lecture 1: tropical wave dynamics · be bounded . as. y substituting (2) into (1) and eliminate u...

74
Tropical wave dynamics and Heat- induced steady response Bin Wang Department of Meteorology and IPRC, University of Hawaii

Upload: others

Post on 03-Feb-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Tropical wave dynamics and Heat- induced steady response

Bin Wang

Department of Meteorology andIPRC, University of Hawaii

Page 2: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Outline

I Equatorial wave motionII.  Heat‐induced steady  motionIII How mean flow affect  wave and responses 

Page 3: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Reference reading

• Matsuno, T., 1966: Quasi‐geostrophic

motion in the  equatorial area, JMSJ, 44, 25‐43.

• Gill, AE, 1980: Some simple solutions for heat‐induced  tropical motion. Quart. J. Roy. Met. Soc., 449, 447‐462.

• Wang, B.  2003, Kelvin Waves, Encyclopedia of  Meteorology. ED. J. Holton et al. Academic Press,.

pp. 

1062‐1067.• Wang, B., and X. Xie, 1996:

Low‐Frequency equatorial 

waves in vertically shear flow. Part I: Stable waves. J.  Atmos. Sci., 53, 449‐467. 

• Hoskins, B., and B. Wang, 2006: Large scale dynamics, in  “The Asian Monsoon”

ED. B. Wang, Springer/Praxis 

Publishing. New York, pp 357‐415. 

Page 4: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

I. Equatorial wave motion

What types of free wave motion are possible  in the deep tropics? What are their fundamental 

causes and properties?

Observation and theories

I‐1. Vertical modes and Shallow water model I‐2. Equatorial Kelvin waves 

I‐3. General dispersion relation 

I‐4. Equatorial Rossby

waves and Yanai

waves

Page 5: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

I‐1. Vertical modes and the  shallow water model 

Page 6: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Philips two‐level model

Page 7: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

0P

1P

2

0

111 ,, vu

s

p 1q

p

2P

3P

sP

3q333 ,, vu

1.3 Philips 2‐level model

xyvt

u

yyut

v

0

pyv

xu

0)(

pSpt

Consider the simplistic 2‐level approximation. The model structure

Write the equations for 

the  dry, adiabatic and 

frictionless motion as an 

example.

Page 8: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Vertical difference equations

1 11

u yvt x

1 11

v yut y

21 1 0uu vx y p

3 33

u yvt x

3 33

v yut y

3 3 2 0su vx y p

3 1 2 2( ) 0S pt

Page 9: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Define barotropic

& baroclinic

component

3 1 3 1 3 11 1 1( ), ( ), ( )2 2 2

u u u v v v

3 1 3 1 3 11 1 1( ), ( ), ( )2 2 2

u u u v v v

Page 10: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Equations for the barotropic

and baroclinic

modes

u yvt x

v yut y

20 ( ) 0u vc

t x y

u yvt x

v yut y

1 ( ) 02 s u

u vx y p

2 20 2

12

c S p Where

Baroclinic

mode Barotropic

mode

Page 11: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Vertical modes in  continuously stratified atmosphere

Why vertical modes? How to determine vertical modes?‐‐with an idealized model in which the vertical structure of the motion can be 

expressed as a sum of infinite vertical eigenmodes; the corresponding horizontal 

motion can be described by simple equations.

Further Assumptions:‐‐Frictionless, dry,  adiabatic and small amplitude perturbation motion in a quiescent 

environment, so that Eqs. Become a two‐parameter system (1.1):

xyvt

u

yyut

v

0

pyv

xu

0)(

pSpt

(1.1)

Page 12: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Specify basic state stratification

22)( pCpS s

21)( sss pSpC

Cs=70 m/s)

Page 13: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

)( pW

The solutions of (1.1) can be expressed as (1.2) 

)(),,(),,( pdpdWVUvu

0)(2

22 WpS

dpWdC

xyV

tU

yyU

tV

0)(20

yV

xUC

x

)()( 2/122/1 mmm bbu

bm pppAmpW m=1,2,3…

)/(ln usm ppimb

2/120 )4/1()( ms bCmC

Substitute (1.2) to (1.1): Vertical structure W(p)

satisfies

Each vertical mode satisfies

Structure of each vertical modes satisfying boundary conditions are

Shallow water equation 

(1.4), with Co, 

separation constant

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

Page 14: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Structure of Vertical modes

Page 15: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Shallow water modelLarge‐scale tropical motion stimulated by deep convective heating

can 

be well described by the lowest baroclinic

mode

(m=1) (C0

=50 m/s). Thus, the shallow water model

that describes this most important 

vertical mode can be used to discuss basic equatorial wave dynamics.

ut

yvx

vt

yuy

020

yv

xuC

t

The two parameters, β and C0

, which reflect the Earth’s rotational and  gravitational effects, respectively, determine an equatorial trapped length 

scaleRc=(C0

/ β)1/2

‐‐‐equatorial Rossby

radius

of deformation. A value of C0

=50 m/s

corresponds to an equatorial Rossby

radius of  deformation of about 15 degrees of latitude. 

What limitation

does this model subject to?

Page 16: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Nondimensionalization

ut

y vx

vt

y uy

0

yv

xu

t

21

/0 CRc

21

0 C

20C

Length scale: equatorial Rossby

radius

of deformation

Time scale (wave propagation)

Geopotential

height scale (ageostrophic)

( , ) ( , )x yC

x y 0

t t C / 0 ( , ) ( , )u v C u v 0 C02

Write

Non‐dimensional shallow water equation

Intrinsic scales

Page 17: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

I‐2. Equatorial Kelvin waves

Page 18: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Coastal Kelvin waves

Large scale wave motion that is of great  practical importance in O/A. 

Discovered by Williams Thompson (later named  Lord Kelvin) in 1879.

Kelvin wave is a special gravity waves affected  by rotational effects

and trapped near coast

or mountain range.

Page 19: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was
Page 20: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Matsuno

(1966) found Kelvin waves can trapped near the  equator, named as equatorial Kelvin waves.

• The resultant solution of the Kelvin wave is given in  dimensional form by

02 2/

00 )(/ CyetCxFCu

v 0

Equatorial Kelvin wave 

Page 21: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Assume meridional

velocity vanishes or the motion is exactly in the along‐equator 

direction. The system of nondimensional

equation becomes 

ut x

yuy

tux

0

(K1a) plus (K1c) yields a wave equation, which has a general solution, 

(K.1a)

(K.1b)

(K.1c)

)()( yYtxFu

F  is an arbitrary function. From (K1a),

uUsing (K1b), one can obtain 

Y y Y e y( ) ( ) / 02 2

Only the minus sign is valid because the other choice leads to an unbounded solution 

for large . 

(K2)

(K3)

(K4)

Mathematical solution

Page 22: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Horizontal Structure of EKW

• No meridional

flows.

• Zonal flows are in geostrophic

balance: Pressure gradient  force balances the Coriolis

force. 

• The high pressure is in phase with westerly flows. 

• The flow and pressure perturbations decay with latitude  evanescently. 

Page 23: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Properties of the EKW

• Equatorial trapping: The flow and pressure  perturbations decay with latitude evanescently. 

• Unidirectional propagation: Always propagate  eastward. The fact that the equatorial trapping  demands that the pressure and westerly flow are in 

phase means that it works only for the eastward  propagating gravity wave.

• Non‐dispersive waves as for non‐rotating gravity  waves.

Page 24: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Cause of EKW

• Equatorial Kelvin wave is a special type of  gravity wave that is affected by the Earth’s  rotation and trapped at the Equator. 

• The existence of the equatorial Kelvin wave  relies on (i) gravity and stable stratification 

for sustaining a gravitational oscillation, (ii)  significant Coriolis

acceleration, and (iii) the 

presence of the Equator. Change of the sign  of Coriolis

force at the equator makes the 

equator functioning as a wall to support  Kelvin waves.

Page 25: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

I‐3. General dispersion equation  for tropical waves

Page 26: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

General dispersion relation (GDR)

Dispersion relation describes the fundamental  property of the wave motion

by relating the wave 

frequency  and zonal wavenumber

k. It is a mean of  distinguishing different type of waves.

For EKW, = kCo,. 

In addition to the EKW, other  equatorial wave solutions possibly exist. 

Looking for a GDR for all other types of waves  holds a key for identifying different wave motions. 

Mathematically, GDR yields eigenvalues describing wave and energy propagation and the 

corresponding eigenfunction

describing wave structure.

Page 27: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Derivation of General dispersion relation (GDR)

0)( 2222

2

Vykk

dyVd

Since the coefficients of the governing equation (1) only depend on y, the solution for zonally propagating wave disturbance can be expressed as the form of normal modes:

( , , ) Re( ( ), ( ), ( )) ( ) u v U y V y y ei kx t

All meridional structure functions are assumed to be bounded as y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for V(y):

(2)

(3)

Note, 22 k was used and thus Kelvin wave was excluded.Eq. (3) and bounded boundary condition for V(y) pose an eigenvalue problem, which is the same as the Schrödinger equation for a simple harmonic oscillator. Solutions exist if and only if

2, 1, 0, n ,12/22 nkk (4)

Eq (4) is the dispersion relation.

Page 28: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

3, 2, 1, n ,)12(4/121 22 nkn

(6)Cwk

kkgx

2 1

2 2 /

Exact dispersion relation is given by

Discussion of the dispersion relation

For real wavenumber (Neutral propagating waves),

211221 nn 211or

Differentiating the dispersion equation, (A.2.5) with respect to , one finds that the group speed in the x-direction is

(5)

These features are useful for constructing the dispersion diagram.

Page 29: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

The special Kelvin wave is represented by the straight line in the k>0 domain.

The GDR reflects an infinite family of meridional modes, each associated with an integer index n.

Two distinct groups of high and low frequency waves (period shorter than 1.26 days and loner than 7.3 days).

The zero group velocity line divides the eastward and westward propagation of the energy.

Mixed Rossby-gravity wave is the n=0 mode.

Dispersion relation diagram for all types of equatorial waves Matsuno (1966).

Wave number

Frequency

Page 30: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

2, 1, 0, n ),()()( 2/2

yHeyDyV ny

n

]2/[

0

2)2()!2(!!)1()(

n

l

lnl

n ylnl

nyH

,Re ])/1[(2/0

2 txiy eev ,Re ])/1[(2/

00

2 txiy yeeiu

Horizontal wave structuresThe meridional structures of V(y) are described by Weber-Hermite functions

For instance, the solution for the n=0 mode (the mixed Rossby-gravity waves), 1k

the structure is given by

The full horizontal structure are given by Eq. (2)

( , , ) Re( ( ), ( ), ( )) ( ) u v U y V y y ei kx t

Page 31: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

I‐4. Equatorial Rossby

wave and  Mixed Rossby‐Gravity waves (Yanai waves

Page 32: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Equatorial Rossby

waves

Rossby waves are low-frequency waves. For low frequency waves, it is shown that the dimensional dispersion equation (5) can be approximated by

02**

*

)12( Cnkk

This is the same dispersion relation as a Rossby wave in a beta-plane channel except that the quantized y-wavenumber has a slightly different form due to the meridional boundary conditions.

These low-frequency modes are, therefore, called equatorial Rossby waves.

They occur because f varies with latitude. The higher the index of the meridional mode n, the lower the frequency .

n=1,2,3,…

Page 33: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

For n=1 mode, zonal wind and geopotential

height are symmetric about the  equator, while for n=2 mode the two fields are antisymmetric. 

At the equator, there is no meridional

motion for the n=1  mode, while no  zonal motion for n=2

mode. 

The maximum convergence/divergence are located at y=1.25 for the

n=1  mode and y=1.75 for the n=2 mode.

ERW structures: n=1 and n=2 modes

Page 34: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

ERW are characterized by a geostrophic

relationship between  pressure and the meridional

as well as the zonal wind. 

Strong zonal winds are found near the equator for the n=1   mode, which is expected from approximate balance between  pressure gradient and Coriolis

forces (both of them approach 

zero as approaching to the equator ). Equatorial Rossby

waves always propagate westward, in 

contrast to the equatorial Kelvin waves, 

ERW is a dispersive waves. The group speed, which represents  the speed at which wave energy propagates, can be either 

eastward or westward, depending on wavelength

Properties of ERW

Page 35: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

The energy associated with long Rossby

waves

propagates  westward while the energy associated with short Rossby

waves

propagates eastward. 

Long Rossby

waves are approximately non‐dispersive. The  dimensional westward phase speed is  1/(2n+1) times the long 

gravity wave speed . Thus, the fastest long Rossby

wave (n=1)  speed is about one‐third of the Kelvin wave speed (and in the  opposite direction). 

Properties of ERW (Continue)

Page 36: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Mixed Rossby-Gravity Wave

When n=0, the dispersion equation  yields only one  meaningful root. This mode is unique in the equatorial 

region. This particular  mode is called the (Mixed)  Rossby‐gravity wave?

Why?

The crossover point from k positive to negative,  corresponds to a dimensional period of about 2.1 days  and represents a stationary wave in the y direction; the 

waves with periods shorter than 2.1 days propagate  eastward while waves with periods longer than 2.1 days 

propagate westward. The energy

associated with the Rossby‐gravity 

waves always propagates eastward..

Page 37: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

The pressure and zonal velocity are antisymmetric

about  the equator while the meridional

component  is symmetric. 

The largest meridional

flow occurs at the equator (cross‐ equatorial flow). 

The largest convergence/divergence occurs at y=1.

Horizontal distribution 

of velocity and pressure 

for a westward moving 

Rossby‐Gravity waves.

Horizontal structure of the Rossby‐Gravity waves

Page 38: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Inertio‐gravity waves

The high frequency waves (large ω) are inertio‐gravity  waves. These are almost symmetric in their eastward and 

westward propagation. 

The behavior of these waves is not discussed here.  Interested readers are referred to Matsuno

(1966). 

Page 39: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

(a)

Comparison of EKW, ERW (n=1 and n=2), Yanai waves

Page 40: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

II Heat‐induced atmospheric motion

II‐1 Gill Theory: Wave perspectiveII‐2Vorticity perspectiveII‐3 Response to more realistic 

monsoon heating

Given a convective (latent heat) source,  how would a resting tropical atmosphere 

respond? 

Page 41: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

II‐1 Gill Theory

Given a convective (latent heat) source, how  would a resting tropical atmosphere respond? 

Remarks:The latent heat released during convection drives the 

atmospheric circulation. But the strength and the location of  convection depends on large scale circulation. This is an 

interactive process.In Gill theory, this complex interaction is simplified to a 

one‐way problem: how the tropical atmospheric circulation  responds to a given

heat source (pattern and strength).

Page 42: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

xyvu

yyu

Qyv

xu

)(

Gill Model Single vertical mode, shallow water equation model  on an E‐beta ‐plane .Major Assumptions:1.

The forced motion is sufficiently weak: linear dynamics. 

2.

The friction: Raleigh damping (a linear drag to wind speed) 3.

Thermal damping: Newtonian cooling (a heating rate proportional to the 

temperature perturbation from its basic equilibrium state).4.

The momentum and thermal damping rates have the samemagnitude. 

5.

Taking long wave approximation. The nondimentional

governing equations: 

(1a,b,c,)

Q

is nondimensional

heating rate. A positive Q

gives u, v,

phi at the low‐level. The 

vertical velocity is given by 

Qyv

xu )(

Page 43: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

What will physically happen to the system described by Eq. (1)?

The free wave solutions of (1) consist of equatorial Kelvin waves,  long Rossby

waves and the long Rossby‐gravity wave. (can you prove it?)

These types of waves will adjust the geopotential

and winds toward  the imposed diabatic

heating and reach a steady state under the damping.

Derivation of analytical solutionEliminate

u

and phi from (1) leads to a single equation for v:

yQ

xQyvy

xv

yv

2

2

2(3)

Series solution can be expressed in terms of the weber‐Hermite

function Dm

(y)

)()(),(1

yDxvyxv mm

m

)()(),(1

yDxQyxQm

mm

(4a)

(4b)

)()()( 2/2

yHeyDyV ny

nRecall: ,

n

= 0, 1, 2,…

,

Wave perspective

Page 44: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

0

12

121)12(

111

11

mmm

mmmm

QmQ

QmQdxdvm

dxdv

)()()(),( 22

0 xFexFyDyxQy

s

)(2)()(),( 22

11 xFyeyDxQyxQy

as

The coefficients vm

(x)

can be solved from the following equation by assuming  the coefficients for each order of m vanish 

(5)

Gill designed two types of basic heating forcing 

(6)

(7)

)(,cos)( LxkxxF

)(,0)( LxxF

Here

A mixed forcing is the sum of (6) and (7)

Note: Damping scale is 2.5 days!

Page 45: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Gill’s solution for (a) heating symmetric about the equator, (b) heating 

antisymmetric

about the equator. 

Gill’s solution

Page 46: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

The ascent region basically coincides 

with the imposed heating 

Kelvin and n=1 Rossby

wave 

propagation

in the presence of the 

damping. 

The zonal wind due to the Rossby

waves is balanced by the integrated 

zonal wind associated with the Kelvin 

waves.

The damping distance of the Kelvin 

waves is about three times larger than 

the damping distances of the Rossby

waves. 

The zonal wind associated with Rossby

waves must be stronger than the zonal 

winds associated with Kelvin waves. 

0dxdxua2

0 x

a2

0

/'

0ux ' Y=0

Page 47: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

The major ascent and descent regions 

tend to coincide with imposed heating 

and cooling.

There is a cyclonic circulation in the 

heated hemisphere and anticyclonic

circulation in the cooled hemisphere 

at low‐levels. 

The excited Rossby‐gravity waves are 

confined within the forcing region, 

and the Rossby

waves propagate 

westward. 

No response to the east of the heat 

source. 

Along the equator there are northerly 

(southerly) cross equatorial winds in 

the lower (upper) level. 

Page 48: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

A circulation pattern more 

relevant to the Asian 

summer monsoon 

The imposed heating

The low‐level cyclonic 

circulation‐RW; the flow 

pattern to the east: KW 

The cross equatorial flows, 

weak near‐equatorial 

trough and an anticyclone 

poleward. 

Walker cell has a dominant 

component is the Pacific 

branch,.

The “Hadley cell” with a 

secondary low pressure 

just south of the equator 

results from Qas. Gill’s solution for an asymmetric heating which is the sum 

of the symmetric and antisymmetric

heatings

Page 49: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

II‐2 Vorticity perspective

Page 50: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

H w (vχ

) ξ θ

Analysis of Large-Scale Dynamics for Specified Heating (H)

1. Thermodynamic equation N2

w = H

1 2 3

2. Vorticity

equation

3. Thermal wind balance g θ'/θ0

= f əξ/əz N2H2/f 2L2 > 1

Vorticity

perspective 

Page 51: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Equator

warmβv = fəw/əz

LH H

Steady state supported by low level sensible heating

Page 52: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

EQ

EQ

(a) Initial tendency (b) Equilibrium solution

zwfv

t

QwN 2

zwfv

zQfv

z

Response to an isolated imposed heating

Page 53: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

EQ

EQ

(b)

Equilibrium solution: These circulations again tend to drift westwards to 

give Sverdrup

balance with, in the cooling region, poleward

components of the 

winds in the upper troposphere (to the east of the heating region). Damping in 

the vorticity

equation would act to reduce the westward drift of all the 

circulations.

(a) Initial tendency : Small, uniform cooling at other longitudes, compensating 

the local convective heating, leads to descent in this region, and vortex 

stretching at upper levels and shrinking at lower levels. The initial tendency is 

given in (a). 

Response to a heating with compensating cooling

Page 54: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

II‐3 Response to more realistic  heating

Page 55: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Atmospheric response to TP heating200 hPa 850 hPa

Page 56: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Strengthening of WNPSH ~30N

Generalized Sverdrup

Balance:zQfv

z

)(

Hoskins and Wang 2006

Page 57: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Trenberth et al. 2006

Circulation associated with  monsoon heating

Page 58: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

(b) MNTNS 

ONLY

(a) OBS

(c) MNTNS + 

ASIAN HTNG

The Asian monsoon heating 

forcing alone induces some very 

realistic low‐level circulation 

features (c), 

The response to only orographic

forcing shows much weaker 

subtropical anticyclones .

Addition of the South Asian 

monsoon heating strengthens the 

descent associated with the North 

Pacific subtropical anticyclone by ~ 

70%. 

The interactions between 

topography and thermal response 

are found to be important for 

realistic simulation of the low‐

level monsoon inflow. 

Rodwel

and Hoskins 1996

Processes determining the summer monsoon and subtropical  anticyclones 

Page 59: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

III. Impacts of mean state on  equatorial waves and atmospheric 

responseHow do “basic flows”

alter the wave 

properties and atmospheric response? III‐1 Effects of vertical shear on the Rossby

wave structure and propagationIII‐2 Why does an equatorial symmetric 

heating can induce asymmetric Rossby wave response?

II‐3 How can equatorial heating induce  extratropical

barotropic

teleconnection?

Page 60: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

III‐1 Effects of vertical wind shear

Page 61: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

)1a.3.A(x

yvpu

xuu

tu

)1b.3.A(y

yuxvu

tv

)1c.3.A(0

pyv

xu

)1d.3.A(0

S

puyv

pxu

pt

(A.3.22,2 3131 AAAAAA

Model for study of effects of Vertical sheared flow

Model formulation including vertical sheared flow

Introduce

The two‐level model represents two vertical modes, a barotropic

mode and a 

baroclinic

mode (A.3.2), which are governed by

Page 62: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

yxuUv

xyU

xDtD

TT

2

2

2

2

22 2

where

(A.3.3a)x

UtDt

D

(A.3.3b) 2,2 3131 uuUuuU T

xuU

xyv

DtDu

T

xvU

yyu

DtDv

T

TUyvyv

xu

x

The baroclinic

mode is governed by (A.3.4).

(A.3.4a)

(A.3.4b)

(A.3.4c)

The barotropic

mode is essentially a 

Rossby

wave modified by a forcing 

arising from the baroclinic

mode 

acting on the vertical shear. 

The barotropic

mode is governed by (A.3.3).

The baroclinic

mode is governed by a 

modified shallow water equation 

including the feedback from the 

barotropic

mode. 

The forcing terms on the RHSs

of Eqs. 

(A.3.3) and (A.3.4) indicate interactions 

between the barotropic

and baroclinic

modes in the presence of vertical shear.

Vertical mode interaction under mean vertical shear

Page 63: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

(a)  Baroclinic

Rossby

mode (b)  Barotropic

Rossby

mode

Meridional

structures of the geopotential

(thickness) field of the barotropic

(baroclinic) 

modes for the n=1 (most equatorial trapped) Rossby

waves. Here a westerly vertical 

shear means that westerly wind increases with height or easterly

wind decreases with 

height. 

Spherical Coordinatesmodel

In the presence of the vertical shear, the baroclinic

mode remains equatorially 

trapped. In contrast, the barotropic

mode extends poleward

with geopotential

extremes occurring in the extratropics

around three Rossby

radii of deformations 

away from the equator.

Vertical shear affects two vertical modes differently

Page 64: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

No mean flow

Westerly vertical 

shear

Easterly 

vertical shear

Page 65: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Vertical wind shear changes the structure of RW

In a westerly (easterly) shear, the Rossby

waves have larger amplitude at the upper (lower) 

troposphere. This is particularly evident in the tropical regions. Poleward

about two Rossby

radii of deformation, the barotropic

mode dominates and the sign of the geopotential

perturbation there tends to be out of phase with that in the tropical region.

Westerly 

vertical shear

Easterly  

vertical shear

Page 66: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

ESH

WSH

Wang and Xie

(1996)

The baroclinic and barotropic modes are nearly in phase (180o out of phase) in the westerly (easterly) shear. Therefore, an easterly (westerly) shear leads to the amplification of Rossby wave responses in

the lower (upper) level.

+ =

Easterly shear Barotropic TotalBaroclinic

+ =

Westerly shear

How vertical wind shear Changes structure of the ERW

Coupling of baroclinic and barotropic modes in the presence of vertical shear

Page 67: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Vertical shears slow down the westward propagation

The presence of vertical shears also slow down the westward propagation

of the 

Rossby waves regardless of the sign of the vertical shear. 

Page 68: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Without boundary layer friction the Rossby wave instability does

not depend on the 

sign of the vertical shear. However, in the presence of a boundary layer, easterly 

(westerly) shears enhance (suppress) the moist Rossby wave instability considerably. 

Easterly Vertical Shear favors rapid growth of the  moist Rossby waves

Page 69: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Rossby waves will be  enhanced in the vicinity of the 

latitudes where the vertical  shear is strengthened.

Vertical easterly shear sets in NH only

Monsoon Easterly Vertical Shear can change the  horizontal structure of ERW dramatically

Page 70: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Monsoon easterly vertical wind shear enhances ENSO teleconnection

JJA

Response Vertical shear DJF

JJA

DJF

Vertical shearResponseAsymmetric response to equatorial symmetric heating 

Page 71: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

How can equatorial heating generate  extratropical

response?

An equatorial internal heating first directly generate  baroclinic

Rossby

mode. 

Barotropic

Rossby

wave motion is then generated by  barocnic

mode through

barotropic‐baroclinic

interaction in the presence of vertical wind shear of  the mean flow :

The barotropic

Rossby

waves have maximum  amplitudes in the extratropics

Vertical wind shear can provide a mechanism by which  equatorial heating generates extratropical

teleconnection

patterns. 

xyDUv

DtD

T

Page 72: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

END

Page 73: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

Wave energy accumulation in the equatorial westerly duct

One of the important impacts of the vertical shear on equatorial

Rossby

waves  is that the westerly (easterly) shear favors trapping wave kinetic energy to the  upper (lower) troposphere (Fig. 9.13). 

This may be pertinent to interpretation of the in‐phase relationship between  the transient kinetic energy and the equatorial mean flow in the

upper 

troposphere as observed by Arkin

and Webster (1985), which is also known as  accumulation of wave energy

in the upper tropospheric

westerly duct (a zonal 

flow with westerly vertical shear). 

On the other hand, in a region of easterly vertical shear (monsoon regions), the  Rossby

waves tend to be trapped in the lower troposphere, which also agree 

with the behavior of perturbations in the summer monsoon trough region.

Page 74: Lecture 1: Tropical Wave Dynamics · be bounded . as. y Substituting (2) into (1) and eliminate U and Geopotential height leads to an equation for . V(y): (2) (3) Note, k 2 2. was

2)2(2 KDD

yuvDf

t To

2K

yDuvDf

t To

DKuf

tD

o22

DKuf

tD

o22

22

02

0 )1()1( KDBcDIcvuft To

mbPs 1000

mbPe 900

mbP 5002

mbP 10000

1

2

3

4

mbP 3001

mbP 7003

u1

,v1

,

u3

,v3

,

1

3

2w

Bw

00 w

PBL

uB

,vB

2)( 31 AAA

2)( 31 AAA

D

ppp

ppw

yv

xu

yfEE

eses

BBB 2)(2

2

20

2

Effects of vertical shear of zonal wind

A 2‐D version of 21/2 Layer Model  by Wang and Xie

(1996)

BL equations

Free troposphere