laplace transform no pause powerpoint for process design

Upload: plasticknives

Post on 04-Jun-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Laplace Transform No Pause Powerpoint for Process Design

    1/12

    Solving second order linear differential equations using the Laplace transform

    Solving second order linear differential equations

    using the Laplace transform

    http://find/http://goback/

  • 8/13/2019 Laplace Transform No Pause Powerpoint for Process Design

    2/12

    Solving second order linear differential equations using the Laplace transform

    Problem 1

    d2y

    dt2  + y  = cos(t)

    y(0) = 0, y(0) = 0

    http://find/

  • 8/13/2019 Laplace Transform No Pause Powerpoint for Process Design

    3/12

    Solving second order linear differential equations using the Laplace transform

    Take Laplace transforms of both sides:

    L

    d2y

    dt2

     + L[y] = L[cos(t)]

    s2L[y] − sy(0) − y(0) + L[y] =  s

    s2

    + 1

    s2L[y] + L[y] =  s

    s2 + 1

    L[y] =  s

    (s2

    + 1)2

    http://find/

  • 8/13/2019 Laplace Transform No Pause Powerpoint for Process Design

    4/12

    Solving second order linear differential equations using the Laplace transform

    Need to find

    L−1   s

    (s2 + 1)2

    From a table of Laplace transforms,

    y(t) = t sin(ωt)   ⇐⇒ L[y] =  2ωs

    (s2

    + ω2

    )2

    This is almost our formula with  ω = 1.

    L−1   s

    (s2 + 1)2 = 1

    2L−1

      2s

    (s2 + 1)2 = 1

    2t sin(t)

    http://goforward/http://find/http://goback/

  • 8/13/2019 Laplace Transform No Pause Powerpoint for Process Design

    5/12

    Solving second order linear differential equations using the Laplace transform

    So, the solution is  y(t) =   12t sin(t).

    10 20 30 40 50 60

    20

    10

    10

    20

    30

    S l i d d li diff i l i i h L l f

    http://find/

  • 8/13/2019 Laplace Transform No Pause Powerpoint for Process Design

    6/12

    Solving second order linear differential equations using the Laplace transform

    Problem 2

    d2y

    dt2  + y  = cos(t)(1 − u10π(t))

    y(0) = 0, y(0) = 0

    where  u10π(t)   is the  heavyside function

    u10π(t) =

    0, t

  • 8/13/2019 Laplace Transform No Pause Powerpoint for Process Design

    7/12

    Solving second order linear differential equations using the Laplace transform

    Forcing function “turns off” at time  t = 10π

    10 20 30 40 50 60

    1.0

    0.5

    0.5

    1.0

    Sol ing second order linear differential eq ations sing the Laplace transform

    http://find/

  • 8/13/2019 Laplace Transform No Pause Powerpoint for Process Design

    8/12

    Solving second order linear differential equations using the Laplace transform

    Take Laplace transform of both sides:

    L

    d2y

    dt2

     + L[y] = L[cos(t)(1 − u10π(t))]

    s2

    L[y] − sy(0) − y

    (0) + L[y] = L[cos(t)(1 − u10π(t))]s2L[y] + L[y] = L[cos(t)(1 − u10π(t))]

    Focusing on right hand side,

    L[cos(t)(1 − u10π(t))] =   L[cos(t)] − L[u10π(t)cos(t)]

    L[cos(t)] =  s

    s2 + 1

    Solving second order linear differential equations using the Laplace transform

    http://find/

  • 8/13/2019 Laplace Transform No Pause Powerpoint for Process Design

    9/12

    Solving second order linear differential equations using the Laplace transform

    Laplace transforms of forms containing heavyside functions:

    L[ua(t)f (t − a)] = e−asL[f ]

    Notice that  cos(t) = cos(t − 10π), so

    L[u10π(t)cos(t)] = L[u10π(t)cos(t − 10π)] = e−10πt

      s

    s2 + 1

    So the Laplace transform of our equation is

    L[y](s2 + 1) =  s

    s2 + 1 − e−10πs

      s

    s2 + 1

    =⇒ L[y] =   s(s2 + 1)2

      − e−10πs   s(s2 + 1)2

    Solving second order linear differential equations using the Laplace transform

    http://find/

  • 8/13/2019 Laplace Transform No Pause Powerpoint for Process Design

    10/12

    Solving second order linear differential equations using the Laplace transform

    Now take inverse Laplace transform of both sides

    y(t) = L−1

      s

    (s2 + 1)2

    − L−1

    e−10πs

      s

    (s2 + 1)2

    The first piece we found in problem 1

    L−1

      s(s2 + 1)2

     = 1

    2t sin(t)

    For the second piece, we again apply the formula

    L[ua(t)f (t − a)] = e−as

    L[f ]

    but this time in reverse.

    Solving second order linear differential equations using the Laplace transform

    http://find/

  • 8/13/2019 Laplace Transform No Pause Powerpoint for Process Design

    11/12

    Solving second order linear differential equations using the Laplace transform

    Using “L[ua(t)f (t − a)] = e−asL[f ]”, we have  a = 10π, and

    L[f ] =   s(s2 + 1)2

      =⇒   f (t) = 12t sin(t)

    =⇒   f (t − 10π) = 1

    2(t − 10π) sin(t − 10π)

    =⇒ L−1e−10πs

      s

    (s2 + 1)2

     =  1

    2u10π(t)(t − 10π) sin(t)

    Putting all of this together,

    y(t) =   L−1   s

    (s2 + 1)2

    − L−1e−10πs

      s

    (s2 + 1)2

    =  1

    2 sin(t) [t − u10π(t)(t − 10π)]

    Solving second order linear differential equations using the Laplace transform

    http://find/

  • 8/13/2019 Laplace Transform No Pause Powerpoint for Process Design

    12/12

    Solving second order linear differential equations using the Laplace transform

    Plot of  y(t)  vs  t:

    10 20 30 40 50 60

    30

    20

    10

    0

    10

    20

    30

    http://find/