lect 3 biomolecule.ppt

Upload: candice-skinner

Post on 04-Jun-2018

233 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Lect 3 Biomolecule.ppt

    1/50

    BIOMOLECULESBiochemistry - I

    Dr. Muhammad Kalim Tahir

    1

  • 8/13/2019 Lect 3 Biomolecule.ppt

    2/50

    Biomolecules

    What kinds of molecules in living organisms

    In what proportion

    Structure of these molecules

    Monomeric subunits

    What forces stabilize their structure

    2

  • 8/13/2019 Lect 3 Biomolecule.ppt

    3/50

    Biomolecules

    Covalent bonding of C with itself and with other elements

    The functional groups

    Three dimensional structure

    Stereochemistry

    The common classes of chemical reactions

    Evolution

    3

  • 8/13/2019 Lect 3 Biomolecule.ppt

    4/50

    Biomolecules

    Four most abundant elements: C,H,N,O

    Ca, P, S, K, Mg, Na, Cl, Fe

    Trace elements: I, Co, Zn, F, Cu, Se

    CarbonCarbon bonds

    Methane, Ethane, Ethene, Ethyne.

    Bonding versatility choice for carbon

    Makes least contamination

    4

  • 8/13/2019 Lect 3 Biomolecule.ppt

    5/50

    Biomolecules

    Atomic Radii: Typical distance from the nucleusto the

    boundary of the surrounding cloud of electrons.

    Vander Waals radii: Half the minimum distance between

    the nuclei of two atoms of the element that are not bound

    to the same molecule.

    Configuration: Fixed spatial arrangement of atoms in an

    organic molecule

    Double bond

    Chiral center

    Geometric or Cis trans isomerism

    5

    http://en.wikipedia.org/wiki/Atomic_nucleushttp://en.wikipedia.org/wiki/Electronhttp://en.wikipedia.org/wiki/Electronhttp://en.wikipedia.org/wiki/Atomic_nucleus
  • 8/13/2019 Lect 3 Biomolecule.ppt

    6/50

    Cis trans Isomers: Fumaric / Maleic acid

    6

    http://en.wikipedia.org/wiki/File:Fumaric-acid-2D-skeletal.pnghttp://upload.wikimedia.org/wikipedia/commons/a/a8/Maleic-acid-2D-skeletal-A.pnghttp://upload.wikimedia.org/wikipedia/commons/6/69/Fumaric-acid-3D-balls.png
  • 8/13/2019 Lect 3 Biomolecule.ppt

    7/50

  • 8/13/2019 Lect 3 Biomolecule.ppt

    8/50

  • 8/13/2019 Lect 3 Biomolecule.ppt

    9/50

    Enantiomers

    9

    If a pair of stereoisomers are non-superimposable

    mirror images of each other, then they are enantiomers.

    http://upload.wikimedia.org/wikipedia/commons/1/12/Milchs%C3%A4ure_Enantiomerenpaar.svg
  • 8/13/2019 Lect 3 Biomolecule.ppt

    10/50

    Diastereomers

    10

  • 8/13/2019 Lect 3 Biomolecule.ppt

    11/50

  • 8/13/2019 Lect 3 Biomolecule.ppt

    12/50

    Spearmint

    12

  • 8/13/2019 Lect 3 Biomolecule.ppt

    13/50

    Caraway

    13

  • 8/13/2019 Lect 3 Biomolecule.ppt

    14/50

  • 8/13/2019 Lect 3 Biomolecule.ppt

    15/50

    Rule for R/S

    Attach the pole to the back of the clock, so that whenyou look at the face of the clock the pole points away

    from you. That is the same way the lowest priority

    substituent should point away from you.

    Then, draw an arrow from the highest priority atom to the

    2nd highest priority atom to the 3rd highest priority atom.

    Since you have placed the 4th highest priority atom in

    the back, you arrow should seem like it is going acrossthe face of a clock. If it is going clockwise, then it is an R-

    enantiomer; If it is going counterclockwise, it is an S-

    enantiomer.

    15

  • 8/13/2019 Lect 3 Biomolecule.ppt

    16/50

    Rule for R/S

    When you have two substituent with equal rank, you

    must proceed along the two substituent chains until you

    find a point of difference.

    First, you determine which of the chains has the first

    connection to an atom with the highest priority-thehighest atomic number. That chain will have the higher

    priority.

    If the chains are similar keep going down the chain, until

    you can find a point of difference. For example: an ethyl substituent will take priority over a

    methyl substituent.

    16

  • 8/13/2019 Lect 3 Biomolecule.ppt

    17/50

    R S Nomenclature

    17

  • 8/13/2019 Lect 3 Biomolecule.ppt

    18/50

    Problems

    18

  • 8/13/2019 Lect 3 Biomolecule.ppt

    19/50

    Solution

    (1) S

    I > Br > F > H. The lowest priority substituent, H, is

    already going towards the back. It turns left going from I

    to Br to F, so it's a S.

    (2) R

    Br > Cl > CH3> H. You have to switch the H and Br in

    order to place the H, the lowest priority, in the back.Then, going from Br to Cl, CH3is turning to the right,

    giving you a R.

    19

  • 8/13/2019 Lect 3 Biomolecule.ppt

    20/50

  • 8/13/2019 Lect 3 Biomolecule.ppt

    21/50

    Conformation

    Rotation around a single bond

    Eclipsed

    Staggered

    21

  • 8/13/2019 Lect 3 Biomolecule.ppt

    22/50

    Projections

    22

  • 8/13/2019 Lect 3 Biomolecule.ppt

    23/50

    Bond Strength

    Depends on electronegativities

    Number of electrons sharing also influence bond

    strength

    Strength of a bond :bond Energy

    Bond Dissociation Energy

    CC (Single bond) : 348 kJ/mol

    C = C (Double bond) : 611 C C (Triple bond): 816

    23

  • 8/13/2019 Lect 3 Biomolecule.ppt

    24/50

    Bond Strength

    Enthalpy change H

    The energy extracted from the surroundings to break

    the bond or the energy released to the surrounding

    during the formation of bond

    Exothermic reaction

    Endothermic reaction

    24

  • 8/13/2019 Lect 3 Biomolecule.ppt

    25/50

    Types of Chemical Transformations

    Oxidation reduction involving Electron transfer

    CC bonds cleavage /Formation by Nucleophilic substitution

    Internal rearrangement

    Group transfer

    Condensation

    25

  • 8/13/2019 Lect 3 Biomolecule.ppt

    26/50

    Oxidation Reduction

    Oxidation: Loss of Electrons Fe2+ Fe3+

    Oxidation

    Oxidase

    Oxygenase Dehydrogenase

    Hydrogenase

    Reductase

    Oxidation Reduction

    Oxidant is reduced while the Reductant is oxidized

    26

  • 8/13/2019 Lect 3 Biomolecule.ppt

    27/50

    NAD+ NADH

    Nicotinamide Adenine Dinucleotide

    27

  • 8/13/2019 Lect 3 Biomolecule.ppt

    28/50

  • 8/13/2019 Lect 3 Biomolecule.ppt

    29/50

    Absorbance at 340nm

    29

    http://upload.wikimedia.org/wikipedia/commons/8/89/NADNADH.svg
  • 8/13/2019 Lect 3 Biomolecule.ppt

    30/50

    FAD

    Flavin Adenine Dinucleotide

    30

  • 8/13/2019 Lect 3 Biomolecule.ppt

    31/50

    FAD FADH2

    31

  • 8/13/2019 Lect 3 Biomolecule.ppt

    32/50

  • 8/13/2019 Lect 3 Biomolecule.ppt

    33/50

    CC bond Formation/Cleavage

    Homolytic cleavage

    Heterolytic cleavage

    SN1reaction: Carbocation intermediate

    SN2reaction: Pentavalent intermediate

    33

    http://upload.wikimedia.org/wikipedia/commons/b/bb/SN1_reaction_mechanism.png
  • 8/13/2019 Lect 3 Biomolecule.ppt

    34/50

    SN2Pentavalent Intermediate

    Configuration inverted

    34

  • 8/13/2019 Lect 3 Biomolecule.ppt

    35/50

    CC Bond Cleavage

    35

    http://upload.wikimedia.org/wikipedia/commons/9/97/ALDO_reaction.png
  • 8/13/2019 Lect 3 Biomolecule.ppt

    36/50

    Mechanism

    36

    http://upload.wikimedia.org/wikipedia/commons/9/97/ALDO_reaction.pnghttp://upload.wikimedia.org/wikipedia/commons/9/97/ALDO_reaction.png
  • 8/13/2019 Lect 3 Biomolecule.ppt

    37/50

    Internal Arrangement

    Isomerization

    37

  • 8/13/2019 Lect 3 Biomolecule.ppt

    38/50

    High Energy Compound Adenosine triphosphate

    38

  • 8/13/2019 Lect 3 Biomolecule.ppt

    39/50

    Energy Transfer

    Glucose + ATP Glucose-6-Pi

    ATP ADP + Pi

    ATP AMP + PPi

    PPi + H2O 2 Pi

    39

  • 8/13/2019 Lect 3 Biomolecule.ppt

    40/50

    Phosphorylation

    40

  • 8/13/2019 Lect 3 Biomolecule.ppt

    41/50

    Condensation

    Amino acylCOtRNA + HN - R

    O H

    H

    Amino acylCN - R

    O Polypeptide Elongation

    Hydrolysis of Polypeptide: Water serves as a nucleophile

    41

  • 8/13/2019 Lect 3 Biomolecule.ppt

    42/50

    Decomposition

    Trypsin Trypsin cleaves peptide chains mainly at the carboxyl

    side of the amino acids lysine or arginine

    Chymotrypsin Chymotrypsin preferentially cleaves peptide amide

    bonds where the carboxyl side of the amide bond (the P1position) is a tyrosine, tryptophan, or phenylalanine.

    42

  • 8/13/2019 Lect 3 Biomolecule.ppt

    43/50

    Decomposition

    Lipase

    Fat Fatty acid + Glycerol

    43

  • 8/13/2019 Lect 3 Biomolecule.ppt

    44/50

    Common Functional Groups

    Amino Glycine

    Carboxyl Fatty acid

    Carbonyl (Ald) Glucose

    Carbonyl (Keto) Fructose

    Methyl Alanine

    Hydroxyl Serine

    44

  • 8/13/2019 Lect 3 Biomolecule.ppt

    45/50

    Common Functional Groups

    Ethyl Isoleucine

    Phenyl Phenylalanine

    Ester Fat

    Thioester Acetyl CoA

    Sulfhydryl Cysteine

    Disulfide Cystine

    45

  • 8/13/2019 Lect 3 Biomolecule.ppt

    46/50

  • 8/13/2019 Lect 3 Biomolecule.ppt

    47/50

    Common Functional Groups

    Amido Gln

    Imidazole His

    Guanidino Arg

    47

  • 8/13/2019 Lect 3 Biomolecule.ppt

    48/50

    Biomolecules in Cell

    Water

    Protein: amino acids

    Carbohydrates

    Monosaccharides, Disaccharides, Oligosaccharides,

    Polysaccharides

    Lipids

    Fats, Fatty acids, Glycerol, Oils and Waxes

    48

  • 8/13/2019 Lect 3 Biomolecule.ppt

    49/50

    Biomolecules in Cell

    Nucleic Acids

    DNA

    RNA

    Nucleotides, Nucleosides

    Base, Sugar (Ribose, Deoxyribose), Phosphate

    49

  • 8/13/2019 Lect 3 Biomolecule.ppt

    50/50

    Functional Role

    D-glucose

    Sucrose, Lactose, Starch, Glycogen, Cellulose,

    Amino Acids

    Proteins, Neurotransmitters, Precursors of hormonesand toxins.

    Adenine

    ATP, cAMP, NAD, FAD

    Fatty Acids, Glycerol, Choline

    Lipid Bilayer membrane, Eicosanoids