learning the cis regulatory code by predictive modeling of gene regulation (medusa) christina leslie...

55
Learning the cis regulatory code by predictive modeling of gene regulation (MEDUSA) Christina Leslie Center for Computational Learning Systems Columbia University, NY, USA http://www.cs.columbia.edu/compbio/ medusa

Upload: primrose-gilmore

Post on 03-Jan-2016

217 views

Category:

Documents


4 download

TRANSCRIPT

Learning the cis regulatory code by predictive modeling of gene regulation

(MEDUSA)

Christina LeslieCenter for Computational Learning Systems

Columbia University, NY, USA

http://www.cs.columbia.edu/compbio/medusa

Transcriptional Regulation

Nuclear membrane

Transcriptional Regulation

Nuclear membrane

Transcriptional Regulation

Nuclear membrane

Binding site/motifCCG__CCG

Transcriptional Regulation

Nuclear membrane

Binding site/motifCCG__CCG Genome-wide mRNA

transcript data (e.g. microarrays)

Transcriptional Regulation

Nuclear membrane

Binding site/motifCCG__CCG

• Understand which regulators control which target genes

• Discover motifs representing regulatory elements

Learning problems:

Previous work: Clustering

• Cluster-first motif discovery – Cluster genes by expression profile, annotation, …

to find potentially coregulated genes– Find overrepresented motifs in promoter

sequences of similar genes (algorithms: MEME, Consensus, Gibbs sampler, AlignACE, …)

(Spellman et al. 1998)

Previous work: “Structure learning”

• Graphical models (and other methods)– Learn structure of “regulatory network”, “regulatory

modules”, etc. – Fit interpretable model to training data– Model small number of genes or clusters of genes– Many computational and statistical challenges; often used

for qualitative hypotheses rather than prediction

(Segal et al, 2003, 2004)

(Pe’er et al. 2001)

Our work: “Predictive modeling”

• MEDUSA = Motif Element Discrimination Using Sequence Agglomeration

What is the prediction problem?– Predict up/down regulation of target genes under different

experimental conditions

Key ideas:– Learn motifs and identify regulators that predict differential

expression in different contexts mechanistic inputs– Obtain single model for all genes and all experiments:

context-specific, no clusters, no parameter tuning– Accurate predictions on test data

M. Middendorf, A. Kundaje, M. Shah, Y. Freund, C. Wiggins, C. Leslie. Motif Discovery through Predictive Modeling of Gene Regulation. RECOMB 2005.

MEDUSA: Different view of training data

Learn regulatory program that makes genome-wide, context-specific predictions for differential (up/down) expression of target genes

MEDUSA – Set up

Target gene analysis, important regulatorsTPK1, USV1, AFR1, XBP1, …

Training data – Features

label

promoter sequence

regulator expression

feature vector

Boosting (Freund & Schapire 1995)

Boosting (Freund & Schapire 1995)

distribution over

training data

Boosting (Freund & Schapire 1995)

distribution over

training dataweak rule

Minimize exponential loss function

Zt wge expge

tygeht x ge

Boosting (Freund & Schapire 1995)

distribution over

training dataweak rule

updated weights

wget1 wge

t exp tygeht x ge /Z t

Boosting (Freund & Schapire 1995)

distribution over

training dataweak rule

updated weights

Boosting (Freund & Schapire 1995)

distribution over

training dataweak rule

updated weights

MEDUSA’s weak learner

…AGCTATGCCATCGACTGCTCCAGTCGCACACACAAAGATTTGAG

GCTATAGCTACTTTATAAAGGGGCTACGGCAAATT…

MEDUSA’s weak learner

…AGCTATGCCATCGACTGCTCCAGTCGCACACACAAAGATTTGAG

GCTATAGCTACTTTATAAAGGGGCTACGGCAAATT…

k-mers (k≤7)AGCTATG

MEDUSA’s weak learner

…AGCTATGCCATCGACTGCTCCAGTCGCACACACAAAGATTTGAG

GCTATAGCTACTTTATAAAGGGGCTACGGCAAATT…

k-mers (k≤7)AGCTATGGCTATGC

MEDUSA’s weak learner

…AGCTATGCCATCGACTGCTCCAGTCGCACACACAAAGATTTGAG

GCTATAGCTACTTTATAAAGGGGCTACGGCAAATT…

k-mers (k≤7)AGCTATGGCTATGCCTATGCC

MEDUSA’s weak learner

…AGCTATGCCATCGACTGCTCCAGTCGCACACACAAAGATTTGAG

GCTATAGCTACTTTATAAAGGGGCTACGGCAAATT…

k-mers (k≤7)AGCTATGGCTATGCCTATGCC

MEDUSA’s weak learner

…AGCTATGCCATCGACTGCTCCAGTCGCACACACAAAGATTTGAG

GCTATAGCTACTTTATAAAGGGGCTACGGCAAATT…

k-mers (k≤7)AGCTATGGCTATGCCTATGCC

dimers (gapped elements)

TTT_AAA

MEDUSA’s weak learner

…AGCTATGCCATCGACTGCTCCAGTCGCACACACAAAGATTTGAG

GCTATAGCTACTTTATAAAGGGGCTACGGCAAATT…

k-mers (k≤7)AGCTATGGCTATGCCTATGCC

dimers (gapped elements)

TTT_AAAGCTA_GCTA

MEDUSA’s weak learner

…AGCTATGCCATCGACTGCTCCAGTCGCACACACAAAGATTTGAG

GCTATAGCTACTTTATAAAGGGGCTACGGCAAATT…

k-mers (k≤7)AGCTATGGCTATGCCTATGCC

dimers (gapped elements)

TTT_AAAGCTA_GCTA

MEDUSA’s weak learner

…AGCTATGCCATCGACTGCTCCAGTCGCACACACAAAGATTTGAG

GCTATAGCTACTTTATAAAGGGGCTACGGCAAATT…

k-mers (k≤7)AGCTATGGCTATGCCTATGCC

dimers (gapped elements)

TTT_AAAGCTA_GCTA

Regulator expression

Is AGCTATG present and USV1 up?Is AGCTATG present and USV1 down?Is GCTATGC present and USV1 up?Is GCTATGC present and TPK1 up? …

try all motif-regulator pairs as weak rules …

MEDUSA’s weak learner

…AGCTATGCCATCGACTGCTCCAGTCGCACACACAAAGATTTGAG

GCTATAGCTACTTTATAAAGGGGCTACGGCAAATT…

k-mers (k≤7)AGCTATGGCTATGCCTATGCC

dimers (gapped elements)

TTT_AAAGCTA_GCTA

Regulator expression

Is AGCTATG present and USV1 up?Is AGCTATG present and USV1 down?Is GCTATGC present and USV1 up?Is GCTATGC present and TPK1 up? …

try all motif-regulator pairs as weak rules …

minimizes boosting loss

Is GCTATGC present and USV1 up?

Hierarchical sequence agglomeration

Is GCTATGC present and USV1 up?Is GCAATGC present and USV1 up?Is TCTATGC present and USV1 up?Is GCTTTGC present and USV1 up?…

bo

ost

ing

bo

ost

ing

loss

Hierarchical sequence agglomeration

GCTATGCGCAATGCGGTATGCCCTAAGCGCTATTT

GGTATGG

PSSMs

Is GCTATGC present and USV1 up?Is GCAATGC present and USV1 up?Is TCTATGC present and USV1 up?Is GCTTTGC present and USV1 up?…

bo

ost

ing

bo

ost

ing

loss

Agglomerate

Hierarchical sequence agglomeration

GCTATGCGCAATGCGGTATGCCCTAAGCGCTATTT

GGTATGG

PSSMs

Is GCTATGC present and USV1 up?Is GCAATGC present and USV1 up?Is TCTATGC present and USV1 up?Is GCTTTGC present and USV1 up?…

bo

ost

ing

bo

ost

ing

loss

Optimize over offsets when merging k-mers/PSSMs:

- - GCTATGC GCTATTT - -

Hierarchical sequence agglomeration

GCTATGCGCAATGCGGTATGCCCTAAGCGCTATTT

GGTATGG

PSSMs

Is GCTATGC present and USV1 up?Is GCAATGC present and USV1 up?Is TCTATGC present and USV1 up?Is GCTTTGC present and USV1 up?…

bo

ost

ing

bo

ost

ing

loss

Hierarchical sequence agglomeration

GCTATGCGCAATGCGGTATGCCCTAAGCGCTATTT

GGTATGG

PSSMs

Is GCTATGC present and USV1 up?Is GCAATGC present and USV1 up?Is TCTATGC present and USV1 up?Is GCTTTGC present and USV1 up?…

bo

ost

ing

bo

ost

ing

loss

Is present and USV1 up?

Is present and USV1 up?

Is present and USV1 up? …

Hierarchical sequence agglomeration

GCTATGCGCAATGCGGTATGCCCTAAGCGCTATTT

GGTATGG

PSSMs

Is GCTATGC present and USV1 up?Is GCAATGC present and USV1 up?Is TCTATGC present and USV1 up?Is GCTTTGC present and USV1 up?…

bo

ost

ing

bo

ost

ing

loss

Is present and USV1 up?

Is present and USV1 up?

Is present and USV1 up? …

minimize boosting loss final weak rule

MEDUSA strong rule• Combine weak rules into a tree-structure• Alternating decision tree = margin-based generalization of decision trees

[Freund & Mason 1999]

• Lower nodes are conditionally dependent on higher nodes can possibly reveal combinatorial interactions

• Able to reveal motifs specific to subsets of target genes

• Able to learn any boolean function

Yeast Environmental Stress Response

• Gasch et al. (2000) dataset, 173 microarrays, 13 environmental stresses

• ~5500 target genes, 475 regulators (237 TF+ 250 SM)• 500bp upstream promoter sequences• Binning into +1/0/-1 expression levels based on wildtype

vs. wildtype noise

Statistical validation

• 10-fold cross-validation (held-out experiments), ~60,000 (gene,experiment) training examples, 700 iterations

• (Nk-mers+Ndimers+NPSSMs)*Nreg*2 ~= 107 possible weak rules at every node

• MEDUSA’s motifs give a better prediction accuracyon held-out experiments than database motifs

Yeast ESR: Biological Validation

STRE element

Universal stress repressor motif

Yeast ESR: Biological Validation

Important regulators identified by MEDUSA

Cellular localizationof MSN2/4

Segal et al. 2003

Universal stress repressor

Visualizing MEDUSA motifs

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture. AAATTT QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.TAAGGG

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture. QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

1. 2. 3. 5.

8. 14. 16.

• Restrict regulatory program to particular target genes T, experimental conditions E smaller model

• Further statistical pruning of features using margin-based score:

• Identify most significant context-specific regulators and motifs for target set

Biological validation – Context-specific analysis

gT ,eE yge F x ge Ff x ge

• Example: oxygen sensing and regulation in yeast (collaborator: Li Zhang)

Biological validation – Context-specific analysis

• Example: oxygen and heme inducible targets

Biological validation – Context-specific analysis

• Regulator-motif associations in nodes can have different meanings:

• Need other data to confirm binding relationship between regulator and target (e.g. ChIP chip)

• Still, can determine statistically significant regulator-target relationships from regulation program

TFMTF

PPMp

PMMp

Direct binding Indirect effect Co-occurrence

Biological validation – Network inference

• Example: oxygen sensing and regulatory network

Biological validation – Network inference

At least 2 usages:• Makes accurate quantitative predictions

– Can assess predictions statistically, i.e. on test data– Gives us confidence that model contains biologically relevant

information

vs.

• Generates biological hypotheses– Without statistical validation, can only evaluate quality of

hypotheses through experiments– Issues: How much of model is correct? How many false

positives? Is a network “edge” a meaningful prediction? (Cf. DREAM initiative)

Discussion: What does “predictive” mean?

• “Manifesto”– We’re interested in hypothesis generation, but still must

give statistical validation on test data, i.e. show that you’re not overfitting

– Not enough to show that model is non-random, e.g. good p-values for functional enrichment

• Possible goal: move towards making useful predictions for actual wet-lab experiments (e.g. fewer input variables in model)

• MEDUSA: statistically predictive model, can still interpret to extract biological hypotheses

Discussion: “Predictive” modeling

• Oxygen sensing and regulation in yeast (collaborator: Li Zhang, Public Health @ Columbia)

• Regulation of and by microRNAs in humans (collaborators: Sander group, Sloan Kettering)

• Sequence information controlling tissue-specific alternative splicing (collaborator: Larry Chasin, Biology @ Columbia)

• Integration of phosphorylation (“kinome”) data to reconstruct signaling pathways

• New Java MEDUSA software package – soon to be released

Ongoing MEDUSA-related projects

http://www.cs.columbia.edu/compbio/medusa

• Manuel Middendorf (Physics)• Anshul Kundaje (CS)• David Quigley (DBMI)• Steve Lianoglou (CS)• Xuejing Li (Physics)• Mihir Shah (CS)• Marta Arias (CCLS)• Chris Wiggins (APAM)• Yoav Freund (CS@UCSD)

Funding: NIH (MAGNet NCBC grant)

Thanks

Visualizing MEDUSA motifs

• Pruning based on feature dependence statistic:

yge F x ge F x ge

• ChIP chip: genome-wide protein-DNA binding data, i.e. what promoters are bound by TF?

• Investigate regulatory network model: use ChIP chip data in place of motifs (no motif discovery)– Features: (regulator, TF-occupancy)

pairs

TFP2P1

Biological validation – Binding data

Biological validation – Target gene analysis

• Restrict to target genes = protein chaperones; experiments = heat shock, hypo/hyper-osmolarity

– CMK2 with HSF1 occupancy(CaMKII mammalian ortholog interacts with HSF1)

Biological validation – Signaling molecules

• Find all SMs that associate as regulators with a particular TF’s ChIP occupancy in ADT features

• e.g.

• Hypothesis: Glc7 phosphatase complex interacts with Hsf1 in regulation of Hsf1 targets (Interaction supported in literature)

Hsf1Gac1Gip1Sds22

Glc7 phosphatase

complex

TFSM mRNA

• SVM classifiers with string kernels for remote homology detection, fold recognition

Update: Protein fold recognition

YPNTDIGDPSYPHIGIDIKSVRSKKTAKWNMQNGK

protein sequence

profile

I

G

IDk-mer basedkernel computation

prediction of structural class

SVM

R. Kuang, E. Ie, K. Wang, K. Wang, M. Siddiqi, Y. Freund, C. Leslie. Remote homology detection and motif extraction using profile-based string kernels. JBCB 2005.

SVM-Fold web server (soon to be deployed)