laboratory for alternative energy conversionmbahrami/pdf/2015/c. mccague, a. ismail... ·...

21
Laboratory for Alternative Energy Conversion Majid Bahrami Canada-Germany Workshop at HPC Sept. 16, 2018

Upload: others

Post on 09-Aug-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Laboratory for Alternative Energy Conversionmbahrami/pdf/2015/C. McCague, A. Ismail... · 2020-03-12 · Bahrami – Laboratory for Alternative Energy Conversion . 6 The Lab . 7 The

Laboratory for Alternative Energy

Conversion

Majid Bahrami

Canada-Germany Workshop at HPC

Sept. 16, 2018

Page 2: Laboratory for Alternative Energy Conversionmbahrami/pdf/2015/C. McCague, A. Ismail... · 2020-03-12 · Bahrami – Laboratory for Alternative Energy Conversion . 6 The Lab . 7 The

2

Simon Fraser University

Page 3: Laboratory for Alternative Energy Conversionmbahrami/pdf/2015/C. McCague, A. Ismail... · 2020-03-12 · Bahrami – Laboratory for Alternative Energy Conversion . 6 The Lab . 7 The

3

Laboratory of Alternative Energy Conversion (LAEC)

LAEC

SFU Surrey campus

Page 4: Laboratory for Alternative Energy Conversionmbahrami/pdf/2015/C. McCague, A. Ismail... · 2020-03-12 · Bahrami – Laboratory for Alternative Energy Conversion . 6 The Lab . 7 The

4

New program: Sustainable Energy Engineering

Program launch in 2019

320 undergraduate and 100

graduate students

Now Hiring! Sustainable Manufacturing, Clean Power Generation, Smart Cities, Transportation,

Cleantech, Renewable Energy, Sustainable Food and Water Solutions

Page 5: Laboratory for Alternative Energy Conversionmbahrami/pdf/2015/C. McCague, A. Ismail... · 2020-03-12 · Bahrami – Laboratory for Alternative Energy Conversion . 6 The Lab . 7 The

5

Sorption chillers (systems, low pressure evaporators, heat exchangers, materials)

Thermal energy storage

Fuel cells (CL, GDL, transport phenomena, ex-situ testing of thermal conductivity

and gas diffusivity of thin films)

Power electronics cooling (e.g. light electric vehicle battery changers)

Greenhouses (sustainable temperature and humidity control, upcoming

installation of small solar thermal and PV)

District heating

Graphite heat sinks, heat exchangers, and thermal interface materials

Heat and humidity recovery modules for building ventilation

Dehumidification

Atmospheric water harvesting

Waste heat recovery

Thermal management of batteries

Bahrami – Laboratory for Alternative Energy Conversion

Page 6: Laboratory for Alternative Energy Conversionmbahrami/pdf/2015/C. McCague, A. Ismail... · 2020-03-12 · Bahrami – Laboratory for Alternative Energy Conversion . 6 The Lab . 7 The

6

The Lab

Page 7: Laboratory for Alternative Energy Conversionmbahrami/pdf/2015/C. McCague, A. Ismail... · 2020-03-12 · Bahrami – Laboratory for Alternative Energy Conversion . 6 The Lab . 7 The

7

The Lab

Page 8: Laboratory for Alternative Energy Conversionmbahrami/pdf/2015/C. McCague, A. Ismail... · 2020-03-12 · Bahrami – Laboratory for Alternative Energy Conversion . 6 The Lab . 7 The

8

Page 9: Laboratory for Alternative Energy Conversionmbahrami/pdf/2015/C. McCague, A. Ismail... · 2020-03-12 · Bahrami – Laboratory for Alternative Energy Conversion . 6 The Lab . 7 The

9

Sorbent materials

Composite sorbent coated on graphite substrate for heat transfer test

Sorbent for “VENTIREG” cold climate ventilation heat and humidity recovery tests

Sorbent on heat exchangers for sorption chiller tests: Z02 coating,

Z02 pellets, empty heat exchanger and CaCl2 composite

CaCl2 composite sorbent for

dehumidification

Page 10: Laboratory for Alternative Energy Conversionmbahrami/pdf/2015/C. McCague, A. Ismail... · 2020-03-12 · Bahrami – Laboratory for Alternative Energy Conversion . 6 The Lab . 7 The

10

Material characterization

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.3 0.6 0.9

w (

g/g

)

P/P0

Sylobead B127silica gel

Composite "A3"

Z02

Heat flow meter test sorbent pellets

Salt, silica gel, binders and thermally conductive additives are combined to create sorbents for a range of applications

Water vapor sorption (isotherms, heat of adsorption), pore structure, thermal properties (dry & wet), and pressure-jump sorption dynamics

“Hot disk” sensor

Page 11: Laboratory for Alternative Energy Conversionmbahrami/pdf/2015/C. McCague, A. Ismail... · 2020-03-12 · Bahrami – Laboratory for Alternative Energy Conversion . 6 The Lab . 7 The

11

Lab-scale sorption chiller

0

100

200

300

400

500

0 10 20 30 40

SCP

(W

/kg)

Cycle (min)

Coating

Pellets

b)

0.0

0.1

0.2

0.3

0.4

0 10 20 30 40

CO

P

Cycle (min)

Coating

Pellets

c)

0102030405060708090

100

0 10 20 30 40

SCP

(kW

/m3)

Cycle (min)

Coating

Pellets

a)Volumetric SCP of sorption chiller for Z02

coating and pellets; Tevap= 15 °C, Tcond=Tads= 30 °C, and Tdes= 90 °C

Z02 Coating (0.8 kg per HEx, 10 min cycle)

SCP = 472 ± 8 W/kg, COP = 0.27

Z02 Pellets (1.97 kg per HEx, 15 min cycle) SCP = 130 ± 10 W/kg, COP = 0.28

Lab-scale sorption chiller with two sorber beds (1,2), condenser (3), CALPE evaporator (4), valves, sensors and

heating/cooling (H/C) circulators.

Page 12: Laboratory for Alternative Energy Conversionmbahrami/pdf/2015/C. McCague, A. Ismail... · 2020-03-12 · Bahrami – Laboratory for Alternative Energy Conversion . 6 The Lab . 7 The

12

Capillary-assisted low pressure evaporator

Thermal spray porous copper coating on finned tube heat exchanger

Direct metal sintering of finned aluminum microtube heat exchanger

Water-based sorption systems operate at low pressure and require thin film evaporators

1. P. C. Thimmaiah, et al., Applied Thermal Engineering, 106 (2016) p. 371 2. P. C. Thimmaiah, et al., Nature Scientific Reports, (2018) accepted

Porous copper evaporator: 0.3 kW/kg Sintered aluminum evaporator: 1.2 kW/kg

Cooling Power

Developed low pressure evaporators and custom-built apparatus for measuring their heat transfer performance

Developed method to determine porosity and surface roughness of metal coatings

Page 13: Laboratory for Alternative Energy Conversionmbahrami/pdf/2015/C. McCague, A. Ismail... · 2020-03-12 · Bahrami – Laboratory for Alternative Energy Conversion . 6 The Lab . 7 The

13

Corrosion

resistant

Light

weight

Manufacturing heat sinks and heat exchangers

from natural flake graphite

Low cost

Material

Roll embossing

(mass production)

Good cooling

performance

Graphite heat sink had comparable performance to aluminum + TIM

Page 14: Laboratory for Alternative Energy Conversionmbahrami/pdf/2015/C. McCague, A. Ismail... · 2020-03-12 · Bahrami – Laboratory for Alternative Energy Conversion . 6 The Lab . 7 The

14

Greenhouse Research Collaboration

Three year project (2017-2018):

Assess energy consumption of local greenhouses

Model greenhouse climate control

Test energy efficient climate control systems in a research greenhouse compartment

Page 15: Laboratory for Alternative Energy Conversionmbahrami/pdf/2015/C. McCague, A. Ismail... · 2020-03-12 · Bahrami – Laboratory for Alternative Energy Conversion . 6 The Lab . 7 The

15

Thanks

The LAEC has developed new composite sorbents, adsorber beds, capillary-assisted low pressure evaporators and a modular lab-scale sorption chiller

Future research includes:

Lab-scale single chamber sorption chiller

Sorber bed heat transfer modeling

Composite sorbents

Compact capillary-assisted evaporators

Graphite heat exchangers

Testing systems for sustainable temperature and humidity control in greenhouses

Page 16: Laboratory for Alternative Energy Conversionmbahrami/pdf/2015/C. McCague, A. Ismail... · 2020-03-12 · Bahrami – Laboratory for Alternative Energy Conversion . 6 The Lab . 7 The

16

Extra slides

Page 17: Laboratory for Alternative Energy Conversionmbahrami/pdf/2015/C. McCague, A. Ismail... · 2020-03-12 · Bahrami – Laboratory for Alternative Energy Conversion . 6 The Lab . 7 The

17

J. M. Cullen, et al., “Reducing energy demand”, Environ. Sci. Technol., 45 (2011) p. 1711

Page 18: Laboratory for Alternative Energy Conversionmbahrami/pdf/2015/C. McCague, A. Ismail... · 2020-03-12 · Bahrami – Laboratory for Alternative Energy Conversion . 6 The Lab . 7 The

18

The food cold-chain

S.J. James, C. James, “The food cold-chain and climate change”, Food Res. Int., 43 (2010) p. 1944

Projected population: 8.5 billion by 2030

Food losses due to lack of refrigeration: 25%

Developing countries: 70 refrigerators per 1000 people

World population: 7.3 billion Developed countries: 627 refrigerators per 1000 people

How much power would be required to provide cold storage to this portion of the world population?

Page 19: Laboratory for Alternative Energy Conversionmbahrami/pdf/2015/C. McCague, A. Ismail... · 2020-03-12 · Bahrami – Laboratory for Alternative Energy Conversion . 6 The Lab . 7 The

19

Sorption Chiller: Comparison of AQSOATM FAM-Z02 sorbent

coatings and pellets

0

100

200

300

400

500

0 10 20 30 40SC

P (

W/k

g)

Cycle (min)

Coating

Pellets

b)

0.0

0.1

0.2

0.3

0.4

0 10 20 30 40

CO

P

Cycle (min)

Coating

Pellets

c)

0102030405060708090

100

0 10 20 30 40

SCP

(kW

/m3)

Cycle (min)

Coating

Pellets

a)

Operating conditions: Tevap= 15 °C, Tcond=Tads= 30 °C, and Tdes= 90 °C

Z02 coating 0.8 kg per HEx Z02 pellets 1.97 kg per HEx

𝑄𝑒𝑣𝑎𝑝 = 𝑚 𝑐𝑝 𝑇in − 𝑇out 𝑑𝑡

𝜏

0

𝐶𝑂𝑃 = 𝑄𝑒𝑣𝑎𝑝 𝑄ℎ𝑒𝑎𝑡

𝑆𝐶𝑃 = 𝑄𝑒𝑣𝑎𝑝 𝑚𝑎𝑑𝑠 ∙ 𝑡𝑐𝑦𝑐𝑙𝑒

𝑉𝑆𝐶𝑃 = 𝑄𝑒𝑣𝑎𝑝 𝑉𝑎𝑑𝑠 ∙ 𝑡𝑐𝑦𝑐𝑙𝑒 Coefficient of performance

Heat transfer measured at the evaporator Specific cooling power

Volumetric cooling power

HEx (L,W,H) 35.2×3.8×30.5 cm3 Cycle times 5, 10, 20, 30 min

Fin spacing 2.54 mm (10 fpi) Tdesorption 75, 80, 90 °C

Surface area 2.8 m2 Tadsorption 20, 30, 40 °C

HEx weight 2.51 ± 0.03 kg Tcondenser 20, 30, 40 °C

Z02 coating 0.80 kg per Hex Tevaporator 5, 10, 15 °C

Z02 pellets 1.97 kg per Hex

Adsorber bed specifications and operating conditions

Z02 has a water uptake of 0.21 g/g (H2O/sorbent) under 15/30/30/90 °C (evaporator/condenser/adsorption/desorption)

sorption chiller operation cycle temperatures

SCP by HEx volume SCP by sorbent weight

Page 20: Laboratory for Alternative Energy Conversionmbahrami/pdf/2015/C. McCague, A. Ismail... · 2020-03-12 · Bahrami – Laboratory for Alternative Energy Conversion . 6 The Lab . 7 The

20

Manufacture of heat sinks from natural graphite sheets

Roll embossing and cutting

Basic shape Stacked and glued basic shapes

M. Cermak, et al, (2018) "Natural-graphite-sheet based heat sinks", 34rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM): 310-313.

Page 21: Laboratory for Alternative Energy Conversionmbahrami/pdf/2015/C. McCague, A. Ismail... · 2020-03-12 · Bahrami – Laboratory for Alternative Energy Conversion . 6 The Lab . 7 The

21

Heat transfer: Anisotropic graphite sheet heat sinks

Heat transfer in the base limited by the low thermal conductivity and sheet-to-sheet contact resistance

Chip

Heat sink

Heat spreader

Semiconductor die

Optimal geometry for a graphite heat sink will differ from metal