kuliah 11 - optimization and linear programming

Upload: jayanti-chan

Post on 13-Jan-2016

234 views

Category:

Documents


1 download

DESCRIPTION

p

TRANSCRIPT

  • Optimization and

    Linear Programming

    Rini Novrianti Sutardjo Tui

  • The Optimal Decision Problem

    Decision which incurs the least cost among the set of permissible decisions

    The decisions can be ranked according to whether they incur

    greater or lesser cost

    The cost of each

    decision is known

    The set of all permissible decisions is

    known

  • Optimization Methods

    Dynamic Programming

    Linear Programming

    Non-linear Programming

    Discrete-time Optimal Control

  • Linear Programming (LP)

    Maximize/minimize : Z = c1x1 + c2x2 + + cnxn

    Constraints : a11x1 + a12x2 + + a1nxn = b1

    a21x1 + a22x2 + + a2nxn = b2

    am1x1 + am2x2 + + amnxn = bm

    x1 0 ; x2 0 ; ; xn 0

    b1 0 ; b2 0 ; ; bm 0

    Standard form of LP problem with m constraints and n variables

  • Linear Programming in Vector Form

    Maximize/minimize : Z = cx

    Constraints : Ax = b

    x 0

    b 0

    mnmm

    n

    n

    aaa

    aaa

    aaa

    ...

    ............

    ...

    ...

    21

    22221

    11211

    Amxn =

    n

    n

    x

    x

    x

    x...

    2

    1

    1

    bm

    b

    b

    b m...

    2

    1

    1

    nn cccc ...211

  • Prerequisites of LP Model

    All constraints are stated as equations

    Constant in right side of constraints

    is non-negative

    Function of objective is maximize or minimize

    All variables are non-negative

  • Linear Programming Model

    Minimize : Z = 40x1 + 36x2

    Constraints : x1 8

    x2 10

    : 5x1 + 3x2 45

    x1 0 ; x2 0

    x2

    x1

    5

    10

    15

    5 9

    x1 = 8

    x2 = 10

    A (8, 5/3)

    B C

  • Simplex Method

    All constraints have to be equations, if not then slack variable or surplus variable is needed.

    Simplex For complex and broad

    problem of linear programming

    Constant in right side of constraint equations has to be non-negative, if not then it has to be transformed to positive value.

  • General Model of Simplex Method

    Maximize Function of Objective: Maximize

    Z C1X1-C2X2- . . . . . CnXn-0S1-0S2-. . .-0Sn = NK

    Function of Constraints:

    a11X11+a12X12+. . . .+a1nXn+ S1+0S2+. . .+0Sn = b1 a21X21+a22X22+. . . .+a2nXn+ 0S1+1S2+. . .+0Sn = b2

    . .. . .. .. . ..=

    am1Xm1+am2Xm2+. . . .+amnXn+ S1+0S2+. . .+1Sn = bm Activities Variables Slack Variables

  • General Model of Simplex Method

    Minimize Function of Objective: Minimize

    Z C1X1-C2X2- . . . . . CnXn-0S1-0S2-. . .-0Sn = RhV

    Function of Constraints:

    a11X11+a12X12+. . . .+a1nXn - S1 -0S2-. . . - 0Sn = b1 a21X21+a22X22+. . . .+a2nXn - 0S1-1S2 -. . . - 0Sn = b2

    . .. . .. .. . ..=

    am1Xm1+am2Xm2+. . . .+amnXn- S1- 0S2 -. . . -1Sn = bm

    Activities Variables Surplus Variables

  • Solving Simplex Model

    Formulate LP problem into standard form of LP

    Transform LP model into simplex model

    Formulate simplex table

    Take steps of solving

  • Simplex Model

    Table of Matrix

    Column table of basic variables

    Row table of Cj - Zj

  • COLUMN TABLE OF MATRIX OF BASIC VARIABLES

    Linear Programming

  • Example Step 1

    Maximize:

    Linear Programming Method

    Function of Objective:

    Maximize: Z=8X1 + 6X2 (in thousand IDR)

    Function of Constraints:

    Material A : 4X1 + 2X2 60

    Material B : 2X1 + 4X2 48

    X1, X2 0

  • Step 2

    Simplex Model:

    Function of Objective: Maximize

    Z 8X16 X20S1- 0S2 = 0

    Function of Constraints:

    4X1+2X2+ S1+ 0S2 = 60

    2X1+4X2+0S1+ 1S2 = 48

    X1, X2, S1, S2 0

  • Step 3 1

    Basic Variables

    Z X1 X2 S1 S2 RhV

    Simplex Table

  • Step 3 2

    Simplex Table

    Basic Variables

    Z X1 X2 S1 S2 RhV

    Z

    S1

    S2

  • Step 3 3

    Simplex Table

    Basic Variables

    Z X1 X2 S1 S2 RhV

    Z 1 -8 -6 0 0 0

    S1

    S2

  • Step 3 4

    Simplex Table

    Basic Variables

    Z X1 X2 S1 S2 RhV

    Z 1 -8 -6 0 0 0

    S1 0 4 2 1 0 60

    S2

  • Step 3 5

    Simplex Table

    Basic Variables

    Z X1 X2 S1 S2 RhV

    Z 1 -8 -6 0 0 0

    S1 0 4 2 1 0 60

    S2 0 2 4 0 1 48

  • Step 4 1

    First iteration Iteration-0

    Basic Variables

    Z X1 X2 S1 S2 RhV

    Z 1 -8 -6 0 0 0

    S1 0 4 2 1 0 60

    S2 0 2 4 0 1 48

  • Step 4 2

    Iteration-1: Determining key column

    Basic Variables

    Z X1 X2 S1 S2 RhV

    Z 1 -8 -6 0 0 0

    S1 0 4 2 1 0 60

    S2 0 2 4 0 1 48

    Key column: column with biggest negative value of coefficients of function of constraints.

  • Step 4 3

    Iteration-1: Determining key row

    Basic Variables

    Z X1 X2 S1 S2 RhV Index

    Z 1 -8 -6 0 0 0 -

    S1 0 4 2 1 0 60 15

    S2 0 2 4 0 1 48 24

    Key row: row with smallest index value (positive).

    Index value: RV/key column

    Key number

  • Step 4 4

    Iteration-1: Changes of row value

    Basic Variables

    Z X1 X2 S1 S2 RhV

    Z

    X1 0 1 0 15

    S2

    New key row: (previous key row)/key number

    Other row value: (previous row value) ( (new key row) x key column of the row itself).

  • Step 4 5

    Iteration-1: Changes of row value

    Basic Variables

    Z X1 X2 S1 S2 RhV

    Z

    X1 0 1 0 15

    S2 0 0 3 - 1 18

    New key row: (previous key row)/key number

    Other row value: (previous row value) (new key row) x key column of the row itself

  • Step 4 6

    Iteration-1: Changes of row value

    Basic Variables

    Z X1 X2 S1 S2 RhV

    Z 1 0 - 2 2 0 120

    X1 0 1 0 15

    S2 0 0 3 - 1 18

    New key row: (previous key row)/key number

    Other row value: (previous row value) (new key row) x key column of the row itself

  • Step 4 7

    Basic Variables

    Z X1 X2 S1 S2 RhV

    Z 1 0 - 2 2 0 120

    X1 0 1 0 15

    S2 0 0 3 - 1 18

    Iteration-2: Determining key column

  • Step 4 8

    Basic Variables

    Z X1 X2 S1 S2 RhV Index

    Z 1 0 - 2 2 0 120 -

    X1 0 1 0 15 30

    S2 0 0 3 - 1 18 6

    Iteration-2: Determining key row

  • Step 4 9

    Basic Variables

    Z X1 X2 S1 S2 RhV Index

    Z

    X1

    X2 0 0 1 - 1/6 1/3 6 -

    Iteration-2: Changes of row value

  • Step 4 10

    Basic Variables

    Z X1 X2 S1 S2 RhV Index

    Z 1 0 0 5/3 2/3 132 -

    X1 0 1 0 1/3 - 1/6 12 -

    X2 0 0 1 - 1/6 1/3 6 -

    Iteration-2: Changes of row value

  • Solution

    Optimal

    X1 = 12

    X2 = 6 Zmax = IDR

    132,000

  • ROW TABLE OF MATRIX OF CJ - ZJ

    Linear Programming

  • Example Step 1

    Maximize:

    Linear Programming Method

    Function of Objective:

    Maximize: Z=3X + 5Y

    Function of Constraints:

    2X 8

    3Y 15

    6X + 5Y 30

    X, Y 0

  • Step 2

    Simplex Model:

    Function of Objective: Maximize

    Z=3X+5Y+0S1+0S2+0S3

    Function of Constraints:

    2X+0Y+ 1S1+ 0S2+0S3 = 8

    0X+3Y+ 0S1+ 1S2+0S3 = 15

    6X+5Y+ 0S1+ 0S2+1S3 = 30

    X,Y, S1, S2 , S3 0

  • Step 3 Enter each coefficient into simplex table

    Basic Var. Obj. Cj 3 5 0 0 0 Qty. Ratio

    X Y S1 S2 S3

    S1 0 8 2 0 1 0 0

    S2 0 15 0 3 0 1 0

    S3 0 30 6 5 0 0 1

    Zj 0 0 0 0 0

    Cj-Zj 3 5 0 0 0

  • Step 4 Determine key column

    Basic Var. Obj. Cj 3 5 0 0 0 Qty. Ratio

    X Y S1 S2 S3

    S1 0 8 2 0 1 0 0

    S2 0 15 0 3 0 1 0

    S3 0 30 6 5 0 0 1

    Zj 0 0 0 0 0

    Cj-Zj 3 5 0 0 0

    Key column: column with biggest positive value of Cj Zj (maximize), or column with biggest negative value of Cj Zj (minimize).

  • Step 5 Determine key row

    Basic Var. Obj. Cj 3 5 0 0 0 Qty. Ratio

    X Y S1 S2 S3

    S1 0 8 2 0 1 0 0 8/0 = ~

    S2 0 15 0 3 0 1 0 15/3 = 5

    S3 0 30 6 5 0 0 1 30/5 = 6

    Zj 0 0 0 0 0

    Cj-Zj 3 5 0 0 0

    Key row: row with the smallest value of quantity ratio.

    rowrespondingofcolumnkeyofiablesoftcoefficien

    valueQratioQuantity

    ______var__

    __

  • Step 6 Determine pivot point

    Basic Var. Obj. Cj 3 5 0 0 0 Qty. Ratio

    X Y S1 S2 S3

    S1 0 8 2 0 1 0 0 8/0 = ~

    S2 0 15 0 3 0 1 0 15/3 = 5

    S3 0 30 6 5 0 0 1 30/5 = 6

    Zj 0 0 0 0 0

    Cj-Zj 3 5 0 0 0

  • Step 7 Change value of key row

    New value : previous key row value/pivot point

    New value for row S2:

    15/3 0/3 3/3 0/3 1/3 0/3

    5 0 1 0 1/3 0

  • Step 8 Change value of non-key row

    New value = previous value (FR x previous value of key row) FR (fixed ratio) is coefficient of variables of key column of corresponding row/pivot point

    Row S1:

    FR = 0/3 = 0,

    Since value of FR is 0, therefore for row S1, new value = previous value

    Row S2:

    FR = 5/3,

    30 6 5 0 0 1

    (5/3) x 15 0 3 0 1 0

    5 6 0 0 -5/3 1

  • Step 9 Change table in step 3

    Basic Var. Obj. Cj 3 5 0 0 0 Qty. Ratio

    X Y S1 S2 S3

    S1 0 8 2 0 1 0 0

    Y 5 5 0 1 0 1/3 0

    S3 0 5 6 0 0 -5/3 1

    Zj 0 5 0 5/3 0

    Cj-Zj 3 0 0 -5/3 0

    Change in basic variable: variables of key column (Y) replace variable of key row (S2)

  • Step 10 Optimality test

    Simplex table is considered optimal if value of Cj- Zj 0 for case of maximize and value of Cj Zj 0 for case of minimize. Table in step 9 indicates that there is still positive value of Cj-Zj, therefore optimal condition has not been reached yet. Repeat step 3 9 until optimized solution is achieved.

  • Step 11 Repeat step 3 9

    Basic Var.

    Obj. Cj 3 5 0 0 0 Qty. Ratio

    X Y S1 S2 S3

    S1 0 38/6 0 0 1 5/9 -2/6

    Y 5 5 0 1 0 1/3 0

    X 3 5/6 1 0 0 -5/18 1/6

    Zj 3 5 0 15/18 3/6

    Cj-Zj 0 0 0 -15/18 -3/6

  • Solution

    Optimal

    X = 5/6

    Y = 5 Z = (3 x

    5/6) + (5 x 5) = 27.5

  • M i n i n g M a n a g e m e n t