learning to rank - tutorial @ sepln 2012

63
Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References Learning to Rank - Tutorial @ SEPLN 2012 Parth Gupta NLE Lab, ELiRF, UPV September 5, 2012 SEPLN ’12 NLE Lab, ELiRF, UPV Learning to Rank

Upload: truongtruc

Post on 20-Jan-2017

218 views

Category:

Documents


0 download

TRANSCRIPT

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Learning to Rank - Tutorial @ SEPLN 2012

Parth Gupta

NLE Lab, ELiRF, UPV

September 5, 2012

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Outline

Introduction

Corpus

Evaluation Metrics

Approaches

Applications

Letor Datasets

Xapian Letor API

Summary

References

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

What is Ranking?

I For the given, request and collections of offerings we giveofferings in particular relevance order.

In case of Document retrieval

I Input: Query and collection of documents

I Output: Ranked list of documents

Learning to Rank

I Machine Learning for Information Retrieval (IR)

I Specifically : Learning the Ranking ModelSEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Basic IR Concepts

Crawling

I Crawl the necessary part of the Web and prepare a staticcollection of documents

Indexing

I preprocess to convert it into raw text format (ASCII or UTF-8)

I Stop-word removal [Term Pipeline]

I Stemming [Term Pipeline] Store relevant information of termsand documents like term frequency (TF) [doc and collection]and document length in direct and inverted index.

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Query Normalisation

I Pass the query from the same pipeline

Ranking

I The simplest yet powerful model is TF-IDF

Score(Q,D) =

n∑i=1

tf(qi, D) ∗ idf(qi)

I tf(qi, D) = Frequency of Term qi in D.

I idf(qi) = log( N# of docs containing qi

)

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

tf − idf Example

I Doc1 = Jaume I University is in Castellon

I Doc2 = Jaume I University is in Spain

I Doc3 = UPV is in Valencia

I Q = Jaume Spain

Ranking

I Score(Q, Doc1) = (1+0)*(0.64) = 0.64 Rank - 2

I Score(Q, Doc2) = (1+1)*(0.64) = 1.28 Rank - 1

I Score(Q, Doc3) = (0+0)*(0.64) = 0.0 Rank - 3

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Other Unsupervised Ranking Models

I BM25 - Probabilistic Model

I Language Model for IR

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Scope of This Tutorial

I Learning to Rank Problem Definition

I Approaches to Learning to Rank

I Applications of LTR to NLP and IR

I Research Trends with LTR

I Hands on with LTR

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Conventional Unsupervised Ranking Model

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Motivation

RankList A RankList B

Irrelevant Doc

Relevant Doc

Can We Learn?

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Supervised Learning-to-Rank (LetoR) Model[Qin et al., 2010]

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Practical Ranking

Query

SupervisedRanker

Un-supervisedRanker

ExtractFea-tures

Learning to Rank

RankList RankList

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Training Process (fig. taken from [Li, 2009])

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Testing Process (fig. taken from [Li, 2009])

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Letor 4.0 Dataset [Qin et al., 2010]

I Gov2 web page collection and two query sets of Million Query(MQ) track of TREC07 and TREC08.

I Given in form of query document pairs.

2 qid:10032 1:0.056537 2:0.000000 ... 45:0.000000 46:0.076923 #docid = GX029-35-58946380 qid:10032 1:0.279152 2:0.000000 ... 45:0.250000 46:1.000000 #docid = GX030-77-63150421 qid:10032 1:0.593640 2:1.000000 ... 45:0.500000 46:0.000000 #docid = GX256-43-0740276

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Issues in Learning to Rank

I Relevance Labels - manual judgments vs. click-through data

I Feature Extraction - (Q, D, Q+D)

I Evaluation Measure - multi-level relevance labels

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Why so popular?

I Easy to incorporate new featuresI age of the documentI link information in web graphI click informationI geographical information of the user etc.

I Easy to tune parameters of the ranking model automatically

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Evaluation Metrics

Mean Average Precision (MAP)

MAP =∑n

k=1(P (k) ∗ rel(k))Number of Relevant Documents

Normalized Discounted Cumulative Gain (nDCG)

NDCG @ n = Zn ∗∑n

j=1

[2c(j) − 1

log (1 + j)

]

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Approaches

- Pointwise Approach Individual doc is used forlearning

- Pairwise Approach Pairs of two documentsfor a query is used forlearning

- Listwise Approach Whole ranked list for aquery is used for learning

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Pointwise Approach

Q1

Q2

Qn

• Use individual en-tity for learning evenwithout query infor-mation

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Pointwise Learning-to-Rank (LetoR) Model

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Regression Approach

I Directly methods like regression or classification can beapplied to solve the ranking problem.

I Consider relevance judgments asI Real values - in case of regressionI Non-ordered categories - in case of classification

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Regression Approach contd.

I Least Squares Retrieval Function [Fuhr, 1989]

I Loss Function can be LSE.

I Regression model is Multiple Linear Regression.

I Basic idea is to map the feature vector the the real value.

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Regression Approach contd.

I Discriminative models [Nallapati, 2004]

I Here real score can be looked as probability of relevance givendocument and query.

I Here the weight vector can be estimated using gradientdescent algorithm.

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Classification Approach

I BayesNetRank [Gupta, 2011], McRank [Li et al., 2007]

I Solve the Ranking Problem using Classification

I Classes : Relevance Levels [ 0 , 1 , 2 ]

I Classification Model : Bayesian Networks (BayesNetRank)and Neural Networks (McRank)

I Ranking Function on top of Classification Probabilities.

Constraint

I Bayesian Networks accept only discrete data -> MDL baseddiscretization scheme is used [Fayyad and Irani, 1993]

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Bayesian Networks: Structure Learning

I E= set of Edges i.e. thestructure of the Network

I So we have to Estimate

P (E|X) =P (X|E) ∗ P (E)

P (X)

I Where P(E) = PriorI And P(x) is constantI P (X|E) is likelihood

term, Cooper HerkovitzLikelihood

P (X|E) =d∏j=1

qj∏l=1

kj∏i=1

Θnk(x

(i)j

|π(l)j

)

jil

f1 f2 f3 f45 f46 R

f1 f2 f3 f4

f11 f15f12

R

Structure Learning

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Structure Learning contd..

P (X|E) =

d∏j=1

qj∏l=1

kj∏i=1

Θnk(x

(i)j |π

(l)j )

jil

I d is the number of variables (No of nodes)

I kj is number of possible states that the variable Xj can take

I qj is the number of possible parent configurations for variableXj and

Θjil = P (Xj = x(i)j |Πj = π

(l)j )

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Structure Learning contd..

I The likelihood has to be computed for all the possible graphstructure and the graph that maximizes it, is chosen.

I NP-Hard Problem: because possible number of DAGs growssuper-exponentially with no. of nodes.

I e.g. for N=10, possible DAGs = 4.2 x 1018

I So there are different ways to select subset of all the DAGs forconsideration

I e.g. K2, HC etc

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Bayesian Networks: Parameter Learning

I Now we know the structure and so the parent set of our Classnode [Relevance in our case].

I We use the Maximum Likelihood Estimation(MLE) to give theprobabilities, where Likelihood function is same [CooperHerkovitz likelihood] as described in Structure LearningSection.

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Ranking Function

I Bayesian Network will give us, P(R=0), P(R=1) and P(R=2)

I But we want a real score for the document

I Very straightforward yet effective function ’ExpectedRelevance’ [Li et al., 2007]

Score(Xi) =∑i

i ∗ P (R = i)

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Issues with Regression Approach

I Here relevance is considered as either non-ordered categoriesor real values, which is not true in reality.

I This approach does not take any advantage of pairwisepreference or total order information in learning.

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Ordinal Regression

I Ordinal regression can be a better choice than RegressionApproach.

I Because here categories are ordered while in classification thecategories are non ordered.

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Ordinal Regression contd.

I P ranking for Ranking [Crammer and Singer, 2001]I Here we project the ~wT · ~x in the ordered categoriesb1 < b2 < · · · < bn.

I In the training phase if the predicted category is not equal tothe actual category then we modify vector ~w and thresholds.

Concerns:

I Still consider the absolute relevance

I does not take information of pairwise preference or total orderinformation in learning.

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Algorithms

I Regression

I Classification - McRank [Li et al., 2007], BayesNetRank[Gupta, 2011]

I Ordinal Regression - PRanking [Crammer and Singer, 2001],Large margin [Shashua and Levin, 2002]

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Pairwise Approach

Q1

Q2

Qn

Q1

Qn

• Create Correct andIncorrect RankedPairs for each Query

• Use these pairs forLearning

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Pairwise Learning-to-Rank (LetoR) Model

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Pairwise Approach

I Take the pairs of documents

I Input: Xi , Xj ∈ Rt where Xi > Xj

I Output : Y ∈ +1,-1, where ’+1’ denotes that Xi > Xj iscorrect order and ’-1’ otherwise.

I Ex. if given data is like (X1,2), (X2,1), (X3,0) where 0,1 and2 are the relevance labels

I New training data will be, (X1,X2,+1), (X2,X1,-1),(X1,X3,+1), (X3,X1,-1), (X2,X3,+1) and (X3,X2,-1).

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Pairwise Approach - RankSVM [Herbrich et al., 2000]

I The SVM model is as shown below,

minimize1

2‖ w ‖2 +C

∑i

ζi

subject to zi⟨w, x1i − x2i

⟩≥ 1− ζi, ζi ≥ 1, i = 1, 2, . . . , l

Where,

zi =

{+1 if y1i ≺ y2i−1 if y2i ≺ y1i

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Pairwise Approach contd.

I There are some concerns with Ranking SVM that

I It is biased towards queries with many relevant documentsthan those with fewer relevant documents. [Cao et al., 2006]

I It gives same weight to all the pairs.

I Also pairwise approach does not handle information of totalorder.

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Algorithms

I Support Vector Machines - RankSVM [Herbrich et al., 2000],IR-SVM [Cao et al., 2006]

I Neural Networks - RankNet [Burges et al., 2005]

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Listwise Approach

Q1

Q2

Qn

Q2

Qn

• Use whole rankedlist for Learning

Q1

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Listwise Learning-to-Rank (LetoR) Model

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

ListNet [Cao et al., 2007]

I Listwise Loss Function

N∑i=1

L(yi, zi)

I L is cross entropy (p log p)I zi is the generated rank-list for query iI yi is the ground truth rank-list for query i

I Permutation Probability

Ps(π) =n∏j=1

sπ(j)∑nk=j sπ(k)

I Calculating for N objects is computationally intractable

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

ListNet contd.

I Top k Permutation Probability

Ps(ς(j1, j2, ..., jk)) =

k∏t=1

sjt∑nl=t sjt

I Time complexity of computation : from O(n!) to O( n!(n−k)!)

I Ranking model s(., .) is Neural Network

I Example, if s(A)=5, s(B)=4, s(C)=2 then P(ABC) ismaximum and P(CBA) is minimum

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Algorithms

I Neural Networks - ListNet [Cao et al., 2007]

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Applications

I Search

I Collaborative Filtering [Freund et al., 2003]

I Key-Phrase Extraction [Jiang et al., 2009]

I Question Answering (why questions) [Verberne et al., 2011]

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Collaborative Filtering

I Problem formulationI Input: users ratings on some itemsI Output: users ratings on other itemsI Assumption: users sharing same ratings on input items tend to

agree on new items

I SolutionI ClassificationI Ordinal RegressionI Learning-to-Rank

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Key Phrase Extraction

I Problem formulationI Input: documentI Output: keyphrases of documentI Two steps: phrase extraction and keyphrase identification

I Traditional approachI Classification: keyphrase vs non-keyphrase

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Key Phrase Extraction contd.

I Ranking of Phrases

I Pairwise approach

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

why Question Answering

I Problem FormulationsI Input: Question and Potential AnswersI Output: Improved ranking of Answers (re-ranking)

I Traditional ApproachI TF-IDF scoring

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Question Answering contd.

I The data is highly imbalanced

I Pairwise approaches seem to work well

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Statistics of public LTR datasets

Queries Doc. Rel. Feat. Year

Letor 3.0 - Gov 575 568 k 2 64 2008Letor 3.0 - Ohsumed 106 16 k 3 45 2008Letor 4.0 2,476 85 k 3 46 2009Yandex 20,267 213 k 5 245 2009Yahoo! 36,251 883 k 5 700 2010Microsoft 31,531 3,771 k 5 136 2010

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Research Trends in Learning to Rank

I Feature Extraction - What can be useful?

I Feature Selection - All of them are useful?

I Data Labeling - Do I have to judge all of them?

I Ranking Models - How to Rank?

I Dimensionality Reduction - Can feature vector be compacted?

I Suitability of Evaluation Metric - Does one fit all?

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Xapian

I Xapian1 is an Open-source search engine project

I Letor API is developed under Google’s initiative to promoteopen-source, well known as, Google Summer of Codes (GSoC)

I Detailed description along with code of Letor API can beaccessed through, wiki-page:http://trac.xapian.org/wiki/GSoC2011/LTR

Motivation

I To make an end-to-end i.e. natural language query todocument ranked list type infrastructure for Learning to Rank

1http://xapian.org/SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

API

Xapian::Letor ltr;

...

ltr.set_database(db);

ltr.set_query(query);

...

// prepare training file

ltr.prepare_training_file("topics.txt",

"inex2010-article.qrels",

100);

....

// learn the model with svm parameters

ltr.letor_learn_model(4,0);

// get the new ranked list with Letor!

map<Xapian::docid,double> letor_mset = ltr.letor_score(mset);

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Summary

I We learnt the basic framework of Learning-to-Rank

I We explored the approaches to it

I We saw application of LTR to IR and NLP tasks

I Overview of Datasets and Xapian Letor API

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

Thank You! ¨

[email protected]

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

References I

Burges, C. J. C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., and Hullender, G. N.

(2005).Learning to rank using gradient descent.In ICML, pages 89–96.

Cao, Y., Xu, J., Liu, T.-Y., Li, H., Huang, Y., and Hon, H.-W. (2006).

Adapting ranking svm to document retrieval.In SIGIR, pages 186–193.

Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., and Li, H. (2007).

Learning to rank: from pairwise approach to listwise approach.In ICML, pages 129–136.

Crammer, K. and Singer, Y. (2001).

Pranking with ranking.In NIPS, pages 641–647.

Fayyad, U. M. and Irani, K. B. (1993).

Multi-interval discretization of continuous-valued attributes for classification learning.In IJCAI, pages 1022–1029.

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

References IIFreund, Y., Iyer, R. D., Schapire, R. E., and Singer, Y. (2003).

An efficient boosting algorithm for combining preferences.Journal of Machine Learning Research, 4:933–969.

Fuhr, N. (1989).

Optimal polynomial retrieval functions based on the probability ranking principle.ACM Trans. Inf. Syst., 7(3):183–204.

Gupta, P. (2011).

Learning-to-Rank: Using Bayesian Networks.Master’s thesis, DA-IICT, India.

Herbrich, R., Graepel, T., and Obermayer, K. (2000).

Large margin rank boundaries for ordinal regression.In Smola, A., Bartlett, P., Scholkopf, B., and Schuurmans, D., editors, Advances in Large MarginClassifiers, pages 115–132, Cambridge, MA. MIT Press.

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

References IIIJiang, X., Hu, Y., and Li, H. (2009).

A ranking approach to keyphrase extraction.In Proceedings of the 32nd international ACM SIGIR conference on Research and development ininformation retrieval, SIGIR ’09, pages 756–757, New York, NY, USA. ACM.

Li, H. (2009).

Learning to rank.In Tutorial Abstracts of ACL-IJCNLP 2009, page 5, Suntec, Singapore. Association for ComputationalLinguistics.

Li, P., Burges, C. J. C., and Wu, Q. (2007).

Mcrank: Learning to rank using multiple classification and gradient boosting.In NIPS.

Nallapati, R. (2004).

Discriminative models for information retrieval.In SIGIR, pages 64–71.

Qin, T., Liu, T.-Y., Xu, J., and Li, H. (2010).

LETOR: A benchmark collection for research on learning to rank for information retrieval.Information Retrieval, 13(4):346–374.

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank

Introduction Corpus Eval Metrics Approaches Applications Datasets Letor API Summary References

References IVShashua, A. and Levin, A. (2002).

Ranking with large margin principle: Two approaches.In NIPS, pages 937–944.

Verberne, S., Halteren, H., Theijssen, D., Raaijmakers, S., and Boves, L. (2011).

Learning to rank for why-question answering.Inf. Retr., 14(2):107–132.

SEPLN ’12 NLE Lab, ELiRF, UPV

Learning to Rank