landau gauge green functions from dyson-schwinger equations · landau gauge green functions from...

55

Upload: others

Post on 19-Aug-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Landau gauge Green functions fromDyson-Schwinger equations

Markus Q. Huber, Lorenz von Smekal

Institute of Nuclear Physics, Technical University Darmstadt

April 26, 2013

JHEP (2013), arXiv:1211.6092

HIC for FAIR Physics Days of Expert Group 2FIAS, Frankfurt

MQH TU Darmstadt April 26, 2013 1/21

Page 2: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

From QCD to hadrons

Quantum chromodynamics

Quarks, gluons:

u

ud u

d d

LQCD = q(− /D +m)q +1

2tr {FµνFµν}

Experiment: hadrons

u u

d

u

d

d

Description via

models,

e�ective theories,

lattice,

functional equations,

. . .

Ideally: LQCD → hadron spectrum

MQH TU Darmstadt April 26, 2013 2/21

Page 3: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

From QCD to hadrons

Quantum chromodynamics

Quarks, gluons:

u

ud u

d d

LQCD = q(− /D +m)q +1

2tr {FµνFµν}

Experiment: hadrons

u u

d

u

d

d

Description via

models,

e�ective theories,

lattice,

functional equations,

. . .

Ideally: LQCD → hadron spectrum

MQH TU Darmstadt April 26, 2013 2/21

Page 4: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

From QCD to hadrons

Quantum chromodynamics

Quarks, gluons:

u

ud u

d d

LQCD = q(− /D +m)q +1

2tr {FµνFµν}

Experiment: hadrons

u u

d

u

d

d

Description via

models,

e�ective theories,

lattice,

functional equations,

. . .

Ideally: LQCD → hadron spectrum

MQH TU Darmstadt April 26, 2013 2/21

Page 5: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Functional equations for QCD

Bound state equations: Bethe-Salpeter/Faddeev eqs. (BSEs/FEs)

BSE:

Contains quark propagator S and kernel K .

Standard truncation: rainbow-ladder (consistent with chiral symmetry)

K −→ dressed one gluon exchange

e�ective gluon propagator

bare quark-gluon vertex

MQH TU Darmstadt April 26, 2013 3/21

Page 6: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Functional equations for QCD

Bound state equations: Bethe-Salpeter/Faddeev eqs. (BSEs/FEs)

BSE:

Contains quark propagator S and kernel K .

Standard truncation: rainbow-ladder (consistent with chiral symmetry)

K −→ dressed one gluon exchange

e�ective gluon propagator

bare quark-gluon vertex

MQH TU Darmstadt April 26, 2013 3/21

Page 7: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Beyond rainbow-ladderFor example:

Include pion back coupling e�ects [e.g., Fischer, Nickel, Wambach, PRD76

(2007); Fischer, Nickel, Williams, EPJC60 (2008); Fischer, Williams, PRD78 (2008)]:

−= −

YM

−1 −1

= + +

YM

Include gluon self-interaction [e.g., Maris, Tandy, NPPS161 (2006); Fischer,

Williams, PRL103 (2009)]:

= + +

Solve quark-gluon vertex (12 tensors!)

= + Nc

2− 2

Nc+

π

Required: gluon propagator, three-gluon vertexMQH TU Darmstadt April 26, 2013 4/21

Page 8: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Propagators

Calculate from Dyson-Schwinger equations

Quark:i1 i2 -1

=

+ i1 i2 -1- i1i2

Gluon:i1 i2 -1

=

+ i1 i2 -1-

12

i1 i2 -12

i1i2 - i1i2

- i1i2 -16

i1i2 -12 i1 i2

Ghost:i1 i2 -1

=

+ i1 i2 -1- i1i2

Required: three- and four-point functions

(or from �ow equations or eqs. of motion from nPI e�ective action)

MQH TU Darmstadt April 26, 2013 5/21

Page 9: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Propagators

Calculate from Dyson-Schwinger equations

Quark:i1 i2 -1

=

+ i1 i2 -1- i1i2

Gluon:i1 i2 -1

=

+ i1 i2 -1-

12

i1 i2 -12

i1i2 - i1i2

- i1i2 -16

i1i2 -12 i1 i2

Ghost:i1 i2 -1

=

+ i1 i2 -1- i1i2

Required: three- and four-point functions

(or from �ow equations or eqs. of motion from nPI e�ective action)

MQH TU Darmstadt April 26, 2013 5/21

Page 10: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Propagators

Calculate from Dyson-Schwinger equations

Quark:i1 i2 -1

=

+ i1 i2 -1- i1i2

Gluon:i1 i2 -1

=

+ i1 i2 -1-

12

i1 i2 -12

i1i2 - i1i2

- i1i2 -16

i1i2 -12 i1 i2

Ghost:i1 i2 -1

=

+ i1 i2 -1- i1i2

Required: three- and four-point functions

(or from �ow equations or eqs. of motion from nPI e�ective action)

MQH TU Darmstadt April 26, 2013 5/21

Page 11: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Propagators

Calculate from Dyson-Schwinger equations

Quark:i1 i2 -1

=

+ i1 i2 -1- i1i2

Gluon:i1 i2 -1

=

+ i1 i2 -1-

12

i1 i2 -12

i1i2 - i1i2

- i1i2 -16

i1i2 -12 i1 i2

Ghost:i1 i2 -1

=

+ i1 i2 -1- i1i2

Required: three- and four-point functions

(or from �ow equations or eqs. of motion from nPI e�ective action)

MQH TU Darmstadt April 26, 2013 5/21

Page 12: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Dyson-Schwinger equations: Propagators

Dyson-Schwinger equations (DSEs) of gluon and ghost propagators:

i1 i2 -1

=

+ i1 i2 -1-

12

i1 i2 -12

i1i2 - i1i2

-16

i1i2 -12 i1 i2

i1 i2 -1

=

+ i1 i2 -1- i1i2

In�nite tower of coupled integral equations.

Derivation straightforward, but tedious→ automated derivation with DoFun [MQH, Braun, CPC183 (2012)].

Contain three-point and four-point functions:

ghost-gluon vertex , three-gluon vertex , four-gluon vertex

MQH TU Darmstadt April 26, 2013 6/21

Page 13: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Dyson-Schwinger equations: Propagators

Dyson-Schwinger equations (DSEs) of gluon and ghost propagators:

i1 i2 -1

=

+ i1 i2 -1-

12

i1 i2 -12

i1i2 - i1i2

-16

i1i2 -12 i1 i2

i1 i2 -1

=

+ i1 i2 -1- i1i2

In�nite tower of coupled integral equations.

Derivation straightforward, but tedious→ automated derivation with DoFun [MQH, Braun, CPC183 (2012)].

Contain three-point and four-point functions:

ghost-gluon vertex , three-gluon vertex , four-gluon vertex

MQH TU Darmstadt April 26, 2013 6/21

Page 14: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Truncated propagator Dyson-Schwinger equations

Standard truncation:

No four-point interactionsmodels for ghost-gluon and three-gluon vertices

i1 i2 -1

=

+ i1 i2 -1-

12

i1i2+

i1i2

i1 i2 -1

=

+ i1 i2 -1- i1i2

Standard: bare ghost-gluon vertex and three-gluon vertex model

In�uence of three-point functions?

Dabgl,µν(p) =

(gµν −

pµpν

p2

)Z(p2)

p2δab

Dabgh (p) = −

G(p2)

p2δab

MQH TU Darmstadt April 26, 2013 7/21

Page 15: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Truncated propagator Dyson-Schwinger equations

Standard truncation:

No four-point interactionsmodels for ghost-gluon and three-gluon vertices

i1 i2 -1

=

+ i1 i2 -1-

12

i1i2+

i1i2

i1 i2 -1

=

+ i1 i2 -1- i1i2

Standard: bare ghost-gluon vertex and three-gluon vertex model

In�uence of three-point functions?

Dabgl,µν(p) =

(gµν −

pµpν

p2

)Z(p2)

p2δab

Dabgh (p) = −

G(p2)

p2δab

MQH TU Darmstadt April 26, 2013 7/21

Page 16: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Truncated propagator Dyson-Schwinger equations

Standard truncation:

No four-point interactionsmodels for ghost-gluon and three-gluon vertices

i1 i2 -1

=

+ i1 i2 -1-

12

i1i2+

i1i2

i1 i2 -1

=

+ i1 i2 -1- i1i2

Standard: bare ghost-gluon vertex and three-gluon vertex model

In�uence of three-point functions?

Dabgl,µν(p) =

(gµν −

pµpν

p2

)Z(p2)

p2δab

Dabgh (p) = −

G(p2)

p2δab

MQH TU Darmstadt April 26, 2013 7/21

Page 17: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Truncating Dyson-Schwinger equations

gluon ghost gh-gl 3-gl 4-pt. ref.

MQH TU Darmstadt April 26, 2013 8/21

Page 18: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Truncating Dyson-Schwinger equations

gluon ghost gh-gl 3-gl 4-pt. ref.

X 0 0 model 0 [Mandelstam, PRD20 (1979)]

10−2

100

102

104

106

1080.0

0.2

0.4

~F(x)

~Z(x)

[Hauck,vonSmekal,

Alkofer,CPC

112(1998)]

Dgl,µν(p) =

(gµν −

pµpν

p2

)�Z(p2)

p2

gluon dressing �Z (p2) IR divergent→ IR slavery

MQH TU Darmstadt April 26, 2013 8/21

Page 19: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Truncating Dyson-Schwinger equations

gluon ghost gh-gl 3-gl 4-pt. ref.

X 0 0 model 0 [Mandelstam, PRD20 (1979)]

X X models models 0 Scaling [von Smekal, Hauck, Alkofer, PRL 79 (1997)]

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

ææ

æ ææ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

à

à

à

à

à

à

ààà

à

à

à

àà

ààà

àààà à

ààà ààààààààààààààààààààààà

0 1 2 3 4 5p@GeVD0

1

2

3

4

ZHp2L

[MQH,vonSmekal,JHEP

(2013);

Sternbeck,hep-

lat/0609016]

Dgl,µν(p) =

(gµν −

pµpν

p2

)Z(p2)

p2

Dgh(p) = −G (p2)

p2

gluon dressing Z (p2) IR vanishing

deviations from lattice results inmid-momentum regime

MQH TU Darmstadt April 26, 2013 8/21

Page 20: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Truncating Dyson-Schwinger equations

gluon ghost gh-gl 3-gl 4-pt. ref.

X 0 0 model 0 [Mandelstam, PRD20 (1979)]

X X models models 0 Scaling [von Smekal, Hauck, Alkofer, PRL 79 (1997)]

X X models models 0 Dec. [Aguilar, Binosi, Papavassiliou PRD78 (2008)]

[Fischer, Maas, Pawlowski, AP324 (2009)]

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

ææ

æ ææ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

à

à

à

à

à

à

ààà

à

à

à

àà

ààà

àààà à

ààà ààààààààààààààààààààààà

0 1 2 3 4 5p@GeVD0

1

2

3

4

ZHp2L

[MQH,vonSmekal,JHEP

(2013);

Sternbeck,hep-

lat/0609016]

Dgl,µν(p) =

(gµν −

pµpν

p2

)Z(p2)

p2

Dgh(p) = −G (p2)

p2

gluon dressing Z (p2) IR vanishing

deviations from lattice results inmid-momentum regime

MQH TU Darmstadt April 26, 2013 8/21

Page 21: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Truncating Dyson-Schwinger equations

gluon ghost gh-gl 3-gl 4-pt. ref.

X 0 0 model 0 [Mandelstam, PRD20 (1979)]

X X models models 0 Scaling [von Smekal, Hauck, Alkofer, PRL 79 (1997)]

X X models models 0 Dec. [Aguilar, Binosi, Papavassiliou PRD78 (2008)]

[Fischer, Maas, Pawlowski, AP324 (2009)]

X X X model 0 [MQH, von Smekal, JHEP (2013)]

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

ææ

æ ææ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

à

à

à

à

à

à

ààà

à

à

à

àà

ààà

àààà à

ààà ààààààààààààààààààààààà

0 1 2 3 4 5p@GeVD0

1

2

3

4

ZHp2L

[MQH,vonSmekal,JHEP

(2013);

Sternbeck,hep-

lat/0609016]

Dgl,µν(p) =

(gµν −

pµpν

p2

)Z(p2)

p2

Dgh(p) = −G (p2)

p2

gluon dressing Z (p2) IR vanishing

deviations from lattice results inmid-momentum regime

MQH TU Darmstadt April 26, 2013 8/21

Page 22: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Ghost-gluon vertex DSE

Full DSE:i1

i2

i3

=

+

i1

i2

i3

+12

i1i2

i3

-

i1i2

i3

+16

i1i2

i3

+

i1

i2 i3

+

i1 i2

i3

+12

i1i2

i3+

12

i1

i2i3

+12

i1

i3i2

+

i1

i2 i3+

12

i1

i2

i3

+12

i1i2

i3

Lattice results [Cucchieri, Maas, Mendes, PRD77 (2008); Ilgenfritz et al., BJP37

(2007)]

OPE analysis [Boucaud et al., JHEP 1112 (2011)]

Modeling via ghost DSE [Dudal, Oliveira, Rodriguez-Quintero, PRD86 (2012)]

Semi-perturbative DSE analysis [Schleifenbaum et al., PRD72 (2005)]

FRG [Fister, Pawlowski, 1112.5440]

MQH TU Darmstadt April 26, 2013 9/21

Page 23: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Ghost-gluon vertex

ΓAcc,abcµ (k ; p, q) := i g f abc (pµA(k ; p, q)+ kµB(k ; p, q))

Note:B(k ; p, q) is irrelevant in Landau gauge (but it is not the pure longitudinal part).

Taylor argument applies only to longitudinal part (it's an STI).

IR and UV consistent truncation:

i1

i2

i3

=

+

i1

i2

i3

+

i1

i2 i3

+

i1

i2i3

System of eqs. to solve:gluon and ghost propagators + ghost-gluon vertex

Only un�xed quantity in present truncation: three-gluon vertex.

q

pkϕ

MQH TU Darmstadt April 26, 2013 10/21

Page 24: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Ghost-gluon vertex

ΓAcc,abcµ (k ; p, q) := i g f abc (pµA(k ; p, q)+ kµB(k ; p, q))

Note:B(k ; p, q) is irrelevant in Landau gauge (but it is not the pure longitudinal part).

Taylor argument applies only to longitudinal part (it's an STI).

IR and UV consistent truncation:

i1

i2

i3

=

+

i1

i2

i3

+

i1

i2 i3

+

i1

i2i3

System of eqs. to solve:gluon and ghost propagators + ghost-gluon vertex

Only un�xed quantity in present truncation: three-gluon vertex.

q

pkϕ

MQH TU Darmstadt April 26, 2013 10/21

Page 25: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Three-gluon vertex: Ultraviolet

Bose symmetric version:

DA3,UV (x , y , z) = G

(x + y + z

2

)αZ

(x + y + z

2

)βFix α and β:

1 UV behavior of three-gluon vertex

2 IR behavior of three-gluon vertex?

MQH TU Darmstadt April 26, 2013 11/21

Page 26: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Three-gluon vertex: Ultraviolet

Bose symmetric version:

DA3,UV (x , y , z) = G

(x + y + z

2

)αZ

(x + y + z

2

)βFix α and β:

1 UV behavior of three-gluon vertex

2 IR behavior of three-gluon vertex → yes, but . . .

MQH TU Darmstadt April 26, 2013 11/21

Page 27: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Three-gluon vertex: Infrared

Three-gluon vertex might have a zero crossing.d = 2, 3: seen on lattice

[Cucchieri, Maas, Mendes, PRD77 (2008); Maas, PRD75 (2007)],d = 2: seen with DSEs [MQH, Maas, von Smekal, JHEP11 (2012)]

d = 2:[Maas, PRD75; MQH, Maas, von Smekal, JHEP11 (2012)]

æ

æ

æ æ æ

ææ

à

à

àà à

ì

ìì ì ì

ò

ò

òò

ò

òò

òò

ò

òòò

òò

òò

ò

ò

òò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

òô

ô ôô

ô ô ô ô

ôô

ô

ô

ô

ô

ô ô

ô

ô ô

0.5 1.0 1.5 2.0p

-2

-1

0

1

2

DprojA 3 Hp 2 , p 2 , Π � 2L

d = 4:[Cucchieri, Maas, Mendes, PRD77 (2008)]

æ

æ æ

æ

æ ææ

à

àà

à

à

à

ì

ì

ì ìì

ì

ì

ì

ì

ò

ò

ò

òò ò

ò

ò

1 2 3 4 5p@GeV D

-1.0

- 0.5

0.0

0.5

1.0

1.5

2.0

D A3 Hp 2 ,p 2 ,p 2L

DA3,IR(x , y , z) = hIRG (x + y + z)3(f 3g (x)f 3g (y)f 3g (z))4

IR damping function f 3g (x) :=Λ23g

Λ23g + x

MQH TU Darmstadt April 26, 2013 12/21

Page 28: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Three-gluon vertex: Infrared

Three-gluon vertex might have a zero crossing.d = 2, 3: seen on lattice

[Cucchieri, Maas, Mendes, PRD77 (2008); Maas, PRD75 (2007)],d = 2: seen with DSEs [MQH, Maas, von Smekal, JHEP11 (2012)]

d = 2:[Maas, PRD75; MQH, Maas, von Smekal, JHEP11 (2012)]

æ

æ

æ æ æ

ææ

à

à

àà à

ì

ìì ì ì

ò

ò

òò

ò

òò

òò

ò

òòò

òò

òò

ò

ò

òò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

òô

ô ôô

ô ô ô ô

ôô

ô

ô

ô

ô

ô ô

ô

ô ô

0.5 1.0 1.5 2.0p

-2

-1

0

1

2

DprojA 3 Hp 2 , p 2 , Π � 2L

d = 4:[Cucchieri, Maas, Mendes, PRD77 (2008)]

æ

æ æ

æ

æ ææ

à

àà

à

à

à

ì

ì

ì ìì

ì

ì

ì

ì

ò

ò

ò

òò ò

ò

ò

1 2 3 4 5p@GeV D

-1.0

- 0.5

0.0

0.5

1.0

1.5

2.0

D A3 Hp 2 ,p 2 ,p 2L

DA3,IR(x , y , z) = hIRG (x + y + z)3(f 3g (x)f 3g (y)f 3g (z))4

IR damping function f 3g (x) :=Λ23g

Λ23g + x

MQH TU Darmstadt April 26, 2013 12/21

Page 29: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Three-gluon vertex: Infrared

Three-gluon vertex might have a zero crossing.d = 2, 3: seen on lattice

[Cucchieri, Maas, Mendes, PRD77 (2008); Maas, PRD75 (2007)],d = 2: seen with DSEs [MQH, Maas, von Smekal, JHEP11 (2012)]

d = 2:[Maas, PRD75; MQH, Maas, von Smekal, JHEP11 (2012)]

æ

æ

æ æ æ

ææ

à

à

àà à

ì

ìì ì ì

ò

ò

òò

ò

òò

òò

ò

òòò

òò

òò

ò

ò

òò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

òô

ô ôô

ô ô ô ô

ôô

ô

ô

ô

ô

ô ô

ô

ô ô

0.5 1.0 1.5 2.0p

-2

-1

0

1

2

DprojA 3 Hp 2 , p 2 , Π � 2L

d = 4:[Cucchieri, Maas, Mendes, PRD77 (2008)]

æ

æ æ

æ

æ ææ

à

àà

à

à

à

ì

ì

ì ìì

ì

ì

ì

ì

ò

ò

ò

òò ò

ò

ò

1 2 3 4 5p@GeV D

-1.0

- 0.5

0.0

0.5

1.0

1.5

2.0

D A3 Hp 2 ,p 2 ,p 2L

DA3,IR(x , y , z) = hIRG (x + y + z)3(f 3g (x)f 3g (y)f 3g (z))4

IR damping function f 3g (x) :=Λ23g

Λ23g + x

MQH TU Darmstadt April 26, 2013 12/21

Page 30: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

In�uence of the three-gluon vertex

0 1 2 3 4 5p@GeV D0

1

2

3

4

ZHp 2L

0 1 2 3 4 5p@GeV D1

2

3

4

5

GHp 2L

æ

æ æ

æ

æ ææ

à

àà

à

à

à

ì

ì

ì ìì

ì

ì

ì

ì

ò

ò

ò

òò ò

ò

ò

1 2 3 4 5p@GeV D

-1.0

- 0.5

0.0

0.5

1.0

1.5

2.0

D A3 Hp 2 ,p 2 ,p 2L Vary Λ3g → varymid-momentum strength

Ghost almost una�ected

Thin line: Leading IR orderDSE calculation forthree-gluon vertex⇒ zero crossing

Optimized e�ective three-gluon vertex:Choose Λ3g where gluon dressing has best agreement with lattice results.[MQH, von Smekal, JHEP (2013)]

MQH TU Darmstadt April 26, 2013 13/21

Page 31: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

In�uence of the three-gluon vertex

0 1 2 3 4 5p@GeV D0

1

2

3

4

ZHp 2L

0 1 2 3 4 5p@GeV D1

2

3

4

5

GHp 2L

æ

æ æ

æ

æ ææ

à

àà

à

à

à

ì

ì

ì ìì

ì

ì

ì

ì

ò

ò

ò

òò ò

ò

ò

1 2 3 4 5p@GeV D

-1.0

- 0.5

0.0

0.5

1.0

1.5

2.0

D A3 Hp 2 ,p 2 ,p 2L Vary Λ3g → varymid-momentum strength

Ghost almost una�ected

Thin line: Leading IR orderDSE calculation forthree-gluon vertex⇒ zero crossing

Optimized e�ective three-gluon vertex:Choose Λ3g where gluon dressing has best agreement with lattice results.[MQH, von Smekal, JHEP (2013)]

MQH TU Darmstadt April 26, 2013 13/21

Page 32: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

In�uence of the three-gluon vertex

0 1 2 3 4 5p@GeV D0

1

2

3

4

ZHp 2L

0 1 2 3 4 5p@GeV D1

2

3

4

5

GHp 2L

æ

æ æ

æ

æ ææ

à

àà

à

à

à

ì

ì

ì ìì

ì

ì

ì

ì

ò

ò

ò

òò ò

ò

ò

1 2 3 4 5p@GeV D

-1.0

- 0.5

0.0

0.5

1.0

1.5

2.0

D A3 Hp 2 ,p 2 ,p 2L Vary Λ3g → varymid-momentum strength

Ghost almost una�ected

Thin line: Leading IR orderDSE calculation forthree-gluon vertex⇒ zero crossing

Optimized e�ective three-gluon vertex:Choose Λ3g where gluon dressing has best agreement with lattice results.[MQH, von Smekal, JHEP (2013)]

MQH TU Darmstadt April 26, 2013 13/21

Page 33: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Dynamic ghost-gluon vertex: Propagator results

Dynamic ghost-gluon vertex, opt. e�.three-gluon vertex [MQH, von Smekal, JHEP (2013)]

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

ææ

æ ææ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

à

à

à

à

à

à

ààà

à

à

à

àà

ààà

àààà à

ààà ààààààààààààààààààààààà

0 1 2 3 4 5p@GeVD0

1

2

3

4

ZHp2L

FRG results[Fischer, Maas, Pawlowski, AP324 (2009)]

0 1 2 3 4 5p [GeV]

0

1

2

Z(p

2)

Bowman (2004)Sternbeck (2006)scaling (DSE)

decoupling (DSE)

scaling (FRG)

decoupling (FRG)

æ

ææ

à

à

àà

à

àà à

0.0 0.5 1.0 1.5 2.0 2.5 3.0p1

2

3

4

5

6

GHp2L

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2p [GeV]

2

4

6

8

10

12

14

G(p

2)

Sternbeck (2006)scaling (DSE)

decoupling (DSE)

scaling (FRG)

decoupling (FRG)

Good quantitative agreement for ghost and gluon dressings.MQH TU Darmstadt April 26, 2013 14/21

Page 34: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Dynamic ghost-gluon vertex: Propagator results

Dynamic ghost-gluon vertex, opt. e�.three-gluon vertex [MQH, von Smekal, JHEP (2013)]

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

ææ

æ ææ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

à

à

à

à

à

à

ààà

à

à

à

àà

ààà

àààà à

ààà ààààààààààààààààààààààà

0 1 2 3 4 5p@GeVD0

1

2

3

4

ZHp2L

FRG results[Fischer, Maas, Pawlowski, AP324 (2009)]

0 1 2 3 4 5p [GeV]

0

1

2

Z(p

2)

Bowman (2004)Sternbeck (2006)scaling (DSE)

decoupling (DSE)

scaling (FRG)

decoupling (FRG)

æ

ææ

à

à

àà

à

àà à

0.0 0.5 1.0 1.5 2.0 2.5 3.0p1

2

3

4

5

6

GHp2L

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2p [GeV]

2

4

6

8

10

12

14

G(p

2)

Sternbeck (2006)scaling (DSE)

decoupling (DSE)

scaling (FRG)

decoupling (FRG)

Good quantitative agreement for ghost and gluon dressings.MQH TU Darmstadt April 26, 2013 14/21

Page 35: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Ghost-gluon vertex: Selected con�gurations (decoupling)

ΓAcc,abcµ (k ; p, q) := i g f abc (pµA(k ; p, q) + kµB(k ; p, q))

Fixed angle: Fixed anti-ghost momentum:

[MQH, von Smekal, JHEP (2013)]

MQH TU Darmstadt April 26, 2013 15/21

Page 36: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Ghost-gluon vertex: Comparison with lattice data

Orthogonal con�guration k2 = 0, q2 = p

2:

æ

ææ

æ

æ

ææ

ææææææææææææææææææ

0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0p@GeV D

0.9

1.0

1.1

1.2

1.3

1.4

A H 0;p 2 ,p 2Lconstant in the IR

relatively insensitive to changes ofthe three-gluon vertex(red/green lines:di�erent three-gluon vertex models)

DSE calculation: [MQH, von Smekal, JHEP (2013)]

lattice data: [Sternbeck, hep-lat/0609016]

MQH TU Darmstadt April 26, 2013 16/21

Page 37: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Functional equations and lattice results

functional equations lattice

propagators X Xthree-point functions ghost-gluon vertex: X limited mom. dependence

3-gluon vertex: in progressquark-gluon vertex: (X)

four-point functions (X) not soon

MQH TU Darmstadt April 26, 2013 17/21

Page 38: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Functional equations and lattice results

functional equations lattice

propagators X Xthree-point functions ghost-gluon vertex: X limited mom. dependence

3-gluon vertex: in progressquark-gluon vertex: (X)

four-point functions (X) not soonsource of error truncation �nite volume,

�nite lattice spacingtemperature X X

chemical potential X sign problemanalytic structure X no

MQH TU Darmstadt April 26, 2013 17/21

Page 39: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Functional equations and lattice results

functional equations lattice

propagators X Xthree-point functions ghost-gluon vertex: X limited mom. dependence

3-gluon vertex: in progressquark-gluon vertex: (X)

four-point functions (X) not soonsource of error truncation �nite volume,

�nite lattice spacingtemperature X X

chemical potential X sign problemanalytic structure X no

MQH TU Darmstadt April 26, 2013 17/21

Page 40: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Schwinger function

Schwinger function ∆(t):

∆(t) =1

π

∫dq cos(q t)

Z (q2)

q2

0 2 4 6 8 10t@fmD10-6

10-4

0.01

1

ÈDHtLÈ

[MQH, von Smekal, PoS CONFX 062 (2013) ]

∆(t) =

∫∞0

dνρ(ν2)e−νt = L(ρ)

ρ: spectral density, must be positive for physical particles

Positivity violation of propagators → con�nement.

MQH TU Darmstadt April 26, 2013 18/21

Page 41: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Schwinger function

Schwinger function ∆(t):

∆(t) =1

π

∫dq cos(q t)

Z (q2)

q2

0 2 4 6 8 10t@fmD10-6

10-4

0.01

1

ÈDHtLÈ

[MQH, von Smekal, PoS CONFX 062 (2013) ]

∆(t) =

∫∞0

dνρ(ν2)e−νt = L(ρ)

ρ: spectral density, must be positive for physical particles

Positivity violation of propagators → con�nement.

MQH TU Darmstadt April 26, 2013 18/21

Page 42: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Glueballs

Glueball candidate: G = FµνFµν

No positivity violation expected.

Construction from positivity violating gluons?

Correlation function 〈G (x)G (y)〉 in �rst order approximation (Born level):

p p

Gluon propagators from �ts to solutions of Yang-Mills systems.

MQH TU Darmstadt April 26, 2013 19/21

Page 43: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Glueballs

Calculation in complex plane.

Extraction of spectral density.

0 1 2 3 4 5

-p2 [GeV

2]

-20

0

20

40

60

80

100

dis

c{O

(p2)}

[Windisch, Huber, Alkofer, PRD87 (2013)]

Propagators in complex plane: [Strauss, Fischer, Kellermann, PRL109 (2012)]

MQH TU Darmstadt April 26, 2013 20/21

Page 44: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Summary

Green functions are basic building blocks for bound state equations.

Improving truncations systematically possible.

Checks: analytical results, lattice

Newest step for Yang-Mills sector: [MQH, von Smekal, JHEP (2013)]

Inclusion of ghost-gluon vertex andqualitative three-gluon vertex model

Required for quantitative results.Reproduction of lattice data possible.

Automatization tools available:DoFun [Alkofer, MQH, Schwenzer, CPC180 (2009); MQH, Braun, CPC183 (2012)]

CrasyDSE [MQH, Mitter, CPC183 (2012)]

Other applications in investigation of QCD phase diagram (no signproblem!)

Thank you for your attention!

MQH TU Darmstadt April 26, 2013 21/21

Page 45: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Summary

Green functions are basic building blocks for bound state equations.

Improving truncations systematically possible.

Checks: analytical results, lattice

Newest step for Yang-Mills sector: [MQH, von Smekal, JHEP (2013)]

Inclusion of ghost-gluon vertex andqualitative three-gluon vertex model

Required for quantitative results.Reproduction of lattice data possible.

Automatization tools available:DoFun [Alkofer, MQH, Schwenzer, CPC180 (2009); MQH, Braun, CPC183 (2012)]

CrasyDSE [MQH, Mitter, CPC183 (2012)]

Other applications in investigation of QCD phase diagram (no signproblem!)

Thank you for your attention!

MQH TU Darmstadt April 26, 2013 21/21

Page 46: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Summary

Green functions are basic building blocks for bound state equations.

Improving truncations systematically possible.

Checks: analytical results, lattice

Newest step for Yang-Mills sector: [MQH, von Smekal, JHEP (2013)]

Inclusion of ghost-gluon vertex andqualitative three-gluon vertex model

Required for quantitative results.Reproduction of lattice data possible.

Automatization tools available:DoFun [Alkofer, MQH, Schwenzer, CPC180 (2009); MQH, Braun, CPC183 (2012)]

CrasyDSE [MQH, Mitter, CPC183 (2012)]

Other applications in investigation of QCD phase diagram (no signproblem!)

Thank you for your attention!

MQH TU Darmstadt April 26, 2013 21/21

Page 47: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Summary

Green functions are basic building blocks for bound state equations.

Improving truncations systematically possible.

Checks: analytical results, lattice

Newest step for Yang-Mills sector: [MQH, von Smekal, JHEP (2013)]

Inclusion of ghost-gluon vertex andqualitative three-gluon vertex model

Required for quantitative results.Reproduction of lattice data possible.

Automatization tools available:DoFun [Alkofer, MQH, Schwenzer, CPC180 (2009); MQH, Braun, CPC183 (2012)]

CrasyDSE [MQH, Mitter, CPC183 (2012)]

Other applications in investigation of QCD phase diagram (no signproblem!)

Thank you for your attention!

MQH TU Darmstadt April 26, 2013 21/21

Page 48: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Landau Gauge Yang-Mills theory

Gluonic sector of quantum chromodynamics: Yang-Mills theory

L =1

2F 2 + Lgf + Lgh

Fµν = ∂µAν − ∂νAµ + i g [Aµ,Aν]

Propagators and vertices are gauge dependent→ choose any gauge, ideally one that is convenient.

Landau gauge

simplest one for functional equations

∂µAµ = 0: Lgf =1

2ξ(∂µAµ)

2, ξ→ 0

requires ghost �elds: Lgh = c (−2 + g A×) c

2 �elds: + i j-1

+ j k

-1

3 vertices:

+

i

j

k

+

i

j k

l

+

i

j

k

MQH TU Darmstadt April 26, 2013 22/21

Page 49: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Solutions of functional equations: Decoupling and scaling

Two types of solutions with functional methods that di�er only indeep IR [Boucaud et al., JHEP 0806, 012; Fischer, Maas, Pawlowski, AP 324 (2009)]:scaling [von Smekal, Alkofer, Hauck PRL97],decoupling [Aguilar, Binosi, Papavassiliou PRD78; Fischer, Maas, Pawlowski, AP 324

(2009)]

Lattice calculations �nd only decoupling type solution for d = 3, 4and scaling for d = 2

Decoupling emerges also from Re�ned Gribov-Zwanziger framework[Dudal, Sorella, Vandersickel, Verschelde, PRD77]

MQH TU Darmstadt April 26, 2013 23/21

Page 50: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Decoupling and scaling solutions

DSEs: Vary ghost boundary condition [Fischer, Maas, Pawlowski, AP 324 (2009)]

10-4 0.001 0.01 0.1 1 10 100

1

510

50100

500

p 2@GeV^2D

GHp

2L

10-4 0.001 0.01 0.1 1 10 10010-4

0.001

0.01

0.1

1

p 2@GeV^2D

ZHp

2L

Dependence of propagators on Gribov copies, e.g., [Bogolubsky, Burgio,Müller-Preussker, Mitrjushkin, PRD 74 (2006); Maas, PR 524 (2013)]

Ideas:[Sternbeck, Müller-Preussker, 1211.3057]: choose Gribov copies by lowesteigenvalue of the Faddeev-Popov operator→ modi�cation of both dressings[Maas, PLB689 (2010)]: choose Gribov copies by value of ghostpropagator

d = 2: Analytic and numerical arguments from DSEs for scaling only [Cucchieri,

Dudal, Vandersickel, PRD85 (2012); MQH, Maas, von Smekal, JHEP11 (2012)] as well asfrom analysis of Gribov region [Zwanziger, 1209.1974].

MQH TU Darmstadt April 26, 2013 24/21

Page 51: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Scaling solution: Propagators

0 2 4 6 8 10p@GeVD0

1

2

3

4

ZHp2L

0.0 0.5 1.0 1.5 2.0 2.5 3.0p@GeVD1

2

3

4

5

6

GHp2L

0.0 0.5 1.0 1.5 2.0 2.5 3.0p@GeVD0

5

10

15

20

ZHp2L�p

2

Scaling solution

Decoupling solution

Di�erences only at low momenta.

MQH TU Darmstadt April 26, 2013 25/21

Page 52: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Scaling solution: Ghost-gluon vertex

Fixed angle: Fixed momentum:

Dressing not 1 in the IR ← Contributions from loop corrections (fordecoupling they are suppressed)

Scaling/decoupling also seen in ghost-gluon vertex

MQH TU Darmstadt April 26, 2013 26/21

Page 53: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

In�uence of the three-gluon vertex

ghost-gluon vertex: bare

0 1 2 3 4 5 6 7p@GeV D0

1

2

3

4

ZHp 2L

original three-gluon vertex

MQH TU Darmstadt April 26, 2013 27/21

Page 54: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

In�uence of the three-gluon vertex

ghost-gluon vertex: bare

0 1 2 3 4 5 6 7p@GeV D0

1

2

3

4

ZHp 2L

original three-gluon vertexBose symmetric three-gluon vertex

MQH TU Darmstadt April 26, 2013 27/21

Page 55: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

In�uence of the three-gluon vertex

ghost-gluon vertex: bare

0 1 2 3 4 5 6 7p@GeV D0

1

2

3

4

ZHp 2L

0.0 0.5 1.0 1.5 2.0p@GeV D1

2

3

4

5

GHp 2L

original three-gluon vertexBose symmetric three-gluon vertexBose symmetric three-gluon vertex with IR part

⇒ Improved three-gluon vertex adds additional strengthin the mid-momentum regime.

MQH TU Darmstadt April 26, 2013 27/21