land degradation - cyen degradation module.pdf · land degradation indicates temporary or permanent...

10
LAND DEGRADATION Land degradation indicates temporary or permanent long-term decline in ecosystem function and productive capacity. It may refer to the destruction or deterioration in health of terrestrial ecosystems, thus affecting the associated biodiversity, natural ecological processes and ecosystem resilience. It also considers the reduction or loss of biological/economic productivity and complexity of croplands, pasture, woodland, forest, etc. Across the world, over 20% of cultivated areas, 30% of forests and 10% of grasslands are suffering from degradation, affecting about 1.5 billion people. This degradation may be the result of numerous factors or a combination thereof, including anthropogenic (human-related) activities such as unsustainable land management practices and climatic variations. Note that degradation processes e.g. erosion do occur naturally, and are generally balanced by the rate of soil formation. However accelerated degradation is typically associated with human modification of the environment. Degradation encompasses deforestation (tropical and temperate forests) and desertification of drylands (arid, semi-arid and sub-humid regions). Almost 75% of the drylands in Latin America and the Caribbean are under moderate to severe desertification. Underlying causative factors of land degradation, and environmental mismanagement in general, are poverty and undervaluing of natural resources. In both cases people focus on immediate economic gain irrespective of damage to the same resources they are dependent on. The latter in particular promotes inefficient use and wastage of resources. Causes of or contributors to land degradation include: Clearance of vegetative cover Soil erosion by wind or water Natural conditions e.g. soil type, topography (e.g. steep gradient), weather/climatic conditions e.g. high intensity rainfall, natural hazards Invasive species Pollution Drought i.e. precipitation is significantly lower than average recorded levels for a prolonged period. Unsustainable agricultural practices Habitat alteration e.g. urban expansion Resultant effects or impacts include: Decline in the chemical, physical and/or biological properties of soil e.g. lower organic content and nutrient levels, salinisation, pH changes in soil (acidification or alkalinisation) Reduced availability of potable water Lessened volumes of surface water Depletion of aquifers due to lack of recharge Figure 1: The cycle of processes leading to and perpetuating land degradation (Source: FAO)

Upload: lytruc

Post on 15-Apr-2018

224 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: LAND DEGRADATION - cyen degradation module.pdf · Land degradation indicates temporary or permanent ... affecting the associated biodiversity, natural ecological processes ... and

LAND DEGRADATION

Land degradation indicates temporary or permanent long-term decline in ecosystem function and productive capacity. It may refer to the destruction or deterioration in health of terrestrial ecosystems, thus affecting the associated biodiversity, natural ecological processes and ecosystem resilience. It also considers the reduction or loss of biological/economic productivity and complexity of croplands, pasture, woodland, forest, etc. Across the world, over 20% of cultivated areas, 30% of forests and 10% of grasslands are suffering from degradation, affecting about 1.5 billion people. This degradation may be the result of numerous factors or a combination thereof, including anthropogenic (human-related) activities such as unsustainable land management practices and climatic variations. Note that degradation processes e.g. erosion do occur naturally, and are generally balanced by the rate of soil formation. However accelerated degradation is typically associated with human modification of the environment. Degradation encompasses deforestation (tropical and temperate forests) and desertification of drylands (arid, semi-arid and sub-humid regions). Almost 75% of the drylands in Latin America and the Caribbean are under moderate to severe desertification. Underlying causative factors of land degradation, and environmental mismanagement in general, are poverty and undervaluing of natural resources. In both cases people focus on immediate economic gain irrespective of damage to the same resources they are dependent on. The latter in particular promotes inefficient use and wastage of resources. Causes of or contributors to land degradation include: ▪ Clearance of vegetative cover ▪ Soil erosion by wind or water ▪ Natural conditions e.g. soil type, topography (e.g. steep gradient), weather/climatic conditions e.g. high intensity rainfall, natural hazards

▪ Invasive species ▪ Pollution ▪ Drought i.e. precipitation is significantly lower than average recorded levels for a prolonged period.

▪ Unsustainable agricultural practices ▪ Habitat alteration e.g. urban expansion

Resultant effects or impacts include:

▪ Decline in the chemical, physical and/or biological properties of soil e.g. lower organic content and nutrient levels, salinisation, pH changes in soil (acidification or alkalinisation)

▪ Reduced availability of potable water ▪ Lessened volumes of surface water

▪ Depletion of aquifers due to lack of recharge

Figure 1: The cycle of processes leading to and perpetuating land

degradation (Source: FAO)

Page 2: LAND DEGRADATION - cyen degradation module.pdf · Land degradation indicates temporary or permanent ... affecting the associated biodiversity, natural ecological processes ... and

▪ Impacts on livestock and agriculture e.g. loss of animals due to dehydration, reduced yields

▪ Water and food insecurity, famine ▪ Biodiversity loss ▪ General reduction of the ability for the community to depend on the natural environment for livelihood

▪ Decline in economic productivity and national development

▪ Conflict over access to resources ▪ Mass migration

Soil types The FAO has a classification of over 30 different soil types. Soils vary by climate due to the impacts of temperature, precipitation, vegetation type, nutrient and organic matter content, degree of leaching, etc. Soil can be described by a number of physical and chemical properties including particle size, colour, texture and pH. Soils are stratified into horizons due to processes of weathering (breakdown of rock), transport and deposition (i.e. eluviation and illuviation), and decomposition of organic matter; with the A horizon being the topsoil, and the R horizon being the bedrock.

Colour gives a general indication of the organic (and thus nutrient) and iron content of the soil. With more organic matter the soil is darker. Soils with high iron content are usually found in the tropics. With good aeration and drainage the soils have a bright red colour. Without these features the soil is more yellow in hue. Soil texture is influenced by particle size and humus (decayed organic matter) content. Soil particles are defined as:

0.05-2mm sand (very fine to very coarse) 0.002-0.04mm silt < 0.002mm clay The most basic categorisation of soils is as follows: ▪ Sandy soil – generally light, large soil particles, with rapid drainage and low organic content, 80-100% sand

▪ Clayey soil – heavy soil, fine particles, low infiltration rate, practically impermeable when wet, very hard when dry, 50-100% clay

▪ Loam – approximately 25-50% sand, 30-50% silt, 10-30% clay by volume

Figure 2: Erosion due to deforestation

(Source: Wild Madagascar)

Figure 3: Generalised soil profile

Page 3: LAND DEGRADATION - cyen degradation module.pdf · Land degradation indicates temporary or permanent ... affecting the associated biodiversity, natural ecological processes ... and

Ferralsols (FAO), otherwise known as oxisols (USDA), are most common in tropical rain forests, and are typically red to yellow in colour due to the presence of iron, aluminium oxides and hydroxides.

As it rains, the litter on the forest floor causes acidification (drop in pH) of the water, which leaches the soluble minerals from the top layers. Decay of litter is very rapid, due to the moisture and humidity. Thus, nutrient uptake by vegetation is also very rapid. These combine so that the soils have very low standing nutrient content.

Erosion There are various modes of erosion by water:

Figure 5: Soil types and attributes by latitude (Source: Encyclopaedia Britannica)

Figure 4: Examples of variation in soil type (Source: Australian Natural Resources Atlas)

Page 4: LAND DEGRADATION - cyen degradation module.pdf · Land degradation indicates temporary or permanent ... affecting the associated biodiversity, natural ecological processes ... and

▪ Splash – results from the impact of raindrops on the soil surface. The bombardment causes the displacement/detachment of soil particles. The impact can dislodge particles as far as 3 feet. As they resettle elsewhere they block soil pores and lower infiltration capacity of the soil. Splash erosion also causes soil disintegration (destruction of soil structure). Maintenance of vegetative cover remedies this condition.

▪ Sheet – when rainfall intensity is greater than infiltration a layer of water moves across the soil

surface, transporting a uniform layer of soil. This layer typically contains fine particles and a significant proportion of the nutrients and organic matter.

▪ Rill – deep, fast-flowing channels are scoured into the ground from the concentration of surface (sheet) water, detaching and transporting soil particles. Flow velocity (and thus degree of erosion) may be reduced by a rough surface e.g. grass, ploughing or reduce in gradient. Alternatively the soil surface may be hardened to prevent movement.

▪ Gully – forms from the deepening and widening of rills, and cannot be repaired using tillage equipment. This occurs as water erodes the face or undercuts the head wall, causing upslope migration; or via undercutting and collapse or slumping of side walls. Once established gully erosion is difficult to mitigate and requires a combination of control measures e.g. re-vegetate gully floor and walls and the upstream catchment, divert surface drainage away from the gully.

Wind erosion is more common in arid and semi-arid climates, and in periods of drought. It removes the most fertile layer of soil, hence reducing soil productivity. Deposition of the soil onto plant surfaces reduces their capability for photosynthesis and respiration. Airborne particles make visibility difficult, cause respiratory problems and can cause sedimentation of watercourses when they settle. Chemicals such as pesticides in the soil can also cause water pollution. Suspended particles can also cause erosion of solid surfaces (e.g. rock, walls) by abrasion.

Habitat alteration Not only is it a major cause of biodiversity loss, changes in habitat also contribute to land degradation. Most obvious is the conversion of forest lands to agriculture. Land clearance methods are often destructive in themselves, denuding large swathes of land by slash-and-burn which robs the land of its nutrients and water, and destroys its living organisms. Thus the soil is less fertile to begin with. Particularly with tropical forests, the soil productivity is deceptive because the rich biodiversity is fed by rapid decomposition-uptake

Figure 8: Gully erosion (Source:

NRCS/USDA)

Figure 6: Splash erosion (Source:

NRCS/USDA)

Figure 7: Sheet and rill erosion (Source:

NRCS/USDA)

Figure 9: Wind erosion (Source:

NRCS/USDA)

Page 5: LAND DEGRADATION - cyen degradation module.pdf · Land degradation indicates temporary or permanent ... affecting the associated biodiversity, natural ecological processes ... and

processes leave very little nutrients lingering in the soil. Therefore farmers must apply many fertilisers and other chemicals to raise the productivity. These pollute the soil and groundwater. Often cleared forests are used for grazing cattle and other livestock. Overgrazing is often a problem, which leaves the soil exposed to erosion. The productivity of the soils rapidly declines and in a matter of a few years it is no longer profitable. The farmers move onto the next patch of forest, burn it down, and the cycle repeats itself. Changing natural lands into urban or industrial environments is also very damaging. Urbanisation and industrialisation both result in high population densities and intensive use of natural resources. They also disrupt natural cycles and processes e.g. inhibiting natural drainage systems and reducing groundwater recharge, remove large amounts of vegetation and soil, and release large amounts of pollution from factories, vehicles and power stations. Soil contamination is more prevalent and pronounced in these areas due to human activities e.g. dumping of chemicals and oils, leaching from landfills and open dumping, discharge of effluents to the soil, infiltration of polluted water, leaking of storage tanks, or overflow of overloaded septic systems. Construction, mining and agriculture in unsuitable areas can also exacerbate degradation in areas that are naturally prone. They remove the vegetative cover leaving the soil exposed to erosion. Soils that are prone to slippage will be even more vulnerable with the vibrational impact of construction activities, the load of homes and offices, etc. plus increased water introduced to the soil from domestic activities, septic tanks, etc. Any damage inflicted if a disaster occurs will be more severe due to the danger to life and infrastructure. As the demand for housing and tourism expansion in the region continues such areas will be under increasing pressure for development. Agricultural practices Intensification and increased mechanisation of agriculture have led to the abandoning of many sustainable traditional agricultural practices in favour of increased yields and faster production. Various methods, techniques and equipment now used in agriculture at different scales are destructive to the soil and water resources, and consequently gradually decrease the productivity of the land and thus the viability of the industry. These include:

▪ Overgrazing of pasture land ▪ Overcultivation of cropland and monocropping

▪ Waterlogging and salinisation of irrigated land

▪ Overextraction of wells, rivers and dams ▪ Land clearance e.g. slash-and-burn, deforestation ▪ Excessive and continuous fertiliser, herbicide and pesticide use ▪ Conversion of unsuitable lands to agriculture e.g. use of marginal lands, clearance of tropical forest for livestock rearing

Overcultivation and monocropping are usually associated with high levels of mechanisation which can compact the soil, leaving the land bare between harvest and planting, both of which increase the potential for erosion, and continuous loss of nutrients with application of large quantities of fertilisers. Monocropping deprives the soil of specific nutrients because the same crop is always planted. Traditional agricultural practices incorporated inter-cropping (planting e.g. yams and sweet potatoes between rows of cane or banana trees) and rotation cropping (e.g. growing a cycle of potatoes, peas, yams and tomatoes one after the other on the same plot of land). These help to secure the soil and prevent erosion, and ensure nutrients are not depleted because different crops have varying nutrient requirements for growth. Legumes in particular are usually planted in rotations because they fix nitrogen in the soil, a nutrient which is usually very limited. Fallow or “rest” periods were also used in the past. Once every few years nothing was planted to allow the soil to recuperate so that organic matter and nutrients re-accumulate and soil structure rebuilds.

Page 6: LAND DEGRADATION - cyen degradation module.pdf · Land degradation indicates temporary or permanent ... affecting the associated biodiversity, natural ecological processes ... and

Poor irrigation practices can lead to waterlogging which means there is no air in the pore spaces of the soil, thus none available for plants. Salinisation is the excessive accumulation of salts in the soil, which can render

it infertile. This can occur due to a variety of reasons e.g. when irrigation water has high salts content, when water evaporates leaving salt deposits to build up, where there is poor drainage, or in areas with shallow water table when capillary action brings the water to the surface where it evaporates leaving the salts. Ploughing straight downhill increases the rate and severity of soil erosion because it creates instant rills which can be deepened into gullies. Good practice would dictate that when cultivating on slopes there are a number of soil

conservation methods that should be used. Terracing divides the soil into steps/levels with flat or nearly flat surfaces that can be planted on. This is used where there is little mechanisation. Contour ploughing uses the shape of the terrain and goes around or across the hillside. Strip cropping is similar to inter-cropping, but instead of planting between rows, several rows of a crop are planted before switching to another crop. Thus alternating bands of e.g. cotton and soybeans are created. This not only helps with maintaining soil fertility but creates barriers to water and minimise erosion. The use of these practices is dependent on the gradient of the slope and the amount of rainfall received in the area.

Other tillage practices which influence soil conservation range from conventional to reduced to conservation (ridge, strip, mulch, none) tillage. These show progressive decrease in mechanisation and removal of crop residue. Leaving the crop residue increases the organic matter content of the soil as it decays between the harvest and planting, and prevents soil erosion. Sustainable Land Management The term SLM can be used to describe the utilisation of terrestrial resources (soils, plants, water, etc) for the production of goods to satisfy changing human needs, without detriment

to the long-term productive potential of these resources and their environmental functions. In short, SLM involves the use of land and its resources by various users without compromising ecological integrity, biodiversity or natural capital:

▪ biodiversity – the array of species, populations, habitats and ecosystems ▪ ecological integrity – general health and resilience of natural systems, including the ability to assimilate wastes and withstand stressors e.g. pollution, ozone depletion, climate change

▪ natural capital – stock of productive soil, forests, clean air, freshwater, ocean and other renewable resources that underpin the survival, health and prosperity of human communities.

SLM is critical to minimising and rehabilitating the effects of land degradation, and ensuring optimal use of resources for sustainable development and poverty alleviation. It seeks to resolve conflicts between ecosystem function and the pressures on them due to intensifying social and economic development activities. According to the FAO, SLM stands on four principles: ▪ user-driven and participatory approaches

Figure 10: Severe salinisation of

soils (Source: NRCS/USDA)

Figure 11: Terraces for rice cultivation

(Source: S. McCouch, 2004, PLoS

Biology)

Figure 12: Contour strip cropping and trees

for windbreaks (Source: NRCS/USDA)

Page 7: LAND DEGRADATION - cyen degradation module.pdf · Land degradation indicates temporary or permanent ... affecting the associated biodiversity, natural ecological processes ... and

▪ integrated use of natural resources at the ecosystem and farming system levels

▪ multilevel and multi-stakeholder involvement – farm, community, national, users, technical experts, policy makers, etc

▪ targeted policy and institutional support, including incentive mechanisms for adopting SLM and income generation at the local level

This framework aims to ensure that causes of degradation and mitigative measures are correctly identified, and the policy and regulatory environment facilitates the implementation of the most suitable management measures. SLM can be approached by investigating signs of unsustainable activity e.g. soil degradation, biodiversity loss, increased incidence of plant disease, water quality decline. Such indicators are a consequence of resource exploitation and inappropriate land management, the causes of which are often political and societal rather than technical or agronomic. SLM can also apply “options analysis” for land management where different possible solutions are explored for their effectiveness in addressing the causes and impacts of land degradation. Key questions are: why do land users employ inappropriate practices, or what inhibits them from applying more appropriate technologies? Frequently, resource users are aware of degradation but are not in a position to rectify it, often due to political and economic circumstances e.g. insecure land tenure, misuse of subsidies and incentives, market price distortions, etc. These complementary paths help to form solutions from political, technical and economic perspectives. The complex inter-related causes of or contributors to land degradation must be identified to effectively design remedial interventions. Activities to be considered must also include those which support training and education; improve knowledge, local planning procedures and land management skills; create awareness; enhance institutional development; and address pertinent policy issues. Such measures would ensure that the work done to combat land degradation is not reversed because people and governments continue in their old practices, but that they would acquire new knowledge and skills, and make policy improvements. Several tools are available to assess the costs and impacts of land degradation and the changes and benefits of implementing SLM. These would aid more informed decision making and strategic planning regarding the approach to SLM that should be taken. These include assessing ecosystem services and economic valuation [greater detail in the UNDP-GEF Environmental Economics Toolkit]. Barriers cited by regional governments as being prohibitive to the attainment of SLM throughout the Caribbean include:

▪ limited access to appropriate information and technology ▪ inadequate technical and human capacity

▪ unsustainable land use practices ▪ deficiencies in institutional infrastructure e.g. lack of inter-agency coordination, ill-defined jurisdictions and management roles

▪ failure to institutionalise and reinforce measures and capabilities arising as outputs from previous projects

▪ high turnover rates of technically skilled personnel in government agencies

▪ inadequate or non-existent research and monitoring programmes for provision of accurate, timely data to improve decision making

▪ conflicts between users and their goals ▪ insecurity of land tenure ▪ lack of specific national policies governing land management

▪ existence of regulations that are directly contradictory to sustainable land and environmental management and development e.g. condoning vulnerable lands and sensitive ecosystems to tourism

Page 8: LAND DEGRADATION - cyen degradation module.pdf · Land degradation indicates temporary or permanent ... affecting the associated biodiversity, natural ecological processes ... and

development, sanctioning developments in hazard prone locations, permitting gas stations and mechanics operations within aquifer basins

▪ ineffective implementation of tools that already exist e.g. land use zoning, development planning

▪ lack of administrative support ▪ insufficient financial resources ▪ real or apparent inability of farmers to invest in soil conservation measures due to limited resources

▪ cultural absence of a sense of personal responsibility and stewardship With funding secured from GEF, and with implementation assistance from the UNDP, a number of countries in the region are embarking on SLM projects to combat the problems associated with land degradation. Among these are Grenada, Dominica, Barbados, St. Lucia, Belize, Jamaica and St. Kitts-Nevis. A major component common to all these projects is the emphasis on capacity building and inter-agency integration of functions and activities to address several of the barriers listed above. CASE STUDY: Haiti

The family situation

The average size of a Haitian farm is about 2.5acres. On these 2.5acres there lives a typical Haitian family which has seven to eight

children and two parents. The family speaks the official language of the country, Creole, and all are poorly educated with an average of

a sixth grade education. The parents are between the ages of 25 and 28 and the children are between ages 3 and 9. The children

attend school but it may be sporadic and the parents hope that they will have the chance to complete eight years of school.

The small hut that the family calls home is the size of an average living room and very poorly built. Often many generations live in this

hut that is made of mud with a thatched roof or possibly scraps of lumber and rags. There is a glass-less window and a door-less

doorway.

The family is isolated in the highlands where running water, electricity and indoor plumbing have yet to reach them. The family is

surrounded by mountains and land that has been stripped bare. The father received this land by a claim of long term use. But during

his time of ownership he has stripped the land of trees that he can use for energy. This is a frequent occurrence in Haiti which once

had 37% of its 27,750km2 covered with forests. It is now below 1%.

This rampant deforestation has led to the fertile topsoil being blown

or washed away, swept out to the ocean or silting streams. The erosion

of the topsoil has restricted the quantity of crops the family will grow

and their ability to export them to make more money or feed

themselves.

The two children, one boy and one girl ages seven and eight, are the

minority in the area due to the rampant epidemic of neonatal tetanus

at the time of their births. The family has also suffered one stillborn

and two other deaths due to diarrhoea at eleven months and two years.

The family has an average calorie intake of 1,300 calories per person.

The average calorie intake for an adult female is about 1,800 calories

and for an adult male is about 2,500 calories. The family is primarily

self sufficient raising their own produce consisting of corn, beans, sweet potatoes, cassava, tomatoes and green, leafy vegetables. The

main foods in their diet are starches. If available fruits like pineapples, bananas and citrus fruits are consumed. The family only eats

rice if money is available or if a food relief package comes in to the village.

The family farm also raises two goats, four pigs, free range chickens and a few cattle. The goats that are raised are highly adapted to

rugged terrain and sparse vegetation. Goats are the most abundant animals in Haiti, about 54% of all farmers in Haiti raise goats. The

pigs that the farm raises are Creole pigs. Creole pigs are cheap and easy for the family to raise and are also a valuable asset; an asset

that could be sold or slaughtered at any point in time to cover a shortage in food or a shortage of money. Even with the production of

Page 9: LAND DEGRADATION - cyen degradation module.pdf · Land degradation indicates temporary or permanent ... affecting the associated biodiversity, natural ecological processes ... and

meat animals the family eats very little meat. The farm is located on a hillside and the soil retains very little nutrients. Rainfall often

does not coincide with the planting season which leaves a very low yielding crop.

There is no source of water on the farm so the mother has to spend the greater part of the day getting water and cooking the small

meals for the family. Their total income for the year is US$300-$400. This is mainly from the father who goes to the Dominican

Republic to work as a labourer in the fields for $0.35 an hour. If there is extra funding the family hopes to sharecrop another plot. If

there are extra vegetables that the family grows they will sell them and buy cheaper ones. The children are expected to do chores on

the farm and attend school but sometimes that proves difficult due to the lack of food and resultant fatigue.

Constantly declining agricultural productivity

Basic necessities are what the Haitian family is lacking: affordable health care, alternate energy sources, a dependable, clean water

source, modern sanitation system, and education for the farmers in the area. There is need for better roads and transportation

systems for the farmers to more efficiently move their products or supplies. The quality of food in Haiti is poor, and to increase

quality and productivity fertiliser, more modern tools and technology and better seed quality are needed.

The most significant factor in the poverty and hunger of the Haitian farmers is the extremely poor soil quality and the lack of

knowledge that the farmers have in sustainable farming techniques. The farming practices used are primitive and have changed very

little since the island was first inhabited by the Spanish. Use of

modern farm equipment has not been possible on the small, hilly

farms so shovels, digging sticks and machetes are still the norm.

The average farm is extremely limited in the production of food

for the family and rarely has food remaining to sell for a

supplemental income.

The situation in Haiti is slowly worsening as more soil continues to

erode and the land is deforested. On average Haiti loses 37065

acres of soil annually. There are insufficient funds going toward

agricultural development in the country. The Ministry of

Agriculture is allotted a very small budget relative to the

proportion of the population dependent on agricultural livelihoods.

The family’s situation varies with the seasons; but their condition is perpetually worsening with the constant erosion of the soil. The

family is malnourished with half of the needed calories for growth and maintenance of their bodies. The income of the family is around

half of what they need for basic necessities.

Progress and poverty

Haiti is the poorest country in the Western Hemisphere, with

80% of the population living below the poverty line and 54% in

abject poverty. The population is growing at an average rate of

2.493% a year (2008 est.) and urban expansion rose by 4%

between 1971 and 1982. The Gross Domestic Product in Haiti was

$11.14 billion in 2007. A macroeconomic programme developed in

2005 in conjunction with the IMF helped realise 3.5% economic

growth in 2007, the highest since 1999. According to 2003

estimates 52.9% of the population is literate. This is compared to

1982 when 65% of the population had no education. However, the

rapid urban expansion results in a decline of the rural population. Consequently Haiti is neither producing enough food nor making

enough money to support its growing population.

Nearly all of the 30 million trees planted in the 1980s during a USAID US$22.8mil project have been cut down to make charcoal for

cooking. The lack of soil cover makes the land increasingly vulnerable to severe and flash floods during the hurricane season. A new

reforestation programme, “Floresta” has begun in Grand Colline.

Page 10: LAND DEGRADATION - cyen degradation module.pdf · Land degradation indicates temporary or permanent ... affecting the associated biodiversity, natural ecological processes ... and

Reports in 2003 indicated the situation in Haiti was worsening with 4 million malnourished people, the majority of which are in rural

areas. A silent food crisis has emerged. Agriculture, the main source of income, has been damaged by drought in the northwest and

flooding in the northeast over a period of four years earlier this decade. National food production is subsequently continuing to

decrease leaving much of the population hungry.

Photos: Ariana Cubillos (AP Photo Daylife)

RESOURCES The United Nations Convention to Combat Desertification (UNCCD) entered into force in 1996. http://www.unccd.int/convention/menu.php http://www.unccd.int/convention/text/convention.php http://www.unccd.int/cop/reports/lac/lac.php Land degradation is one of the Global Environment Facility’s (GEF) 5 focal areas http://www.undp.org/gef/undp-gef_focal_areas_of_action/sub_land_degradation.html http://www.undp.org/gef/undp-gef_focal_areas_of_action/sub_undp-gef_focal_areas_of_action_documents/UNDPGEF_LaDeg_Presentation_GEFAssembly_Oct02.ppt#309,1, http://www.undp.org/gef/undp-gef_publications/publications/interlink%20droughtdesertif%20water_fc%20gm%20unccd.doc Capacity building and mainstreaming of SLM for LDCs and SIDS projects are being undertaken in 47 countries worldwide, funded by UNDP-GEF http://www.gsu.co.za/ http://www.gsu.co.za/PublishedDocuments/tabid/64/Default.aspx FAO databases and information systems http://www.fao.org/tknet/topics/area_view?areaId=infsys&lang=en http://www.fao.org/corp/statistics/en/ Check in particular: FAOSTAT http://faostat.fao.org/ ECOCROP http://ecocrop.fao.org/ecocrop/srv/en/home SIDS http://www.fao.org/sids/ TERRASTAT http://www.fao.org/ag/agl/agll/terrastat/ FORIS http://www.fao.org/forestry/country/en/ CEHI (the Caribbean Environmental Health Institute, based in St. Lucia) has been designated with the lead role in provision of technical support services to the CARICOM Member States implementing SLM projects under the GEF LDC-SIDS Portfolio Project. http://www.cehi.org.lc/SLMLDC-SIDS/cehi_slm_main.html