ladder webs in orb-web spiders: ontogenetic and...

18
Ladder webs in orb-web spiders: ontogenetic and evolutionary patterns in Nephilidae MATJAŽ KUNTNER 1,2 *, SIMONA KRALJ-FIŠER 1 and MATJAŽ GREGORIC ˇ 1 1 Institute of Biology, Scientific Research Centre, Slovenian Academy of Sciences and Arts, Novi trg 2, PO Box 306, SI-1001 Ljubljana, Slovenia 2 Department of Entomology, National Museum of Natural History, Smithsonian Institution, NHB-105, PO Box 37012, Washington, D.C. 20013-7012, USA Received 18 September 2009; accepted for publication 10 November 2009Spider web research bridges ethology, ecology, functional morphology, material science, development, genetics, and evolution. Recent work proposes the aerial orb web as a one-time key evolutionary innovation that has freed spider-web architecture from substrate constraints. However, the orb has repeatedly been modified or lost within araneoid spiders. Modifications include not only sheet- and cobwebs, but also ladder webs, which secondarily utilize the substrate. A recent nephilid species level phylogeny suggests that the ancestral nephilid web architecture was an arboricolous ladder and that round aerial webs were derived. Because the web biology of the basalmost Clitaetra and the derived Nephila are well understood, the present study focuses on the webs of the two phylogenetically intervening genera, Herennia and Nephilengys, to establish ontogenetic and macroevolutionary patterns across the nephilid tree. We compared juvenile and adult webs of 95 Herennia multipuncta and 143 Nephilengys malabarensis for two measures of ontogenetic allometric web changes: web asymmetry quantified by the ladder index, and hub asymmetry quantified by the hub displacement index. We define a ‘ladder web’ as a vertically elongated orb exceeding twice the length over width (ladder index 2) and possessing (sub)parallel rather than round side frames. Webs in both genera allometrically grew from orbs to ladders, more so in Herennia. Such allometric web growth enables the spider to maintain its arboricolous web site. Unexpectedly, hub asymmetry only increased significantly in heavy-bodied Nephilengys females, and not in Herennia, challenging the commonly invoked gravity hypothesis. The findings obtained in the present study support the intrageneric uniformness of nephilid webs, with Herennia etruscilla webs being identical to H. multipuncta. The nephilid web evolution suggests that the ancestor of Nephila reinvented the aerial orb web because the orb arises at a much more inclusive phylogenetic level, and all intervening nephilids retained the secondarily acquired substrate-dependent ladder web. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99, 849–866. ADDITIONAL KEYWORDS: Araneae – Araneoidea – Clitaetra Herennia – hub displacement – ladder index Nephilengys Nephila – architecture – web allometry. INTRODUCTION Spider webs may be viewed as the animal’s extended phenotype, or a static manifestation of the spider’s behaviour (Eberhard, 1982; Schuck Paim, 2000; Kuntner, Coddington & Hormiga, 2008a). A mass of literature exists addressing all aspects of spider-web biology from architecture (Eberhard, 1975, 1977, 1985, 2007; Coddington, 1986c; Agnarsson & Cod- dington, 2006), web construction and predatory behaviour (Eberhard, 1981, 1986, 1987, 1990, 1992; Rypstra, 1982; Coddington & Sobrevila, 1987; Black- ledge, 1998; Herberstein & Heiling, 1998; Li, 2005; Blackledge & Zevenbergen, 2006; Zschokke et al., 2006), web ecology (Toft, 1987; Higgins, 1992, 2006; Higgins & Buskirk, 1992; Wise, 1993; Tso, 1996; 1998a, b; Agnarsson, 2003; Tso, Jiang & Blackledge, 2007; Kuntner et al., 2008b), web ontogenetic allom- etric changes (Eberhard, 1985; Japyassu & Ades, 1998; Kuntner et al., 2008b; Kuntner & Agnarsson, *Corresponding author. E-mail: [email protected] Biological Journal of the Linnean Society, 2010, 99, 849–866. With 4 figures © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99, 849–866 849

Upload: hoangdiep

Post on 19-Jul-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ladder webs in orb-web spiders: ontogenetic and ...ezlab.zrc-sazu.si/uploads/2011/05/Kuntneral2010_LadderWebs.pdf · Ladder webs in orb-web spiders: ontogenetic and evolutionary patterns

Ladder webs in orb-web spiders: ontogenetic andevolutionary patterns in Nephilidae

MATJAŽ KUNTNER1,2*, SIMONA KRALJ-FIŠER1 and MATJAŽ GREGORIC1

1Institute of Biology, Scientific Research Centre, Slovenian Academy of Sciences and Arts, Novi trg 2,PO Box 306, SI-1001 Ljubljana, Slovenia2Department of Entomology, National Museum of Natural History, Smithsonian Institution,NHB-105, PO Box 37012, Washington, D.C. 20013-7012, USA

Received 18 September 2009; accepted for publication 10 November 2009bij_1414 849..866

Spider web research bridges ethology, ecology, functional morphology, material science, development, genetics, andevolution. Recent work proposes the aerial orb web as a one-time key evolutionary innovation that has freedspider-web architecture from substrate constraints. However, the orb has repeatedly been modified or lost withinaraneoid spiders. Modifications include not only sheet- and cobwebs, but also ladder webs, which secondarily utilizethe substrate. A recent nephilid species level phylogeny suggests that the ancestral nephilid web architecture wasan arboricolous ladder and that round aerial webs were derived. Because the web biology of the basalmost Clitaetraand the derived Nephila are well understood, the present study focuses on the webs of the two phylogeneticallyintervening genera, Herennia and Nephilengys, to establish ontogenetic and macroevolutionary patterns across thenephilid tree. We compared juvenile and adult webs of 95 Herennia multipuncta and 143 Nephilengys malabarensisfor two measures of ontogenetic allometric web changes: web asymmetry quantified by the ladder index, and hubasymmetry quantified by the hub displacement index. We define a ‘ladder web’ as a vertically elongated orbexceeding twice the length over width (ladder index � 2) and possessing (sub)parallel rather than round sideframes. Webs in both genera allometrically grew from orbs to ladders, more so in Herennia. Such allometric webgrowth enables the spider to maintain its arboricolous web site. Unexpectedly, hub asymmetry only increasedsignificantly in heavy-bodied Nephilengys females, and not in Herennia, challenging the commonly invoked gravityhypothesis. The findings obtained in the present study support the intrageneric uniformness of nephilid webs, withHerennia etruscilla webs being identical to H. multipuncta. The nephilid web evolution suggests that the ancestorof Nephila reinvented the aerial orb web because the orb arises at a much more inclusive phylogenetic level, andall intervening nephilids retained the secondarily acquired substrate-dependent ladder web. © 2010 The LinneanSociety of London, Biological Journal of the Linnean Society, 2010, 99, 849–866.

ADDITIONAL KEYWORDS: Araneae – Araneoidea – Clitaetra – Herennia – hub displacement – ladder index– Nephilengys – Nephila – architecture – web allometry.

INTRODUCTION

Spider webs may be viewed as the animal’s extendedphenotype, or a static manifestation of the spider’sbehaviour (Eberhard, 1982; Schuck Paim, 2000;Kuntner, Coddington & Hormiga, 2008a). A mass ofliterature exists addressing all aspects of spider-webbiology from architecture (Eberhard, 1975, 1977,1985, 2007; Coddington, 1986c; Agnarsson & Cod-

dington, 2006), web construction and predatorybehaviour (Eberhard, 1981, 1986, 1987, 1990, 1992;Rypstra, 1982; Coddington & Sobrevila, 1987; Black-ledge, 1998; Herberstein & Heiling, 1998; Li, 2005;Blackledge & Zevenbergen, 2006; Zschokke et al.,2006), web ecology (Toft, 1987; Higgins, 1992, 2006;Higgins & Buskirk, 1992; Wise, 1993; Tso, 1996;1998a, b; Agnarsson, 2003; Tso, Jiang & Blackledge,2007; Kuntner et al., 2008b), web ontogenetic allom-etric changes (Eberhard, 1985; Japyassu & Ades,1998; Kuntner et al., 2008b; Kuntner & Agnarsson,*Corresponding author. E-mail: [email protected]

Biological Journal of the Linnean Society, 2010, 99, 849–866. With 4 figures

© 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99, 849–866 849

Page 2: Ladder webs in orb-web spiders: ontogenetic and ...ezlab.zrc-sazu.si/uploads/2011/05/Kuntneral2010_LadderWebs.pdf · Ladder webs in orb-web spiders: ontogenetic and evolutionary patterns

2009), web silk properties and the underlying genetics(Denny, 1976; Hayashi & Lewis, 2000; Hayashi, 2001;Hayashi, Blackledge & Lewis, 2004; Blackledge,Summers & Hayashi, 2005; Blackledge, Swindeman& Hayashi, 2005; Agnarsson et al., 2009; Opell &Schwend, 2009), and web evolution (Shear, 1986; Ben-jamin & Zschokke, 2003, 2004; Craig, 2003; Zschokke,2003; Blackledge & Gillespie, 2004; Vollrath &Selden, 2007; Japyassu & Caires, 2008; Eberhard,Agnarsson & Levi, 2008a; Eberhard, Barrantes &Madrigal-brenes, 2008b).

Orb webs of orbicularian spiders are highly efficienttraps, and their evolution has taken many differentpaths, resulting in surprising diversity and variation(Eberhard, 1982; Coddington, 1986b, c; Coddington &Levi, 1991). The orb web has evolved only once and itsorigin defines Orbiculariae with approximately 11 000species (Blackledge et al., 2009; Coddington, 1986a–c;Coddington, 1989; Garb et al., 2006). However, thearchitecture is not evolutionarily stable, having beenmodified into sheet- or cobwebs, or even abandoned(Griswold et al., 1998). Previous studies interpretedthe shift from cribellate webs to aerial orb webs madeof adhesive silk as a key innovation (Bond & Opell,1998; Blackledge et al., 2009). Vertical aerial websrepresent an escape from the constraints of substrate-based webbing, and gluey silk is much more efficientand economical than the more primitive, cribellar silk(Blackledge et al., 2009). However, araneoid spiderclades that continue to build orb webs with adhesivesilk have developed an array of architectures thatdepart from the archetype, which is the approxi-mately round, aerial web, only touching the substratevia anchor threads (Zschokke, 1999). Some groupshave secondarily modified the orb to be more sub-strate dependent and these construct their websagainst tree trunks, other vegetation, rock outcrops,and artificial constructions (Kuntner, 2005, 2006,2007; Harmer & Framenau, 2008). Such substrate-based orb modifications are sometimes termed ladderwebs because they are often or always verticallyelongated (Kuntner et al., 2008a, b; Harmer, 2009;Harmer & Herberstein, 2009).

Current phylogenetic evidence (Blackledge et al.,2009; Scharff & Coddington, 1997; Kuntner et al.,2008a) suggests that such specialized orb websevolved independently in the different araneoidgroups: the neotropical araneid Scoloderus (Eberhard,1975), the Australian araneid Telaprocera (Harmer &Framenau, 2008; Harmer, 2009; Harmer & Herber-stein, 2009), the New Zealand araneid Cryptaranea(Forster & Forster, 1985), the New Guinean tetrag-nathid Tylorida (Robinson & Robinson, 1972), and theancestor to the extant nephilid spiders, where Clita-etra and Herennia show different, yet homologousladder webs (Robinson & Lubin, 1979; Kuntner, 2005,

2006; Kuntner et al., 2008a). The convergent evolu-tion of ladder webs appears to be the result of differ-ent selective pressures. For example, the extremeaerial ladder in Scoloderus is an adaptation for mothcatching (Eberhard, 1975; Stowe, 1978). By contrast,there is evidence that some ladder-web spiders areable to adapt their web architecture to the substrateat hand and thus alternate between phenotypes (e.g.Telaprocera; Harmer & Herberstein, 2009). Thus, theTelaprocera ladder web is not an obligate architec-ture, but rather a plastic response to the availablemicrohabitat. In the present study, we examine webbiology of substrate utilizing spiders of the familyNephilidae, which show remarkable intrageneric uni-formity but substantial intergeneric diversity in webform, spanning different levels of vertical elongation(Kuntner et al., 2008a; Kuntner & Agnarsson, 2009).The goals of the study are to assess ontogeneticallometric changes in these webs, define ladderness,and establish whether nephilid ladder webs are aresponse to evolutionary trends (phylogenetic inertia)or to behavioural plasticity (response to availablespace).

Parsimony ancestral character reconstruction sug-gests that ladder shaped orb webs on tree trunksfound in known species of the Clitaetra–Herenniagrade were the ancestral life style of the pantropicalclade Nephilidae and have apparently reversed toaerial orb webs in the ancestor of Nephila (Kuntneret al., 2008a; Kuntner & Agnarsson, 2009): Nephilawebs are not constrained by the substrate, and do notresemble a ladder (Harvey, Austin & Adams, 2007;Kuntner et al., 2008a). Kuntner et al. (2008b) studiedClitaetra irenae Kuntner 2006 and quantified its onto-genetic web changes from orb web to ladder web andthe simultaneous hub displacement (HD) towards thetop frame in older spiders. They concluded that: (1)increasing levels of ladder-web architecture allow theweb size to increase disproportionally more verticallythan horizontally; this enables the growing spider toremain on the same tree throughout its life, and (2)the logical explanation for an ontogenetic shift from acentral hub in small juveniles towards the eccentric-ity seen in larger, heavier spiders, is gravity, becausepredation success of heavier spiders is optimized inwebs with hubs displaced above the web centre(Masters & Moffat, 1983). Kuntner & Agnarsson(2009) tested these trends in two previously unstud-ied Clitaetra species and concluded that, althoughallometric shifts in Clitaetra episinoides and Clitaetraperroti were less pronounced compared to C. irenae,Clitaetra nevertheless showed within-genus web uni-formity. The same seems to hold for other nephilidgenera (Kuntner & Agnarsson, 2009).

With the webs of the relatively basal and derivednephilid genera, Clitaetra and Nephila already

850 M. KUNTNER ET AL.

© 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99, 849–866

Page 3: Ladder webs in orb-web spiders: ontogenetic and ...ezlab.zrc-sazu.si/uploads/2011/05/Kuntneral2010_LadderWebs.pdf · Ladder webs in orb-web spiders: ontogenetic and evolutionary patterns

studied, the focus of the present study is on webbiology of the remaining two nephilid genera, Heren-nia and Nephilengys. Considering their interveningphylogenetic placement on the nephilid tree, onemight expect also intermediate web forms betweensmall ladder webs (Clitaetra) and quite enormousaerial webs (Nephila reaching 1.5 m in diameter;Kuntner et al., 2008a). We investigated web architec-tures of juvenile and adult spiders of one species ofeach genus aiming to establish ontogenetic and mac-roevolutionary trends across the phylogeny. We testedthe ontogenetic web allometry shifts as seen in Cli-taetra (Kuntner et al., 2008b; Kuntner & Agnarsson,2009), and predicted that: (1) these arboricolous

spiders will likewise show a significant increase inladder-shape of their webs through ontogeny and (2)their hub eccentricity will be even more pronouncedthan that found in Clitaetra as a result of gravitybecause Herennia, and especially Nephilengys adultsare considerably larger than Clitaetra. We built ourpredictions upon our knowledge of adult nephilid webarchitecture (Kuntner et al., 2008a): adult femaleHerennia are known for extreme ladder webs (Fig. 1)(Kuntner, (2005) and adult female Nephilengys areknown for substrate-webs with displaced hubs (Fig. 2)(Kuntner, (2007). Additionally, Japyassu & Ades(1998) reported that juvenile Nephilengys cruentata,unlike adults, still make round orbs. Our second

Figure 1. Juvenile and adult web architectures of Herennia multipuncta and Nephilengys malabarensis from Singapore:A, Herennia multipuncta adult female web (a = 16cm, b = 72cm, c = 21cm) with hub cup (HC) and pseudoradii (P). B,Herennia multipuncta third-instar web (a = 6.5cm, b = 16cm, c = 7.3cm) with hub (H) not touching bark and parallel sideframes (S). C, Nephilengys malabarensis third-instar web (a = 10.3cm, b = 11.5cm, c = 5.6cm) with labelled web measure-ments. D, Nephilengys malabarensis adult female web (a = 43cm, b = 73 cm, c = 24cm) with retreat (R) connected to thehub. a, web width; b, web height; c, hub to top distance.

SPIDER LADDER WEBS 851

© 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99, 849–866

Page 4: Ladder webs in orb-web spiders: ontogenetic and ...ezlab.zrc-sazu.si/uploads/2011/05/Kuntneral2010_LadderWebs.pdf · Ladder webs in orb-web spiders: ontogenetic and evolutionary patterns

Figure 2. Box plots of measured web parameters for most size classes in Herennia multipuncta and Nephilengysmalabarensis. P-values are probabilities for the difference between size classes (Kruskal–Wallis test, above) andprobabilities for the correlation between size classes and parameters (Spearman’s rank order correlation, below). UsingBonferroni correction, P is significant at 0.005 or lower.

852 M. KUNTNER ET AL.

© 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99, 849–866

Page 5: Ladder webs in orb-web spiders: ontogenetic and ...ezlab.zrc-sazu.si/uploads/2011/05/Kuntneral2010_LadderWebs.pdf · Ladder webs in orb-web spiders: ontogenetic and evolutionary patterns

prediction is also supported by the evolution of size innephilid spiders: adult female size (and thus weight)gradually increases through the phylogeny from smallbodied Clitaetra to evolutionarily gigantic Nephila(Kuntner & Coddington, 2009).

MATERIAL AND METHODS

We studied web architectures in Herennia multi-puncta (Doleschall, 1859) and Nephilengys malaba-rensis (Walckenaer, 1842) in the field in Singaporeand Indonesia. Web measurements of 95 H. multi-puncta and 143 N. malabarensis randomly encoun-tered individuals were taken along with notes of theirhabitat. The third species encountered in the field,but not in statistically sufficient quantities (20 indi-viduals), was Herennia etruscilla Kuntner 2005. Con-sidering the intrageneric uniformity of nephilid webs(Kuntner et al., 2008a; Kuntner & Agnarsson, 2009),we considered H. multipuncta and N. malabarensisto be representative of the genera Herennia andNephilengys and only analysed H. etruscilla data withthe intention to test this trend.

We observed web characteristics and measuredhabitat and web parameters (see Appendix, Table A1)in finished webs of those spiders that could be reliablyidentified and sized: habitat type (primary versussecondary forest, artificial constructions), tree speciesif known, bark type (rough, medium, smooth), treecircumference at the hub, canopy closure (closed, par-tially, and fully open), hub height from ground, webwidth (Fig. 1C: a), height (Fig. 1C: b) and distancebetween top frame and the hub (Fig. 1C: c), sideframe curvature (round, subparallel, parallel; Fig. 1B,C), web shape (planar, convex, concave), the presenceof a hub-cup (Fig. 1A), pseudoradii (Fig. 1A), and aretreat (Fig. 1D; Kuntner, 2005, 2007; Kuntner et al.,2008a, b). As in our previous studies (Kuntner et al.,2008b; Kuntner & Agnarsson, 2009), we assigned thespiders to estimated size class in the field (size classes2–8 = estimated instar numbers, where ‘8’ indicatesadult females), but also tested the validity of suchtechnique by regressing the size class estimationswith real specimen measurements for a subset of thespecimens.

The two ratios quantifying web allometry are basedon previous studies [Kuntner et al. (2008b); Kuntner& Agnarsson (2009)]. The ladder index (LI), equiva-lent to web elongation sensu Harmer (2009) andsimilar to web shape sensu Zschokke (1993) and webasymmetry sensu Blackledge & Gillespie (2002), isthe relative web height, defined as the ratio of webheight to web width (b/a), where b = web height anda = web width (Fig. 1A, B, C). LI quantifies web elon-gation (i.e. the orb versus ladder-web architecture),which is known to increase during ontogeny in Clita-

etra (Kuntner et al., 2008b). Previous studies haveused this index to describe the properties of ladderwebs, although the definition of the ‘ladder’ has beenlacking. We define a ladder web to be at least twice ashigh as it is wide (LI � 2) and to possess (sub)paral-lel, rather than round, side frames. Hub displacement(HD), similar to hub asymmetry sensu Blackledge &Gillespie (2002), is web height below hub/total webheight using the formula (b - c)/b, where b = webheight and c = distance from top frame to hub(Fig. 1A, B, C). HD values increase with the hubbeing displaced towards the top web frame, which isa more logical measure of hub eccentricity comparedto hub asymmetry indices with decreasing values(Masters & Moffat, 1983; ap Rhisiart & Vollrath,1994; Kuntner et al., 2008a). Harmer (2009) studiedupper/lower asymmetry in the ladder webs of Tela-procera spiders, and emphasized the comparison ofupper to lower web area rather than the simplerelative position of the hub, as detected by HD.

We analysed within species differences in numericparameters along size classes by the Kruskal–Wallistest and their relationships using Spearman’s rankorder correlation. The intra- and interspecific differ-ences in categorical parameters were tested by con-tingency tables and chi-square analysis. We testedthe numeric differences between species using theMann–Whitney U-test. Additionally, we tested thehypothesis that the ladder web may be an adaptationto arboricolous life history and thus, that the LI andtree circumference would be negatively correlatedwithin each size class. We analysed the data usingSPSS, version 13.0.1 (SPSS Inc.). Where necessary,the probability levels were corrected by Bonferroniadjustment.

RESULTS

The technique of assigning spiders to size classes inthe field is validated because the size classes that weinferred in the field correlated significantly with themeasured lengths of patella + tibia I (H. etruscilla:r = 0.943, N = 24, P < 0.001; H. multipuncta: r = 0.904,N = 23, P < 0.001; N. malabarensis: r = 0.788, N = 40,P < 0.001).

The web parameters of both Herennia species didnot differ significantly (Table 1); thus, we consideredH. multipuncta webs to be representative of the genus(Fig. 2, Table 2). Typical small juvenile instar webs inboth Herennia and Nephilengys were round orbs,which were built against tree bark (Fig. 1B, C), theirwebs had about the same levels of ladderness and HD(Fig. 2). Web size increase followed the predicted allo-metric shift towards ladder architecture (Fig. 2),which is more pronounced in Herennia (LI values risefrom 0.9 to 5.5; Fig. 2) than in Nephilengys, where LI

SPIDER LADDER WEBS 853

© 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99, 849–866

Page 6: Ladder webs in orb-web spiders: ontogenetic and ...ezlab.zrc-sazu.si/uploads/2011/05/Kuntneral2010_LadderWebs.pdf · Ladder webs in orb-web spiders: ontogenetic and evolutionary patterns

reached a value slightly above 2 in the fifthinstar (Fig. 2; interspecific differences are shown inTable 2).

In Herennia, web side frames changed from roundin smaller size classes through subparallel to parallelin larger spiders (c2 = 27.3, N = 93, P = 0.007) and theaccording web shape changed from planar to curved(c2 = 32.5, N = 95, P < 0.001), with this curvaturebeing convex and following the tree circumference(Fig. 1A). As reported previously, we confirmed thevertically parallel threads termed the pseudoradii(Fig. 1A) as apomorphic element of adult Herenniawebs (Kuntner, 2005). We established their absence inwebs of smaller size classes and their significantlyincreasing prevalence in larger size classes (Fig. 3). InNephilengys, web side frames changed from round tosubparallel (c2 = 37.2, N = 142, P < 0.001), and webshape from planar to curved (c2 = 53.4, N = 144,P < 0.001), although this curvature was concave(Fig. 1D). The webs of Nephilengys never possessedpseudoradii, nor a hub cup, but always a retreatconnected to the hub (Fig. 1D), as reported previouslyfor all Nephilengys species (Kuntner, 2007).

HD values did not show a significant ontogeneticincrease in Herennia (Fig. 2), and not even in heavy-

bodied Nephilengys, with the exception of a pro-nounced increase between instars five and eight(U = 1, N = 11, P = 0.009; Fig. 2). There was anincrease in distance from ground in the growingHerennia and Nephilengys webs (Fig. 2).

Both genera may utilize a similar habitat: forestpatches under any canopy closure. The webs of allsize classes in both genera always utilized the sub-strate (e.g. tree trunks) and thus were not aerial.Juvenile Herennia inhabited thinner trees comparedto Nephilenygs (Table 2). There were, however, alsomarked differences in the webs of Herennia andNephilengys. The distance between the hub and thesubstrate decreased with spider size in Herennia(Fig. 2) and fell to zero, with the hub cup invariablytouching bark in larger spiders (Figs 2, 3A). By con-trast, in Nephilengys, the hub was positioned increas-ingly further away from the substrate in larger sizeclasses (Fig. 2).

In Herennia, the correlation between LI and treecircumference was always negative, although thiswas only significant for the third- and fifth-instardata (second instar: P = 0.827; third: P = 0.021;fourth: P = 0.413; fifth: P = 0.05; seventh: P = 0.239;eight: P = 0.756). In Nephilengys, the correlation was

Table 1. Probabilities (P) for interspecific Herennia differences (Herennia multipuncta versus Herennia etruscilla) in webparameters for the sparse data available for H. etruscilla (N = 20) (Mann–Whitney U-test)

Parameter Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8

Tree circumference NA 0.165 0.175 0.434 0.034 0.340 0.554Ladder index NA 0.299 0.636 0.235 0.724 NA 0.248Hub displacement NA 0.309 0.156 0.317 0.364 NA 0.739Hub to bark NA 0.490 0.129 1.000 1.000 NA 1.000From ground NA 0.933 0.195 0.373 0.289 NA 0.439

All P-values are nonsignificant. NA, not available.

Table 2. Probabilities for intergeneric differences (Herennia multipuncta versus Nephilengys malabarensis) in webparameters for each size class (Mann–Whitney U-test, chi-square analysis)

Parameter Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8

Tree circumference < 0.001 < 0.001 0.023 0.024 NA NA 0.157Ladder index < 0.001 0.047 0.046 0.803 NA NA 0.040Side frames 0.646 < 0.001 0.436 0.232 NA NA 0.047Web shape 0.809 0.016 0.265 0.016 NA NA 0.151Presence/absence of hub cup 0.001 < 0.001 < 0.001 < 0.001 NA NA < 0.001Presence/absence of pseudoradii NA NA 0.057 0.016 NA NA < 0.001Presence/absence of retreat < 0.001 < 0.001 < 0.001 < 0.001 NA NA < 0.001Hub displacement 0.044 0.670 0.047 0.893 NA NA 0.024Hub to bark < 0.001 < 0.001 < 0.001 0.007 NA NA 0.044From ground < 0.001 0.005 0.014 1.000 NA NA 0.558

Significant values are shown in bold. NA, not available.

854 M. KUNTNER ET AL.

© 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99, 849–866

Page 7: Ladder webs in orb-web spiders: ontogenetic and ...ezlab.zrc-sazu.si/uploads/2011/05/Kuntneral2010_LadderWebs.pdf · Ladder webs in orb-web spiders: ontogenetic and evolutionary patterns

never significant (second instar: P = 0.756; third:P = 0.853; fourth: P = 0.730).

DISCUSSION

The present study investigated the web architecturesin most ontogenetic stages in two south-east Asiannephilid spiders belonging to the genera Herenniaand Nephilengys. Both utilize tree trunks (Fig. 1), orsometimes other substrates, as websites. However,their web architectures differ considerably. Althoughsmall juvenile webs in both genera are round orbs(Fig. 1C), adult architectures become increasinglyelongate, with extreme ladderness in Herennia(Fig. 1A). Additionally, larger instars in Herennia con-

struct their ladder webs closely adhering to the treeshape; thus, the web is convex, contains the uniquepseudoradii and a hub cup (Kuntner, 2005), andcomes into contact with tree bark (Fig. 1A). On theother hand, larger instars in Nephilengys build wider,planar or concave webs on wider trees, with the lowerpart of the web extending away from the substrate.Their webs are more vertically asymmetric, with thehub displaced towards the top frame, and only comein touch with the substrate at the retreat (Fig. 1D)(Kuntner, 2007). These two different adult architec-tures make it possible for Herennia and Nephilengysto exploit different niches. Although all known Heren-nia are consistently arboricolous (Kuntner, 2005),Nephilengys species are found both on trees andaround houses (Kuntner, 2007). The original micro-habitat for adult Nephilengys is the canopy, wherelarge branches provide shelter for the spider’s retreat,and ample aerial space for the capture web below.Such webs were well pre-adapted for the roofs ofhouses with a high substrate anchoring point suitablefor the retreat, shelter from rain, and an abundanceof flying insect prey around human dwellings.

As predicted for both Herennia and Nephilengys,the LI changed significantly with spider size/age, withlarger spiders building more ladder-shaped webs(Fig. 2). This repeats the pattern observed inClitaetra (Kuntner et al., 2008b; Kuntner & Agnars-son, 2009), the sister clade to all other nephilids(Fig. 4) (Kuntner et al., 2008a). The combined resultspoint to an evolutionary strategy in arboricolousnephilid spiders (grade-lineage Clitaetra–Herennia–Nephilengys; Fig. 4), which enables the growingspider to enlarge its orb web allometrically such thatit may remain on a given tree through ontogeny.

Several studies have compared web shapes usingthe same or equivalent quantifications of verticalelongation, or ladderness (Harmer & Framenau,2008; Kuntner et al., 2008b; Harmer, 2009; Harmer &Herberstein, 2009; Kuntner & Agnarsson, 2009). Sur-prisingly, however, the literature still lacks a cleardefinition of what constitutes a ladder web. Clearly,the extremely elongated aerial web spun by the neo-tropical araneid spider Scoloderus falls into this cat-egory (Eberhard, 1975) as do webs of phylogeneticallyscattered araneoid exemplars such as Tylorida (Rob-inson & Robinson, 1972) and Herennia (Robinson &Lubin, 1979; Kuntner, 2005). We treat as ladder websthose that reach and exceed twice the maximal lengthover maximal width (LI values above 2) and possess(sub)parallel, rather than round, side frames.Although arbitrary, this definition is based on the usein recent literature: in Herennia, the mean LI isbetween 1.5 (second instar) and 3.5 (eight instar); inClitaetra, the mean LI ranges from 1.9 in secondinstar to 4 in eight instar; in adult Telaprocera the

Figure 3. Number of webs with or without hub cup andpseudoradii in Herennia multipuncta: in contrast to juve-nile webs, webs of larger instars exhibited the hub cup andpseudoradii. P-values are probabilities for the differencebetween size classes (contingency tables, chi-squareanalysis).

SPIDER LADDER WEBS 855

© 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99, 849–866

Page 8: Ladder webs in orb-web spiders: ontogenetic and ...ezlab.zrc-sazu.si/uploads/2011/05/Kuntneral2010_LadderWebs.pdf · Ladder webs in orb-web spiders: ontogenetic and evolutionary patterns

mean LI is between 2.4 and 3.1 (Harmer, 2009). Thus,the ontogeny of most ‘ladder-weavers’ starts atLI = 1–2, and then increases to values above 2 inlarger spiders. On the basis of this definition, alsosome Nephilengys instars build ladder webs (LIvalues slightly exceeding 2), although these are not asextremely elongated as the ladder webs in Herennia(LI values between 2 and 4). We consider that the realpattern would be even stronger in large Nephilengys,

which build webs high above the ground (see a trendshown in Fig. 2), and were thus largely inaccessiblefor our study (sixth- and seventh-instar data areparticularly missing).

Phylogenetic evidence suggests that araneoidladder webs evolved repeatedly (Blackledge et al.,2009). Such web architecture may be a specializationto web site or prey type. The former is the case in theAustralian araneid Telaprocera (Harmer & Fra-

Figure 4. Phylogenetic tree summarizing nephilid spider-web evolution, topology and events combined from Blackledgeet al. (2009), Kuntner & Agnarsson (2009) Kuntner et al. (2008a, b) and the present study. The three species investigatedin the present study are highlighted. Nephilid orb web shape is defined as ‘ladder’ in taxa showing a significantontogenetic ladder index increase above the value LI = 2, and (sub)parallel, rather than round, side frames. Web positionis ‘arboricolous’ (i.e. mostly found on tree trunks or utilizing substrate at least for the retreat) versus ‘aerial’ (i.e. notutilizing substrate). ‘Hub eccentricity’ is according to the known hub displacement increase (for details, see text).

856 M. KUNTNER ET AL.

© 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99, 849–866

Page 9: Ladder webs in orb-web spiders: ontogenetic and ...ezlab.zrc-sazu.si/uploads/2011/05/Kuntneral2010_LadderWebs.pdf · Ladder webs in orb-web spiders: ontogenetic and evolutionary patterns

menau, 2008; Harmer, 2009), and the latter in theneotropical Scoloderus (Eberhard, 1975; Stowe, 1978).Stowe (1978) showed that Scoloderus predominantlypreys on moths; hence, the extreme elongation abovethe hub in its aerial web probably acts as an inter-ception device. By contrast, Telaprocera do not spe-cialize on a particular prey, and its substrate-webelongation is plastic and depends on the availablespace (Harmer & Herberstein, 2009). With a species-level phylogeny available (Kuntner et al., 2008a;Kuntner & Coddington, 2009), nephilid spiders nowoffer an opportunity for a clade-wide web comparison(Fig. 4). No nephilid spider is known to specialize ona particular prey (Kuntner et al., 2008b); thus, theadaptation to the web site appears plausible (Kuntneret al., 2008b). Demonstrating an ontogenetic increasein ladderness in Clitaetra, Kuntner et al. (2008b)explained the nephilid ladder web as an adaptation toan arboricolous life history. However, if the Telapro-cera levels of plasticity (Harmer & Herberstein, 2009)were to apply to nephilids, one would expect that theLI and tree circumference would be negatively corre-lated within each size class. In the present study, thiswas not the case for Nephilengys, although the resultsobtained for Herennia are ambiguous. In that case,the correlation was always negative, although thiswas only significant for the third- and fifth-instardata. Thus, although we cannot conclude whetherladderness in Herennia is a consequence of an evolu-tionary constraint versus plasticity, the formerexplains Nephilengys webs better.

Unlike in C. irenae, the hub relative position inHerennia and Nephilengys does not gradually shifttowards the top web frame. Surprisingly, largerHerennia did not show significant increases in HD,but, to some degree, Nephilengys did. Such extremeasymmetry in adult females may have evolved inresponse to female gigantism in derived nephilids(Kuntner & Coddington, 2009) because gravity pre-cludes efficient attacks upwards in heavy-bodiedspiders (Masters & Moffat, 1983; Kuntner et al.,2008b). Herberstein & Heiling (1999) showed thatweight itself could explain vertical orb asymmetry inaraneid spiders. Thus, HD ought to be less phyloge-netically and ontogenetically constrained compared toother web features because the spider size itself isevolutionarily and ontogenetically labile. The lack of atrend in hub asymmetry increase in adult Herenniafemales may be an artefact of too few females in oursample. However, if such a pattern is real, it ques-tions previous hypotheses of the effect of gravity (apRhisiart & Vollrath, 1994; Herberstein & Heiling,1999) and calls for a more complex explanation,perhaps related to web-building costs (Coslovsky &Zschokke, 2009), ecological factors, or phylogeneticconstraints.

Overall, the webs of H. etruscilla and H. multi-puncta did not differ significantly (Table 1), suggest-ing uniformity of Herennia webs (Kuntner, 2005).Similarly, the web ontogeny in N. malabarensisresembled that documented in N. cruentata (Japyassu& Ades, 1998), which supports Nephilengys web con-servatism (Kuntner, 2007). These data support theinvoked nephilid intrageneric web uniformity ingeneral (Kuntner & Agnarsson, 2009). Althoughnephilid web evolution spans four different web mor-photypes (Kuntner et al., 2008a), it appears to be slowand conserved within genera. Such slow changes arecertainly not the rule in araneoid spiders. Eberhardet al. (2008a) showed rapid changes in web architec-tures, suggesting a remarkable evolutionary plastic-ity in the family Theridiidae.

Figure 4 summarizes our current understandingof nephilid web evolution. Regardless of whethernephilids are sister to all other araneoids (Fig. 4)(Kuntner et al., 2008a) or nest within more derivedaraneoid clades (e.g. Blackledge et al., 2009), theancestral nephilid web form is reconstructed as asmall ladder exemplified by Clitaetra (Kuntner,2006; Kuntner et al., 2008b; Kuntner & Agnarsson,2009). Such a modification of the round orb web thusrepresents a reversal back to substrate-dependentarchitecture. Although each genus makes a differentversion, all behaviourally known Clitaetra, Herennia,and Nephilengys make substrate dependent webs,mostly ladders on trees. On the other hand, websof Nephila, phylogenetically sister to Nephilengys,comprise aerial round orbs that only anchor to thesubstrate. The vertical elongation and substratedependence in Nephilengys may be viewed as inter-mediate between substrate-ladders (e.g. Herennia)and aerial orbs (Nephila). Thus, the ancestor to theclade Nephila + Nephilengys probably tended to sec-ondarily ‘lose’ the substrate. The complete freeingfrom the substrate, however, occurred in the ances-tor to all extant Nephila, and this event must haverepresented an evolutionary repeat to the one at theroot of the orbicularian tree (Fig. 4) (Blackledgeet al., 2009). In other words, if the orbicularianancestor invented the aerial orb web, the Nephilaancestor, at a much less inclusive phylogenetic level,reinvented it.

ACKNOWLEDGEMENTS

We thank D. Li, D. Court, C. Koh, J. Woon, L. Yap, E.Tan, J. Koh, and P. Ng for field and/or logistical help,and three anonymous reviewers for their suggestionson how to improve the manuscript. This work wasfunded by the grants to MK from the EuropeanCommunity Sixth Framework Programme (a MarieCurie International Reintegration Grant MIRG-CT-

SPIDER LADDER WEBS 857

© 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99, 849–866

Page 10: Ladder webs in orb-web spiders: ontogenetic and ...ezlab.zrc-sazu.si/uploads/2011/05/Kuntneral2010_LadderWebs.pdf · Ladder webs in orb-web spiders: ontogenetic and evolutionary patterns

2005 036536), the Slovenian Research Agency (grantZ1-7082-0618) and the National University of Sin-gapore (Raffles Museum Fellowship).

REFERENCES

Agnarsson I. 2003. Spider webs as habitat patches – thedistribution of kleptoparasites (Argyrodes, Theridiidae)among host webs (Nephila, Tetragnathidae). Journal ofArachnology 31: 344–349.

Agnarsson I, Coddington JA. 2006. Notes on web and webplasticity and description of the male of Achaearanea hiero-glyphica (Mello-Leitao) (Araneae, Theridiidae). Journal ofArachnology 34: 638–641.

Agnarsson I, Dhinojwala A, Sahni V, Blackledge TA.2009. Spider silk as a novel high performance biomimeticmuscle driven by humidity. Journal of Experimental Biology212: 1989–1993.

ap Rhisiart A, Vollrath F. 1994. Design features of the orbweb of the spider, Araneus diadematus. Behavioral Ecology5: 280–287.

Benjamin SP, Zschokke S. 2003. Webs of theridiid spiders:construction, structure and evolution. Biological Journal ofthe Linnean Society 78: 293–305.

Benjamin SP, Zschokke S. 2004. Homology, behaviour andspider webs: web construction behaviour of Linyphia horten-sis and L. triangularis (Araneae: Linyphiidae) and its evo-lutionary significance. Journal of Evolutionary Biology 17:120–130.

Blackledge TA. 1998. Signal conflict in spider webs driven bypredators and prey. Proceedings of the Royal Society ofLondon Series B, Biological Sciences 265: 1991–1996.

Blackledge TA, Gillespie RG. 2002. Estimation of captureareas of spider orb webs in relation to asymmetry. Journalof Arachnology 30: 70–77.

Blackledge TA, Gillespie RG. 2004. Convergent evolution ofbehavior in an adaptive radiation of Hawaiian web-buildingspiders. Proceedings of the National Academy of Sciences ofthe United States of America 101: 16228–16233.

Blackledge TA, Scharff N, Coddington JA, Szuts T,Wenzel JW, Hayashi CY, Agnarsson I. 2009. Recon-structing web evolution and spider diversification in themolecular era. Proceedings of the National Academy of Sci-ences of the United States of America 106: 5229–5234.

Blackledge TA, Summers AP, Hayashi CY. 2005. Gum-footed lines in black widow cobwebs and the mechanicalproperties of spider capture silk. Zoology 108: 41–46.

Blackledge TA, Swindeman JE, Hayashi CY. 2005. Qua-sistatic and continuous dynamic characterization of themechanical properties of silk from the cobweb of the blackwidow spider Latrodectus hesperus. Journal of Experimen-tal Biology 208: 1937–1949.

Blackledge TA, Zevenbergen JM. 2006. Mesh width influ-ences prey retention in spider orb webs. Ethology 112:1194–1201.

Bond JE, Opell BD. 1998. Testing adaptive radiation andkey innovation hypotheses in spiders. Evolution 52: 403–414.

Coddington J. 1986a. The monophyletic origin of the orbweb. In: Shear WA, ed. Spiders: webs, behavior and evolu-tion. Stanford, CA: Stanford University Press, 319–363.

Coddington JA. 1986b. The monophyletic origin of the orbweb. In: Shear WA, ed. Spiders: webs, behavior,and evolu-tion. Stanford, CA: Stanford University Press, 319–363.

Coddington JA. 1986c. Orb webs in ‘non-orb weaving’ ogre-faced spiders (Araneae: Dinopidae): a question of genealogy.Cladistics 2: 53–67.

Coddington JA. 1989. Spinneret silk spigot morphology:Evidence for the monophyly of orb-weaving spiders, Cyrto-phorinae (Araneidae), and the group Theridiidae plus Nes-ticidae. Journal of Arachnology 17: 71–96.

Coddington JA, Levi HW. 1991. Systematics and evolutionof spiders (Araneae). Annual Review of Ecology and System-atics 22: 565–592.

Coddington J, Sobrevila C. 1987. Web manipulation andtwo stereotyped attack behaviors in the ogre-faced spiderDeinopis spinosus Marx (Araneae, Deinopidae). Journal ofArachnology 15: 213–225.

Coslovsky M, Zschokke S. 2009. Asymmetry in orb-webs:an adaptation to web building costs? Journal of InsectBehavior 22: 29–38.

Craig CL. 2003. Spider webs and silk: tracing evolution frommolecules to genes to phenotypes. New York, NY: OxfordUniversity Press.

Denny M. 1976. Physical properties of spider silks and theirrole in design of orb-webs. Journal of Experimental Biology65: 483–506.

Eberhard WG. 1975. Inverted ladder orb web of Scoloderussp. and intermediate orb of Eustala sp. Araneae – Ara-neidae. Journal of Natural History 9: 93–106.

Eberhard WG. 1977. Rectangular orb webs of Synotaxus(Araneae-Theridiidae). Journal of Natural History 11: 501–507.

Eberhard WG. 1981. Construction behaviour and the distri-bution of tensions in orb webs. Bulletin of the the BritishArachnological Society 5: 189–204.

Eberhard WG. 1982. Behavioural characters for the higherclassification of orb-weaving spiders. Evolution 36: 1067–1095.

Eberhard WG. 1985. The ‘sawtoothed’ orb web of Eustalasp. (Araneae, Araneidae) with a discussion of ontogeneticchanges in spiders’ web-building behavior. Psyche(Cambridge) 92: 105–117.

Eberhard WG. 1986. Web building behavior of anapid, sym-phytognathid and mysmenid spiders (Araneae). Journal ofArachnology 14: 339–356.

Eberhard WG. 1987. Hub construction by Leucauge mariana(Araneae, Araneidae). Bulletin of the British ArachnologicalSociety 7: 128–132.

Eberhard WG. 1990. Early stages of orb construction byPhiloponella vicina, Leucauge mariana, and Nephila clavi-pes (Araneae, Uloboridae and Tetragnathidae), and theirphylogenetic implications. Journal of Arachnology 18: 205–234.

Eberhard WG. 1992. Web construction by Modisimus sp.(Araneae, Pholcidae). Journal of Arachnology 20: 25–34.

858 M. KUNTNER ET AL.

© 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99, 849–866

Page 11: Ladder webs in orb-web spiders: ontogenetic and ...ezlab.zrc-sazu.si/uploads/2011/05/Kuntneral2010_LadderWebs.pdf · Ladder webs in orb-web spiders: ontogenetic and evolutionary patterns

Eberhard WG. 2007. Stabilimenta of Philoponella vicina(Araneae: Uloboridae) and Gasteracantha cancriformis(Araneae: Araneidae): evidence against a prey attractantfunction. Biotropica 39: 216–220.

Eberhard WG, Agnarsson I, Levi HW. 2008a. Web formsand the phylogeny of theridiid spiders (Araneae: Theridi-idae): chaos from order. Systematics and biodiversity 6:415–475.

Eberhard WG, Barrantes G, Madrigal-Brenes R. 2008b.Vestiges of an orb-weaving ancestor? The ‘biogenetic law’and ontogenetic changes in the webs and building behaviorof the black widow spider Latrodectus geometricus (AraneaeTheridiidae). Ethology Ecology & Evolution 20: 211–244.

Forster LM, Forster RR. 1985. A derivative of the orb weband its evolutionary significance. New Zealand Journal ofZoology 12: 455–465.

Garb J, DiMauro T, Vo V, Hayashi C. 2006. Silk genessupport the single origin of orb-webs. Science 312: 1762.

Griswold CE, Coddington JA, Hormiga G, Scharff N.1998. Phylogeny of the orb-web building spiders (Araneae,Orbiculariae: Deinopoidea, Araneoidea). Zoological Journalof the Linnean Society 123: 1–99.

Harmer AMT. 2009. Elongated orb-webs of Australianladder-web spiders (Araneidae: Telaprocera) and the signifi-cance of orb-web elongation. Journal of Ethology 27: 453–460.

Harmer AMT, Framenau VW. 2008. Telaprocera (Araneae:Araneidae), a new genus of Australian orb-web spiders withhighly elongated webs. Zootaxa 59–80.

Harmer AMT, Herberstein ME. 2009. Taking it toextremes: what drives extreme web elongation in Australianladder web spiders (Araneidae: Telaprocera maudae)?Animal Behaviour 78: 499–504.

Harvey MS, Austin AD, Adams M. 2007. The systematicsand biology of the spider genus Nephila (Araneae: Nephil-idae) in the Australasian region. Invertebrate Systematics21: 407–451.

Hayashi CY. 2001. Convergent evolution of sequence ele-ments in spider and insect silk proteins. American Zoologist41: 1468–1468.

Hayashi C, Blackledge TA, Lewis R. 2004. Molecular andmechanical characterization of aciniform silk: uniformity ofiterated sequence modules in a novel member of the spidersilk fibroin gene family. Molecular Biology and Evolution21: 1950–1959.

Hayashi CY, Lewis RV. 2000. Molecular architecture andevolution of a modular spider silk protein gene. Science 287:1477–1479.

Herberstein ME, Heiling AM. 1998. Does mesh heightinfluence prey length in orb-web spiders (Araneae)? Euro-pean Journal of Entomology 95: 367–371.

Herberstein ME, Heiling AM. 1999. Asymmetry in spiderorb webs: a result of physical constraints? Animal Behav-iour 58: 1241–1246.

Higgins L. 1992. Developmental changes in barrier webstructure under different levels of predation risk in Nephilaclavipes (Araneae, Tetragnathidae). Journal of InsectBehavior 5: 635–655.

Higgins L. 2006. Quantitative shifts in orb-web investmentduring development in Nephila clavipes (Araneae, Nephil-idae). Journal of Arachnology 34: 374–386.

Higgins LE, Buskirk RE. 1992. A trap-building predatorexhibits different tactics for different aspects of foragingbehavior. Animal Behaviour 44: 485–499.

Japyassu HF, Ades C. 1998. From complete orb to semi-orbwebs: developmental transitions in the web of Nephilengyscruentata (Araneae: Tetragnathidae). Behaviour 135: 931–956.

Japyassu HF, Caires RA. 2008. Hunting tactics in a cobwebspider (Araneae-Theridiidae) and the evolution of behav-ioral plasticity. Journal of Insect Behavior 21: 258–284.

Kuntner M. 2005. A revision of Herennia (Araneae: Nephil-idae: Nephilinae), the Australasian ‘coin spiders. Inverte-brate Systematics 19: 391–436.

Kuntner M. 2006. Phylogenetic systematics of the Gond-wanan nephilid spider lineage Clitaetrinae (Araneae,Nephilidae). Zoologica Scripta 35: 19–62.

Kuntner M. 2007. A monograph of Nephilengys, the pantropi-cal ‘hermit spiders’ (Araneae, Nephilidae, Nephilinae). Sys-tematic Entomology 32: 95–135.

Kuntner M, Agnarsson I. 2009. Phylogeny accurately pre-dicts behaviour in Indian Ocean Clitaetra spiders (Araneae:Nephilidae). Invertebrate Systematics 23: 193–204.

Kuntner M, Coddington JA. 2009. Discovery of the largestorbweaving spider species: the evolution of gigantism inNephila. PLoS ONE 4: e7516.

Kuntner M, Coddington JA, Hormiga G. 2008a. Phy-logeny of extant nephilid orb-weaving spiders (Araneae,Nephilidae): testing morphological and ethological homolo-gies. Cladistics 24: 147–217.

Kuntner M, Haddad CR, Aljancic G, Blejec A. 2008b.Ecology and web allometry of Clitaetra irenae, an arbori-colous African orb-weaving spider (Araneae, Araneoidea,Nephilidae). Journal of Arachnology 36: 583–594.

Li D. 2005. Spiders that decorate their webs at higher fre-quency intercept more prey and grow faster. Proceedings ofthe Royal Society of London Series B, Biological Sciences272: 1753–1757.

Masters WM, Moffat AJM. 1983. A functional explanation oftop-bottom asymmetry in vertical orbwebs. Animal Behav-iour 31: 1043–1046.

Opell BD, Schwend HS. 2009. Adhesive efficiency of spiderprey capture threads. Zoology 112: 16–26.

Robinson MH, Lubin YD. 1979. Specialists and generalists:the ecology and behavior of some web-building spiders fromPapua New Guinea, 2. Psechrus argentatus and Fecenia sp.(Araneae: Psechridae). Pacific Insects 21: 133–164.

Robinson MH, Robinson B. 1972. The structure, possiblefunction and origin of the remarkable ladder-web built by aNew-Guinea orbweb spider (Araneae: Araneidae). Journalof Natural History 6: 687–694.

Rypstra AL. 1982. Building a better insect trap – an experi-mental investigation of prey capture in a variety of spiderwebs. Oecologia 52: 31–36.

Scharff N, Coddington JA. 1997. A phylogenetic analysisof the orb-weaving spider family Araneidae (Arachnida,

SPIDER LADDER WEBS 859

© 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99, 849–866

Page 12: Ladder webs in orb-web spiders: ontogenetic and ...ezlab.zrc-sazu.si/uploads/2011/05/Kuntneral2010_LadderWebs.pdf · Ladder webs in orb-web spiders: ontogenetic and evolutionary patterns

Araneae). Zoological Journal of the Linnean Society 120:355–434.

Schuck Paim C. 2000. Orb-webs as extended-phenotypes:web design and size assessment in contests betweenNephilengys cruentata females (Araneae: Tetragnathidae).Behaviour 137: 1331–1347.

Shear WA, ed. 1986. Spiders, webs, behavior, and evolution.Stanford, CA: Stanford University Press.

Stowe MK. 1978. Observations of two nocturnal orbweaversthat build specialized webs: Scoloderus cordatus and Wixiaectypa (Araneae: Araneidae). Journal of Arachnology 6:141–146.

Toft S. 1987. Microhabitat identity of two species of sheet-webspiders, field experimental demonstration. Oecologia 72:216–220.

Tso IM. 1996. Stabilimentum of the garden spider Argiopetrifasciata: a possible prey attractant. Animal Behaviour 52:183–191.

Tso IM. 1998a. Isolated spider web stabilimentum attractsinsects. Behaviour 135: 311–319.

Tso IM. 1998b. Stabilimentum-decorated webs spun byCyclosa conica (Araneae, Araneidae) trapped more insects

than undecorated webs. Journal of Arachnology 26: 101–105.

Tso IM, Jiang SY, Blackledge TA. 2007. Does the giantwood spider Nephila pilipes respond to prey variation byaltering web or silk properties? Ethology 113: 324–333.

Vollrath F, Selden P. 2007. The role of behavior in theevolution of spiders, silks, and webs. Annual Review ofEcology Evolution and Systematics 38: 819–846.

Wise DH. 1993. Spiders in ecological webs. Cambridge: Cam-bridge University Press.

Zschokke S. 1993. The influence of the auxiliary spiral onthe capture spiral in Araneus diadematus Clerck (Ara-neidae). Bulletin of the British Arachnological Society 9:169–173.

Zschokke S. 1999. Nomenclature of the orb-web. Journal ofArachnology 27: 542–546.

Zschokke S. 2003. Spider-web silk from the Early Creta-ceous. Nature (London) 424: 636–637.

Zschokke S, Henaut Y, Benjamin SP, Garcia-BallinasJA. 2006. Prey-capture strategies in sympatric web-building spiders. Canadian Journal of Zoology – RevueCanadienne De Zoologie 84: 964–973.

860 M. KUNTNER ET AL.

© 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99, 849–866

Page 13: Ladder webs in orb-web spiders: ontogenetic and ...ezlab.zrc-sazu.si/uploads/2011/05/Kuntneral2010_LadderWebs.pdf · Ladder webs in orb-web spiders: ontogenetic and evolutionary patterns

AP

PE

ND

IX

Tab

leA

1.E

colo

gica

lan

dw

ebda

tafo

rth

eth

ree

nep

hil

idsp

ider

spec

ies

stu

died

inS

outh

east

Asi

a.

Species

Bark

Treecircumference(cm)

Canopy

Sizeclass

Width(cm)

Height(cm)

Toptohub(cm)

Hubtobark(mm)

Fromground(cm)

Sideframes

Webshape

Hubcup

Pseudoradii

Retreat

Weborientation

Her

enn

iaet

rusc

ila

Med

ium

135.

0O

pen

820

.080

.022

.50.

010

3.0

Su

bpar

alle

lP

lan

arYe

sYe

sN

oE

ast

Med

ium

92.0

Par

tial

ly3

6.0

10.5

4.5

0.0

195.

0S

ubp

aral

lel

Pla

nar

Yes

No

No

Sou

thw

est

14.0

37.0

13.0

0.0

No

Rou

gh27

9.0

Par

tial

ly8

30.0

58.5

26.0

0.0

223.

0S

ubp

aral

lel

Cu

rved

Yes

Yes

No

Eas

tR

ough

142.

0P

arti

ally

618

.561

.029

.00.

072

.0S

ubp

aral

lel

Cu

rved

Yes

Yes

No

Nor

thea

stR

ough

114.

0P

arti

ally

619

.046

.026

.00.

011

2.0

Su

bpar

alle

lC

urv

edYe

sYe

sN

oN

orth

east

Sm

ooth

77.0

Par

tial

ly6

12.5

66.5

32.0

0.0

183.

0P

aral

lel

Cu

rved

Yes

Yes

No

Nor

thea

stR

ough

147.

0P

arti

ally

311

.024

.513

.50.

016

2.0

Rou

nd

Pla

nar

Yes

No

No

Eas

tR

ough

117.

0O

pen

414

.028

.010

.50.

019

8.0

Su

bpar

alle

lC

urv

edYe

sYe

sN

oN

orth

east

Med

ium

157.

0O

pen

520

.035

.016

.00.

020

5.0

Su

bpar

alle

lC

urv

edYe

sYe

sN

oE

ast

Med

ium

157.

0O

pen

410

.031

.013

.00.

022

5.0

Par

alle

lC

urv

edYe

sYe

sN

oN

orth

east

Rou

gh16

5.0

Clo

sed

48.

517

.58.

30.

023

2.0

Su

bpar

alle

lC

urv

edYe

sN

oN

oS

outh

Rou

gh15

5.0

Par

tial

ly4

7.5

22.5

12.0

0.0

185.

0S

ubp

aral

lel

Pla

nar

Yes

Yes

No

Wes

t5

Sm

ooth

83.0

Par

tial

ly5

Sm

ooth

83.0

Par

tial

ly5

Sm

ooth

83.0

Par

tial

ly6

9.0

32.0

14.0

0.0

225.

0S

moo

th83

.0P

arti

ally

5R

ough

302.

0P

arti

ally

39.

014

.07.

50.

013

0.0

Rou

nd

Pla

nar

Yes

Yes

No

Nor

thea

stR

ough

302.

0P

arti

ally

24.

79.

04.

38.

015

4.0

Rou

nd

Pla

nar

No

No

No

Nor

thea

stR

ough

82.0

Par

tial

ly3

7.0

18.0

7.5

12.0

102.

0S

ubp

aral

lel

Pla

nar

No

No

No

Nor

thw

est

Med

ium

113.

0P

arti

ally

34.

412

.55.

50.

015

4.0

Par

alle

lP

lan

arYe

sYe

sN

oE

ast

Med

ium

97.0

Par

tial

ly3

5.5

14.0

5.1

2.0

203.

0S

ubp

aral

lel

Cu

rved

No

No

No

Sou

thR

ough

127.

0P

arti

ally

48.

412

.95.

10.

020

9.0

Rou

nd

Cu

rved

Yes

Yes

No

Nor

thR

ough

170.

0P

arti

ally

49.

027

.09.

50.

025

0.0

Su

bpar

alle

lP

lan

arN

oN

oN

oN

orth

east

Med

ium

140.

0P

arti

ally

36.

78.

63.

10.

024

2.0

Rou

nd

Pla

nar

Yes

No

No

Sou

th

Her

enn

iam

ult

ipu

nct

aR

ough

184.

0P

arti

ally

837

.010

0.0

40.0

0.0

245.

0S

ubp

aral

lel

Cu

rved

Yes

Yes

No

Nor

thw

est

Rou

gh18

4.0

Par

tial

ly2

4.8

8.0

3.7

6.0

174.

0R

oun

dP

lan

arN

oN

oN

oN

orth

wes

tR

ough

184.

0P

arti

ally

26.

58.

33.

50.

018

6.0

Rou

nd

Cu

rved

Yes

No

No

Wes

tR

ough

184.

0P

arti

ally

36.

814

.78.

20.

016

1.0

Su

bpar

alle

lP

lan

arYe

sN

oN

oW

est

Rou

gh18

4.0

Par

tial

ly3

4.3

14.2

7.2

0.0

144.

0P

aral

lel

Pla

nar

Yes

No

No

Nor

thw

est

Rou

gh18

4.0

Par

tial

ly3

3.9

6.4

1.8

0.0

129.

0R

oun

dP

lan

arYe

sN

oN

oW

est

Rou

gh18

4.0

Par

tial

ly3

5.5

8.5

2.9

0.0

160.

0*

Pla

nar

Yes

No

No

Sou

thw

est

Rou

gh18

4.0

Par

tial

ly4

6.0

15.0

6.5

0.0

114.

0S

ubp

aral

lel

Pla

nar

Yes

No

No

Sou

thw

est

Rou

gh18

4.0

Par

tial

ly4

8.1

9.2

4.8

0.0

160.

0R

oun

dP

lan

arYe

sN

oN

oS

outh

wes

tR

ough

184.

0P

arti

ally

25.

16.

73.

54.

012

3.0

Rou

nd

Pla

nar

No

No

No

Nor

thR

ough

184.

0P

arti

ally

511

.521

.09.

60.

073

.0S

ubp

aral

lel

Cu

rved

Yes

Yes

No

Nor

thw

est

Rou

gh18

4.0

Par

tial

ly5

12.3

26.6

10.3

0.0

202.

0S

ubp

aral

lel

Cu

rved

Yes

Yes

No

Nor

thw

est

Rou

gh18

4.0

Par

tial

ly3

6.0

10.1

3.8

0.0

168.

0S

ubp

aral

lel

Pla

nar

Yes

No

No

Sou

thR

ough

184.

0P

arti

ally

47.

09.

06.

00.

021

7.0

Rou

nd

Pla

nar

Yes

No

No

Nor

thw

est

SPIDER LADDER WEBS 861

© 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99, 849–866

Page 14: Ladder webs in orb-web spiders: ontogenetic and ...ezlab.zrc-sazu.si/uploads/2011/05/Kuntneral2010_LadderWebs.pdf · Ladder webs in orb-web spiders: ontogenetic and evolutionary patterns

Tab

leA

1.C

onti

nu

ed

Species

Bark

Treecircumference(cm)

Canopy

Sizeclass

Width(cm)

Height(cm)

Toptohub(cm)

Hubtobark(mm)

Fromground(cm)

Sideframes

Webshape

Hubcup

Pseudoradii

Retreat

Weborientation

Rou

gh18

4.0

Par

tial

ly3

5.1

5.0

2.5

0.0

188.

0R

oun

dP

lan

arYe

sN

oN

oS

outh

wes

tR

ough

184.

0P

arti

ally

37.

08.

65.

10.

020

0.0

Rou

nd

Pla

nar

Yes

No

No

Sou

thw

est

Rou

gh18

4.0

Par

tial

ly3

6.4

11.2

8.0

0.0

209.

0S

ubp

aral

lel

Pla

nar

Yes

No

No

Sou

thR

ough

184.

0P

arti

ally

34.

912

.05.

60.

021

9.0

Su

bpar

alle

lP

lan

arYe

sN

oN

oS

outh

Rou

gh18

4.0

Par

tial

ly8

Med

ium

100.

0P

arti

ally

23.

13.

61.

60.

020

0.0

Rou

nd

Pla

nar

Yes

No

No

Nor

thea

stS

moo

th11

0.0

Par

tial

ly2

5.7

7.1

3.7

15.0

108.

0R

oun

dP

lan

arN

oN

oN

oS

outh

east

Sm

ooth

110.

0P

arti

ally

26.

59.

54.

55.

017

9.0

Rou

nd

Pla

nar

No

No

No

Sou

thea

stS

moo

th11

0.0

Par

tial

ly2

5.5

9.5

5.0

6.0

245.

0S

ubp

aral

lel

Pla

nar

No

No

No

Eas

tS

moo

th11

0.0

Par

tial

ly2

5.0

12.5

5.1

2.0

138.

0P

aral

lel

Pla

nar

No

No

No

Nor

thR

ough

350.

0P

arti

ally

26.

015

.08.

05.

075

.0S

ubp

aral

lel

Pla

nar

No

No

No

Sou

thea

stR

ough

350.

0P

arti

ally

25.

08.

54.

515

.013

5.0

Su

bpar

alle

lP

lan

arN

oN

oN

oN

orth

wes

tS

moo

th10

8.0

Par

tial

ly2

6.5

12.0

7.0

12.0

160.

0S

ubp

aral

lel

Pla

nar

No

No

No

Sou

thM

ediu

m75

.0C

lose

d2

4.0

9.5

4.2

6.0

160.

0S

ubp

aral

lel

Pla

nar

No

No

No

Sou

thw

est

Med

ium

100.

0P

arti

ally

35.

512

.56.

50.

014

8.0

Su

bpar

alle

lC

urv

edYe

sN

oN

oN

orth

east

Med

ium

100.

0P

arti

ally

36.

58.

04.

00.

016

6.0

Su

bpar

alle

lC

urv

edYe

sN

oN

oN

orth

east

Med

ium

103.

0P

arti

ally

37.

011

.06.

00.

024

0.0

Su

bpar

alle

lC

urv

edYe

sN

oN

oE

ast

Sm

ooth

110.

0P

arti

ally

310

.016

.07.

518

.014

2.0

Rou

nd

Pla

nar

No

No

No

Sou

thea

stR

ough

350.

0P

arti

ally

37.

410

.04.

50.

062

.0R

oun

dP

lan

arYe

sN

oN

oN

orth

east

Rou

gh35

0.0

Par

tial

ly3

5.0

6.5

3.0

0.0

163.

0R

oun

dC

urv

edYe

sN

oN

oN

orth

east

Rou

gh35

0.0

Par

tial

ly3

7.0

9.0

4.5

0.0

163.

0R

oun

dC

urv

edYe

sN

oN

oN

orth

Med

ium

100.

0P

arti

ally

49.

023

.510

.511

.022

0.0

Su

bpar

alle

lP

lan

arN

oN

oN

oN

orth

east

Med

ium

100.

0P

arti

ally

47.

018

.09.

09.

021

4.0

Su

bpar

alle

lP

lan

arN

oN

oN

oE

ast

Rou

gh10

9.0

Par

tial

ly4

5.5

7.0

4.0

0.0

137.

0R

oun

dC

urv

edYe

sN

oN

oS

outh

wes

tM

ediu

m34

0.0

Clo

sed

48.

017

.010

.00.

019

2.0

Su

bpar

alle

lC

urv

edYe

sN

oN

oN

orth

Sm

ooth

75.0

Ope

n5

11.0

39.0

16.5

0.0

202.

0P

aral

lel

Cu

rved

Yes

Yes

No

Sou

thS

moo

th75

.0O

pen

610

.055

.018

.00.

010

5.0

Par

alle

lC

urv

edYe

sYe

sN

oS

outh

Med

ium

210.

0C

lose

d2

8.0

7.0

4.0

5.0

78.0

Rou

nd

Pla

nar

No

No

No

Nor

thw

est

Med

ium

210.

0C

lose

d3

6.8

14.0

5.7

6.0

100.

0S

ubp

aral

lel

Pla

nar

No

No

No

Wes

tM

ediu

m21

0.0

Clo

sed

25.

313

.26.

26.

062

.0S

ubp

aral

lel

Pla

nar

No

No

No

Sou

thw

est

Med

ium

210.

0C

lose

d2

8.1

11.1

5.7

3.0

156.

0R

oun

dP

lan

arN

oN

oN

oS

outh

wes

tM

ediu

m21

0.0

Clo

sed

24.

011

.06.

05.

021

1.0

Par

alle

lP

lan

arN

oN

oN

oS

outh

Med

ium

210.

0C

lose

d2

2.3

7.1

2.9

0.0

173.

0P

aral

lel

Cu

rved

Yes

No

No

Sou

thM

ediu

m21

0.0

Clo

sed

26.

211

.54.

03.

019

9.0

Su

bpar

alle

lP

lan

arN

oN

oN

oS

outh

Med

ium

210.

0C

lose

d3

6.0

11.0

5.5

0.0

225.

0R

oun

dP

lan

arYe

sN

oN

oS

outh

Med

ium

210.

0C

lose

d3

6.0

8.5

5.8

0.0

147.

0S

ubp

aral

lel

Cu

rved

Yes

No

No

Sou

thea

stM

ediu

m21

0.0

Clo

sed

27.

68.

23.

63.

017

7.0

Rou

nd

Pla

nar

No

No

No

Sou

thea

stM

ediu

m21

0.0

Clo

sed

35.

011

.06.

00.

017

2.0

Su

bpar

alle

lP

lan

arYe

sN

oN

oE

ast

Med

ium

210.

0C

lose

d2

4.7

9.2

5.0

0.0

206.

0S

ubp

aral

lel

Pla

nar

Yes

No

No

Eas

tM

ediu

m21

0.0

Clo

sed

37.

112

.66.

09.

017

5.0

Su

bpar

alle

lP

lan

arN

oN

oN

oS

outh

wes

tM

ediu

m12

0.0

Par

tial

ly3

7.0

18.5

6.0

0.0

180.

0P

aral

lel

Cu

rved

Yes

No

No

Nor

thw

est

Med

ium

120.

0P

arti

ally

37.

112

.56.

52.

014

5.0

Su

bpar

alle

lP

lan

arN

oN

oN

oN

orth

wes

tM

ediu

m12

0.0

Par

tial

ly2

6.0

10.8

5.7

3.0

146.

0S

ubp

aral

lel

Pla

nar

No

No

No

Sou

thw

est

Med

ium

120.

0P

arti

ally

24.

610

.14.

44.

019

0.0

Su

bpar

alle

lP

lan

arN

oN

oN

oS

outh

wes

t

862 M. KUNTNER ET AL.

© 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99, 849–866

Page 15: Ladder webs in orb-web spiders: ontogenetic and ...ezlab.zrc-sazu.si/uploads/2011/05/Kuntneral2010_LadderWebs.pdf · Ladder webs in orb-web spiders: ontogenetic and evolutionary patterns

Med

ium

127.

0P

arti

ally

48.

023

.49.

03.

021

8.0

Su

bpar

alle

lP

lan

arN

oN

oN

oS

outh

east

Med

ium

162.

0P

arti

ally

29.

513

.05.

55.

0S

ubp

aral

lel

Pla

nar

No

No

No

Nor

thw

est

Rou

gh15

0.0

Clo

sed

310

.515

.06.

516

.019

0.0

Rou

nd

Pla

nar

No

No

No

Eas

tR

ough

150.

0C

lose

d3

6.5

14.0

6.2

5.0

230.

0R

oun

dP

lan

arN

oN

oN

oE

ast

sou

thea

stM

ediu

m22

7.0

Clo

sed

26.

07.

53.

08.

015

0.0

Rou

nd

Pla

nar

No

No

No

Sou

thM

ediu

m22

7.0

Clo

sed

27.

510

.56.

07.

012

5.0

Rou

nd

Pla

nar

No

No

No

Sou

thM

ediu

m22

7.0

Clo

sed

27.

010

.05.

09.

010

0.0

Rou

nd

Pla

nar

No

No

No

Sou

thM

ediu

m22

7.0

Clo

sed

27.

19.

04.

08.

018

0.0

Rou

nd

Pla

nar

No

No

No

Sou

thM

ediu

m22

7.0

Clo

sed

25.

57.

53.

711

.017

5.0

Rou

nd

Pla

nar

No

No

No

Nor

thea

stM

ediu

m22

7.0

Clo

sed

311

.517

.07.

212

.0R

oun

dP

lan

arN

oN

oN

oW

est

Med

ium

227.

0C

lose

d3

6.0

12.5

6.9

5.0

167.

0S

ubp

aral

lel

Pla

nar

No

No

No

Eas

tR

ough

135.

0P

arti

ally

25.

513

.25.

616

.019

8.0

Su

bpar

alle

lP

lan

arN

oN

oN

oS

outh

east

Med

ium

157.

0P

arti

ally

26.

78.

03.

95.

013

7.0

Rou

nd

Pla

nar

No

No

No

Nor

thw

est

Med

ium

157.

0P

arti

ally

26.

08.

13.

517

.013

2.0

Rou

nd

Pla

nar

No

No

No

Wes

tS

moo

th94

.0P

arti

ally

25.

39.

54.

13.

018

3.0

Su

bpar

alle

lP

lan

arN

oN

oN

oN

orth

Med

ium

135.

0P

arti

ally

25.

68.

55.

012

.021

6.0

Rou

nd

Pla

nar

No

No

No

Nor

thw

est

Med

ium

135.

0P

arti

ally

24.

58.

53.

76.

012

6.0

Rou

nd

Pla

nar

No

No

No

Nor

thM

ediu

m12

0.0

Clo

sed

25.

010

.04.

00.

021

0.0

Par

alle

lP

lan

arYe

sN

oN

oN

orth

Med

ium

296.

0C

lose

d2

8.0

10.4

4.4

8.0

198.

0R

oun

dP

lan

arN

oN

oN

oS

outh

wes

tM

ediu

m95

.0P

arti

ally

39.

012

.55.

50.

017

7.0

Su

bpar

alle

lP

lan

arYe

sN

oN

oS

outh

east

Med

ium

157.

0P

arti

ally

36.

112

.56.

50.

020

0.0

Su

bpar

alle

lC

urv

edYe

sN

oN

oN

orth

wes

tS

moo

th94

.0P

arti

ally

36.

67.

68.

55.

095

.0S

ubp

aral

lel

Pla

nar

No

No

No

Nor

thw

est

Med

ium

122.

0P

arti

ally

39.

521

.510

.011

.011

5.0

Su

bpar

alle

lP

lan

arN

oN

oN

oS

outh

Med

ium

122.

0P

arti

ally

410

.021

.010

.00.

024

0.0

Su

bpar

alle

lP

lan

arYe

sYe

s?N

oS

outh

Sm

ooth

73.0

Par

tial

ly3

6.5

16.0

7.3

5.8

132.

0S

ubp

aral

lel

Pla

nar

No

No

No

Sm

ooth

95.0

Par

tial

ly3

3.6

18.0

8.0

5.0

180.

0P

aral

lel

Pla

nar

No

No

No

Sm

ooth

44.0

Par

tial

ly6

7.5

26.0

16.0

0.0

260.

0P

aral

lel

Cu

rved

Yes

Yes

No

Med

ium

102.

0P

arti

ally

716

.072

.021

.00.

018

0.0

Par

alle

lC

urv

edYe

sYe

sN

oM

ediu

m10

0.0

Par

tial

ly3

8.0

15.0

5.5

5.0

230.

0S

ubp

aral

lel

Pla

nar

No

No

No

Eas

tM

ediu

m60

.0P

arti

ally

35.

815

.05.

04.

023

0.0

Par

alle

lP

lan

arN

oN

oN

oN

orth

east

Med

ium

67.0

Par

tial

ly3

4.9

19.1

9.8

4.0

200.

0P

aral

lel

Pla

nar

No

No

No

Sou

thea

stM

ediu

m93

.0P

arti

ally

48.

031

.015

.00.

010

5.0

Par

alle

lP

lan

arYe

sYe

sN

oN

orth

east

Med

ium

143.

0P

arti

ally

511

.030

.014

.00.

024

5.0

Par

alle

lC

urv

edYe

sYe

sN

oS

outh

wes

tM

ediu

m70

.0P

arti

ally

620

.050

.015

.00.

023

7.0

Par

alle

lC

urv

edYe

sYe

sN

oS

outh

Med

ium

124.

0P

arti

ally

48.

519

.08.

50.

019

0.0

Su

bpar

alle

lP

lan

arYe

sN

oN

oN

orth

east

Med

ium

112.

0P

arti

ally

75.

826

.08.

00.

022

4.0

Par

alle

lC

urv

edYe

s?

No

Sou

thS

moo

th73

.0P

arti

ally

715

.053

.022

.00.

097

.0P

aral

lel

Cu

rved

Yes

Yes

No

Sou

thw

est

Rou

gh21

8.0

Clo

sed

512

.529

.013

.00.

015

0.0

Su

bpar

alle

lP

lan

arYe

sN

oN

oW

est

Nep

hil

engy

sm

alab

aren

sis

Med

ium

340.

0C

lose

d3

10.0

22.5

11.5

11.0

103.

0S

ubp

aral

lel

Pla

nar

No

No

Cen

tral

Nor

thw

est

Med

ium

236.

0C

lose

d4

15.0

23.0

13.0

25.0

102.

0R

oun

dP

lan

arN

oN

oL

ater

alW

est

Med

ium

340.

0C

lose

d5

16.0

38.0

16.0

110.

022

4.0

Su

bpar

alle

lP

lan

arN

oN

oC

entr

alN

orth

wes

tR

ough

400.

0C

lose

d5

21.0

51.0

24.5

60.0

141.

0S

ubp

aral

lel

Pla

nar

No

No

Cen

tral

Eas

tO

pen

825

.032

.00.

030

.020

5.0

Su

bpar

alle

lP

lan

arN

oN

oC

entr

alS

outh

wes

tR

ough

121.

0P

arti

ally

310

.329

.213

.536

.013

0.0

Su

bpar

alle

lP

lan

arN

oN

oC

entr

alN

orth

wes

tS

moo

th67

.0P

arti

ally

412

.122

.010

.020

.013

8.0

Su

bpar

alle

lC

urv

edN

oN

oL

ater

alW

est

Rou

gh19

7.0

Clo

sed

210

.09.

53.

529

.016

6.0

Rou

nd

Pla

nar

No

No

Cen

tral

Sou

thea

stR

ough

197.

0C

lose

d3

16.0

24.5

11.0

43.0

187.

0R

oun

dP

lan

arN

oN

oC

entr

alS

outh

east

Rou

gh19

7.0

Clo

sed

315

.528

.713

.040

.019

0.0

Su

bpar

alle

lC

urv

edN

oN

oC

entr

alS

outh

east

Rou

gh19

7.0

Clo

sed

316

.025

.59.

020

.010

5.0

Pla

nar

No

No

Cen

tral

Sou

thea

stR

ough

197.

0C

lose

d3

8.0

14.5

6.0

38.0

212.

0P

lan

arN

oN

oC

entr

alW

est

Med

ium

303.

0P

arti

ally

26.

29.

14.

417

.018

0.0

Su

bpar

alle

lP

lan

arN

oN

oC

entr

alS

outh

wes

tM

ediu

m30

3.0

Par

tial

ly2

7.8

7.2

3.2

163.

0R

oun

dP

lan

arN

oN

oC

entr

alS

outh

wes

t

SPIDER LADDER WEBS 863

© 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99, 849–866

Page 16: Ladder webs in orb-web spiders: ontogenetic and ...ezlab.zrc-sazu.si/uploads/2011/05/Kuntneral2010_LadderWebs.pdf · Ladder webs in orb-web spiders: ontogenetic and evolutionary patterns

Tab

leA

1.C

onti

nu

ed

Species

Bark

Treecircumference(cm)

Canopy

Sizeclass

Width(cm)

Height(cm)

Toptohub(cm)

Hubtobark(mm)

Fromground(cm)

Sideframes

Webshape

Hubcup

Pseudoradii

Retreat

Weborientation

Med

ium

303.

0P

arti

ally

210

.510

.53.

785

.010

6.0

Rou

nd

Pla

nar

No

No

Cen

tral

Sou

thw

est

Med

ium

303.

0P

arti

ally

28.

19.

52.

548

.019

5.0

Rou

nd

Pla

nar

No

No

Cen

tral

Sou

thM

ediu

m30

3.0

Par

tial

ly2

6.0

7.1

1.5

28.0

88.0

Su

bpar

alle

lP

lan

arN

oN

oC

entr

alW

est

Med

ium

303.

0P

arti

ally

27.

511

.83.

628

.062

.0R

oun

dP

lan

arN

oN

oC

entr

alW

est

Med

ium

303.

0P

arti

ally

27.

514

.04.

216

.060

.0R

oun

dP

lan

arN

oN

oC

entr

alN

orth

wes

tM

ediu

m30

3.0

Par

tial

ly2

8.5

11.0

6.0

12.0

150.

0R

oun

dP

lan

arN

oN

oC

entr

alN

orth

Med

ium

303.

0P

arti

ally

27.

710

.54.

715

.011

7.0

Su

bpar

alle

lP

lan

arN

oN

oC

entr

alN

orth

Med

ium

303.

0P

arti

ally

26.

78.

54.

146

.064

.0R

oun

dP

lan

arN

oN

oC

entr

alN

orth

east

Med

ium

303.

0P

arti

ally

25.

05.

52.

541

.082

.0R

oun

dP

lan

arN

oN

oC

entr

alN

orth

east

Med

ium

303.

0P

arti

ally

25.

09.

05.

036

.010

6.0

Su

bpar

alle

lP

lan

arN

oN

oC

entr

alN

orth

east

Med

ium

303.

0P

arti

ally

28.

011

.56.

014

.014

4.0

Rou

nd

Pla

nar

No

No

Cen

tral

Nor

thea

stM

ediu

m29

2.0

Par

tial

ly2

6.5

8.0

3.7

17.0

73.0

Rou

nd

Pla

nar

No

No

Cen

tral

Nor

thw

est

Med

ium

292.

0P

arti

ally

27.

512

.55.

036

.077

.0S

ubp

aral

lel

Pla

nar

No

No

Cen

tral

Sou

thw

est

Med

ium

292.

0P

arti

ally

29.

512

.05.

017

.017

2.0

Rou

nd

Pla

nar

No

No

Cen

tral

Sou

thw

est

Med

ium

292.

0P

arti

ally

26.

58.

03.

221

.012

0.0

Rou

nd

Pla

nar

No

No

Cen

tral

Sou

thw

est

Med

ium

292.

0P

arti

ally

27.

78.

64.

235

.011

0.0

Rou

nd

Pla

nar

No

No

Cen

tral

Sou

thw

est

Med

ium

292.

0P

arti

ally

27.

810

.53.

637

.078

.0R

oun

dP

lan

arN

oN

oC

entr

alS

outh

east

Med

ium

66.0

Par

tial

ly2

5.2

6.8

2.3

31.0

190.

0R

oun

dP

lan

arN

oN

oC

entr

alN

orth

tM

ediu

m66

.0P

arti

ally

27.

09.

04.

525

.021

6.0

Rou

nd

Pla

nar

No

No

Cen

tral

Nor

thw

est

Med

ium

66.0

Par

tial

ly2

5.5

9.5

4.0

28.0

105.

0S

ubp

aral

lel

Pla

nar

No

No

Cen

tral

Sou

thea

stS

moo

th77

.0P

arti

ally

27.

510

.05.

016

.075

.0R

oun

dP

lan

arN

oN

oC

entr

alS

outh

east

Sm

ooth

77.0

Par

tial

ly2

7.1

7.2

3.9

20.0

125.

0R

oun

dP

lan

arN

oN

oC

entr

alS

outh

east

Med

ium

197.

0P

arti

ally

28.

19.

23.

024

.050

.0R

oun

dP

lan

arN

oN

oC

entr

alN

orth

Med

ium

197.

0P

arti

ally

23.

58.

03.

015

.045

.0S

ubp

aral

lel

Pla

nar

No

No

Cen

tral

Wes

tM

ediu

m19

7.0

Par

tial

ly2

6.2

7.5

4.5

20.0

36.0

Rou

nd

Pla

nar

No

No

Cen

tral

Wes

tM

ediu

m27

3.0

Par

tial

ly2

6.5

9.0

3.5

50.0

117.

0R

oun

dP

lan

arN

oN

oC

entr

alN

orth

Rou

gh18

3.0

Par

tial

ly2

7.0

10.0

5.2

23.0

73.0

Rou

nd

Pla

nar

No

No

Cen

tral

Eas

tR

ough

183.

0P

arti

ally

25.

55.

01.

525

.022

.0R

oun

dP

lan

arN

oN

oC

entr

alS

outh

east

Rou

gh18

3.0

Par

tial

ly2

7.0

9.5

3.0

16.0

38.0

Rou

nd

Pla

nar

No

No

Cen

tral

Nor

thR

ough

315.

0P

arti

ally

25.

58.

53.

310

.010

5.0

Rou

nd

Pla

nar

No

No

Cen

tral

Wes

tR

ough

315.

0P

arti

ally

27.

59.

54.

065

.095

.0R

oun

dP

lan

arN

oN

oC

entr

alN

orth

wes

tR

ough

315.

0P

arti

ally

26.

07.

24.

140

.090

.0R

oun

dP

lan

arN

oN

oC

entr

alS

outh

wes

tR

ough

315.

0P

arti

ally

27.

08.

02.

525

.016

7.0

Rou

nd

Pla

nar

No

No

Cen

tral

Eas

tR

ough

120.

0P

arti

ally

27.

215

.06.

08.

011

0.0

Su

bpar

alle

lP

lan

arN

oN

oC

entr

alE

ast

Rou

gh12

0.0

Par

tial

ly2

7.0

9.5

5.0

80.0

43.0

Rou

nd

Pla

nar

No

No

Cen

tral

Nor

thR

ough

120.

0P

arti

ally

26.

08.

04.

640

.020

.0R

oun

dP

lan

arN

oN

oC

entr

alN

orth

Rou

gh32

5.0

Par

tial

ly2

6.5

7.5

3.5

30.0

105.

0R

oun

dP

lan

arN

oN

oC

entr

alN

orth

Rou

gh32

5.0

Par

tial

ly2

9.0

10.7

5.7

15.0

74.0

Rou

nd

Pla

nar

No

No

Cen

tral

Nor

thR

ough

325.

0P

arti

ally

27.

013

.56.

013

.068

.0R

oun

dP

lan

arN

oN

oC

entr

alE

ast

Rou

gh20

2.0

Par

tial

ly2

6.5

6.5

3.1

40.0

64.0

Rou

nd

Pla

nar

No

No

Cen

tral

Nor

thw

est

Rou

gh20

2.0

Par

tial

ly2

10.3

13.0

5.2

45.0

48.0

Rou

nd

Pla

nar

No

No

Cen

tral

Sou

th

864 M. KUNTNER ET AL.

© 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99, 849–866

Page 17: Ladder webs in orb-web spiders: ontogenetic and ...ezlab.zrc-sazu.si/uploads/2011/05/Kuntneral2010_LadderWebs.pdf · Ladder webs in orb-web spiders: ontogenetic and evolutionary patterns

Rou

gh20

2.0

Par

tial

ly2

5.5

5.0

2.5

20.0

44.0

Rou

nd

Pla

nar

No

No

Cen

tral

Sou

thea

stR

ough

202.

0P

arti

ally

27.

07.

42.

431

.096

.0R

oun

dP

lan

arN

oN

oC

entr

alS

outh

east

Med

ium

150.

0P

arti

ally

29.

07.

53.

528

.044

.0R

oun

dP

lan

arN

oN

oC

entr

alE

ast

Med

ium

150.

0P

arti

ally

28.

110

.34.

924

.012

2.0

Rou

nd

Pla

nar

No

No

Cen

tral

Eas

tM

ediu

m30

3.0

Par

tial

ly3

11.1

14.0

6.0

34.0

137.

0R

oun

dP

lan

arN

oN

oC

entr

alS

outh

wes

tM

ediu

m30

3.0

Par

tial

ly3

11.6

6.5

7.6

26.0

187.

0R

oun

dP

lan

arN

oN

oC

entr

alS

outh

Med

ium

303.

0P

arti

ally

310

.011

.55.

517

.018

3.0

Rou

nd

Pla

nar

No

No

Cen

tral

Nor

thM

ediu

m30

3.0

Par

tial

ly3

7.5

8.0

3.4

25.0

126.

0R

oun

dP

lan

arN

oN

oC

entr

alN

orth

east

Med

ium

303.

0P

arti

ally

38.

212

.56.

513

.019

4.0

Rou

nd

Pla

nar

No

No

Cen

tral

Eas

tM

ediu

m30

3.0

Par

tial

ly3

10.3

11.5

5.6

20.0

163.

0R

oun

dP

lan

arN

oN

oC

entr

alS

outh

east

Med

ium

292.

0P

arti

ally

311

.012

.56.

916

.088

.0R

oun

dP

lan

arN

oN

oC

entr

alN

orth

wes

tM

ediu

m29

2.0

Par

tial

ly3

10.0

13.0

5.5

44.0

93.0

Rou

nd

Pla

nar

No

No

Cen

tral

Sou

thw

est

Med

ium

292.

0P

arti

ally

39.

215

.07.

025

.016

7.0

Rou

nd

Pla

nar

No

No

Cen

tral

Sou

thea

stM

ediu

m66

.0P

arti

ally

38.

013

.08.

329

.019

1.0

Su

bpar

alle

lP

lan

arN

oN

oC

entr

alW

est

Med

ium

66.0

Par

tial

ly3

10.5

15.0

9.0

25.0

225.

0R

oun

dP

lan

arN

oN

oL

ater

alN

orth

Med

ium

273.

0P

arti

ally

310

.017

.59.

017

.095

.0R

oun

dP

lan

arN

oN

oC

entr

alE

ast

Med

ium

273.

0P

arti

ally

311

.818

.09.

913

0.0

16.0

Rou

nd

Pla

nar

No

No

Cen

tral

Sou

thea

stM

ediu

m27

3.0

Par

tial

ly3

9.5

20.5

11.5

25.0

45.0

Su

bpar

alle

lP

lan

arN

oN

oC

entr

alS

outh

east

Rou

gh31

5.0

Par

tial

ly3

11.0

26.0

16.5

20.0

132.

0S

ubp

aral

lel

Pla

nar

No

No

Cen

tral

Wes

tR

ough

315.

0P

arti

ally

35.

712

.04.

014

.010

6.0

Par

alle

lP

lan

arN

oN

oC

entr

alW

est

Rou

gh31

5.0

Par

tial

ly3

9.5

16.0

8.0

16.0

135.

0R

oun

dP

lan

arN

oN

oC

entr

alN

orth

wes

tR

ough

120.

0P

arti

ally

310

.013

.55.

012

.035

.0R

oun

dP

lan

arN

oN

oC

entr

alS

outh

east

Rou

gh32

5.0

Par

tial

ly3

6.5

14.5

6.3

22.0

130.

0R

oun

dP

lan

arN

oN

oC

entr

alW

est

Rou

gh20

2.0

Par

tial

ly3

10.0

10.5

4.0

25.0

109.

0S

ubp

aral

lel

Pla

nar

No

No

Cen

tral

Wes

tR

ough

202.

0P

arti

ally

313

.217

.012

.042

.075

.0R

oun

dP

lan

arN

oN

oC

entr

alS

outh

Med

ium

150.

0P

arti

ally

39.

013

.04.

530

.083

.0R

oun

dP

lan

arN

oN

oC

entr

alE

ast

Med

ium

303.

0P

arti

ally

413

.026

.013

.030

.017

7.0

Su

bpar

alle

lP

lan

arN

oN

oC

entr

alS

outh

wes

tM

ediu

m30

3.0

Par

tial

ly4

13.0

25.0

8.0

31.0

143.

0S

ubp

aral

lel

Pla

nar

No

No

Cen

tral

Nor

thM

ediu

m19

7.0

Par

tial

ly4

Err

orE

rror

Err

or9.

013

5.0

Su

bpar

alle

lP

lan

arN

oN

oC

entr

alN

orth

Rou

gh18

3.0

Par

tial

ly4

10.0

22.5

8.0

22.0

77.0

Su

bpar

alle

lP

lan

arN

oN

oC

entr

alS

outh

Rou

gh31

5.0

Par

tial

ly4

12.0

20.5

9.0

45.0

25.0

Su

bpar

alle

lP

lan

arN

oN

oC

entr

alW

est

Med

ium

350.

0P

arti

ally

527

.031

.014

.052

.076

.0R

oun

dP

lan

arN

oN

oC

entr

alS

outh

Rou

gh20

2.0

Par

tial

ly4

16.0

27.0

10.5

30.0

110.

0R

oun

dP

lan

arN

oN

oC

entr

alS

outh

Med

ium

150.

0P

arti

ally

412

.010

.53.

526

.070

.0R

oun

dP

lan

arN

oN

oC

entr

alE

ast

Rou

gh20

2.0

Par

tial

ly4

11.5

23.0

11.0

42.0

56.0

Rou

nd

Pla

nar

No

No

Cen

tral

Eas

tR

ough

202.

0P

arti

ally

511

.010

.06.

555

.068

.0R

oun

dP

lan

arN

oN

oC

entr

alW

est

Par

tial

ly8

32.0

64.0

9.0

60.0

80.0

Su

bpar

alle

lP

lan

arN

oN

oC

entr

alN

orth

wes

tP

arti

ally

211

.015

.04.

550

.017

0.0

Rou

nd

Pla

nar

No

No

Cen

tral

Nor

thw

est

Par

tial

ly2

7.1

9.0

4.5

42.0

180.

0R

oun

dP

lan

arN

oN

oC

entr

alN

orth

wes

tP

arti

ally

416

.033

.02.

040

.017

0.0

Su

bpar

alle

lP

lan

arN

oN

oC

entr

alS

outh

wes

tP

arti

ally

837

.087

.01.

035

.022

2.0

Su

bpar

alle

lC

urv

edN

oN

oC

entr

alS

outh

east

Par

tial

ly4

17.5

37.0

4.0

60.0

222.

0S

ubp

aral

lel

Pla

nar

No

No

Cen

tral

Wes

tP

arti

ally

522

.052

.04.

560

.022

5.0

Su

bpar

alle

lP

lan

arN

oN

oC

entr

alE

ast

Par

tial

ly8

50.0

82.0

3.0

55.0

225.

0S

ubp

aral

lel

Pla

nar

No

No

Cen

tral

Sou

thea

stP

arti

ally

838

.071

.03.

090

.020

0.0

Su

bpar

alle

lC

urv

edN

oN

oC

entr

alS

outh

east

Par

tial

ly6

32.5

58.0

3.0

30.0

185.

0S

ubp

aral

lel

Cu

rved

No

No

Cen

tral

Sou

thea

stP

arti

ally

847

.011

1.0

6.0

70.0

194.

0S

ubp

aral

lel

Cu

rved

No

No

Cen

tral

Wes

tP

arti

ally

418

.038

.05.

560

.017

8.0

Su

bpar

alle

lP

lan

arN

oN

oC

entr

alW

est

Rou

gh21

8.0

Clo

sed

25.

06.

63.

510

5.0

Rou

nd

Pla

nar

No

No

Cen

tral

Sou

thR

ough

218.

0C

lose

d2

4.0

12.0

5.0

122.

0P

aral

lel

Pla

nar

No

No

Cen

tral

Nor

thw

est

Rou

gh21

8.0

Clo

sed

26.

510

.56.

010

8.0

Rou

nd

Pla

nar

No

No

Cen

tral

Nor

thw

est

Rou

gh21

8.0

Clo

sed

26.

214

.26.

010

8.0

Su

bpar

alle

lP

lan

arN

oN

oC

entr

alN

orth

east

Rou

gh21

8.0

Clo

sed

25.

98.

03.

983

.0R

oun

dP

lan

arN

oN

oC

entr

alN

orth

east

SPIDER LADDER WEBS 865

© 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99, 849–866

Page 18: Ladder webs in orb-web spiders: ontogenetic and ...ezlab.zrc-sazu.si/uploads/2011/05/Kuntneral2010_LadderWebs.pdf · Ladder webs in orb-web spiders: ontogenetic and evolutionary patterns

Tab

leA

1.C

onti

nu

ed

Species

Bark

Treecircumference(cm)

Canopy

Sizeclass

Width(cm)

Height(cm)

Toptohub(cm)

Hubtobark(mm)

Fromground(cm)

Sideframes

Webshape

Hubcup

Pseudoradii

Retreat

Weborientation

Rou

gh21

8.0

Clo

sed

27.

07.

03.

220

0.0

Rou

nd

Pla

nar

No

No

Cen

tral

Nor

thw

est

Rou

gh21

8.0

Clo

sed

27.

610

.24.

521

4.0

Rou

nd

Pla

nar

No

No

Cen

tral

Nor

thw

est

Med

ium

250.

0C

lose

d2

6.0

7.5

2.2

190.

0R

oun

dP

lan

arN

oN

oC

entr

alS

outh

Med

ium

250.

0C

lose

d2

6.0

8.4

3.1

180.

0R

oun

dP

lan

arN

oN

oC

entr

alS

outh

Med

ium

250.

0C

lose

d2

5.3

9.1

3.0

180.

0S

ubp

aral

lel

Pla

nar

No

No

Cen

tral

Sou

thM

ediu

m25

0.0

Clo

sed

25.

06.

02.

121

8.0

Su

bpar

alle

lP

lan

arN

oN

oC

entr

alS

outh

east

Med

ium

250.

0C

lose

d2

6.0

9.0

3.8

218.

0S

ubp

aral

lel

Pla

nar

No

No

Cen

tral

Sou

thea

stM

ediu

m25

0.0

Clo

sed

24.

25.

61.

821

8.0

Rou

nd

Pla

nar

No

No

Cen

tral

Sou

thea

stM

ediu

m25

0.0

Clo

sed

26.

96.

02.

017

3.0

Rou

nd

Pla

nar

No

No

Cen

tral

Eas

tM

ediu

m25

0.0

Clo

sed

25.

512

.04.

010

8.0

Su

bpar

alle

lP

lan

arN

oN

oC

entr

alE

ast

Med

ium

250.

0C

lose

d2

7.0

8.5

3.7

160.

0R

oun

dP

lan

arN

oN

oC

entr

alE

ast

Med

ium

250.

0C

lose

d2

6.0

9.0

4.8

68.0

Rou

nd

Pla

nar

No

No

Cen

tral

Nor

thw

est

Med

ium

250.

0C

lose

d2

5.0

6.3

2.9

180.

0R

oun

dP

lan

arN

oN

oC

entr

alN

orth

wes

tM

ediu

m10

2.0

Clo

sed

211

.012

.56.

096

.0R

oun

dP

lan

arN

oN

oC

entr

alN

orth

Med

ium

102.

0C

lose

d2

8.5

12.5

4.5

50.0

Rou

nd

Pla

nar

No

No

Cen

tral

Nor

thM

ediu

m10

2.0

Clo

sed

29.

85.

97.

595

.0S

ubp

aral

lel

Pla

nar

No

No

Cen

tral

Sou

thea

stM

ediu

m10

2.0

Clo

sed

27.

510

.54.

790

.0R

oun

dP

lan

arN

oN

oC

entr

alW

est

Med

ium

184.

0C

lose

d2

7.4

8.5

5.3

60.0

Rou

nd

Pla

nar

No

No

Cen

tral

Nor

thw

est

Med

ium

184.

0C

lose

d2

5.6

7.4

2.8

126.

0R

oun

dP

lan

arN

oN

oC

entr

alS

outh

east

Med

ium

265.

0P

arti

ally

212

.018

.08.

076

.0R

oun

dP

lan

arN

oN

oC

entr

alN

orth

Med

ium

265.

0P

arti

ally

28.

58.

03.

510

6.0

Rou

nd

Pla

nar

No

No

Cen

tral

Wes

tM

ediu

m26

5.0

Par

tial

ly2

10.0

12.4

6.0

78.0

Rou

nd

Pla

nar

No

No

Cen

tral

Wes

tM

ediu

m26

5.0

Par

tial

ly2

9.1

12.5

5.6

88.0

Rou

nd

Pla

nar

No

No

Cen

tral

Wes

tM

ediu

m26

5.0

Par

tial

ly2

6.0

6.0

2.2

71.0

Rou

nd

Pla

nar

No

No

Cen

tral

Wes

tM

ediu

m26

5.0

Par

tial

ly2

8.0

10.5

3.0

100.

0S

ubp

aral

lel

Pla

nar

No

No

Cen

tral

Wes

tM

ediu

m26

5.0

Par

tial

ly2

8.0

8.5

3.0

110.

0R

oun

dP

lan

arN

oN

oC

entr

alE

ast

Rou

gh21

8.0

Clo

sed

36.

015

.07.

518

3.0

Su

bpar

alle

lP

lan

arN

oN

oC

entr

alS

outh

Rou

gh21

8.0

Clo

sed

36.

510

.25.

610

7.0

Rou

nd

Pla

nar

No

No

Cen

tral

Nor

thw

est

Med

ium

250.

0C

lose

d3

10.0

15.0

7.0

123.

0S

ubp

aral

lel

Pla

nar

No

No

Cen

tral

Eas

tM

ediu

m18

4.0

Clo

sed

311

.317

.08.

055

.0R

oun

dP

lan

arN

oN

oC

entr

alE

ast

Med

ium

265.

0P

arti

ally

312

.021

.013

.022

8.0

Rou

nd

Pla

nar

No

No

Cen

tral

Eas

tM

ediu

m26

5.0

Par

tial

ly3

14.0

18.0

8.3

210.

0R

oun

dP

lan

arN

oN

oC

entr

alE

ast

Rou

gh21

8.0

Clo

sed

414

.524

.012

.019

0.0

Su

bpar

alle

lP

lan

arN

oN

oC

entr

alN

orth

wes

tM

ediu

m10

2.0

Clo

sed

311

.618

.05.

178

.0R

oun

dP

lan

arN

oN

oC

entr

alN

orth

Med

ium

265.

0P

arti

ally

49.

612

.04.

042

.0R

oun

dP

lan

arN

oN

oC

entr

alW

est

Med

ium

250.

0C

lose

d8

44.0

67.0

0.0

164.

0S

ubp

aral

lel

Pla

nar

No

No

Cen

tral

Wes

t

866 M. KUNTNER ET AL.

© 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99, 849–866