

    RORO

    QNINVQINV

    VOUT VOUT(VINV) (VNINV)

    270 300

    1240

    2000 Ω

    ΩΩ

    Ω2000

    IEE

    I1 I2

    This specific circuits power dissipation to be asked in next quiz.

    L14 4

  • ECL logic designVCC

    -VEE

    RCI RCR

    QI1 QRVref

    Vin1

    IRE

    RORO

    QNINVQINV

    VOUT VOUT(VINV) (VNINV)

    QI2Vin2

    QI3Vin3

    Using OR-NOR and inverter-buffer gates is much easier in ECL.Also:If we connect output of 2 ECL gates, the outputs are logically ”OR”ed.

    The reason why OR-NOR is to be preferred will be asked in next quiz.ECL implementation of a given logic function to be asked in the next quiz.

    L14 1

  • ECL temperature dependence

    The main source of temperature dependence comes from VBEA and VD.

    ∂VBE∂T

    ≈ −2mV/◦C

    VD (diode built-in potential) also shows a similar change.

    L14 1

  • ECL temperature dependence

    Considering the basic ECL inverter/buffer:Output high level is given as:

    VOH = −VBEA

    So:∂VOH∂T

    = 2mV/◦C

    Output low level is given as:

    VOL = −RCI ∗ αVIN − VBEA − (−VEE)

    RE− VBEA

    So:∂VOL∂T

    = −RCIRE

    (

    ∂VOHT

    −VBEA

    T

    )

    −VBEA

    T≈ 1mV/◦C

    L14 2

  • ECL temperature dependence

    With increasing temperature, the NMH decreases and NML increases.The overall effect is a decrease in the noise marginIt would be better to ”compansate” so that the NM decreases slower.

    L14 3

  • ECL family: ECL I

    -VEE

    RCI RCR

    QI QRVref

    Vin

    IRE

    RORO

    QNINVQINV

    VOUT VOUT(VINV) (VNINV)

    Decouples grounds for switch and emitter followers.

    L14 1

  • ECL family: ECL I/III/10k

    -VEE

    RCI RCR

    QI QRVrefVin

    IRE

    RORO

    QNINVQINV

    VOUT VOUT(VINV) (VNINV)

    Has temperature compensated reference.

    L14 2

  • ECL family: ECL I/III/10k, temperaturecompensation

    δ represents the change in junction voltage.

    L14 3

  • ECL family: ECL I/III/10k, temperaturecompensation

    ∆VR =2δR1

    R1 + R2− δ ≈ −0.77δ

    ∆VoutLOW = −∆VRRCRE

    + δRCRE

    − delta

    ∆VoutHIGH = −δ

    ∆Vout(AV ERAGE) =∆VoutLOW+∆VoutHIGH

    2 ≈ −0.77δSince average change in output levels is equal to change in VR, VR stays at midpoint of logic transition range. Hence, theNML and NMH changes equally. But NML and NMH still does change.

    L14 4

  • ECL family: ECL 100k

    QI QRVref

    Vin

    IRE

    RORO

    QNINVQINV

    VOUT VOUT(VINV) (VNINV)

    D1

    D2

    R

    R RR=500

    -VEE-VEE

    -VEE

    -Vref2=-3.2V

    RE=300

    Has constant current source (reducing dependence on VEE)Diodes and R reduce temperature coefficients of VOL and VOH.Also has better temperature compansated reference voltage supply.

    L14 5

  • ECL family: Level sensitive active pull-down

    -VEE

    RCI

    RCR

    QI QRVrefVin

    IRE

    VREG

    Vo

    Vref2

    Definitely makes a nice HW-quix/exam question.

    Active pulldown decreasesLtLH.

    VREG = VOL − VBEA.

    L14 6

  • Omission Note:

    Not responsible from sections 6.10.1 and 6.11

    L14 1

  • Next Lecture Hour:

    Will finish ECL.Finish reading ECL in preparation of quiz.Will start MOS.Make a quick reading of MOS chapter for quiz.

    L14 1