l 6: circumstellar disks

32
L6 - Stellar Evolution II: August- September, 2004 1 [email protected] L 6: Circumstellar Disks Background image: HH 30 JHK HST-NICMOS, courtesy Padgett et al. 1999, AJ 117, 1490

Upload: maitland

Post on 12-Jan-2016

32 views

Category:

Documents


0 download

DESCRIPTION

L 6: Circumstellar Disks. Background image: HH 30 JHK HST-NICMOS, courtesy Padgett et al. 1999, AJ 117, 1490. L 6: Circumstellar Disks. Recent reviews include: Protostars & Planets IV, Mannings, Boss & Russell (eds.) 12 Articles on Disks - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

L 6: Circumstellar Disks

Background image: HH 30 JHK HST-NICMOS, courtesy Padgett et al. 1999, AJ 117, 1490

Page 2: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

L 6: Circumstellar Disks

Recent reviews include:

Protostars & Planets IV, Mannings, Boss & Russell (eds.) 12 Articles on Disks 5 Articles on Outflows

Zuckerman, ARAA 2001, 39: 549

Zuckerman & Song (?), ARAA 2004, in press

Page 3: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

L 6: Circumstellar Disksand Outflows

Page 4: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

Flattened structures - Disks

Inevitable consequence of star formation

Rotation Magnetic Fields

Page 5: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

Flattened structures - Disks

Inevitable consequence of star formation

Rotation

P.S. Laplace 1796, 1799

Exposition du systeme du mondeMechanique celeste

I. Kant 1755

Allgemeine Naturgeschichte und Theorie des Himmels

Planetary System Formation

...another lecture – another time...

Page 6: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

Mass Loss - Outflows

Inevitable consequence of star formation

Angular Momentum Loss - Redistribution

The race between mass accretion & mass loss processses

see review article

Page 7: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

Lynden-Bell & Pringle 1974, MNRAS 168, 603:

Keplerian Disk

Differential Rotation + Viscosity

Mass Transport InwardsAngular Momentum Transport Outwards

See also Gösta Gahm’s lecture

Page 8: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

`standard model´: e.g., Frank, King & Raine Accretion Power in Astrophysicsself-consistent structure of steady, optically thick -disk

blackbody radiation and thin disk approximation

turbturbturb

s

2

1

2

1

3

4c

H

cc

2s

3

s

c

v 1, :Sunyaev & Shakura

onprescripti viscosity .8

onconservati momentumangular and mass 13

.7

2

71for opacity Kramer :

0 e.g.,

relationopacity .6

nsportenergy tra 18

3

3

4 .5

state ofequation 43

4

m .4

1)( sound ofty veloci .3

mequilibriu chydrostati vertical /

.2

definitiondisk n thi 2

1.

l

Hc

R

RM

-, qpqTp

R

R

R

MGMσT

Tc

kTP

Pc

RGM

cH

H

When / Where valid ?

Page 9: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

Example:

Lin & Papaloizou opacities(1985 PP II)

Icy grains

H-

Moleculesbound-freefree-free(Cox-Stuart-Alexander)

Page 10: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

Beckwith et al. 2000, PP IV

Grain Opacities

Page 11: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

`standard model´: e.g., Frank, King & Raine Accretion Power in Astrophysicsself-consistent structure of steady, optically thick a-disk

Te

kTh

dRR

D

i

c

hF

R

M

R

R

R

RRR

RMM,

TPρ, Σ, H, c

kTh

R

R

c

23

1/3

322

1

2

1

rad

outin

s

form thehas

1)/exp(

cos4

spectrum theand

21

2

3v

from foundist then city drift velo radial The

...,,,parameter any and

, of functions as

,,,, unknowns 8 for the Solve

out

in

Page 12: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

40 observed SEDs of T Tauri Stars & `mean model´ of star+disk

D´Alessio et al. 1999

HABE Disk Structure:

Dullemond & Dominik 2004

includes vertical

Temperaturedistribution

Page 13: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

Gas Disks – Structure Models

Steady Disks around Single Stars

Boundary Conditions Rin : boundary layer, magnetosphere?Rout: ? , interstellar turbulence?

Viscosity MHD/rotation (Hawley & Balbus 1995)

Opacity , T, …, XYZ, ..., ,..., ...)

Models Adams & Shu 1986 (flat)[examples] Kenyon & Hartmann 1987 (flared)

Malbet & Bertout 1991 (vertical structure)D´Allessio et al. 1998,... 2003Aikawa & Herbst 1998 (chemistry)Nomura 2002 (2D)Wolf 2003 (3D)

Page 14: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

Observations of Keplerian Disks

JE Keeler 1895ApJ 1: 416

The Rings of Saturnspectrum

image

Courtesy Brandeker, Liseau & Ilyn 2002

Page 15: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

2 Categories of Disks

T Tauri Disks: around young stars (0.1 - 10 Myr) of half a solar mass (0.1 - 1 Msun) at 150 pc distance (50 - 450 pc) in and/or near molecular clouds Accretion Disks

Debris Disks: around young ms-stars (10 - 400 Myr) of about a solar mass (1 - 2 Msun) at 20 pc distance (3 - 70 pc) in the general field Vega-excess stellar disks

gas rich

gas poor

Page 16: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

Frequency of Disks

High Rate of occurence around young stars

NGC 2024 86% Trapezium cluster 80% IC 348 65% Haisch et al. 2001

and around

BDs in Trapezium cluster 65% Muench et al. 2001

see also G. Gahm’s lecture

Page 17: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

Gas Disks - Sizes

Size scale (AU) Tracer (mode)* Reference

20000 CS (1- 0) (S) Kaifu et al. 19845000 - 10000 13CO (1- 0) (S) Fridlund et al. 1989 1400 C18O (1- 0) (I) Sargent et al. 1988 <500 1.4 mm (I) Woody et al. 1989 45 + 1600 mm, cm (I) Keene & Masson 1990 200 0.8 mm (I) Lay et al. 1994 7000 H13CO+ (1- 0) (S) Mizuno et al. 1994 5000 0.7 - 1 mm (S) Ladd et al. 1995 4000 - 6000 C18, 17O (2- 1) (S) Fuller et al. 1995 1200 13CO (1- 0) (I) Ohashi et al. 1996 4000 H13CO+ (1- 0) (I)Saito et al. 1996 5000 H12, 13CO+ (1- 0) (S, I) Hogerheijde et al.1997, 98 2500 C18O+ (1- 0) (I) Momose et al. 1998

Fridlund et al. 2002for

One Object

Size depends on frequency/mode of observation*S=single dish, I=Interferometer

Page 18: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

Gas Disks - Sizes

T Tauri/HABE disks

50 - 100 AU Dust: mm-continuum interferometry

100 - 300 AU Dust: scattered stellar light

300 AU Gas: CO lines (evidence for Kepler rotation)

Silhouettte disks (``proplyds´´)

up to 1000 AU Dust: scattered stellar light

generally

Page 19: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

Gas Disks - Masses

H2

GasDirectly

COandDust

Page 20: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

Gas Disks - Masses

Lower limit: 0.001 to 1 MSun (based on mm / submm continuum)

How good are these numbers ?

Do we understand disks ?

? Why ?

dust

gas+dust

Solar Minimum Mass Nebula = 0.002 MSun

Page 21: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

Gas Disks - Make up

gas disks consist of gas and dust

what components?

what proportions?

Page 22: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

2 T Tauri Disks - Make up

van Zadelhoff 2002

13CO (1)*

HCO+ (5)

HCN (5)

CO (200)

HCO+ (200)

HCN (200)

LkCa 15 TW Hya*(N) = depletion factor

Page 23: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

2 T Tauri Disks - Chemistry

Molecular abundances (rel. H2)

Species LkCa 15 TW Hya

CO 3.4 ( - 7) 5.7 ( - 8)HCO+ 5.6 (-12) 2.2 (-11)H13CO+ < 2.6(-12) 3.6 (-13)DCO+ …. 7.8 (-13)CN 2.4 (-10) 1.2 (-10)HCN 3.1 (-11) 1.6 (-11)H13CN …. < 8.4(-13)HNC …. < 2.6(-12)DCN …. < 7.1(-14)CS 8.5 (-11) ….H2CO 4.1 (-11) < 7.1(-13)CH3OH < 3.7(-10) < 1.9(-11)N2H+ < 2.3(-11) < 1.8(-11)H2D+ < 1.5(-11) < 7.8(-12)

Thi 2002

Page 24: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

Gas Disks - Evolution

Time scales (viscous accretion disk)

tdyn ~ ttherm ~ (H/R)2 tvisc

tdyn ~ 1/Kepler

~ 10-3 - 10-2

H/R << 1

if T ~ R-1/2 , tvisc ~ R

tvisc ~ 105 yr (/0.01)-1 (R/10 AU)

Page 25: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

Gas Disks - Evolution

Disk dispersal and disk lifetimes

Physical MechanismsHollenbach et al. 2000 PPIV

SE = Stellar Encounter (tidal stripping) WS = Stellar wind stripping evap E = photoevaporation external starevap c = photoevaporation central star

All for Trapezium conditions

Page 26: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

Gas (T Tauri) Disks - Evolution

Disk dispersal and disk lifetimes

Mass accretion evolutionCalvet et al. 2000 PPIV

Average Error Bar

Page 27: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

Gas Disks to Debris Disks – Evolution ?

See also lecture by G. Gahm

fdust = LIR/L vs stellar age

(F)IR - excess

Stellar luminosity(bolometric)

How ?

Page 28: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

Gas Disks to Debris Disks – Evolution ?

Spangler et al. 2001

ClustersIndividual stars

(= 1 zodi)

Page 29: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

Debris Disks - Properties

debris (collision products) or particulate (gas free)

percentage of Main Sequence stars (15%?)(observationally) biased towards Spectral Type Afor (detectable) ages <400 Myr Habing et al. 1999, 2001

disk sizes 100 to 2000 AUdisk masses >1 to 100 MMoon (small grains)

Pre-IRAS

Solar system Zodi US Navy Chaplain G. Jones 1855 AJ 4, 94

Vega Blackwell et al. 1983

Page 30: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

http://www.hep.upenn.edu/~davidk/bpic.html

Page 31: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

How much Gas in Dusty Debris Disks ?

Disk evolution hypothesis: gas rich to gas poor

Census of material (mgas/mdust): planet formation

planet formation: enough gas for GPs ?

planet formation: time scales ?

planet formation: seeds of Life ?

See review

Page 32: L 6: Circumstellar Disks

L6 - Stellar Evolution II: August-September, 2004 [email protected]

L 6: conclusions• circumstellar disks are a consequence of star formation• disks and bipolar outflows/jets are connected• disks form potentially planetray systems

L 6: open questions• what are the physics of disks and their outflows ?• how do disks evolve ?• what fraction forms planetary systems ?• when and how ?