lcoi reviews 2013 16

158
Донецк - 2013 L L C C O O I I - - R R e e v v i i e e w w s s Збірк ка наук кових праць видаєт ться Д Донецьк ким національним університ тет том (Д Донецьк к, Ук краї їна) за проек кт том Низько-вуглецеві можливості для індустріальних регіонів України”, що фінансується Європейським Союзом за Тематичною програмою для довкілля та сталого управління природними ресурсами, зокрема енергією N o o . . 1 1 6 6 , , 30.12 . . 2 2 0 0 1 1 3 3 L L O O W W - - C C A A R R B B O O N N O O P P E E N N I I N N N N O O V V A A T T I I O O N N R R E E V V I I E E W W S S О О Г Г Л Л Я Я Д Д И И Н Н И И З З Ь Ь К К О О - - В В У У Г Г Л Л Е Е Ц Ц Е Е В В И И Х Х В В І І Д Д К К Р Р И И Т Т И И Х Х І І Н Н Н Н О О В В А А Ц Ц І І Й Й О О Б Б О О З З Р Р Е Е Н Н И И Я Я Н Н И И З З К К О О - - У У Г Г Л Л Е Е Р Р О О Д Д Н Н Ы Ы Х Х О О Т Т К К Р Р Ы Ы Т Т Ы Ы Х Х И И Н Н Н Н О О В В А А Ц Ц И И Й Й Проект фінансується Європейським С Союзом Проект реалізується Донецьким національним університетом, Україна

Upload: mykola-shestavin

Post on 11-Mar-2016

249 views

Category:

Documents


7 download

DESCRIPTION

Сборник научных трудов 2-го Международного научно-практического симпозиума «НИЗКО-УГЛЕРОДНЫЕ ОТКРЫТЫЕ ИННОВАЦИИ ДЛЯ РЕГИОНОВ УКРАИНЫ» (30-31 октября 2013 г.) / Под общ. ред. С. В. Беспаловой и Н. С. Шеставина // LCOI-Reviews, No. 16, 30.12.2013. – Донецк: ДонНУ, 2013. – 154 с. Сборник содержит презентации и статьи, представленные на 2-м Международном научно-практическом симпозиуме «НИЗКО-УГЛЕРОДНЫЕ ОТКРЫТЫЕ ИННОВАЦИИ ДЛЯ РЕГИОНОВ УКРАИНЫ», который состоялся 30-31 октября 2013 г. в рамках проекта «Низко-углеродные возможности для индустриальных регионов Украины», финансируемого Европейским Союзом. Также в сборнике представлены презентации, которые были подготовлены в рамках проекта для участия в других мероприятиях 2013 года. Сборник предназначен для научных и инженерно-технических работников, преподавателей высших учебных заведений, аспирантов и студентов естественнонаучных и экономических специальностей.

TRANSCRIPT

  • - 2013

    LLCCOOII--RReevviieewwss ((,, )) -- ,, ,,

    NNoo.. 1166,, 3300..1122..22001133

    LLOOWW--CCAARRBBOONN OOPPEENN IINNNNOOVVAATTIIOONN RREEVVIIEEWWSS -- --

    ,,

  • LLCCOOII--RReevviieewwss LLOOWW--CCAARRBBOONN OOPPEENN IINNNNOOVVAATTIIOONN RREEVVIIEEWWSS -- -- NNoo.. 1166,, 3300..1122..22001133 ((,, )) -- ,, ,,

    Collection of Scientific Papers of the 2 International Scientific and Practical Symposium on

    LOW-CARBON OPEN INNOVATION FOR REGIONS OF UKRAINE

    (30-31 October 2013)

    2 -

    -

    (30-31 2013 .)

    2 -

    -

    (30-31 2013 .)

    - 2013

    ,,

  • 504.062.2, 504.062.4, 504.7 20.1, 20.3 232 2- - - (30-31 2013 .) / . . . . . . // LCOI-Reviews, No. 16, 30.12.2013. : , 2013. 154 . , 2- - - , 30-31 2013 . - , . , 2013 . - , , . : ..-.., . .. (. ), ..., . .. (. . ), ... .. (. ), ..., . .., ..., ... .., ..., . .., ... .. : . . .. : 83050, . , . , 46/616, , , - , Web: www.lcoir-ua.eu , E-mail: [email protected]

    , ,

    , 2013 , 2013

  • : 1. , 2- - - 5 .. 2- - - 6 . , 7 .. 16 .., .. 21 .., .. 29 .., .. 41 .., .. 48 .. . 59 .., .. 2 64 .. - 72 .., .., .., .. 77 Rosa-Hilda Chavez, Javier J. Guadarrama Theoretical and Experimental CO2 Capture at Power Plant 84 Semko A.N., Beskrovnaya M.V., Yagudina N.I. The Usage of High Speed Impulse Liquid Jets for Putting Out of Gas Flares 87

    LCOI-Reviews, 2013, No. 16

    3

  • 2. , 2- - - 96

    .. - 97

    .. 106

    . - 107

    . : 109

    .. - 111

    .. : , , 114

    Saftic Bruno Principles of CO2 geological storage 117

    3. , 2013 120

    .. - (, 19.04.2013) 121 INTERIM NARRATIVE REPORT (Donetsk, 24.05.2013) 125

    (, 24.05.2013) 128

    .. - (, , 20.09.2013) 131

    Mykola S. Shestavin The Strategy of Creating a Virtual Interactive Platform for the Low-Carbon Open Innovations Relay (Paris, France, 08.10.2013) 136

    , (08.10.2013) 138

    INTERIM NARRATIVE REPORT (IEA, Paris, France, 09.10.2013) 139

    Simon Bennett 2013 Technology Roadmap for Carbon Capture and Storage (IEA, Paris, France, 09.10.2013) 142

    Keith Burnard Coal-Fired Power Generation (IEA, Paris, France, 09.10.2013) 145

    , (15.10.2013) 148 ANNEX A: GENERAL INFORMATION ABOUT A PROJECT LOW-CARBON OPPORTUNITIES FOR INDUSTRIAL REGIONS OF UKRAINE (LCOIR-UA) 149 : - (LCOIR-UA) 151 : - (LCOIR-UA) 153

    LCOI-Reviews, 2013, No. 16

    4

  • 2-

    - -

    ..

    ,

    30-31 2013 - (LCOIR-UA), , 2- - - .

    : ,

    - : o

    , , ;

    o ;

    o ; o ..;

    - ;

    , , - ;

    - ( , ; , ; , ; ..).

    , ,

    , - . 40 . .

    ,

    , , .

    LCOI-Reviews, 2013, No. 16

    5

  • 1. ,

    2- - -

    , 30-31 2013 . .

    LCOI-Reviews, 2013, No. 16

    6

  • ,

    .

    . , -, .,

    , , , . ( , , 4, . , , . ( 6543535 08.04.2003 .). , , 220 .

    . , . , .

    *** , , ,

    ( ).

    , , , , , , () . - , . , , , . - , , . -, , , . , , 8

    LCOI-Reviews, 2013, No. 16

    7

  • , 8 , 4 2. .

    , , , .

    . 1. 300 , 103 2012 ,

    :

    , , 26,1 , , 1,6-1,7. . : , 150, 5,2-5,5 /2. , , , 6 /2, , 160. , , , , . , .

    , , , , - , , , . 10 3 0,5-1 3.

    LCOI-Reviews, 2013, No. 16

    8

  • , .

    , , , , . , , , .

    , , , . , - .

    ! , 50-70% , , . , , . . , , - - , .

    . , , , . , , .

    ( ), . .

    , . , , . , 30, 50 . , . , , . , , , . , , .

    .

    LCOI-Reviews, 2013, No. 16

    9

  • , , , , . , , , , , , - , .

    , , , , , , .

    , . , - , . , , . . , , , , , . , , . , , , . . , , (), .

    , , , , , - . , , ( ) ( 1 ), - 2 (, , , ). . , - - . , ( ) ( , , , , , ..), . , , . 3 (, , ),

    LCOI-Reviews, 2013, No. 16

    10

  • , . , , , , ( , , , , ). , 10 , 20 - 30 . , , -, , . , , , , , , , , , .

    (, , , , , ) .

    , . (), , , (, ), ( ), .

    , (, , , , , , , ..). ( ) , . , . , , , . , , . , , . , , .

    , , , , , , , . , (, , , , , ), (, .), . , , .

    , , - (, , , ). , , , , . , , , .

    LCOI-Reviews, 2013, No. 16

    11

  • , , , , , , . , , , .

    , , , , , , 5 , .

    17 , . , , . , , , .

    . 15 : , .

    , :

    - - ;

    - , , - ; - , , - ; - . ,

    , . , , - , - , , - . , , , - . , : () , - , . , , .. , . . 140 , : , , , ....

    LCOI-Reviews, 2013, No. 16

    12

  • 142. , : , , () , , . .. .

    - - - . 143 .

    . , , . , .. , . , , , . .

    , :

    ; ; , ; ; ; ,

    169; ; ; ; ; ;

    ; ,

    , , ; 987-XII ; 1560-XII ; 959-XII ; 280/97- ; ; - ,

    , , , . , , , .

    LCOI-Reviews, 2013, No. 16

    13

  • - , , .

    , , , , , . , , : , , , , . . , - , , , - , , .

    , : 1.

    . 2.

    - , , - .

    3. , , . , , , , , .. , , .

    4. - - , - . , , - - .

    5. , . , , -, .

    6. , , .

    7. - - .

    8. , - , () . -

    LCOI-Reviews, 2013, No. 16

    14

  • (), , .

    9. , 2001 2003 .

    10. , , , , , , .

    ,

    , . , , , , .

    LCOI-Reviews, 2013, No. 16

    15

  • ..

    . , .,

    - , , , (), .

    () , , , , , . , - .

    10 , , , ( ) . , .

    , , , , , , .

    , , , .

    95% , . 34-36%, - 7%. 47%, - 3%. , , 80% , , , , .

    () 2020 2011-1015 , , , , , , .

    , : , ; , ; -, , .

    , , , , .

    LCOI-Reviews, 2013, No. 16

    16

  • , .

    , (), 80 , . , . , : .

    , , , .

    , , --.

    , () , .

    ( 23 2000 . 1602-), , 16.11.2011 1186 , - , .

    . - , , , , , .

    , , - ( 2010 ) 21 (--, 1992.), , , , .

    , , , (, 1998.), ( , 2002 .), 2003 , , , - , , .

    , .

    LCOI-Reviews, 2013, No. 16

    17

  • 2012-2013 Shell ,hevron , .

    , , , , ! , , , - , !

    ? ? , .

    , !

    .

    , 70 % , .

    , , . . . . 30 % .

    , , 8 8 .3 , 1 - 78 .3, 2010 20 .3. 2 (68 . 3), - 700 . 3 2009 .

    - (,, ) ?

    ; ; 2 ; ; ; , .

    10 ( 12.11.2012 . 21.11.2012 . , , .

    , , , . !

    100 ( ) , , , - .

    LCOI-Reviews, 2013, No. 16

    18

  • (, , , ).

    , , , , .

    , , , , . , 2012. , .

    - , ! () , , .

    50 , , , , , , , .

    , , , ! , !

    1. .., .., .. // . .:

    , 1995 - . 116-120. 2. . .

    -2000- // : II - : 1998. . 104.

    3. 5- - : 2004. . 494.

    4. .. () : // : : 5 (24-26 2004 ., . ) ., 2004. . 246-251.

    5. .. . // . .: 2005. 32. . 5-12.

    6. // (21 2007 ., . ). .: 2007. . 289.

    7. .. // . .: , 2008. 440 .

    8. .. // () . 27-28 2008 . . 2. - .: , 2008. 523 .

    9. () 2020 // http://base.spinform.ru/index.fwx

    10. : "" , (23.02.2011,8.00) // http://news.finance.ua/ru/~/2/0/all/2011/02/23/228856

    11. // http://ru.wikipedia.org/ 12. ..

    : // : V -

    LCOI-Reviews, 2013, No. 16

    19

  • (, 21 2011 .): 2 . .: , 2011. - . 2. - . 468-472.

    13. .. // : V - (, 21 2011 .). - .: , 2011. - . 2. - . 345-350.

    14. .. // V - 21 2011 . - .: , 2011. - . 2 - . 441-442.

    15. +20. , // http://www.un.org/ru/sustainablefuture/

    LCOI-Reviews, 2013, No. 16

    20

  • 628.35

    .., ..

    ,

    . ( )

    . .

    : , , ,

    , , .

    , . 200 2,6 1 2. 45% 2, 23% 4, 19% 3% N2O.

    , [1], , .

    1 : ;

    ; . () : (CH4)

    ; (N2O)

    ; ,

    , , . 2

    ( , , , ), , , , ..

    3 , 1 2, . , , ( ), ( , ). . , . , ( ) , . (, ).

    LCOI-Reviews, 2013, No. 16

    21

  • : ,

    , , ;

    . ,

    , . , , , , -, . , , , , , .

    . 1. . [2, 3]

    , .

    ( ) [2], 0,05 /. .

    , . - 50% 50% . [4-7] 28% , .

    72% 17,6%. . 2. 71,89 . 1990 ., 1996 . 76,55 . , 71,98 . 2004 ., . 6,24 . 1990 . 0,01 . 2004 .

    LCOI-Reviews, 2013, No. 16

    22

  • . 2. - .

    -

    , , .

    : - () , , (). 3 +5.

    , . (Nitrosomonas, Nitrosococcus, Nitrobacter Nitrocystis) [8], 2, :

    NH4+ + 1,5O2 NO2- + 2H+ + H2O (1) NO2 + 0,5O2 NO3- (2) .

    .

    3- 2 2 - 1 - .

    , , . . , , Nitrosomonas, :

    [9].

    LCOI-Reviews, 2013, No. 16

    23

  • : 150-250 /*,

    ; 15 70 ,

    ;

    7-7.5, 8.4, , ;

    15 30, - ;

    , ;

    2 / [9]. ,

    , , [10].

    : 8 NO3-(aq) + 2CH3COOH 8NO2-(aq) + 4CO2 + 4H2O (3) 8 NO2-(aq) + CH3COOH + 2H2O 8NO(g) + 2CO2 + 8OH- (4) 8NO(g) + CH3COOH 4 N2O(g) + 2CO2 + 2H2O (5) 4N2O(g) + CH3COOH 4N2(g) + 2CO2 + 2H2O (6) 8NO3-(aq) + 5CH3COOH 4N2(g) + 10CO2 + 6H2O + 8OH- (7)

    , , , . , .

    , (, , , , , ) .

    , , .

    , - (, ).

    [9]: ,

    0,5/; 7-7.5; -

    (, , , , ). 4:1;

    ; , ,

    .

    LCOI-Reviews, 2013, No. 16

    24

  • - , , . ANAMMOX- , , .. .

    , ANAMMOX - . . : Brocadia, Kuenenia, Anammoxoglobus, Jettenia, Scalindua. .

    1986 . . () . CO2 85-90% , .

    , -, .. ANAMMOX (ANaerobic AMMonium OXidation). :

    NH4+ + NO2- N2 + 2H2O; G = 86 (8) , ,

    , . ANAMMOX [11].

    , .

    [12]:

    4 2 2 22

    1,3 0,042 0,042 0,22

    0,08 1,67

    NH NO CO N NOOH H O

    3 (9)

    ,

    : . [12], . , (NH2OH), (N2H4). [13].

    , , . , : , . (1800 / 4000 ), , . .

    LCOI-Reviews, 2013, No. 16

    25

  • , ( ); , ( ), , . : .

    , , . , , , 65% 75% , 30% , 1% (2S) , , . , 28 3 , 16,8 3 20,8 .

    . 350-400 . 3/ . 4-5 . 3 , 20000 /3, 350 /3. , 6-7 , .

    [14] , , -, ( 25000 3) 75%, .. 19000 3 ( 15000 ), , -, ANAMMOX-, . .

    , .

    5 o ( ). 2005 . 3,7 . o .

    , ( ), 2007 [15].

    , . . .

    .

    ( 8100 ), , 70% .

    1000 3 1050 2000 3 50-160 3 (2008); 65 75%, - 22600-25100 /3 (/3 5400-6000).

    LCOI-Reviews, 2013, No. 16

    26

  • 2006 2007 40 44% . (2000 3), .

    . , - .

    2,26 . . 2005 .

    (52,5%) (2008). 15 500000 [15].

    2005 . , , , , ..

    , , . - , , , . .

    , .

    , , . , ( 21 25 /3). .

    , , , , .

    , . , .

    , , .

    . , .

    LCOI-Reviews, 2013, No. 16

    27

  • 1. World Resources Institute. The greenhouse gas protocol: A Corporate Accounting and

    Reporting Standard // World Business Council for Sustainable Development. The Hague 2001. 27 p.

    2. . . . 2. 1996.

    3. . . 2000.

    4. .., .., .. . .: , 1993.

    5. .., .. / . ., 1997.

    6. .. . .: , 1988. 7. .., .. .

    .: , 1988. 8. ..

    / .., .. , .. ., .. // i i. i . 2007.

    9. . " " 290800 . --: , 1998. 19 . http://www.rgsu.ru/files/uploads/users/butko_d/AZOT-MU.pdf

    10. . / . , . , . --, . .: , 2006. 480 .

    11. Effects of aerobic and microaeribic conditions on anaerobic ammonium-oxidazingng (ANAMMOX) sludge / M. Strous, K. Gerven, U.J. Kuenen [et al.] // Applied and Environmental Microbiology. 1997. V. 63. P. 2446-2448.

    12. Lindsay M.R. Cell compartmentalization in planctomycetes: novel types of structural organization for the bacterial cell / M.R. Lindsay, R.I. Webb, M. Strous // Archive of Microbiology. 2001. V. 175. P. 413-429.

    13. Van Niftrik L.A. The ANAMMOXosome: an intracytoplasmic compartment in ANAMMOX bacteria / L.A. Van Niftrik, J.A. Fuerst, J.S.S. Damste [et al.] // FEMS Microbiology Letters. 2004. V. 233. P. 7-13.

    14. .. ANAMMOX // . : . 2011. . 2. . 82-87.

    15. International Water Association. . WTE Wassertechnik GmbH, , . http://www.aquaby.by/index.php/news/1069/56/obrabotka-osadka-stochnyh-vod-v-litve-do-i-posle-vhoda-v-es.

    LCOI-Reviews, 2013, No. 16

    28

  • 614.844+621.227

    .., ..

    , .,

    : , .

    : , , , ,

    , , . , , , .

    .

    , [1, 2]. , , 50 /, . ' (. 1). , , 15 [2], . , .

    . 1. : ; II

    , ; () , '

    LCOI-Reviews, 2013, No. 16

    29

  • [3, 4], , (. 2). . , . [3], .

    . 2.

    : -54, -54, -64 (, ), SPOT-55 (, ), "Nona" (), [5-8]. . 2.2. , , .. , , .

    , . , , -100 -150 (, ), , "The Big Wind" () JFR-250 (), , -200 () [9]. , , . 60% 40% , 14%,

    LCOI-Reviews, 2013, No. 16

    30

  • , 12-15 17-18%. , , . , , : 60 / (-100) 5 . 950 100-150.

    ( 15 ) (. 3).

    , 50 / 50 [8]. (. 1.4).

    . 3.

    . 4.

    LCOI-Reviews, 2013, No. 16

    31

  • [9], ( , ). .

    , . , , . : , .

    [10, 11]. , . (12) .

    ' -200, 200 , (. 5) [12-13]. ' -200 , ( 20 ) , , . , , .

    . 5. ' -200 [14],

    , , . , .

    LCOI-Reviews, 2013, No. 16

    32

  • -1, -2, -3, - (. 6) [12]. 50 (-1 40), 30 . - 4 1,5 . '. , . 50 .

    . 6. "-"

    "" , ' , , , (300-1500 ).

    . iFEX , , Leopard 1 [13].

    Fire Commander (. 7). 6-7 25- 65 . , Fire Commander , , "IFEX hand impulse gun".

    . , . Fire Commander . , Fire Commander .

    , [14-16].

    LCOI-Reviews, 2013, No. 16

    33

  • . 7. Fire Commander

    , , , , (. 8). (100-1000 ). 100 150 , 40 .

    . 8. : 1 ; 2 ; 3

    ,

    , [17]. ' . , , ( 1 100 ). , .

    . , [18-20].

    LCOI-Reviews, 2013, No. 16

    34

  • . , .

    ' , [18-20]. , ' "" . , (): , , . (. 9).

    [16]. . , ' , ' - .

    . 9. ,

    - "", [21, 22] (. 1, 2). . 10.

    54 3 21 6 102 7

    . 10. : 1 (), 2 (), 3 , 4 ,

    5 , 6 , 7 , 8

    8

    1020 102 40 40 M110 72

    132

    LCOI-Reviews, 2013, No. 16

    35

  • , : 1060 , 132 , () 102 , 72 , 102 , 45.

    1 - ""

    350 / 20 150 2,8 1 /30 . 30 . 3000 2 .

    2 -

    350 / 7,5 0,140 1020 102 132 45 2000 8 40 / 2,5105

    -3151 -131.

    . 11, (. 3). -3151 .

    . 11. -3151

    LCOI-Reviews, 2013, No. 16

    36

  • 3 -3151

    3151 -76 110 /. 4 2005 90 . ' 2450 3 . /. 100 /. -76

    3151 ,

    . .

    -131 . (. 12), , :

    1) -130. 2) 131 , ,

    - . 3) 131 ,

    , , . , , -131 , (. 4).

    . 12. -131

    LCOI-Reviews, 2013, No. 16

    37

  • 4. -131 6 6 :

    6135 6400

    : 10 185 11 925

    : 3500

    : 6500 4000

    : 330 355

    : 100 60

    /. 35

    850 10,8

    50 /. 29

    : , , 5-

    ( 2-3 4-5) 2- (2,08:1 1:1)

    (7,339:1) , 12,00-20"

    :

    , 1,4 , . 30

    : , , 8- , V- 90,

    , , 100,0 , 95,0 ', 6,0 6,5 , .. () ( )

    148 (108,9) 3000 /. , * () 41,0 (410) 1600-1800 /.

    LCOI-Reviews, 2013, No. 16

    38

  • 1. .

    . , , ' , .

    2. : ; ; . .

    3. .

    4. , - . () 102 , 900 . , , , .

    5. - . , . -3151 -131 , .

    1. : / . . , . . , . . .; . . . . , . . . .: , 1991. 1232 .

    2. . . / . . , . . , . . // . . , 2006. 1. http://scientific-notes.ru.

    3. Cooley W. C. Development and Testing of a Water Cannon for Tunnelling / W. C. Cooley, W. N. Lucke // Proc. 2nd International Symposium on Jet Cutting Technology. Cambridge (England). 1974. Paper J3.

    4. / . . , . . , . . . // . : . 1971. . 9. C. 7-11.

    5. . . / . . , . . // . 2009. . 9 (81), 3. . 56-64.

    6. . . : . ...: 01.02.05. : , 2010. 167 .

    7. P.A. / P.A. , .. , E.H. . .: , 1987. 200 .

    8. .. / .. , .. // : , 2009 .12, 4 (33). . 116 120.

    9. .. - /

    LCOI-Reviews, 2013, No. 16

    39

  • .. , .. , .. . // . - .. , 2011 . 36 .

    10. .. / .. , .. , .. , .. // . - 2004. - . 6 (78). 3. - . 3 -9.

    11. .. / .. .: , 1976. 504 .

    12. . . // . . . : , - 2002. - . 35. . 181 - 185.

    13. Semko A. Internal ballistics of a powder impulsive water device // Proc. 14th International Conference on Jetting Technology / Edited by H. Louis, 1998, Belgium, Brugge, 21-23 September, BHR Group Conference Series Publication No. 32. - P. 195 - 202.

    14. .. : . / .. , 2008. 39 .

    15. .. / .. , .. , .. . // " ", . 2. .: , 2006. 416 .

    16. .. . 1. / .. // . 1998. 3. . 37-43.

    17. .. . 2. / .. // . 1998. - 4. . 46-52.

    18. . 27155 , 6 62 3/06, 31/02, 31/03, 21 35/00. / .., .. .; . - 96124654; . 13.12.1996; . 28.02.2000, . 1.

    19. Watson A.J. IMPACT PRESSURE CHARACTERISTICS OF A WATER JET / A.J. Watson, F.T. Williams. R.G. Brade. // 6th International Symposium on Jet Cutting Technology 6-8, April, 1982

    20. .. / .. .: , 1981. 296 .

    21. 66434 / .., .., .., .. - (2011.01). 62 27/00. u 2011 03022. 15.03.2011. 10.0.1.2012, . 1.

    22. 66434 / .., .., .., .., .. - (2013.01). A62C 2/00. u 2012 12587. 05.11.2012.. 25.07.2013, . 14.

    LCOI-Reviews, 2013, No. 16

    40

  • 621-523.8

    .., ..

    ,

    .

    . - . , , - , . .

    : , , , .

    .

    . - . , , - , . .

    : , , , .

    Abstract. A combined electricity supply system for chemical enterprise is proposed. Feasibility study and

    ecological analysis were performed. Analysis of greenhouse gases emissions, particularly CO2, was conducted before and after implementation the additional capacities of mini-HES and turbine-generating set which works on the heat produced during technological process. A strategy for accession renewable energy sources to enterprises electricity network using electricity from the UPS of Ukraine as a basic supplier was designed.

    Keywords: electricity supply, combined power system, renewable power generation, ecological analysis.

    . , , , . . 2001/77/ " , , " 27.01.2001 . [1] 2009/28/ 23.04.2009 . , [2], () .

    . 243 2015 . [3] 15-20%. 20-20-20, ( , ) 20% 2020 . . 10 % 2030 . 22 %.

    LCOI-Reviews, 2013, No. 16

    41

  • , . , , . . 2010-2015 ., 01.03.2010. 243 [3]. , . . , , , [4].

    , , , . , - , .

    () . , . , , , . , . , - - . , (), , , . . , .

    - (), . . . .

    .

    . 2011 . 6248,5 . , 4,1 % ( 2010 . 5328,2 . , 3,6 %). . , .

    . - , () [5].

    , , ( ) . . ,

    LCOI-Reviews, 2013, No. 16

    42

  • . , .

    105 . , . , , .

    , - , , .

    , : , -. . () (. 1).

    -

    - -

    . 1. .

    . = 600 . . , 2163 . - 600 .

    , , 12 500 . , , , . .

    . , : i : =1 - ,

    LCOI-Reviews, 2013, No. 16

    43

  • =2 - -, =3 - . :

    min)()( 33322211

    11

    nnnnn

    N

    nn yceyceyceTV , (1)

    , , , 0 1;

    - ; yi(t) - ; n - ; ki

    - . .

    , .

    450 / 2. , , . , . , 450 / 2.

    5-25 /. 1=1 450 / 2,

    2=0.011-0.056. =1, , :

    dttytytSty Tt 0

    )()()()( 321 . (2) ,

    , . - : - :

    TtkcTtkcTtkc

    t,,,

    )(1 , (3)

    , k, k, k

    T, T T. - , , -

    , , :

    ci = c.. + ... + ..(t), (4) . - ; .. - ; . - . , ,

    , . :

    )()( ..... tctcc i , (5)

    LCOI-Reviews, 2013, No. 16

    44

  • .(t) .

    , S(t).

    ' , , , , .

    . (6)

    M

    mm

    T

    t

    M

    m

    t

    t

    M

    mmmm tfttfdttfdttf

    m

    m 11 11

    0 1

    )()()(

    , t ( , "", t = 1, "" , , , , , , ) , :

    min)()( 33322211

    11

    nnnnn

    N

    nn yceyceyceTV , (7)

    nnnn yySy 221 , (8) Sn - y2n - y3n - y3n - y3n 0.. (9) ni ki

    y2n = k2 x2n n2 a2n, , (10)

    y3n = k3 x3n n3 a3n, , (11)

    (12) min))(

    )((()(

    3333133331

    2222122221

    11

    nnnon

    nnnnnN

    nn

    anxkccccce

    anxkcccceSceTV

    : 033332222 nnnnn anxkanxkS . (13)

    . .

    70 . . 2 , .

    , , 2 , . , 1 2 450 , ( 600 ) 2487 .

    13 100 114 756 918 040,8 2 541 640 312 .

    LCOI-Reviews, 2013, No. 16

    45

  • 0

    5000

    10000

    15000

    20000

    25000

    ,

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

    , -

    . 2.

    ( ). 15% . , 3% 22%. .

    ( ) . 3.

    -;

    81%

    -

    18%

    - 1%

    -

    78%

    - 21%

    - 1%

    . 3.

    .

    . , .

    LCOI-Reviews, 2013, No. 16

    46

  • 1. , ,

    .

    2. , - , , .

    3. , .

    4. , , 2 .

    1. 2001/77/ "

    , , " 27.01.2001 .

    2. 2009/28/ 23.04.2009 . 3. 243 2015 . 4. / .. [ .];

    . . . . : - , "". - .: , 2007. - 560 . - ISBN 978-8578-08-3

    5. .. / .. - , 2. - .: , , "". - 1999. - .39-42.

    6. . . . - Energy Policy, .3, 17, -2005. . 2237-2243.

    LCOI-Reviews, 2013, No. 16

    47

  • 537.84:669.001:519.63

    .., ..

    , .

    . , . , , , , .

    : , , , .

    . . , .

    70% . .

    , , , , . , , , (, , .) .

    . . , , .

    [13, 18, 21, 29-

    31]. [16, 27, 34]. , [8, 15]. , [19, 20, 22, 23, 25, 32].

    LCOI-Reviews, 2013, No. 16

    48

  • [24, 28, 33]. [24]. : , , .

    . 1 [17].

    , , , . . . , , . , . . , , . , . , , , , , .

    . , , , , . , . , . , , . , , , .

    . :

    , ;

    , .

    , Danieli [5] .

    LCOI-Reviews, 2013, No. 16

    49

  • , .

    [2] , . .

    , , , . .

    : , , . Danieli . 2 [7]. : 100 , 5500 , 1100 , 500 , 650 , 80-100 k, 500-1000 , 40-100 , + .

    :

    ; , ; . 15 60 %

    [6, 9, 11, 12]. ,

    . 3500 C 1650 C . . 50 C [32].

    , . , . , . , .

    /, . , -. /, . [26].

    624 1022

    84

    , ( ), . , .

    LCOI-Reviews, 2013, No. 16

    50

  • : , , , . , .

    . , , 3,0000 Ljv / [14]. , , ,

    15,1818501010 2220 TvTgLGr ( ) ( ),

    [14]. , .

    15,0 Gr

    , , 110 3

    0

    20

    Tcv

    LjQ , .

    ,

    110 50 LvPe , .

    . , ( 14,0Re 00 Lvm ), . .

    Lv0Re 106, . , , k .

    . . , , :

    - BjgIvvvpIvv TT 32 ; (1) 0 v ; (2) k

    vkvPkkv T

    k

    T 3

    2 ; (3)

    LCOI-Reviews, 2013, No. 16

    51

  • k

    CvkvPk

    Cv TT2

    213

    2)(

    ; (4)

    22

    ,3

    2 kCvvv

    vvP TT

    ; (5)

    jB

    0 , 0 B

    ; (6)

    , 0 E 0eE

    ; (7) BvEj ; (8) 0 j ; (9) 2))(( jTaaTvC Tp . (10) , v p , ; I , g

    ; ; j B ; ; T ; , , ;

    1C 2C C,k ;

    ; E , T , , ,

    aTa 2j

    , . (4.1) : ,

    pCpI )()(( TT u )u ,

    g , . Bj

    . , [10] ANSYS Multiphysics [1], ANSYS CFX [3] COMSOL [4]. :

    1- ; 2- ; 3-

    .

    , .

    1- , , .

    LCOI-Reviews, 2013, No. 16

    52

  • 2- , .

    3- .

    , 1- 2- , 3- . , .

    . ANSYS Multiphysics 1- , ANSYS CFX, 2- 3- . COMSOL .

    , , , . 3, , . 3. 1 , 2 , 3 , 4 (). . , B1 B9, . 3 1.

    , ( B8), , . .

    , :

    , 1 = 0,712106 ()-1 1750, .. 1550-2730 ;

    2 = 0,2106 ()-1; = 1; = 1; = 1;

    1500-2000 pC = 750 /();

    1500-2500 = 32 /; ,

    [26]. k 09,0C ,

    , , 44,11 C 92,12kC 0,1k , 3,1 .

    . , . 3 1. 1- ANSYS Emag ( ) , , . , .

    LCOI-Reviews, 2013, No. 16

    53

  • . : , , 0,01 . , , ( 10 ).

    . 4 , . . 5 , . . . . , , . . 0,3 /. 0,1 /. 1-3 %. , . , .

    . . 6 . , , , . , , [1], . : ( 0 rT ) , ( 0 rT ) . , , .

    , , . . 7 , .

    , . . , . 7, . , , . 0,5 /, 1,5 . 0,3 /. , .

    , . , . . 1/3 .

    LCOI-Reviews, 2013, No. 16

    54

  • , . . .

    :

    1. ANSYS: Theory Reference. Electromagnetic Field Fundamentals. Ninth Edition / ANSYS inc. // Release 9, Pittsburgh. 2008. 135 p.

    2. Berger H., Mittag P., Steins J. Bottom electrode for a metallurgical vessel. Patent US 5529598.

    3. CFX: 11.0 USER MANUAL Solver Modelling, Multiphase Flow Modelling/ ANSYS CFX inc. // Release 11.0, Pittsburgh. 2008. 150 p.

    4. COMSOL Multiphysics Version 3.5: Modeling guide COMSOL Multiphysics Modeling Guide / COMSOL inc. // USA, Boston. 2008. 503 p.

    5. G. Gensini, M. Pavlicevic. Cooled bottom electrode for a direct current electric furnace. Patent US 5651024.

    6. Henning B. DC furnace containment vessel design using computational fluid dynamics / B. Henning, M. Shapiro, L.A. le Grange // Proceedings: Tenth International Ferroalloys Congress, INFACON X: Transformation through Technology, 1-4 February 2004, Cape Town, South Africa. 2004. P. 565-574

    7. Latest Technological Achievements / DANIELI inc. [ ] : http://www.danieli.com/technology/Latest-Technological-Achievements

    8. Severo S. Modelling magnitohydrodaynamics of aluminum electrolysis calls with ANSYS and CFX / S. Severo, Andre F. Schneider, Elton C.V. Pinto, Vanderlei Gusberti, Vinko Potocnik // Light metals. 2005. P. 127- 138

    9. Szekely J. Heat-transfer fluid flow and bath circulation in electricarc furnaces and dc plasma furnaces / J. Szekely, J. McKelliget and M. Choudhary // Ironmaking and Steelmaking. 1983. Vol. 10, N 4. P. 169-179

    10. Trif D. Basics of fluid mechanics and introduction to computational fluid dynamics / D. Trif, T. Petrila. Boston: Springer Science Business Media Inc. 2005. 438 p.

    11. Ushio M. Mathematical modelling of flow field and heat transfer in high-current arc discharge / M. Ushio, J. Szekely, and C.W. Chang // Ironmaking and Steelmaking. 1981. No. 6. P. 279-286.

    12. Wang F. Numerical study of dc arc plasma and molten bath in dc electric arc furnace / F. Wang, Z. Jin, Z. Zhu // Ironmaking and Steelmaking. 2006. Vol. 33, N 1. P. 39-44

    13. .. / .. , .., .. // . 1977. 1. . 115-120

    14. .. / .. , .. , .. , ... : . 1985. 315 .

    15. .. - ANSYS / .. , .. () // ANSYS Solutions. . - , 2007. . 13-18.

    16. .. / .. , .. // . 1986. 3. . 110-116

    17. .. : / .. . .:, ACT. 2003. 528 .

    LCOI-Reviews, 2013, No. 16

    55

  • 18. .. - / .. , .. , .. , .. // . 1980. 2. . 127-130122

    19. .. / .. , .. , .. . .: 1986. 360 .

    20. , .. . . / .. . : , 1998. 184 .

    21. .. / .. , .. // . 1980. 1. . 77-80

    22. .. / .. , .. , .. . .: . 1995. 592 .

    23. .. / .. , .. . .:1970. 264 .

    24. .. XXI / .. , . // . 2004. 8. .2-6

    25. .. / .. , .. . .: . 1989. 176 .

    26. . . // . .. . .: . 1976. 1008 .

    27. .. / .. , .. . .: . 1991. 280 .

    28. . / . , . // . 2002. 9 . 49-53

    29. .. - / .. // . 1977. 4. . 121-125.

    30. .. / .. , .. // . 1977. 8. . 713-714.

    31. .. / .. // . 1977. 2. . 139-141.

    32. .. / .. , .. , .. , ... : . 2005. 139 .

    33. .. / .. , .. , .. // .125 . 2: . . . .-. . / . .. . : . 2003. . 78-82

    34. . : . ... / . , 2009. 363 .

    LCOI-Reviews, 2013, No. 16

    56

  • . 1. ) )

    (1 ; ; 2 ; 3 ; 4 ; 5 6 ; 7 ; 8 ()

    )

    500

    1100

    5500 650

    . 2.

    LCOI-Reviews, 2013, No. 16

    57

  • . 3.

    1. / B1 B2 B3 B4 B5 B6 B7 B8 B9 0j 0nj 0 0j nj 0j

    21 EE , 21 nn DD , 21 nn BB

    , 21 BB

    - - - - - 2=1980 3 = 1900 1=3300 - - - - - 0v

    . 4.

    LCOI-Reviews, 2013, No. 16

    58

  • . 5.

    . 6.

    . 7.

    LCOI-Reviews, 2013, No. 16

    59

  • .

    ..

    , .,

    - .

    ( , .). - 2004 122,7 . . , . 19 2011 . .

    - . , . 1975 .

    (), . , .. , "... , , , . .. - (1966 .) " , , . . , .

    16- . , , () , 1782 . 20- 19 . 12 .

    1872-1874 .. . .. . 1872 1953 81 , 1881 1896 , .. 15- 4- 41 . - 671580 . 1924 1946 , 1.5 . . ( 450 . ) 1950 , . , , . NaCl - , , , - . 2.5 .. . ""

    LCOI-Reviews, 2013, No. 16

    60

  • . , 804551 . . 250 335 / .

    1951 . ( II - - , .. ).

    " " . , ""

    1950 , 4- - .

    . , , 800 000 . . . 4- / 1979 2 . 272 . 880 . , , 34- . , , . , 887 . 12959620 . . 4059144 . :

    36. 1950 . 439 . 1953 . 2706833 3, 742997 . (-) 1273, 813. 4593. . 88 . 30 - 450 . 0-151,5 250 . 200-100 351,8-352,4 .

    45. 1953 . 406,8 . 1957 . 4943209 3, 1732392 . 8203, - . 833880 3, 28 , 95 . 324 349,5 .

    , , .

    "" , , , :

    1) - . 5 2, , (. 8,18).

    LCOI-Reviews, 2013, No. 16

    61

  • 30 , - , 1800 , 385 / (. 6);

    2) ;

    3) , ;

    4) .

    , 1961 . , , .

    . . , . 1960 . 30 . , 27 . , 1964 . 60 . , 53 . . , 28.5 . 3. , , 18 . 3. 84 12 . , 5.7 . 3. . , . , , : 5.7 84 = 478.8 . 3, , , , . : 1952 . 1953 . 238 . 3 , 44 . 3, .. 40%. , , , 172.8 . 3 - 56.3 . 3, 1954-55 . 163,3- 76.1 . 3, 1955-56 . 150.5-87.9 . 3, .

    . 36, 42, 44, 45 / (. 1994 .) , / , 209- 09.07.1991 , , :

    1. ( , ).

    2. 1 2- ( ).

    3. () () ( , , ).

    4. .

    LCOI-Reviews, 2013, No. 16

    62

  • 5. 1/45 . 2/45 ( ).

    6. 36,44,45 20 .

    , , . , , 90- / - - , .

    LCOI-Reviews, 2013, No. 16

    63

  • 2

    ..1, ..2

    1 , .,

    2 ,

    :

    . 2 . , , 2. (- ) 2 . 2 , , .

    : 2, 2, 2, , . ,

    (2) . ().

    , , () .

    , , 2050 , 2 2050 130% 2005 2 50%.

    , , , , , , 2.

    , , , .

    2 90-

    2, 2011 , 2 .

    2 , , 2 10 . [8]. (, , , )

    LCOI-Reviews, 2013, No. 16

    64

  • (), : , , , , , , , , .

    , ( 2 2- ), , .

    2 (, , ) - (, ).

    2 2

    - . , 2. 2 (), ( ) [9]. , ( ) , .

    , 2: , , . , .

    2 , MRCSP, MGSC, SECARB, SWP, WESTCARB, Big Sky, PCOR (), Weyburn, Fenn Big Valley (), Sleipner (), Yubari (), Qinshui Basin () .

    , 2 , , .

    . - - () (). - - . .

    , [6]. ( , ).

    , - ,

    LCOI-Reviews, 2013, No. 16

    65

  • . . - - (. 1). , 2012 . 8 . 2, 4 3. , , ( ).

    - : , . 2.

    ( 500 ) . , , 2.

    . 1. - (a) (b).

    LCOI-Reviews, 2013, No. 16

    66

  • , . , , , , , [3].

    - , . . . ( 5 ) (, , ).

    - . . () (, , ) . , .

    : (P1kr), (P1nk), (P1sl) ( ) (P1km) ( ). P1sl P1km, , , . .

    , (. 1). P1sl , , , . 40-50 . 500 .

    , - P1sl - , .

    P1km - - . P1km , 92% , 80-85%. 400-530 . 1000 .

    P1sl, P1kr, , . P1nk.

    , , . , , , .

    - . , . : C33, C32, C2-31 ( ), C27, C26, C25 ( ), 24 ( ).

    LCOI-Reviews, 2013, No. 16

    67

  • 24, 25, 26 32 (30-47% ), 20-30%. : 21 22 ( ) 16-20%. , , 35-60 ( 100 ). 31 25 27 24, 26 [5].

    , 2 - , :

    - ; - ; 2

    . :

    1.1. ; 1.2. ; 1.3. 2. . 1.1.

    : , , , . , . , , . . , , () [7]. 2-10% , , , [1].

    , 50% ( ) 2% 7-11% [7]. - 10-13% 20-22% [5].

    , . , 2- . 2- .

    1.2. , . .

    1.3. 2 , 2 800 . 2 50-80% , [9]. 2.

    LCOI-Reviews, 2013, No. 16

    68

  • , - , - . .

    2 :

    2.1. 2 , .

    2.2. 2 , ().

    2.3. 2 . . 2.1. ,

    , . 2.

    2.2. , , 50%. , .

    () CO2 [9]. : - 2. ( 50%) .

    . , , .

    2.3. . 2.

    2.1 2.2 , , , , , .

    2 - :

    3.1. , ( ), 800 , .

    3.2. .

    3.3. . , 800 .

    3.4. , , , ( , , .).

    3.5. , .

    LCOI-Reviews, 2013, No. 16

    69

  • , , - , , , - . .

    , , 2, 2 , .

    - . 2 .

    , - , , , .

    - - , . 2 - .

    , 2 - :

    1. 2 - .

    2. . 3. , -

    - 2.

    4. , - 2 - .

    2- , - .

    1. .. /

    .. // . 2010. 88. . 70 76. 2. .. 2

    / .. , .. , .. , .. // . - , 2012. . 18.

    LCOI-Reviews, 2013, No. 16

    70

  • 3. . / . , . , . // . 2011. 2. . 99 102.

    4. .. 2 / .. , .. // , 1 - , 2012. . 50 53.

    5. .. / .. // . 2011. 2. . 103 107.

    6. .. , - / .. // . , 1961. . 51 57.

    7. .. , / .. , .. // . 2010. 88. . 118 123.

    8. : / ; .. . :, 2011. 205 .

    9. : . , / . 2005. 58 .

    LCOI-Reviews, 2013, No. 16

    71

  • 622.831.3.02 (075.8)

    -

    ..

    ,

    :

    - - , , , , . .

    : , , .

    -

    , - - .

    , . [1].

    , , .

    , , , . , .

    , , . , , , , .

    , , , . [1,2].

    , [3].

    .

    LCOI-Reviews, 2013, No. 16

    72

  • [4] ,

    , , ,

    , :

    22 11 22 21( ( )) : ,

    2 1tc cE h t h h h h dx

    ,

    , ..

    ( ( )) ( (0)),E h t E h

    22 11 21 0 0 0

    2 21( (0)) ( ) ( ) ( ) ( ) .2 1

    c cE h h x h x h x h x dx

    0 0 0 10, , ,t t th h h x h h x - , -

    . 0 ( )h x 1( )h x

    , , , , , .

    , : , , , . ,

    ( (0)) 0E h

    0 1 1 . 2h dx

    . ( H ) .

    , , .

    , (, , , .. .). , .

    2- 3- 2- .

    LCOI-Reviews, 2013, No. 16

    73

  • , : - , , , , , , , . , - (LCOIR-UA). .

    , - , , , , . , , , , - .

    , - , , , - .

    - , , , , , , .

    : - -

    -, - - ;

    - , , , , ;

    - , , - ;

    - , , , ; ;

    LCOI-Reviews, 2013, No. 16

    74

  • - , - - , , .

    : - , ; - ; -

    ; -

    -, -, - , , .

    : - , -

    , ; - , , ,

    , , , ;

    - ;

    - , , ;

    - , , , .

    1. .. / ..,

    .. - .: . - 1979. - 296 . 2. .. /

    .. , .. , .. // . - 1998. - 8, 9. . 9. 3. .. ,

    ./.., .. // .- 1979. - 6. - . 8-10.

    4. .. / .. , .. , .. // . ... . . 22 (61), , - 2009. - . 79-89.

    5. .., .. / .. , .. // 13, 4. : , 2002. - . 45- 52.

    1. .. /

    .. , .. // 10- , . - 2007. - . 34-36.

    LCOI-Reviews, 2013, No. 16

    75

  • 2. .. / .. , .. , .. . // - , . 10. - : , 2007. . 119-127

    3. .. / .. , .. // 11- , . - 2008. - . 28-32.

    4. .. - / .. // IV - , , 2008. - . 22-24.

    5. .. - / .. , .. // . - : , 2009, 1-2, . 70-74.

    6. .. - / .. , .. // . - . - 2010. - . - . 25-32.

    7. .. - / .. , .. ., .. // . - 2010, . XI, , . 158 . 178-187.

    8. .. - - / .. // VI - , , 2010. - . 89-94.

    9. .. - / .. , .. ., .. // . - 2010, .XI, , . 158 .178-187.

    10. Prihodko S. Conceptual aspects of the development of information telecommunication environment of the system of life support region (on the example of Donbas) / S. Prihodko, P. Polyacov, L. Polyacova // The International Symposium Euro-ECO-Hanover 2010: Environmental, Engineering-Economic and Legal Aspects for Sustainable Living. 2010.

    11. .. - ( ) / .. , .. // : II . .-. . - 2011. - . - . 10-14.

    12. .. - 4- / .. , .. // . - 2011. - . -. 111-115.

    LCOI-Reviews, 2013, No. 16

    76

  • 669.187.2

    .., .., .., ..

    ,

    .

    , - . .

    : , , , , .

    ,

    , , , (, ), . .

    ()

    ( 1015%) [1]. - , . , (- ) .

    () (Midrex, Energiron-HYL, ITmk3 .) (Corex, Finex,OxyCup .) [2], .

    Midrex , , (DRI). , , . , () 2 .

    Fe2O3 2 2. (95% Fe; 0,7 1,0% C) 50 65 , , .

    . Midrex 400 . 1 .

    LCOI-Reviews, 2013, No. 16

    77

  • Energiron-HYL (70-87 %), ( 550 ) ( 920). HYL-III (70 %) (30%). , .

    COREX , . , -. 96% . -, . 1450 1550. , .

    FINEX - , . FINEX (DRI) . FINEX .

    ( 250300 . .), 200500 . . . , (20-50 . . ) 1-2 . , ITmk-3 OxyCup.

    ITmk-3 [3] . , , . 135014500, , . 10 . 95-97 %. 13,5 / . , , , 200 . . .

    OxyCup [4] , , , . , 4 % . 1 . 1100-1200 3, 200300 , 1,5 . (, , ), 200 . . [5], .

    . (MIT) ,

    LCOI-Reviews, 2013, No. 16

    78

  • , . . IT Donald Sadoway (Molten Oxide Electrolysis (MOE)), .

    (MOE) , . MOE , .

    . . , , .

    , . , Donald Sadoway, , [5]. , , [6].

    MIT . , , . , , , .

    , .. , , , . , , . [7].

    [9], , . , , , .

    , , 20-50 . . . , . ; , . ; , . ; , . .

    , , . , , , , .

    LCOI-Reviews, 2013, No. 16

    79

  • [10]

    , .. , , , , . , , . , . , , , -, .

    , , , , . ( ) , , . , .

    , .1, :

    , ;

    , , ;

    .

    , 1 2, , 3 . 4. 5 (5.1), (5.2) (5.3), 6. 7. () 8 9. - 10.

    - 50 . . 1 2. ( 1-3) : 68-75 , 1,75-1,90 , ( 4) . (): 1 4 , 2 , 3 .

    LCOI-Reviews, 2013, No. 16

    80

  • 1-3 25 % , 10 % . . 4 . .

    , , , .

    .

    , , , , 1,4-1,6, ... 0,6.

    , , 94 % 2,12 ./ . , , , 12-13 / , ITmk-3. : 20-25 % , . 2 .

    , , ... 0,6 0.7, 1,7-1,8 .. ( ) 10-12 . , , ITmk-3.

    (50-60 %); , (20-25 %); ().

    - . . 3.

    : 68-75 , 1,75-1,90 . (35 ), (7 ) (3 ). 3,56 / . .

    , . , , (, , ) , .

    1-3 . . - , 20-50 . . .

    LCOI-Reviews, 2013, No. 16

    81

  • - . : , .

    , .

    . 71-94 %, 2,12-2,29 ./ , 12-13 / .

    .

    : 1. H. Kim, J. Paramore, A. Allanore, D.R. Sadoway. Electrolysis of molten iron oxide

    with an iridium anode: the role of electrolyte basicity / Journal of the Electrochemical Society. USA, 2011. - p. 13.

    2. D. Wang, A.J. Gmitter, D.R.Sadoway. Production of oxygen gas and liquid metal by electrochemical decomposition of molten iron oxide / Journal of the Electrochemical Society. USA, 2011. - p. 14.

    3. D.R.Sadoway. Eco-friendly steelmaking/MIT Technology Review. 2013. - p.12. 4. .., ..,. ..

    / 8- ( , 2004). .: 2005, . 270273.

    5. .., .., .. . . 1. , , . - : , 2011. 430 .

    6. H. Tanaka, R. Miyagawa, T. Harada/ Fastmet, Fastmelt and ITmk3: development of new coal-based Ironmaking process/ Direct from Midrex. Special Report. Winter 2007/2008. P. 813.

    7. . . / ( MPT International), 2005, 2. . 613.

    8. .., .., .. / . VI . . . : , 2009. - . 6163.

    9. .., .., .., .. - // / .: .. () .-: , 2002. - . 40 (.: ). . 7681.

    10. 97745 , 224/00. / .. , . , .. . . 201013890; 22.11.2010; . 12.12.2011. . 23. 6 .

    LCOI-Reviews, 2013, No. 16

    82

  • . 1. ( )

    1. . (), % (), %

    Fe2O3 + FeO

    CaO +MgO

    SiO2 MnO Zn C Fe C Mn S P Zn

    1 90,9 1,0 3,2 0,4 - 0,26 96,5 2,2 0,32 0,040 0,08 - 2 63,5 4,4 14,0 0,06 0,1 5,8 94,8 3,4 0.12 0,065 0,12 0,08 3 66,8 6,9 8,6 0,2 1,5 9,4 94,6 4,1 0,14 0,055 0,11 0,34 4 90,9 1,0 3,2 0,4 - 0,26 97,3 2,2 0,33 0,040 0,08 -

    2. .

    , % , 1 Fe2O3 + FeO

    CaO +MgO

    SiO2

    , .

    , % - ,

    . , 3.

    9,4 64,5 11,9 42,0 27,5 6,5 57 94 2,12 0,25 17,9 41,8 32,7 39,5 17,4 15,8 68 76 2,25 0,28 15,2 40,3 33,8 38,9 15,7 13,4 66 71 2,29 0,28 4,8 57,3 32,2 25,5 8,4 6,2 125 48 4,54 -

    3. .

    c , % , % Cu Pb Sn Zn Ni Fe Cu Pb Sn Zn Ni Fe 1 78,1 2,13 10,5 0,89 0,78 2 76,9 2,16 11,9 0,82 0,92 3

    19,58 2,85 1,15 3,98 0,10 -

    80,3 1,82 10,2 0,94 0,73

    -

    LCOI-Reviews, 2013, No. 16

    83

  • THEORETICAL AND EXPERIMENTAL CO2 CAPTURE AT POWER PLANT

    Rosa-Hilda Chavez1 and Javier J. Guadarrama2

    1Instituto Nacional de Investigaciones Nucleares La Marquesa, Ocoyoacac, Mexico

    2Instituto Tecnolgico de Toluca Metepec, Mexico

    ABSTRACT. The main challenge of the chemical absorption CO2 capture processes is reducing the energy

    requirement in the stripper with the reboiler at post-combustion method when ambient air is used as an oxidant. This paper discusses several CO2 capture process configurations and most important parameters necessary to obtain 90% capture rate and lowest energy consumption at solvent regeneration for CO2 capture from flue gas of thermoelectric power plant. Carbon dioxide is removed by chemical absorption processes from the flue of power plant with mono-ethanol-amine (MEA). Absorption of CO2 was conducted using an experimental packed column of three different structured packing materials. The mass transfer characteristics were determined by experimental absorption columns and modeling columns with Aspen Plus using RADFRAC. The results show decreased reboiler energy consumption from the base case process configuration with 8MJ/kg of CO2 at solvent regeneration.

    KEYWORDS: CO2 capture efficiency, numerical simulation, re-boiler energy requirement at stripper, structured packing, liquid/gas flows ratio

    INTRODUCTION A major concern in developed countries is climate change and consequently the effect of

    CO2 emissions. These have subsequently generated great interest in efficient CO2 capture studies and resourceful methods to enhance energy-intensive processes [1], [2].

    The G-8 has risen to have more than 20 industrial scale projects in operation by 2020 in order to maintain its timeline regarding effective mitigation option [3]. International Energy Agency (IEA) suggests in case CO2 Capture and Sequestration (CCS) are not used as a mitigation option, the cost of achieving required reductions would increase by 70%. The conclusion is that all mitigation measures are required because there is no single solution to climate change [4], [5], [6].

    Three CCS methods are being developed: Pre-combustion, oxy-combustion and post-combustion. The last alternative works properly well; this is applicable to power generation technologies (5-20% CO2). Advantages include over 60 years experience, no risk, low pressure of 0.1MPa, currently in use, and CO2 recovery for carbonated beverages. On the other hand, disadvantages include, high investment cost and power consumption, and large equipment size [6], [7], [8]. This process provides a high capture efficiency and selectivity, and lower cost than other processes [9], [10], [11].

    Among all the different techniques for capturing CO2, absorption with aqueous alkanolamine is recognized as a proper commercial option for capturing CO2 in gas diluted flows, which contain 10% to 12% of CO2 volume [12]. The carbon dioxide capture with Monoethanolamine (MEA) aqueous solution consists of gas stream contact with amine aqueous solution which reacts with carbon dioxide to form a soluble carbonate salt, by reaction acid-base neutralization [12], [13], [14].

    CO2 capture simulation using MEA with Aspen Plus, helps to obtain chemical and physical component properties, equilibrium properties of ionic and molecular species by the electrolyte-NRTL models; also it helps to evaluate different case studies and to compare three different structured packings: ININ 18, Sulzer BX and Mellapak 250Y, this way it is feasible to choose which one fits the requirements of greater CO2 absorption and lower height of mass transfer unit.

    With all the previous configurations in mind, it has been established that the purpose of this work is to evaluate the minimum energy consumption for solvent regeneration and maximum CO2 absorption with 600 ton/day flue gas flow treated by Aspen Plus of CO2 capture process, using MEA at 30 % weight.

    LCOI-Reviews, 2013, No. 16

    84

  • Parameters that determine technical and economic feasibility of CO2 absorption systems are [6], [12], [13]:

    - Flue gas flow. The absorption column size is determined by characteristics of combustion gas flow: its flow and composition of components. The first one to obtain diameter of the column, and the second one, the number of mass transfer stages in order to separate one o more components from one to another composition.

    - CO2 concentration. Flue gas is at atmospheric pressure, partial pressure of CO2 is between 3 to 15kPa under these conditions, and amine chemical solvent in aqueous solution is most suitable.

    - CO2 separation. CO2 recovery is a parameter related to absorber height. - Solvent flow. It determines equipment size used to capture CO2. - Power requirements. It involves thermal energy to regenerate solvent and power

    energy to operate pumps. - Cooling requirements. To bring flue gas and regenerated solvent to required

    temperatures, unless there is a gas desulphurization process where gas combustion temperature leaves at an appropriate temperature to enter the absorption process.

    METHODOLOGY The MEA solvent was selected to make a system model for CO2 removal by

    absorption/stripping. Both the absorber and the stripper used RateSepTM to rigorously calculate mass transfer rate. The accuracy of the new model was assessed using a pilot plant run with 30% MEA. A rigorous model adopted from the literature, built on RATEFRAC of Aspen Plus is used to simulate the complex reactive absorption behavior. The reactions employed were defined by internal software wizard [15], [16], [17].

    The methodology was divided in two sections: 1) Hydrodynamic analysis. Column was performed by exploring different regions of

    operation: preload, loading and flooding regimens, in order to find GL flow ratio per each packing in order to ensure loading at turbulent regimen and optimum mass transfer operation.

    The hydrodynamics of each packing was obtained by determining the pressure drop over packed bed height, ZP , due to the passage of gas through the packed bed, either dry (zero liquid flow) or with liquid flow [18].

    2) Mass transfer model was developed to calculate and analyze the effect of mass transfer unit height (HTU) on the gas and liquid phases. The Double Film theory correlates height of global mass transfer unit OGHTU and OLHTU , with height of gas mass transfer unit GHTU and liquid mass transfer unit LHTU for a system [12].

    CONCLUSIONS - ININ18 packing showed a higher pressure drop than the other two structured packings.

    This one reached flood with lower liquid and gas flow values. - Sulzer BX packing showed the highest mass transfer efficiency due to having the lowest

    value than the other two structured packings, as a result of its highest geometric area. OGHTU- Sulzer BX packing was the most efficient in CO2 whole capture with MEA and showed

    greater efficiency in the absorption column, although requiring a larger number of mass transfer stages. It showed lower mass transfer height in both columns; also, highest CO2 absorption efficiency and CO2 capture efficiency.

    - The minimum energy consumption for solvent regeneration was 120MW at energy requirement in order to carry out the regeneration of the MEA.

    - For CO2 absorption, gas film resistance is important for this type of CO2 capture with chemical reaction with absorber loading and removal.

    - The accuracy of the new model was assessed using a recent pilot plant run with 30% MEA. Absorber loading and removal were matched and the temperature profile was approached within 5C.

    LCOI-Reviews, 2013, No. 16

    85

  • REFERENCES [1] IPCC, Climate Change: The scientific basis, contribution of working group 1 to the third

    assessment report of the intergovernmental panel on climate change, U.K. 2001, Cambridge University Press.

    [2] Thompson A.M., Hogan K.B., Hoffman J.S., Methane reductions: Implications for global warming and atmospheric climate change, Atmos Environ, 26, (2003), pp. 2665-2668.

    [3] NETL, Carbon Sequestration ATLAS for North America, USA 2008. Department of Energy, Office of Fossil Fuels.

    [4] Rubin E., Marks A., Mantipragada H., Versteeg P., Kitchin J., Report to the Congressional research Service, Washington D.C., 2010, Carnegie Mellon University.

    [5] Hougton J.T., Callander B.A., and Varney S.K., Climate Change: The IPCC Scientific Assessment. U.K. 1990, Cambridge University Press.

    [6] Leites I.L., Sama D.A., Lior N., The theory and practice of energy saving in the chemical industry: some methods for reducing thermodynamic irreversibility in chemical technology processes, Energy 28, (2003), pp. 55-97.

    [7] Amrollahi Z., Ertesvag I.S., Bolland O., Ystad P.A.M., Optimized Process Configurations of Post-combustion CO2 Capture for Natural-gas-fired Power Plant Power Plant Efficiency Analysis, Proceeding of Third ICEPE, (2011), pp. 629-640.

    [8] Kawabata M., Iki N., Murata O., Tsutsumi A., Koda E., Suda T., Matsuzawa Y., and Furutani H., Energy Flow of Advanced IGCC with CO2 capture Option, Proceeding of ASME2010, IMECE, (2010), pp. 1-6.

    [9] Wilson M.A., Wrubleski R.M. and Yarborough L., Recovery of CO2 from power plant flue gases using amines, Energy Convers. Mgmt. 33 No. 5-8, (1992), pp. 325.331.

    [10] Austgen D.M., Rochelle G.T., Peng X., and Chen CC., Model of vapor-liquid equilibria for aqueous acid gas alkanolamines systems using the electrolyte NTRL equation, Ind. Eng., Chem. Res., 28, (1989) pp. 1060-1073.

    [11] Jassim M.S. and Rochelle G.T., Innovative absorber/stripper configurations for CO2 capture by aqueous monoethanolamine, Innovative absorber/stripper configurations for CO2 capture by aqueous monoethanolamine, Ind. Eng. Chem. Res. 45. No. 8, (2006), pp. 2465-2472.

    [12] Danckwerts P.V., McNeil K.M., The absorption of Carbon Dioxide into aqueous amine solutions and the effects of catalysis, Trans. Inst. Chem. Eng, 45, (1967), T32.

    [13] Dey A., Aroonwilas A., Carbon dioxide absorption characteristics of blended monoethanolamine and 2-Amino-2-methyl-1-propanol, Faculty of Engineering, University of Regina, Regina, Saskatchewan, (2006), IEEE.

    [14] Asrarita G., 1964, The influence of carbonation ratio and total amine concentration on carbon dioxide absorption in aqueous monoethanolamine solutions, Chem Eng Sci, 19, (1964), pp.95-103.

    [15] Pacheco M.A., Rochelle G.T., Rate-based modeling of reactive absorption of CO2 and H2S into aqueous Methyldiethanolamine, Ind.Eng.Chem.Res. 37, (1998), pp. 4107-4117.

    [16] Plaza J.M., Van Wagener, Rochelle G.T, Modeling CO2 capture with aqueous Monoethanolamine, Energy Procedia 1, Elsevier, (2009), pp. 1171-1178.

    [17] Chang H., Shih Ch.M., Simulation and optimization for power plant flue gas CO2 absorption-stripping systems, Separ Sci Technol, 40, (2005), pp. 877-909.

    [18] Stichlmair J., Bravo J.L., and Fair R.J., General model for prediction of pressure drop and capacity of countercurrent gas/liquid packed columns, Gas Sep Purif, 3, (1989), pp. 19-28.

    LCOI-Reviews, 2013, No. 16

    86

  • UDC 614.844+621.227

    THE USAGE OF HIGH SPEED IMPULSE LIQUID JETS FOR PUTTING OUT OF GAS FLARES

    Semko A.N., Beskrovnaya M.V., Yagudina N.I.

    Donetsk National University Donetsk, Ukraine

    Abstract. The researches results of gas flame suppression by high speed pulse liquid jets which are generated

    powder pulse hydro cannon are shown in this article. The velocity of the pulse jet was depended on charge energy and it ranged from 300 to 600 m/s. The flow photographing was held. The head jet velocity right near the gas flame was measured by laser non-contact measuring instrument. It is shown, that the high-speed cloud of splashes with the big cross-section is formed around the pulse liquid jet of high speed. This cloud effectively forces down a flame of the gas flame on distances 5 - 20 m from installation.

    Key words: suppression, gas torch, high speed pulse liquid jet, powder pulse hydro cannon, measurement of

    jet speed Introduction Fire extinguishing represent a complicated man-caused emergency. Response actions to

    such an emergency require substantial financial expenditure and involvement of a great number of firefighting equipment units and manpower. Open blowouts as for their power level are divided into [1]:

    - small-scale with gas output less than 0,5 mln m3 per day and oil output less than 100 t per day; - medium-scale with gas output (0,51,0) mln m3 per day and oil output (100300) t per day; - powerful with gas output (1,010,0) mln m3 per day and oil output (3001000) t per day; - high-power with gas output more than 10 mln m3 per day and oil output more than 1000 t per day. Practice shows that fire and accident occurrence in oil and gas wells amounts on average to

    0,12 cases in 100 wells [2]. For instance, in the fields based in Texas number of blowouts during prospecting drilling amounts to approximately 244, during development drilling on a well it makes up 180, during well completion 64, during well work over (also called reworking) 197, during well operation 85. In the fields located on American continental shelf, number of blowouts is lower and makes up respectively 45, 49, 25, 23 and 12. It is due to a smaller quantity of wells and to the usage of more reliable well casing design and down hole and wellhead equipment.

    1. Modern methods of putting out of gas blowout However, cases of fires in the gas fields take place [3], the causes are any source of ignition: - sparks from stones being thrown and equipment in an emergency, - lightning, - failure of electrical equipment, - sparks at using steel tools in the course of emergency work, etc. At least ten different methods of fire extinguishing of oil and gas blowouts have been

    developed because of an outstanding complexity of the technical problem on one hand, and of limited efficiency of each method on the other hand [4]. In the paper [5] are provided main methods of putting out of gas flame fires according to their type:

    - water bull heading into the well or closing of preventer stopcock and blowout prevention equipment; - putting out by jets of gas-water firefighting cars;

    LCOI-Reviews, 2013, No. 16

    87

  • - impulse delivery of powder by special setups; - water jets from carriage hoses; - explosion of high explosive charge; - vortex-powder method; - fire extinguisher powder from firefighting cars; - combined method; - drilling of inclined well and special solution bull heading (also called injection). The carriage barrels (hydraulic monitors), gas-water firefighting cars (AGVT-100 and

    AGVT -150) and pressure-operated powder flame-arresters (PPP-200) are widely used in Ukraine and in other CIS countries for the purpose of fire extinguishing in open blowouts [4].

    Quenching of fires and oil and gas fountains is a complex man-made disaster, coupled with significant financial costs and the need to attract a large number of fire-fighting equipment and personnel [6]. Several different methods that take into account the diversity of specific situations and the technical complexity of the problem, designed for extinguishing fires of oil and gas fountains [6, 7]. In Ukraine and CIS the fire monitors (hydromonitors), gas-extinguishing vehicles AGVT-100 and AGVT-150, pneumatic powder flame-suppressor SPT-200 are most often used in fire-fighting of gushers [4].

    Fire monitors are used in fire fountains of small capacity, as they must be located at a distance of 10 - 15 m, which is not permissible with a strong thermal radiation from a fountain with a large flow rate (fig 1). The supply of water jets is carried out in two stages to extinguish of fountains of average power when several fire monitors are used. For a long time this method takes a leading place in extinguishing of gas fountains. In this technique, a jet of water is supplied from the fire monitors at the wellhead, i.e. at the base of the fountain. Then water jets synchronously lift up the pillar of fire to his complete liftoff. Portable fire monitors or trunks installed on the tank chassis - setting GPM-64, are used for this purpose [7]. In the Czech Republic the installation of this type has been modernized under the name SPOT-55 [8]. It has been successfully used to extinguish fires fountains and other types of fires.

    Automobiles of gas-water extinguishment AGVT-100 and AGVT-150 are applied for fighting fires of all kinds of fountains, but more often for fighting fires of powerful fountains [5] (fig 2). Gas-water jets that are generated by these installations are a mixture of exhaust gases of turbo-jet engine and sprayed water. About 60% water and 40% of the gas are contained in the gas-water jet; the oxygen concentration is not more than 14% at the outlet of the nozzle. In process of removal from the nozzle oxygen content increases and equal to 17-18% in the area of extinguishing at a distance of 12-15 m. The water is partially vaporized in the exhaust gas jet and into the dispersed state in the combustion zone. It was established experimentally that the finely dispersed gas-water jet has a high cooling effect. For example, when applying 60 l / s water (AGVT-100) for 5 minutes, the temperature of flowing wellhead equipment decreases from 950 to 100-150 C. The quenching efficiency in this way depends on the water content in the jet, which is equal to (55-60) l/s. Analogous setup under the name Big Wind was developed in Hungary, also known as T-34 with Mig-21 engines, which was used to extinguish fires of fountains in Kuwait [6].

    Pneumatic powder flame-suppressor SPT-200 are used for fighting fires of fountains of high power [4]. Great contribution to the theoretical and practical development of this method extinguishing of oil and gas fountains was made by [9, 10]. The fire was extinguished by spray powder which was ejected out of the barrel with compressed gas. Fire extinguishing is performed by the atomized powder, which is ejected from the barrel with compressed gas. Extinguishing powder concentration is impulsive generated in the combustion zone of the fountain for a short time (1 - 2) with a directional peak emission by installation [7].

    This principle is implemented in installations on the basis of chassis of tank T-62 "Impulse-1", "Impulse-2", "Impulse-3" and "Impulse-Storm" [7] (fig. 3). Machines have from 15 to 50 barrels each of which is charged to 30 kg of extinguishing powder. The installation "Impulse-Storm" is able to deliver to the seat of fire 1.5 tons of fire extinguishing powder in 4 seconds. This allows to create powerful extinguishing impact simultaneously over the entire area or volume. The main difference

    LCOI-Reviews, 2013, No. 16

    88

  • of this installation is a powerful percussive effect on the seat of fire in the compound with extinguishing effects produced by special powder formulations. The optimal distance for fighting fires in this way is about 15 m.

    Method of detonation of the explosive charge, which creates a shock wave of high speed (up to 1000 m / s), which disrupts the flames and extinguish the fire [11], not rarely is used to extinguish fires of fountains. Explosive charge is supplied at the mouth of the borehole or a steel rope thrown over the blocks brace-suspended, or on a cart with a cantilever on rail tracks laid to the mouth of the borehole. The main disadvantages of this method are high risk, high volume and complexity of the preparatory work, as well as a large amounts of explosive substances (100-1000 kg).

    New highly efficient way of extinguishing gas and oil fountains with vortex rings, which are created by distributed explosive charge, is developed at the Institute of Hydrodynamics of the USSR Academy of M.A. Lavrentyev [12]. According to the authors, the main advantage of this method is the simplicity and the possibility of quick implement at application of small amounts of extinguishing agents.

    In work [13] different ways of extinguishing intensive local fires (wood piles, boxes, oil and gas fountains, etc.) are analyzed, and the conclusion that modern mechanical, pneumatic, hydraulic fitting of supply of the extinguishing agents do not provide the operational firefighting due to the large time that required for the delivery and deployment of firefighting equipment, as well as to achieve the desired mode [14], is made. The existing firefighting machinery is unable to handle with the developed fire due to low parameters of the jet quenching: power, speed, range, area of the front cover, the penetrating power. Multilateral installation of impulsive feed of the fire extinguishing agents on the basis of chassis of tanks, trailers, carriages, jeeps, are the most promising for solutions of such problems, fig. 4 shows the project of such installation, that can extinguish the flare by impulse high-speed jets (fig 4). Impulsive installation has shown their ability to not only put out high-output fountains, but also to prevent large-sized gas environment from fire and explosion.

    In this paper we propose a method of extinguishing the burning fountains by means pulsed high speed liquid jets, which generates a pulsed water jet with tapered conical nozzle [15]. Application of tapered nozzle allows increasing velocity of pulsed jet of fluid, and its range. Pulse jet feature is that for some time the liquid jet flows with almost constant rate of about 300 m/s from the nozzle jet. The high speed of the jet contributes to the formation around it the finely divided high speed cloud, which effectively extinguishes the torch. In work the preliminary experimental studies of extinguishing flames in such a way that have been confirmed experimentally, were carried out.

    2. Promising areas of development of gas blowout extinguishing devices Through all times the most available and simple fire-fighting resource has been water. Water

    is widely used in firefighting practice. It is evident that among gas blowout extinguishing mediums water is the most used agent compared to other extinguishing means due its availability, cheapness, simple delivery and use, as well as its high fire extinguishing properties.

    The most promising fire-fighting method is the using of fine-water mist. The main mechanism of putting out the fire by fine-water mist is cooling of burning material and formation of a steam cloud, which localizes the burning center. If the drops do not have enough kinetic energy, they will not be able to overcome the barrier of convective stream of hot gas, which is generated by flame, and as the result will not be able to reach the flame surface and neutralize this process. In this case fine-water mist could only be used as an auxiliary mean and not the main fire-fighting method. The drop diameter influences mainly the effectiveness of putting out procedure. Decreasing of drop diameters in fine-water mist can considerably decrease water rate necessary for putting out of the flame. At the same time decreasing of particle size obstructs maintenance of drop high speed and promotes faster drop evaporation in zone, which is previous to flame.

    LCOI-Reviews, 2013, No. 16

    89

  • This factors decrease the effectiveness of fine-water mist putting out. The analyses of different authors works prove that optimal drop diameter is equal to )150100( d mkm [17].

    For water delivery from safety distance to the burning flame it is necessary to support the high speed at firefighting device output. Calculated value of this speed should take into account losses during the jet flight and provide required speed directly before blow out for overcoming of convective stream as well as separated impact on blow out [18, 19]. The equilibrium position of blow-out flame drifts with flow with increasing of the flow speed. This is the substance of separated impact. The recent aero-team ignitable mixture becomes more and more diluted with moving away due to reciprocal diffusion with steam. This mixture speed decreases proportionally to the dilution degree and exceeds the burning speed at some critical steam value; the jet is broken for a moment, and the flame is driven upward and separated from it.

    The analysis of specific data concerning flame character changes with increasing of the speed of burning jet shows that separation of diffusion flame is going on at 80 100 m/s. It is evident that mentioned values of speed from safety distance (110 130 m) could be guaranteed with high speed liquid jets. These jets are generated by devices which are similar to impulse hydro cannons. 3

    3. The schemes of the experiment Fig. 5 is a schematic diagram of the experiment (fig. 5). From the powder IWC 1, which was located at a predetermined distance from the torch 3, a

    series of shots of high-speed water jets 2 have been produced towards the gas torch. The burnout of the torch was qualitatively recorded, as well as the speed of high-speed jet was measured directly in front of torch using non-contact laser speed detector, which consists of two blocks 4 and 5 [20]. The mass of a powder charge and the distance from the IWC to the torch varied during the experiments, the last one was measured by a tape measure. Changing of these two parameters allows adjusting of impulse jet speed before the torch in a wide range from 60 to 430 m/sec, registered in the experiments. The aiming was performed by means of a special laser sight, which was mounted on the trunk of impulse water cannon. The speed of impulse jet liquid at which the quenching of the gas torch occurred was measured during the experiments. Speed measuring device allowed recording the speed in the range from 50 to 3000 m/sec.

    A series of shots from a distance of 5, 10 and 12 for powder charges with a mass of 5, 10 and 15 g was conducted. In the experiments, the rate of head pulsed jet of liquid before the torch was measured, photographing and video shooting of jet at different stages of its spreading was carried out (fig. 6 ). The results are presented in Table 1. (tab. 1)

    It can be concluded from the analysis of the experimental results that the rate of the impulse liquid jet head which provides for the hearth extinguishing of the model fire gas fountain ranges from (80 90) m/sec, which confirms the experimental studies obtained by other authors.

    A series of experiments in which the dependence of the rate of the head of pulsed jet from the traveled distance was measured, was conducted. Some results of these experiments are shown in Table. 2 and in Fig. 6 in which dependency diagrams the velocity of the jet of the head the distance traveled are depicted.(tab. 2, fig. 7)

    It is clear that the testimonies of 2-5 modules are close and differ markedly from the testimony of the 1st module, which was closest to the IWC at a distance of 1 m from the installation. These differences in the r testimonies of the modules are connected solely with features of the expiration of pulsed jet of fluid from IWC. The jet IWC begins to run with almost zero speed, which rapidly increases, reaches a maximum and then decreases relatively slowly. Therefore, the 1st module detects the velocity of the head jet at the beginning of expiration, which is far from the maximum and increases during expiration. Velocity of the head jet reaches a maximum at the approach to the second module, the distance to which is 2 m. In the future, the speed of the head of jet is slightly reduced due to the air diffusion. The results of measuring the velocity of the head of jet on the stationary section are in good agreement between itself. Maximum estimated speed of the jet discharge for IWC in the specified mode is about 350 m/sec.

    LCOI-Reviews, 2013, No. 16

    90

  • The specific nature of the dependence of the outflow speed of the liquid jet of hydro-cannon from time (a fast increase in the beginning of outflow from zero