lanthanide-containing [lnti6o3(o pr)9(salicylate) ] cages ... · 2 table s3. the experimentally...

16
1 Synthesis, Structure and Paramagnetic NMR Analysis of a Series of Lanthanide-Containing [LnTi 6 O 3 (O i Pr) 9 (Salicylate) 6 ] Cages Ning Li, [a,b] Raúl García-Rodríguez, [a] Peter D. Matthews, [a,c] He-Kuan Luo [b] and Dominic S. Wright* [a] [a] Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, UK. [b] Institute of Materials Research and Engineering, Agency for Science Technology and Research, 2 Fusionopolis Way, 08-03, Innovis, Singapore, 138634 [c] School of Chemistry, University of Manchester, Oxford, M13 9PL, UK Table S1. Summary of the isolated yields and elemental analysis results for each Ln-1 cage compound. Elemental Analysis (%) Isolated Yield a Cald. Expt. C = 45.47 C = 44.97 La-1 21.1% H = 4.78 H = 4.78 C = 45.44 C = 44.88 Ce-1 23.5% H = 4.81 H = 4.73 C = 45.42 C = 45.17 Pr-1 b - H = 4.81 H = 4.79 C = 45.34 C = 44.49 Nd-1 36.5% H = 4.80 H = 4.75 C = 45.19 C = 44.76 Sm-1 36.4% H = 4.78 H = 4.65 C = 45.15 C = 44.88 Eu-1 36.3% H = 4.78 H = 4.73 C = 45.02 C = 44.68 Gd-1 29.8% H = 4.76 H = 4.73 C = 44.98 C = 44.36 Tb-1 22.8% H = 4.76 H = 4.72 C = 44.89 C = 44.62 Dy-1 15.3% H = 4.75 H = 4.78 C = 44.83 C = 44.71 Ho-1 12.7% H = 4.74 H = 4.76 C = 44.78 C = 44.64 Er-1 5.1% H = 4.74 H = 4.74 a Shown here is the average values of three repeated attempts, with respective to the LnCl 3 ·xH 2 O supplied. b The isolated yield of Pr-1 is not calculated because the Pr 3+ precursor used is PrCl 3 ·xH 2 O with unknown molecular weight. Table S2. The 1 H NMR signals (in ppm) of La-1 and Ln-1 cages containing lighter paramagnetic Ln 3+ ions (i.e., Ce 3+ , Pr 3+ , Nd 3+ , Sm 3+ and Eu 3+ ). La-1 Ce-1 Pr-1 Nd-1 Sm-1 Eu-1 H a 5.33 7.35 9.34 7.68 5.82 1.54 H b 1.40 3.86 6.20 4.10 2.08 -2.76 H c 1.31 3.15 4.90 3.39 1.83 -1.76 H d 4.91 9.88 14.32 10.24 6.35 -3.32 H e 1.17 5.76 9.82 6.03 2.49 -6.33 H 4 6.76 6.29 5.87 6.18 6.60 7.58 H 5 7.39 6.59 5.84 6.45 7.12 8.80 H 6 6.77 5.37 4.16 5.29 6.33 8.94 H 7 8.03 4.58 1.47 4.24 6.97 13.80 Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Upload: others

Post on 15-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lanthanide-Containing [LnTi6O3(O Pr)9(Salicylate) ] Cages ... · 2 Table S3. The experimentally assigned 13C NMR signals (in ppm) of Ln-1 cages containing diamagnetic La3+ and lighter

1

Synthesis, Structure and Paramagnetic NMR Analysis of a Series of Lanthanide-Containing [LnTi6O3(OiPr)9(Salicylate)6] CagesNing Li,[a,b] Raúl García-Rodríguez,[a] Peter D. Matthews, [a,c] He-Kuan Luo[b] and Dominic S. Wright*[a]

[a] Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, UK.

[b] Institute of Materials Research and Engineering, Agency for Science Technology and Research, 2 Fusionopolis Way, 08-03,

Innovis, Singapore, 138634

[c] School of Chemistry, University of Manchester, Oxford, M13 9PL, UK

Table S1. Summary of the isolated yields and elemental analysis results for each Ln-1 cage compound.

Elemental Analysis (%)Isolated Yielda Cald. Expt.

C = 45.47 C = 44.97La-1 21.1%

H = 4.78 H = 4.78C = 45.44 C = 44.88Ce-1 23.5%H = 4.81 H = 4.73C = 45.42 C = 45.17Pr-1b -H = 4.81 H = 4.79C = 45.34 C = 44.49Nd-1 36.5%H = 4.80 H = 4.75C = 45.19 C = 44.76Sm-1 36.4%H = 4.78 H = 4.65C = 45.15 C = 44.88Eu-1 36.3%H = 4.78 H = 4.73C = 45.02 C = 44.68Gd-1 29.8%H = 4.76 H = 4.73C = 44.98 C = 44.36Tb-1 22.8%H = 4.76 H = 4.72C = 44.89 C = 44.62Dy-1 15.3%H = 4.75 H = 4.78C = 44.83 C = 44.71Ho-1 12.7%H = 4.74 H = 4.76C = 44.78 C = 44.64Er-1 5.1%H = 4.74 H = 4.74

a Shown here is the average values of three repeated attempts, with respective to the LnCl3·xH2O supplied. b The isolated yield of Pr-1 is not calculated because the Pr3+ precursor used is PrCl3·xH2O with unknown molecular weight.

Table S2. The 1H NMR signals (in ppm) of La-1 and Ln-1 cages containing lighter paramagnetic Ln3+ ions (i.e., Ce3+, Pr3+, Nd3+, Sm3+ and Eu3+).

La-1 Ce-1 Pr-1 Nd-1 Sm-1 Eu-1Ha 5.33 7.35 9.34 7.68 5.82 1.54Hb 1.40 3.86 6.20 4.10 2.08 -2.76Hc 1.31 3.15 4.90 3.39 1.83 -1.76Hd 4.91 9.88 14.32 10.24 6.35 -3.32He 1.17 5.76 9.82 6.03 2.49 -6.33H4 6.76 6.29 5.87 6.18 6.60 7.58H5 7.39 6.59 5.84 6.45 7.12 8.80H6 6.77 5.37 4.16 5.29 6.33 8.94H7 8.03 4.58 1.47 4.24 6.97 13.80

Electronic Supplementary Material (ESI) for Dalton Transactions.This journal is © The Royal Society of Chemistry 2017

Page 2: Lanthanide-Containing [LnTi6O3(O Pr)9(Salicylate) ] Cages ... · 2 Table S3. The experimentally assigned 13C NMR signals (in ppm) of Ln-1 cages containing diamagnetic La3+ and lighter

2

Table S3. The experimentally assigned 13C NMR signals (in ppm) of Ln-1 cages containing diamagnetic La3+ and lighter paramagnetic Ln3+ ions (i.e., Ce3+, Pr3+, Nd3+, Sm3+ and Eu3+).

La-1 Ce-1 Pr-1 Nd-1 Sm-1 Eu-1C1 172.38 163.02 160.68 162.61 168.85 170.18C2 118.29 115.24 114.57 121.94 116.12 110.36C3 165.83 149.64 128.21 138.61 164.74 229.32C4 119.11 117.74 116.59 117.58 118.19 119.88C5 135.22 133.74 132.51 133.46 134.79 138.05C6 118.80 117.52 116.10 117.79 118.44 120.37C7 133.21 129.34 126.35 129.83 132.25 137.24Ca 81.86 84.66 87.38 84.87 82.46 76.91Cb 24.82 27.41 29.92 27.75 25.55 20.27Cc 24.90 26.99 29.11 27.48 25.43 20.69Cd 78.51 85.02 90.88 85.09 80.76 68.12Ce 24.22 29.30 33.85 29.64 25.59 15.59

Table S4. The calculated B·G(i) and F(i) values for each proton environment using data from all the paramagnetic Ln-1 cages except for Gd-1 and Sm-1. Reilley method and the reported CLn values by Golding et al (R. M. Golding, P. Pyykkö, Mol. Phys. 1973, 26, 1389-1396) are employed.

B·G(i) F(i) R2 AFHa -0.3737 -0.0150 0.9500 0.194Hb -0.4584 0.0136 0.9520 0.188Hc -0.3398 0.0090 0.9574 0.178Hd -0.9160 0.0237 0.9528 0.189He -0.8404 0.0142 0.9551 0.185H4 0.0905 -0.0138 0.9427 0.195H5 0.1599 -0.0270 0.9243 0.220H6 0.2715 -0.0474 0.9379 0.205H7 0.6642 -0.0753 0.9375 0.208

Table S5. Summary of experimental and calculated overall paramagnetic shifts of 1H resonance (in ppm) (using the Reilley method), as well as the Fermi-Contact and Pseudo-Contact contributions using CLn values reported by Golding et al.

Ce-1 Pr-1 Nd-1 Eu-1 Tb-1 Dy-1 Ho-1 Er-1

δFC(cald.) 0.01 0.04 0.07 -0.11 -0.48 -0.43 -0.34 -0.23δPC(cald.) 2.34 4.11 1.55 -1.51 31.86 37.37 14.72 -12.11δpara(cald.) 2.35 4.15 1.62 -1.63 31.38 36.94 14.38 -12.34δpara(expt.) 2.02 4.01 2.35 -3.79 32.35 40.05 22.83 -19.27Ha

|𝛿𝑝𝑎𝑟𝑎(𝑐𝑎𝑙𝑑.) ‒ 𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)

𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)| 16.34% 3.49% 31.06% 56.99% 3.00% 7.77% 37.01% 36.00%

δFC(cald.) -0.01 -0.04 -0.06 0.10 0.43 0.39 0.308 0.21δPC(cald.) 2.87 5.04 1.90 -1.86 39.08 45.84 18.06 -14.86δpara(cald.) 2.85 5.00 1.84 -1.75 39.51 46.23 18.36 -14.65δpara(expt.) 2.46 4.80 2.70 -4.16 40.91 49.70 28.34 -23.36Hb

|𝛿𝑝𝑎𝑟𝑎(𝑐𝑎𝑙𝑑.) ‒ 𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)

𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)| 15.85% 4.17% 3.19% 5.79% 3.42% 6.98% 35.22% 37.29%

δFC(cald.) -0.01 -0.03 -0.04 0.07 0.29 0.26 0.20 0.14δPC(cald.) 2.12 3.73 1.41 -1.38 28.97 33.98 13.38 -11.01δpara(cald.) 2.12 3.71 1.37 -1.31 29.26 34.24 13.59 -10.87δpara(expt.) 1.84 3.59 2.08 -3.07 30.07 36.69 20.89 -16.49Hc

|𝛿𝑝𝑎𝑟𝑎(𝑐𝑎𝑙𝑑.) ‒ 𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)

𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)| 15.22% 3.34% 34.14% 57.33% 2.69% 6.68% 34.95% 34.08%

δFC(cald.) -0.02 -0.07 -0.11 0.18 0.75 0.68 0.54 0.36δPC(cald.) 5.73 10.07 3.80 -3.71 78.10 91.60 36.08 -29.69δpara(cald.) 5.70 10.00 3.70 -3.53 78.85 92.28 36.62 -29.32δpara(expt.) 4.97 9.41 5.33 -8.23 81.82 98.05 56.73 -47.01Hd

|𝛿𝑝𝑎𝑟𝑎(𝑐𝑎𝑙𝑑.) ‒ 𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)

𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)| 14.69% 6.27% 30.58% 57.11% 3.63% 5.89% 35.45% 37.63%

δFC(cald.) -0.01 -0.04 -0.06 0.11 0.45 0.41 0.32 0.22HeδPC(cald.) 5.25 9.24 3.49 -3.40 71.65 84.04 33.10 -27.24

Page 3: Lanthanide-Containing [LnTi6O3(O Pr)9(Salicylate) ] Cages ... · 2 Table S3. The experimentally assigned 13C NMR signals (in ppm) of Ln-1 cages containing diamagnetic La3+ and lighter

3

δpara(cald.) 5.24 9.19 3.42 -3.30 72.10 84.45 33.42 -27.02δpara(expt.) 4.59 8.65 4.86 -7.50 74.88 89.38 51.43 -42.87

|𝛿𝑝𝑎𝑟𝑎(𝑐𝑎𝑙𝑑.) ‒ 𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)

𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)| 14.16% 6.24% 29.63% 56.00% 3.71% 5.52% 35.02% 36.97%

δFC(cald.) 0.01 0.04 0.06 -0.10 -0.44 -0.39 -0.31 -0.21δPC(cald.) -0.57 -0.99 -0.38 0.37 -7.72 -9.05 -3.56 2.93δpara(cald.) -0.55 -0.95 -0.31 0.26 -8.16 -9.44 -3.88 2.72δpara(expt.) -0.47 -0.89 -0.58 0.82 -8.50 -10.25 -6.10 4.42H4

|𝛿𝑝𝑎𝑟𝑎(𝑐𝑎𝑙𝑑.) ‒ 𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)

𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)| 17.02% 6.74% 46.55% 68.29% 4.00% 7.90% 36.39% 38.46%

δFC(cald.) 0.03 0.08 0.12 -0.20 -0.86 -0.77 -0.61 -0.42δPC(cald.) -1.00 -1.76 -0.66 0.65 -13.63 -15.99 -6.30 5.18δpara(cald.) -0.97 -1.68 -0.54 0.44 -14.49 -16.76 -6.91 4.77δpara(expt.) -0.80 -1.55 -0.94 1.41 -15.35 -18.50 -10.90 8.90H5

|𝛿𝑝𝑎𝑟𝑎(𝑐𝑎𝑙𝑑.) ‒ 𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)

𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)| 21.25% 8.39% 42.55% 68.79% 5.60% 9.41% 36.61% 46.40%

δFC(cald.) 0.05 0.14 0.21 -0.36 -1.51 -1.35 -1.07 -0.73δPC(cald.) -1.70 -2.98 -1.13 1.10 -23.15 -27.15 -10.69 8.80δpara(cald.) -1.65 -2.84 -0.92 0.74 -24.66 -28.50 -11.77 8.07δpara(expt.) -1.40 -2.61 -1.48 2.17 -25.73 -30.81 -18.13 14.50H6

|𝛿𝑝𝑎𝑟𝑎(𝑐𝑎𝑙𝑑.) ‒ 𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)

𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)| 17.86% 8.81% 37.84% 65.90% 4.16% 7.50% 35.08% 44.35%

δFC(cald.) 0.07 0.22 0.34 -0.57 -2.40 -2.15 -1.70 -1.16δPC(cald.) -4.15 -7.30 -2.76 2.69 -56.63 -66.42 -26.16 21.53δpara(cald.) -4.08 -7.08 -2.42 2.12 -59.03 -68.57 -27.87 20.37δpara(expt.) -3.45 -6.56 -3.79 5.77 -61.70 -74.40 -43.51 35.94H7

|𝛿𝑝𝑎𝑟𝑎(𝑐𝑎𝑙𝑑.) ‒ 𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)

𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)| 18.26% 7.93% 36.15% 63.26% 4.33% 7.84% 35.95% 43.32%

Table S6. Calculated geometric factors (Å-3) of salicylate carbon and proton nuclei using the solid-state molecular structures obtained by single crystal X-ray diffraction.

Ce-1 Pr-1 Nd-1 Sm-1 Eu-1 Tb-1 Dy-1 Ho-1 Er-1C1 0.01368 0.01475 0.01490 0.01485 0.01560 0.01526 0.01585 0.01560 0.01571C2 0.00508 0.00508 0.00504 0.00522 0.00548 0.00529 0.00526 0.00531 0.00526C3 0.00224 0.00231 0.00231 0.00235 0.00248 0.00232 0.00234 0.00232 0.00242C4 0.00116 0.00114 0.00112 0.00118 0.00127 0.00116 0.00113 0.00113 0.00121C5 0.00118 0.00099 0.00120 0.00121 0.00134 0.00121 0.00123 0.00119 0.00129C6 0.00170 0.00165 0.00163 0.00172 0.00186 0.00172 0.00165 0.00171 0.00176C7 0.00305 0.00297 0.00301 0.00311 0.00336 0.00311 0.00318 0.00314 0.00323H4 0.00058 0.00054 0.00051 0.00056 0.00061 0.00054 0.00048 0.00050 0.00058H5 0.00076 0.00080 0.00082 0.00081 0.00092 0.00081 0.00085 0.00080 0.00088H6 0.00136 0.00128 0.00124 0.00135 0.00143 0.00133 0.00129 0.00132 0.00133H7 0.00285 0.00275 0.00291 0.00292 0.00326 0.00288 0.00309 0.00301 0.00314

Table S7. Summary of experimental and calculated overall paramagnetic shifts of 1H resonances (using the Reilley method), as well as the Fermi-Contact and Pseudo-Contact contributions using the new CLn values for Ho and Er.

Ce-1 Pr-1 Nd-1 Eu-1 Tb-1 Dy-1 Ho-1 Er-1

δFC(cald.) 0.02 0.05 0.08 -0.14 -0.59 -0.53 -0.42 -0.28δPC(cald.) 2.25 3.96 1.49 -1.46 30.71 36.02 21.17 -17.19δpara(cald.) 2.27 4.01 1.58 -1.60 30.12 35.49 20.75 -17.47δpara(expt.) 2.02 4.01 2.35 -3.79 32.35 40.05 22.83 -19.27Ha

|𝛿𝑝𝑎𝑟𝑎(𝑐𝑎𝑙𝑑.) ‒ 𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)

𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)| 12.38% 0.00% 32.77% 57.78% 6.89% 11.39% 9.11% 9.34%

δFC(cald.) -0.01 -0.03 -0.04 0.07 0.30 0.27 0.21 0.14δPC(cald.) 2.76 4.86 1.83 -1.79 37.68 44.20 25.97 -21.09δpara(cald.) 2.75 4.83 1.79 -1.72 37.98 44.47 26.18 -20.95δpara(expt.) 2.46 4.80 2.70 -4.16 40.91 49.70 28.34 -23.36Hb

|𝛿𝑝𝑎𝑟𝑎(𝑐𝑎𝑙𝑑.) ‒ 𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)

𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)| 11.79% 0.63% 33.70% 58.65% 7.16% 10.52% 7.62% 10.32%

δFC(cald.) -0.01 -0.02 -0.02 0.04 0.17 0.15 0.12 0.08δPC(cald.) 2.04 3.59 1.36 -1.32 27.87 32.69 19.21 -15.60δpara(cald.) 2.04 3.58 1.33 -1.28 28.04 32.84 19.33 -15.52δpara(expt.) 1.84 3.59 2.08 -3.07 30.07 36.69 20.89 -16.49Hc

|𝛿𝑝𝑎𝑟𝑎(𝑐𝑎𝑙𝑑.) ‒ 𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)

𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)| 10.87% 0.28% 36.06% 58.31% 6.75% 10.49% 7.47% 5.88%

δFC(cald.) -0.01 -0.05 -0.07 0.12 0.49 0.44 0.35 0.24δPC(cald.) 5.52 9.71 3.67 -3.58 75.32 88.34 51.91 -42.16Hd

δpara(cald.) 5.51 9.66 3.60 -3.46 75.81 88.78 52.26 -41.92

Page 4: Lanthanide-Containing [LnTi6O3(O Pr)9(Salicylate) ] Cages ... · 2 Table S3. The experimentally assigned 13C NMR signals (in ppm) of Ln-1 cages containing diamagnetic La3+ and lighter

4

δpara(expt.) 4.97 9.41 5.33 -8.23 81.82 98.05 56.73 -47.01

|𝛿𝑝𝑎𝑟𝑎(𝑐𝑎𝑙𝑑.) ‒ 𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)

𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)| 10.87% 2.66% 32.46% 57.96% 7.35% 9.45% 7.88% 10.83%

δFC(cald.) -0.01 -0.02 -0.03 0.05 0.20 0.18 0.14 0.10δPC(cald.) 5.06 8.90 3.36 -3.28 69.06 81.00 47.60 -38.65δpara(cald.) 5.06 8.88 3.33 -3.23 69.26 81.18 47.74 -38.56δpara(expt.) 4.59 8.65 4.86 -7.50 74.88 89.38 51.43 -42.87He

|𝛿𝑝𝑎𝑟𝑎(𝑐𝑎𝑙𝑑.) ‒ 𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)

𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)| 10.24% 2.66% 31.48% 56.93% 7.51% 9.17% 7.18% 10.05%

δFC(cald.) 0.01 0.04 0.06 -0.10 -0.41 -0.37 -0.29 -0.20δPC(cald.) -0.55 -0.96 -0.36 0.35 -7.44 -8.73 -5.13 4.17δpara(cald.) -0.53 -0.92 -0.30 -0.26 -7.86 -9.10 -5.42 3.97δpara(expt.) -0.47 -0.89 -0.58 0.82 -8.50 -10.25 -6.10 4.42H4

|𝛿𝑝𝑎𝑟𝑎(𝑐𝑎𝑙𝑑.) ‒ 𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)

𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)| 12.77% 3.37% 48.28% 131.72% 7.53% 11.22% 11.15% 10.18%

δFC(cald.) 0.03 0.08 0.12 -0.20 -0.84 -0.75 -0.60 -0.40δPC(cald.) -0.97 -1.71 -0.64 0.63 -13.23 -15.52 -9.12 7.41δpara(cald.) -0.94 -1.63 -0.53 0.43 -14.07 -16.27 -9.71 7.00δpara(expt.) -0.80 -1.55 -0.94 1.41 -15.35 -18.50 -10.90 8.90H5

|𝛿𝑝𝑎𝑟𝑎(𝑐𝑎𝑙𝑑.) ‒ 𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)

𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)| 17.50% 5.16% 43.62% 69.50% 8.34% 12.05% 10.92% 21.35%

δFC(cald.) 0.04 0.14 0.20 -0.35 -1.46 -1.31 -1.03 -0.70δPC(cald.) -1.64 -2.89 -1.09 1.06 -22.41 -26.29 -15.45 12.55δpara(cald.) -1.60 -2.75 -0.89 0.72 -23.87 -27.60 -16.48 11.84δpara(expt.) -1.40 -2.61 -1.48 2.17 -25.73 -30.81 -18.13 14.50H6

|𝛿𝑝𝑎𝑟𝑎(𝑐𝑎𝑙𝑑.) ‒ 𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)

𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)| 14.29% 5.36% 39.87% 66.82% 7.23% 10.42% 9.10% 18.35%

δFC(cald.) 0.07 0.21 0.32 -0.54 -2.26 -2.03 -1.61 -1.09δPC(cald.) -4.02 -7.07 -2.67 2.60 -54.82 -64.30 -37.78 30.68δpara(cald.) -3.95 -6.86 -2.35 2.07 -57.09 -66.33 -39.39 29.59δpara(expt.) -3.45 -6.56 -3.79 5.77 -61.70 -74.40 -43.51 35.94H7

|𝛿𝑝𝑎𝑟𝑎(𝑐𝑎𝑙𝑑.) ‒ 𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)

𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)| 14.49% 4.57% 38.00% 64.13% 7.47% 10.85% 9.47% 17.67%

Table S8. The 13C NMR signals (in ppm) of Ln-1 cages containing heavier paramagnetic Ln3+ ions (i.e., Tb3+, Dy3+, Ho3+ and Er3+). The signals in bracket are assigned using the 2-D spectra. Assignment of the remaining non-quaternary signals is achieved by selective proton decoupling, and the quaternary signals are assigned using the Reilley method linear fitting.

Tb-1 Dy-1 Ho-1 Er-1C1 -34.30 -107.66 20.45 190.20C2 -19.43 -33.00 27.09 163.92C3 122.28 111.99 134.60 359.60C4 (94.65) (89.80) (101.33) (130.01)C5 (112.83 (107.47) (119.23) (149.30)C6 (80.20) (74.27) (91.97) (136.64)C7 63.00 50.22 83.65 166.35Ca (129.76) 141.00 (115.42) (53.85)Cb (67.06) (76.60) (54.30) (-0.10)Cc (56.41) (65.07) (47.21) (4.66)Cd 194.00 217.15 158.60 (14.35)Ce (106.97) 123.31 81.36 (-24.62)

Table S9. Summary of experimental and calculated paramagnetic shifts of 13C resonances (in ppm) (using the Reilley method, with corrected CLn for Ho and Er), as well as the Fermi-Contact and Pseudo-Contact contributions.

Ce-1 Pr-1 Nd-1 Eu-1 Tb-1 Dy-1 Ho-1 Er-1δFC(cald.) 2.05 6.26 9.44 -16.02 -64.39 -60.43 -47.89 -32.54δPC(cald.) -11.12 -19.54 -7.38 7.20 -151.63 -177.84 -104.50 84.87δpara(cald.) -9.06 -13.28 -2.06 -8.81 -219.02 -238.27 -152.38 52.32δpara(expt.) -9.36 -11.70 -9.77 -2.20 -206.68 -280.04 -151.93 17.82C1

|𝛿𝑝𝑎𝑟𝑎(𝑐𝑎𝑙𝑑.) ‒ 𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)

𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)| 3.21% 13.50% 78.92% 300.46% 5.97% 14.92% 0.30% 193.60%

δFC(cald.) 1.64 5.01 7.54 -12.80 -53.84 -48.31 -38.28 -26.02δPC(cald.) -5.65 -9.94 -3.75 3.66 -77.13 -90.47 -53.16 43.17δpara(cald.) -4.01 -4.94 3.79 -9.14 -131.01 -138.78 -91.44 17.16C2

δpara(expt.) -3.05 -3.72 3.65 -7.93 -137.72 -151.29 -91.20 45.63

Page 5: Lanthanide-Containing [LnTi6O3(O Pr)9(Salicylate) ] Cages ... · 2 Table S3. The experimentally assigned 13C NMR signals (in ppm) of Ln-1 cages containing diamagnetic La3+ and lighter

5

|𝛿𝑝𝑎𝑟𝑎(𝑐𝑎𝑙𝑑.) ‒ 𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)

𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)| 31.48% 32.80% 3.84% 15.26% 4.87% 8.27% 0.26% 62.39%

δFC(cald.) -4.82 -14.69 -22.14 37.58 158.11 141.77 112.34 76.35δPC(cald.) -12.76 -22.43 -8.47 8.27 -174.03 -204.12 -119.94 97.41δpara(cald.) -17.57 -37.13 -30.61 45.85 -15.93 -62.35 -7.60 173.75δpara(expt.) -16.19 -37.62 -27.22 63.49 -43.55 -53.84 -31.23 193.77C3

|𝛿𝑝𝑎𝑟𝑎(𝑐𝑎𝑙𝑑.) ‒ 𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)

𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)| 8.52% 1.30% 12.45% 27.78% 63.42% 15.81% 75.66% 10.33%

δFC(cald.) 0.08 0.24 0.36 -0.61 -2.57 -2.31 -1.83 -1.24δPC(cald.) -1.56 -2.74 -1.04 1.01 -21.27 -24.95 -14.66 11.90δpara(cald.) -1.48 -2.50 -0.68 0.40 -23.84 -27.26 -16.49 10.66δpara(expt.) -1.37 -2.52 -1.53 0.77 -24.46 -29.31 -17.78 10.90C4

|𝛿𝑝𝑎𝑟𝑎(𝑐𝑎𝑙𝑑.) ‒ 𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)

𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)| 8.03% 0.79% 55.56% 48.05% 2.54% 6.99% 7.26% 2.20%

δFC(cald.) -0.03 -0.08 -0.12 0.21 0.89 0.79 0.63 0.43δPC(cald.) -1.60 -2.81 -1.06 1.04 -21.80 -25.57 -15.02 12.20δpara(cald.) -1.63 -2.89 -1.19 1.25 -20.92 -24.78 -14.40 12.63δpara(expt.) -1.48 -2.71 -1.76 2.83 -22.39 -27.75 -15.99 14.08C5

|𝛿𝑝𝑎𝑟𝑎(𝑐𝑎𝑙𝑑.) ‒ 𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)

𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)| 10.14% 6.64% 32.39% 55.83% 6.57% 10.70% 9.94% 10.30%

δFC(cald.) 0.24 0.74 1.12 -1.90 -7.99 -7.17 -5.68 -3.86δPC(cald.) -1.97 -3.47 -1.31 1.28 -26.88 -31.53 -18.53 15.05δpara(cald.) -1.73 -2.72 -0.19 -0.62 -34.87 -38.70 -24.20 11.19δpara(expt.) -1.28 -2.70 -1.01 1.57 -38.40 -44.53 -26.83 17.84C6

|𝛿𝑝𝑎𝑟𝑎(𝑐𝑎𝑙𝑑.) ‒ 𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)

𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)| 35.16% 0.74% 81.19% 139.49% 9.19% 13.09% 9.80% 37.28%

δFC(cald.) 0.21 0.64 0.97 -1.65 -6.94 -6.22 -4.93 -3.35δPC(cald.) -4.38 -7.71 -2.91 2.84 -59.81 -70.15 -41.22 33.48δpara(cald.) -4.17 -7.06 -1.94 1.19 -66.75 -76.37 -46.15 30.12δpara(expt.) -3.87 -6.86 -3.38 4.03 -70.21 -82.99 -49.56 33.14C7

|𝛿𝑝𝑎𝑟𝑎(𝑐𝑎𝑙𝑑.) ‒ 𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)

𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)| 7.75% 2.92% 42.60% 70.47% 4.93% 7.98% 6.88% 9.11%

δFC(cald.) -0.03 -0.08 -0.12 0.20 0.86 0.77 0.61 0.42δPC(cald.) 3.21 5.65 2.13 -2.08 43.85 51.43 30.22 -24.54δpara(cald.) 3.19 5.57 2.01 -1.88 44.71 52.20 30.83 -24.13δpara(expt.) 2.80 5.52 3.01 -4.95 47.90 59.14 33.56 -28.01Ca

|𝛿𝑝𝑎𝑟𝑎(𝑐𝑎𝑙𝑑.) ‒ 𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)

𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)| 13.93% 0.91% 33.22% 62.02% 6.66% 11.74% 8.14% 13.85%

δFC(cald.) 0.01 0.03 0.04 -0.07 -0.28 -0.25 -0.20 -0.13δPC(cald.) 2.90 5.10 1.93 -1.88 39.55 46.39 27.26 -22.14δpara(cald.) 2.91 5.12 1.96 -1.94 39.28 46.14 27.06 -22.27δpara(expt.) 2.59 5.10 2.93 -4.55 42.24 51.78 29.48 -24.92Cb

|𝛿𝑝𝑎𝑟𝑎(𝑐𝑎𝑙𝑑.) ‒ 𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)

𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)| 12.36% 0.39% 33.11% 57.36% 7.01% 10.89% 8.21% 10.63%

δFC(cald.) 0.06 0.17 0.26 -0.44 -1.84 -1.65 -1.31 -0.89δPC(cald.) 2.30 4.04 1.52 -1.49 31.31 36.72 21.58 -17.52δpara(cald.) 2.35 4.21 1.78 -1.92 29.47 35.07 20.27 -18.41δpara(expt.) 2.09 4.21 2.58 -4.21 31.51 40.17 22.31 -20.24Cc

|𝛿𝑝𝑎𝑟𝑎(𝑐𝑎𝑙𝑑.) ‒ 𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)

𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)| 12.44% 0.00% 31.01% 54.39% 6.47% 12.70% 9.14% 9.04%

δFC(cald.) -0.15 -0.46 -0.70 1.18 4.98 4.47 3.54 2.41δPC(cald.) 7.50 13.18 4.98 -4.86 102.27 119.95 70.48 -57.24δpara(cald.) 7.35 12.72 4.28 -3.67 107.25 124.42 74.02 -54.83δpara(expt.) 6.51 12.37 6.58 -10.39 115.69 138.64 80.09 -64.16Cd

|𝛿𝑝𝑎𝑟𝑎(𝑐𝑎𝑙𝑑.) ‒ 𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)

𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)| 12.90% 2.83% 34.95% 64.68% 7.30% 10.26% 7.58% 14.54%

δFC(cald.) 0.01 0.03 0.04 -0.07 -0.30 -0.27 -0.21 -0.14δPC(cald.) 5.63 9.89 3.74 -3.65 76.73 90.00 52.88 -42.95δpara(cald.) 5.64 9.92 3.78 -3.72 76.44 89.73 52.67 -43.09δpara(expt.) 5.08 9.63 5.42 -8.63 82.75 99.09 57.14 -48.84Ce

|𝛿𝑝𝑎𝑟𝑎(𝑐𝑎𝑙𝑑.) ‒ 𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)

𝛿𝑝𝑎𝑟𝑎(𝑒𝑥𝑝𝑡.)| 11.02% 3.01% 30.26% 56.90% 7.63% 9.45% 7.82% 11.77%

Page 6: Lanthanide-Containing [LnTi6O3(O Pr)9(Salicylate) ] Cages ... · 2 Table S3. The experimentally assigned 13C NMR signals (in ppm) of Ln-1 cages containing diamagnetic La3+ and lighter

6

Page 7: Lanthanide-Containing [LnTi6O3(O Pr)9(Salicylate) ] Cages ... · 2 Table S3. The experimentally assigned 13C NMR signals (in ppm) of Ln-1 cages containing diamagnetic La3+ and lighter

7

Table S10. Crystallographic data for La-1, Ce-1, Pr-1, Nd-1, Sm-1 and Eu-1.

Sample La-1 Ce-1 Pr-1 Nd-1 Sm-1 Eu-1

Formula C69H87LaO30Ti6 C69H87CeO30Ti6 C69H87PrO30Ti6 C69H87NdO30Ti6 C69H87SmO30Ti6 C69H87EuO30Ti6

Mr 1822.69 1823.90 1824.69 1828.02 1834.13 1835.74

Temp / K 180(2) 180(2) 180(2) 180(2) 180(2) 180(2)

/ Å 1.54178 1.54178 1.54184 1.54178 1.54184 1.54178

Crystal system Hexagonal Hexagonal Hexagonal Hexagonal Hexagonal OrthorhombicSpace group P-6 P-6 P-6 P-6 P-6 Pnmaa / Å 15.0084(4) 15.0280(4) 14.9478(6) 14.9289(4) 14.9683(4) 14.9147(4)

b / Å 15.0084(4) 15.0280(4) 14.9478(6) 14.9289(4) 14.9683(4) 22.5136(6)

c / Å 23.5238(7) 23.6224(9) 23.5581(11) 23.5597(7) 23.6974(9) 25.0990(7)

⍺ / ° 90 90 90 90 90 90

β / ° 90 90 90 90 90 90

ɣ / ° 120 120 120 120 120 90V / Å3

4588.9(3)4620.2(3) 4558.5(4) 4547.3(3) 4598.1(3) 8427.8(4)

Z 2 2 2 2 2 4Absorption coefficient / mm-1 8.328 8.505 8.862 9.130 9.516 10.479

Crystal size / mm 0.29 x 0.25 x 0.24 0.19 x 0.19 x 0.15 0.20 x 0.16 x 0.14 0.15 x 0.14 x 0.12 0.21 x 0.19 x 0.14 0.24 x 0.19 x 0.17 Reflections collected 61633 102902 39041 26755 104538 57628

Independent reflections 5571 [R(int) = 0.0504]4874 [R(int) = 0.0653]

5331 [R(int) = 0.1004] 4755 [R(int) = 0.0745] 5582 [R(int) = 0.0692] 8537 [R(int) = 0.0593]

Goodness-of-fit on F2 1.154 1.062 1.132 1.118 1.126 1.032

Final R indices [I>2sigma(I)] R1 = 0.0667, wR2 = 0.1886

R1 = 0.0688, wR2 = 0.1884 R1 = 0.0792, wR2 = 0.2114

R1 = 0.0603, wR2 = 0.1638

R1 = 0.0377, wR2 = 0.1000 R1 = 0.0385, wR2 = 0.0909

R indices (all data) R1 = 0.0678, wR2 = 0.1900

R1 = 0.0711, wR2 = 0.1910 R1 = 0.0879, wR2 = 0.2215

R1 = 0.0708, wR2 = 0.1729

R1 = 0.0398, wR2 = 0.1018 R1 = 0.0490, wR2 = 0.0971

CCDC Number 1504171 1504173 1504170 1504167 1504172 1504165

Notes - Treated with SQUEEZE. - - Treated with SQUEEZE. -

Note: for structures La-1, Ce-1, Pr-1, Nd-1 and Sm-1, the disorder in iPr groups resolved satisfactorily by treating the C-C and C-O bond lengths with DFIX and modelling isotropically.

Page 8: Lanthanide-Containing [LnTi6O3(O Pr)9(Salicylate) ] Cages ... · 2 Table S3. The experimentally assigned 13C NMR signals (in ppm) of Ln-1 cages containing diamagnetic La3+ and lighter

8

Table S11. Crystallographic data for Eu-1a, Gd-1, Tb-1, Dy-1, Ho-1 and Er-1.

Sample Eu-1a Gd-1 Tb-1 Dy-1 Ho-1 Er-1

Formula C69H87EuO30Ti6 C69H87GdO30Ti6 C69H87TbO30Ti6 C69H87DyO30Ti6 C69H87HoO30Ti6 C69H87ErO30Ti6

Mr 1835.74 1841.03 1842.70 1846.28 1848.71 1851.04Temp / K 180(2) 180(2) 180(2) 180(2) 180(2) 180(2)

/ Å 1.54178 1.54178 1.54184 1.54178 1.54178 1.54178

Crystal system Hexagonal Hexagonal Hexagonal Hexagonal Hexagonal HexagonalSpace group P-6 P-6 P-6 P-6 P-6 P-6a / Å 14.9021(3) 14.9227(4) 14.9365(3) 14.9065(3) 14.8834(4) 15.0340(3)

b / Å 14.9021(3) 14.9227(4) 14.9365(3) 14.9065(3) 14.8834(4) 15.0340(3)

c / Å 23.5900(6) 23.5803(8) 23.6008(6) 23.6229(6) 23.5900(8) 23.8089(6)

⍺ / ° 90 90 90 90 90 90

β / ° 90 90 90 90 90 90

ɣ / ° 120 120 120 120 120 120V / Å3 4536.8(2) 4547.5(3) 4559.9(2) 4545.8(2) 4525.5(3) 4660.4(2)

Z 2 2 2 2 2 2Absorption coefficient / mm-1

9.733 9.490 8.574 9.172 6.429 6.329

Crystal size / mm 0.30 x 0.24 x 0.22 0.31 x 0.22 x 0.20 0.29 x 0.20 x 0.19 0.20 x 0.19 x 0.18 0.34 x 0.30 x 0.27 0.17 x 0.13 x 0.11 Reflections collected 40425 29382 39344 5239 41759 40624

Independent reflections 5463 [R(int) = 0.0567] 5479 [R(int) = 0.0659] 5531 [R(int) = 0.0553] 5239 [R(int) = 0.0456] 5479 [R(int) = 0.0625] 5643 [R(int) = 0.0485]

Goodness-of-fit on F2

1.140 1.126 1.101 1.113 1.104 1.113Final R indices [I>2sigma(I)] R1 = 0.0500, wR2 =

0.1546

R1 = 0.0698, wR2 = 0.1918 R1 = 0.0684, wR2 = 0.1920 R1 = 0.0550, wR2 = 0.1594 R1 = 0.0655, wR2 = 0.1850 R1 = 0.0520, wR2 = 0.1540

R indices (all data)R1 = 0.0514, wR2 =

0.1555

R1 = 0.0728, wR2 = 0.1961 R1 = 0.0707, wR2 = 0.1949 R1 = 0.0589, wR2 = 0.1647 R1 = 0.0692, wR2 = 0.1914 R1 = 0.0556, wR2 = 0.1576

CCDC Number 1531652 1504168 1504169 1504163 1504166 1504164

Notes - - - - - -

Note: for structures Eu-1a, Gd-1, Tb-1, Dy-1, Ho-1 and Er-1, the disorder in iPr groups resolved satisfactorily by treating the C-C and C-O bond lengths with DFIX and modelling isotropically.

Page 9: Lanthanide-Containing [LnTi6O3(O Pr)9(Salicylate) ] Cages ... · 2 Table S3. The experimentally assigned 13C NMR signals (in ppm) of Ln-1 cages containing diamagnetic La3+ and lighter

9

The Three-Nuclei-Plot Method

(1) A parameter is defined as follows, where is the paramagnetic NMR shift of the nucleus i in the Ln-1 𝑌𝐿𝑛,𝑖𝐶𝑒 𝛿 𝐿𝑛,𝑖

𝑝𝑎𝑟𝑎

cage, is only dependent on the choice of Ln3+ ion (Table 2 in the paper). ‹𝑆𝑧›𝐿𝑛

𝑌𝐿𝑛,𝑖𝐶𝑒 = 𝛿 𝐿𝑛,𝑖

𝑝𝑎𝑟𝑎 ∙‹𝑆𝑧›𝐶𝑒

‹𝑆𝑧›𝐿𝑛‒ 𝛿 𝐶𝑒,𝑖

𝑝𝑎𝑟𝑎

(2) For a certain nucleus, varying the choice of Ln (i.e., Ce, Pr, Nd, Sm and Eu) gives a series of coordinates (x =

and y = ) that can be fitted into a straight line.𝑌𝐿𝑛,𝐻𝑑𝐶𝑒 𝑌𝐿𝑛,𝑖

𝐶𝑒

(3) The slope and intercept of the straight line can then be calculated using the linear fitting function in Microsoft

Excel.

(4) With known chemical shift of Hd, the value of (Ln = Tb, Dy, Ho and Er) can be calculated. Substituting the 𝑌𝐿𝑛,𝐻𝑑𝐶𝑒

values in the obtained linear equation gives the values of (Ln = Tb, Dy, Ho and Er, i could be any 1H nucleus 𝑌𝐿𝑛,𝑖𝐶𝑒

except for Hd), from which the paramagnetic shift can be calculated.𝛿 𝐿𝑛,𝑖𝑝𝑎𝑟𝑎

(5) For example, the linear fitting of the plot vs. (Ln = Ce, Pr, Nd, Sm and Eu) is shown above, with the 𝑌𝐿𝑛,𝐻𝑒𝐶𝑒 𝑌𝐿𝑛,𝐻𝑑

𝐶𝑒

slope and intercept being 0.9188 and -0.019. is calculated as -7.47 since the chemical shift of Hd for Tb-1 is 𝑌𝑇𝑏,𝐻𝑑𝐶𝑒

86.73 ppm. Using the linearly-fitted equation, = -6.88 can be easily obtained. Further substituting back 𝑌𝑇𝑏,𝐻𝑒𝐶𝑒 𝑌𝑇𝑏,𝐻𝑒

𝐶𝑒

in the equation shown in step (1) results in the calculated chemical shift of He for Tb-1 at 76.20 ppm, which is

very close to the experimentally observed chemical shifts of 76.05 ppm. Applying such a method to all the other 1H environments gives the corresponding calculated chemical shifts in the Ln-1 cages (Ln = Tb, Dy, Ho and Er).

Page 10: Lanthanide-Containing [LnTi6O3(O Pr)9(Salicylate) ] Cages ... · 2 Table S3. The experimentally assigned 13C NMR signals (in ppm) of Ln-1 cages containing diamagnetic La3+ and lighter

10

Figure S1. Bond lengths of (a) Ln-Ooxo and (b) Ln-Osalicylate, in order to show the effect of lanthanide contraction on the structure of the Ln-1 cages.

Page 11: Lanthanide-Containing [LnTi6O3(O Pr)9(Salicylate) ] Cages ... · 2 Table S3. The experimentally assigned 13C NMR signals (in ppm) of Ln-1 cages containing diamagnetic La3+ and lighter

11

Figure S2. Diffuse reflectance spectra of (a) La-1, (b) Ce-1, (c) Pr-1, (d) Nd-1, (e) Sm-1, (f) Eu-1, (g) Gd-1, (h) Tb-1, (i) Dy-1, (j) Ho-1 and (k) Er-1. The samples were prepared by grinding high-purity crystalline blocks into powders in a glove-box and sealing between quartz windows before transferring to the spectrometer. This was done in order to ensure that there was no possibility of surface aerial hydrolysis of the samples, which would give Ln-doped TiO2 with a low band gap.

Page 12: Lanthanide-Containing [LnTi6O3(O Pr)9(Salicylate) ] Cages ... · 2 Table S3. The experimentally assigned 13C NMR signals (in ppm) of Ln-1 cages containing diamagnetic La3+ and lighter

12

Figure S3. Solid-state infrared spectra of (a) salicylic acid, (b) La-1, (c) Ce-1, (d) Pr-1, (e) Nd-1, (f) Sm-1, (g) Eu-1, (h) Gd-1, (i) Tb-1, (j) Dy-1, (k) Ho-1 and (l) Er-1.

Page 13: Lanthanide-Containing [LnTi6O3(O Pr)9(Salicylate) ] Cages ... · 2 Table S3. The experimentally assigned 13C NMR signals (in ppm) of Ln-1 cages containing diamagnetic La3+ and lighter

13

Figure S4. IR spectra comparison of the ν(C=C) region for salicylic acid (top) and solid-state Eu-1 crystalline blocks (bottom). The stretching bands of the benzene ring in salicylic acid are labelled by the black arrows, which all undergo some shifting or shape changes in Eu-1.

For salicylic acid, the bending in-plane CH modes δ(C-H) vibrations are at 1031 (s), 1090 (m) and 1155 (s) cm-1. The bands in the 1160-1400 cm-1 region, namely at 1188 (s), 1208 (s), 1235 (s), 1246 (s), 1292 (s), 1324 (m) and 1384 (m) cm-

1, could be assigned to the bending and/or stretching vibrations of the phenolic OH groups (Cφ-OH) with the stretching vibration of the carboxylic group ν(Cφ-COOH) at 1235 and 1246 cm-1 bands, as well as the stretching vibration ν(C-OH in COOH) at 1324 cm-1 band. The stretching vibrations of the benzene ring ν(C=C) correspond to the bands at 1442 (s), 1464 (s), 1482 (s), 1579 (m) and 1610 (s) cm-1. The pronounced stretching vibration of the carbonyl group ν(C=O) at 1654 (s) cm-1 exists only in the protonated form of the acid (Figure S3). All the Ln-1 compounds demonstrate very similar IR spectra. The disappearance of the bands at 1188 (s), 1208 (s), 1292 (s) and 1654 (s) cm-1 (all corresponding to carboxylic and phenolic groups) implies the coordination of both groups to metal centres. Ring frequencies ν(C=C) are also affected by the new environment, indicating that the formation of the cluster structure changes the electron distribution and symmetry of the ring (Figure S4). In the functional group region, the broad bands in the 2450-3350 cm-1 region for salicylic acid are assigned to the O-H bond of the carboxylic group and they disappear in the spectra of Ln-1 (Figure S4). A few new bands (2850-3000 cm-1) emerge for Ln-1, which could be assigned to the C-H bonds in the isopropyl groups (Figure S3).

Page 14: Lanthanide-Containing [LnTi6O3(O Pr)9(Salicylate) ] Cages ... · 2 Table S3. The experimentally assigned 13C NMR signals (in ppm) of Ln-1 cages containing diamagnetic La3+ and lighter

14

Figure S5. TGA profile of Ce-1 in N2 environment. Of note, the other Ln-1 clusters all exhibit similar thermal behaviours (data not shown).

Figure S6. 1H NMR spectrum of Gd-1 in deuterated chloroform (i.e., CDCl3) at 298 K.

Page 15: Lanthanide-Containing [LnTi6O3(O Pr)9(Salicylate) ] Cages ... · 2 Table S3. The experimentally assigned 13C NMR signals (in ppm) of Ln-1 cages containing diamagnetic La3+ and lighter

15

Figure S7. 13C NMR spectra of Tb-1, 1H-coupled (blue spectrum), 1H-decoupled at -53.67 ppm (red spectrum) and 86.73 ppm (green spectrum). The black arrows mark the newly assigned signals by selective proton decoupling.

Figure S8. 13C NMR spectra of Dy-1 with 1H-coupled (blue spectrum) and with 1H-decoupled at -66.37 ppm (red spectrum), 45.38 ppm (green spectrum), 102.96 ppm (purple spectrum) and 90.55 ppm (black spectrum). The black arrows mark the newly assigned signals by selective proton decoupling.

Page 16: Lanthanide-Containing [LnTi6O3(O Pr)9(Salicylate) ] Cages ... · 2 Table S3. The experimentally assigned 13C NMR signals (in ppm) of Ln-1 cages containing diamagnetic La3+ and lighter

16

Figure S9. 13C NMR spectra of Ho-1 with 1H-coupled (blue spectrum) and with 1H-decoupled at -35.48 ppm (red spectrum), 61.64 ppm (green spectrum) and 52.60 ppm (purple spectrum). The black arrows mark the newly assigned signals by selective proton decoupling.

Figure S10. 13C NMR spectra of Er-1 with 1H-coupled (blue spectrum) and with 1H-decoupled at 43.97 ppm (red spectrum). The black arrow mark the newly assigned signal by selective proton decoupling.