lecture 10. temperature lidar (1)home.ustc.edu.cn/~522hyl/%b2%ce%bf%bc%ce%c4%cf%d7/... · m t rms m...

21
Lecture 10. Temperature Lidar (1) How to measure temperature? Review of Techniques for Temperature Measurements Doppler Technique for Temperature and Wind Measurements Resonance Fluorescence Na Doppler Lidar Summary

Upload: others

Post on 19-May-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 10. Temperature Lidar (1)home.ustc.edu.cn/~522hyl/%b2%ce%bf%bc%ce%c4%cf%d7/... · M T rms M rms 0 0.5 1 1.5 2-40 -20 0 20 40 Relative Intensity (Arb. Unit) Frequency Offset

Lecture 10. Temperature Lidar (1)

How to measure temperature?

Review of Techniques for TemperatureMeasurements

Doppler Technique for Temperature andWind Measurements

Resonance Fluorescence Na Doppler Lidar

Summary

Page 2: Lecture 10. Temperature Lidar (1)home.ustc.edu.cn/~522hyl/%b2%ce%bf%bc%ce%c4%cf%d7/... · M T rms M rms 0 0.5 1 1.5 2-40 -20 0 20 40 Relative Intensity (Arb. Unit) Frequency Offset

How to Measure Temperature ?

Doppler Technique - Doppler broadening (not only for Na,K, and Fe, but also for Rayleigh scattering, as long asDoppler broadening dominate and can be detected)

Boltzmann Technique - population ratio (not only for Fe,but also for molecular spectroscopy in optical remotesensing and rotational Raman lidar)

Integration Technique (Rayleigh or Raman) - integrationlidar technique using ideal gas law and assuming hydrostaticequilibrium (not only for modern lidar, but also for cwsearchlight and rocket falling sphere - some way tomeasure atmosphere number density)

Rotational Raman Technique - temperature dependenceof population ratio, similar to Boltzmann technique

Use temperature-dependent effects or phenomena

Page 3: Lecture 10. Temperature Lidar (1)home.ustc.edu.cn/~522hyl/%b2%ce%bf%bc%ce%c4%cf%d7/... · M T rms M rms 0 0.5 1 1.5 2-40 -20 0 20 40 Relative Intensity (Arb. Unit) Frequency Offset

Doppler Technique

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-40 -20 0 20 40

Rel

ativ

e In

tens

ity (

Arb

. Uni

t)

Frequency Offset (Arb. Unit)

Doppler Spectrum (Width and Shift) Temperature and Radial Wind

0

0.2

0.4

0.6

0.8

1

-60 -40 -20 0 20 40 60

Rela

tive I

nte

nsity (

Arb

. U

nit)

Frequency Offset (Arb. Unit)

= 1vRc

=

vR

= 0 =

r k

r v = 0

v cos

cDrms = 0

c

kBT

M=1

0

kBT

M=

kBT

M 02

Page 4: Lecture 10. Temperature Lidar (1)home.ustc.edu.cn/~522hyl/%b2%ce%bf%bc%ce%c4%cf%d7/... · M T rms M rms 0 0.5 1 1.5 2-40 -20 0 20 40 Relative Intensity (Arb. Unit) Frequency Offset

Boltzmann Technique

Atomic Fe Energy Level

z5F0

a5D

3d64s4p

3d6 4s2

J'=1J'=2J'=3J'=4

J'=5

J=0J=1J=2J=3

J=4

372nm

100%

374nm

91%

368nm

9%

E 416cm 1

[Gelbwachs, 1994; Chu et al., 2002]

P2(J = 3)

P1(J = 4)=

Fe (374)

Fe (372)

=g2g1exp( E kBT )

Maxwell-Boltzmann Distributionin Thermal-dynamic Equilibrium

T =E / kB

lng2g1

P1P2

P1, P2 -- Fe populationsg1, g2 -- DegeneracykB -- Boltzmann constantT -- Temperature

Population Ratio Temperature

Page 5: Lecture 10. Temperature Lidar (1)home.ustc.edu.cn/~522hyl/%b2%ce%bf%bc%ce%c4%cf%d7/... · M T rms M rms 0 0.5 1 1.5 2-40 -20 0 20 40 Relative Intensity (Arb. Unit) Frequency Offset

Rayleigh Integration Technique

T(z0) - Seeding Temperature; - number densityR - gas constant for dry air; g - gravitational acceleration

Lidar Backscatter Ratio Relative Density Temperature (at different altitudes) (Rayleigh)

+

Hydrostatic Equation

dP = gdz

T (z) = T (zo)(zo)

(z) +

1

R g(r)drz

zo (r)

(z)

Seeding

Temperature

Relative

Density

Ideal Gas Law

RTP =

Page 6: Lecture 10. Temperature Lidar (1)home.ustc.edu.cn/~522hyl/%b2%ce%bf%bc%ce%c4%cf%d7/... · M T rms M rms 0 0.5 1 1.5 2-40 -20 0 20 40 Relative Intensity (Arb. Unit) Frequency Offset

Rotation Raman Technique

Temperature can be derived from the ratio of two pureRotational Raman line intensities. This is essentially the sameprinciple as Boltzmann temperature technique!

V=0, J=0

Page 7: Lecture 10. Temperature Lidar (1)home.ustc.edu.cn/~522hyl/%b2%ce%bf%bc%ce%c4%cf%d7/... · M T rms M rms 0 0.5 1 1.5 2-40 -20 0 20 40 Relative Intensity (Arb. Unit) Frequency Offset

150 200 250 300 3500

20

40

60

80

100

120

MSIS90 Temperature

Temperature (K)

Alt

itude

(km

)

Troposphere

Stratosphere

Mesosphere

Thermosphere

Mesopause

Stratopause

Tropopause

Airglow & Meteoric LayersOH, O, Na, Fe, K, CaPMC

OzonePSC

Temperature Techniques 75-120km: resonance

fluorescence Dopplertechnique (Na, K, Fe) &Boltzmann technique (Fe,OH, O2)

30-90km: Rayleighintegration technique &Rayleigh Doppler technique

Below 30 km: scatteringDoppler technique andRaman (Boltzmann andintegration) technique

Boundary layer: DIAL,HSRL, Rotational Raman

AerosolsClouds

Page 8: Lecture 10. Temperature Lidar (1)home.ustc.edu.cn/~522hyl/%b2%ce%bf%bc%ce%c4%cf%d7/... · M T rms M rms 0 0.5 1 1.5 2-40 -20 0 20 40 Relative Intensity (Arb. Unit) Frequency Offset

Doppler Technique to MeasureTemperature and Wind

Doppler effect is commonly experienced by movingparticles, such as atoms, molecules, and aerosols. It is theapparent frequency change of radiation or wave that isperceived by the particles moving relative to the source ofthe radiation or wave. This is called Doppler shift.

Doppler frequency shift is proportional to the radialvelocity along the line of sight (LOS) of the radiation -

= 0

r k

r v

where 0 is the radiation frequency at rest, is the shiftedfrequency, k is the wave vector of the radiation (k=2 / ), andv is the particle velocity.

= 0 =

r k

r v = 0

v cos

c

Page 9: Lecture 10. Temperature Lidar (1)home.ustc.edu.cn/~522hyl/%b2%ce%bf%bc%ce%c4%cf%d7/... · M T rms M rms 0 0.5 1 1.5 2-40 -20 0 20 40 Relative Intensity (Arb. Unit) Frequency Offset

Doppler Technique to MeasureTemperature and Wind

exp(Mvz

2

2kBT)dvz = exp

Mc2( 0)2

2 02kBT

c

0

d

Due to particles’ thermal motions in the atmosphere, thedistribution of perceived frequencies for all particles mirrorstheir velocity distribution. According to the Maxwellianvelocity distribution, the perceived frequencies by movingparticles has a Gaussian lineshape, given by

The peak is at = 0 and the rmswidth is give by

rms = 0

c

kBT

M=1

0

kBT

M

Page 10: Lecture 10. Temperature Lidar (1)home.ustc.edu.cn/~522hyl/%b2%ce%bf%bc%ce%c4%cf%d7/... · M T rms M rms 0 0.5 1 1.5 2-40 -20 0 20 40 Relative Intensity (Arb. Unit) Frequency Offset

Doppler Shift For Wind Measurement

Same direction

- red shift

Opposite direction

- blue shift

= 0 =

r k

r v = 0

v cos

c

r v

r v

r k

0

0.2

0.4

0.6

0.8

1

-60 -40 -20 0 20 40 60

Rel

ativ

e In

tens

ity (

Arb

. Uni

t)

Frequency Offset (Arb. Unit)

The velocity measurements of lidar, radar, and sodar allbase on the Doppler shift principle !

Page 11: Lecture 10. Temperature Lidar (1)home.ustc.edu.cn/~522hyl/%b2%ce%bf%bc%ce%c4%cf%d7/... · M T rms M rms 0 0.5 1 1.5 2-40 -20 0 20 40 Relative Intensity (Arb. Unit) Frequency Offset

Doppler Broadening For Temperature

rms = 0

c

kBT

M=1

0

kBT

M

T rms

M rms

0

0.5

1

1.5

2

-40 -20 0 20 40

Rela

tive I

nte

nsi

ty (

Arb

. U

nit)

Frequency Offset (Arb. Unit)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-40 -20 0 20 40

Rel

ativ

e In

tens

ity (

Arb

. Uni

t)

Frequency Offset (Arb. Unit)

AerosolScattering

MolecularScattering

3-30 MHz

1 GHz

Page 12: Lecture 10. Temperature Lidar (1)home.ustc.edu.cn/~522hyl/%b2%ce%bf%bc%ce%c4%cf%d7/... · M T rms M rms 0 0.5 1 1.5 2-40 -20 0 20 40 Relative Intensity (Arb. Unit) Frequency Offset

Doppler Effect in Na D2 LineResonance Fluorescence

Na D2 absorption linewidthis temperature dependent

Na D2 absorption peak freqis wind dependent

Page 13: Lecture 10. Temperature Lidar (1)home.ustc.edu.cn/~522hyl/%b2%ce%bf%bc%ce%c4%cf%d7/... · M T rms M rms 0 0.5 1 1.5 2-40 -20 0 20 40 Relative Intensity (Arb. Unit) Frequency Offset

Na Atomic Energy Levels

Page 14: Lecture 10. Temperature Lidar (1)home.ustc.edu.cn/~522hyl/%b2%ce%bf%bc%ce%c4%cf%d7/... · M T rms M rms 0 0.5 1 1.5 2-40 -20 0 20 40 Relative Intensity (Arb. Unit) Frequency Offset

Na Atomic Parameters

Page 15: Lecture 10. Temperature Lidar (1)home.ustc.edu.cn/~522hyl/%b2%ce%bf%bc%ce%c4%cf%d7/... · M T rms M rms 0 0.5 1 1.5 2-40 -20 0 20 40 Relative Intensity (Arb. Unit) Frequency Offset

Na Spectroscopy

a b c

c =( a+ b)/2

Page 16: Lecture 10. Temperature Lidar (1)home.ustc.edu.cn/~522hyl/%b2%ce%bf%bc%ce%c4%cf%d7/... · M T rms M rms 0 0.5 1 1.5 2-40 -20 0 20 40 Relative Intensity (Arb. Unit) Frequency Offset

Metrics: Scanning Technique

NNa( ,z ) =PL( ) t

hc

eff ( )nNa(z ) z( )

A

4 z 2

( )Ta

2( )E2( ,z )G(z )( )

NR ( ,zR ) =PL ( ) t

hc

R ( , )nR (zR ) z( )

A

zR2

( )Ta

2( ,zR )G(zR )( )

eff ( ,z ) =C(z )

E2( ,z )

NNa( ,z )

NR( ,zR )

C(z ) = R( , )nR(zR )

nNa(z )

4 z 2

zR2where

Page 17: Lecture 10. Temperature Lidar (1)home.ustc.edu.cn/~522hyl/%b2%ce%bf%bc%ce%c4%cf%d7/... · M T rms M rms 0 0.5 1 1.5 2-40 -20 0 20 40 Relative Intensity (Arb. Unit) Frequency Offset

Scanning Na Lidar Results

Page 18: Lecture 10. Temperature Lidar (1)home.ustc.edu.cn/~522hyl/%b2%ce%bf%bc%ce%c4%cf%d7/... · M T rms M rms 0 0.5 1 1.5 2-40 -20 0 20 40 Relative Intensity (Arb. Unit) Frequency Offset

Metrics: 2-Frequency Technique

Page 19: Lecture 10. Temperature Lidar (1)home.ustc.edu.cn/~522hyl/%b2%ce%bf%bc%ce%c4%cf%d7/... · M T rms M rms 0 0.5 1 1.5 2-40 -20 0 20 40 Relative Intensity (Arb. Unit) Frequency Offset

Metrics: 3-Frequency Technique

Page 20: Lecture 10. Temperature Lidar (1)home.ustc.edu.cn/~522hyl/%b2%ce%bf%bc%ce%c4%cf%d7/... · M T rms M rms 0 0.5 1 1.5 2-40 -20 0 20 40 Relative Intensity (Arb. Unit) Frequency Offset

Na Doppler Lidar Calibration

Page 21: Lecture 10. Temperature Lidar (1)home.ustc.edu.cn/~522hyl/%b2%ce%bf%bc%ce%c4%cf%d7/... · M T rms M rms 0 0.5 1 1.5 2-40 -20 0 20 40 Relative Intensity (Arb. Unit) Frequency Offset

Summary The key point to measure temperature and wind is to find

and use temperature-dependent and wind-dependent effectsand phenomena to make measurements.

Doppler technique utilizes the Doppler effect (frequencyshift and linewidth broadening) by moving particles to inferwind and temperature information.

It is widely applied in lidar, radar and sodar technique aswell as passive optical remote sensing.

Resonance fluorescence Doppler lidar technique appliesscanning or ratio technique to infer the temperature andwind from the Doppler spectroscopy, while the Dopplerspectroscopy is inferred from intensity ratio at differentfrequencies.