ktp nomination form 2014-2015 fatal injury to … · web viewkey threatening process nomination...

35
Key Threatening Process Nomination Form for amending the list of key threatening processes under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) 2014/2015 Nomination Period Nominated key threatening process 1. N A M E O F KEY T H R E A T E N I NG P R O CESS Fatal injury to marine mammals, reptiles, and other large marine species from boat strike 2. CRITERIA UNDER WHICH THE KEY THREATENING PROCESS IS ELIGIBLE FOR LISTING Please mark the boxes that apply by clicking them with your mouse. The process Criterion A Criteri on B Evidence that the threatening process could cause a native species or ecological community to become eligible for listing in any category, other than conservation dependent. Evidence that the threatening process could cause a listed threatened species or ecological community to become eligible for listing in another category representing a higher degree of endangerment. Evidence that the threatening process adversely affects 3. CONSERVATION THEME: Is the current conservation theme ‘terrestrial and marine flora and fauna that would benefit from national listingYes. Boat strikes impact populations of species that may become threatened as a result, as well as several that are already listed as threatened and/or migratory species under the EPBC Act and various pieces of state/territory legislation. Comprehensive analysis of the issue will lead to effective conservation measures being implemented, and lessen the occurrence and thus detrimental effects of fatal boat strikes on these species. Furthermore, the widespread national extent of the nominated Key Description of the key threatening process 4. DESC R IPTI O N Describe the threatening process in a way that distinguishes it from any other threatening process, by reference to: a. its biological and non-biological components; b. the processes by which those components interact (if known). Within Australian waters, boat strikes are responsible for injuries and death to marine turtles, dugongs, whales and sharks to differing degrees. Direct contact with propellers or hulls of boats may sever tissue and/or organs causing immediate death, debilitating the animal, or transmitting infection leading to a slower and more distressing death. Feeding and breeding grounds may also be disturbed as a result of boat access within a region (Hodgson & Marsh, 2007). Populations may be restricted to feeding areas with high vessel traffic, limiting their habitat and increasing competition for limited resources (Hazel et al., 2007). The Department of Environment and Resource Management (DERM) of Queensland keeps a Stranding and Mortality Database for dugongs, cetaceans and pinnipeds, and marine turtles, with data published in Annual Reports indicating the proportion

Upload: others

Post on 13-Feb-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: KTP nomination form 2014-2015 Fatal injury to … · Web viewKey Threatening Process Nomination Form for amending the list of key threatening processes under the E n v i r on me n

Key Threatening Process Nomination Formfor amending the list of key threatening processes under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act)

2014/2015 Nomination Period

Nominated key threatening process

1. N A M E O F KEY T H R E A T E N I NG P R O CESS Fatal injury to marine mammals, reptiles, and other large marine species from boat strike

2. CRITERIA UNDER WHICH THE KEY THREATENING PROCESS IS ELIGIBLE FOR LISTINGPlease mark the boxes that apply by clicking them with your mouse. The process could be eligible under one or all three criteria.

Criterion A

Criterion B

Criterion C

Evidence that the threatening process could cause a native species or ecological community to become eligible for listing in any category, other than conservation dependent.

Evidence that the threatening process could cause a listed threatened species or ecological community to become eligible for listing in another category representing a higher degree of endangerment.

Evidence that the threatening process adversely affects two or more listed threatened species (other than conservation dependent species) or two or more listed threatened ecological communities.

3. CONSERVATION THEME:Is the current conservation theme ‘terrestrial and marine flora and fauna that would benefit from national listing’relevant to this key threatening process? If so, explain how.Yes. Boat strikes impact populations of species that may become threatened as a result, as well as several that arealready listed as threatened and/or migratory species under the EPBC Act and various pieces of state/territory legislation. Comprehensive analysis of the issue will lead to effective conservation measures being implemented, and lessen the occurrence and thus detrimental effects of fatal boat strikes on these species. Furthermore, the widespread national extent of the nominated Key Threatening Process means that individual state/territory listings would not be as appropriate or effective as protection afforded at the federal level.

Description of the key threatening process

4. DESC R IPTI O N Describe the threatening process in a way that distinguishes it from any other threatening process, by reference to:

a. its biological and non-biological components;b. the processes by which those components interact (if known).

Within Australian waters, boat strikes are responsible for injuries and death to marine turtles, dugongs, whales and sharks to differing degrees. Direct contact with propellers or hulls of boats may sever tissue and/or organs causing immediate death, debilitating the animal, or transmitting infection leading to a slower and more distressing death. Feeding and breeding grounds may also be disturbed as a result of boat access within a region (Hodgson & Marsh,2007). Populations may be restricted to feeding areas with high vessel traffic, limiting their habitat and increasing competition for limited resources (Hazel et al., 2007).

The Department of Environment and Resource Management (DERM) of Queensland keeps a Stranding and Mortality Database for dugongs, cetaceans and pinnipeds, and marine turtles, with data published in Annual Reports indicating the proportion of mortality of each group and species due to boat strike. However, exact mortality figures from boat strikes of marine species are unknown. Many carcasses do not wash ashore and are therefore not accounted for on the mortality database. Many carcasses are also unidentifiable at time of finding, or the cause of death unable to be determined. It can therefore be expected that a greater incidence of fatalities occurs, than is recorded, but the true extent is unknown.

Marine animals are most at risk in areas of sizeable urban coastal populations, such as the Gold Coast and Sunshine Coast in Queensland. These areas contain the most frequent and abundant amount of boat traffic, including both commercial and recreational craft. There has also been a high level of boat activity in the Great Barrier Reef Marine Park over the last four decades, with a rapid post-war expansion of visitors to the Great Barrier Reef through 1970s and1980s. According to data compiled by Queensland Transport in 2003, there has been a steady increase in the number of motorboats registered in Queensland waters. Additionally, visitor days have increased from 1,100,000 in 1985 to

Page 2: KTP nomination form 2014-2015 Fatal injury to … · Web viewKey Threatening Process Nomination Form for amending the list of key threatening processes under the E n v i r on me n

1,600,000 in 2000 (Harriot, 2002).

Page 3: KTP nomination form 2014-2015 Fatal injury to … · Web viewKey Threatening Process Nomination Form for amending the list of key threatening processes under the E n v i r on me n

Boat ownership in Perth waters grew from 27,997 to 48,468 between the years of 1990 and 2007 with 10.4% of vessels being greater than 7.5m in length. Forward predictions for 2025 are 84,857 with 12.5% of vessels greater than 7.5m, indicating that not only is boat ownership growing rapidly, but that boat size is increasing. (DPI Technical Report #445Feb 2008 -attached). This trend is similar to that of the Peel region (the fastest growing regional area in WA) with the8,733 licensed boats (7.26% >7.5m) in December 2009, projected to grow to 18,438 by 2031 (14.75% >7.5m) (WA Department of Transport, 2010). It is expected that boat strike incidences will rise proportionally with these projected increased.

Both commercial and recreational boats have been responsible for striking marine animals. Recreational vessels, however, account for 96.9% and commercial vessels only 0.001% of registered vessels in Queensland in 2003 (MSIAR,2003). Small sailing boats (carrying <20 people) pose little threat to marine animals due to their slow speed, and allow evasive responses in marine animals (Preen, 2000). Recreational windsurfers, speed boats, as well as large catamarans, which can hold more than 400 people, operate at faster speeds and leave lesser time for the animal to react and are therefore most likely to strike marine mammals.

Boat type and the circumstance of the strike can be estimated, given the measurements of propeller depth, length, distance between and number of cuts to the carcass. This information assists in recognizing which category of boat has been most inclined to strike marine animals. Data collected from dugong carcasses in Moreton Bay suggest that the majority of boats involved in strikes are not small recreational boats powered with outboard motors, but rather larger recreational and commercial vessels in twin propeller configurations (Limpus, 2002). Strikes by small recreational vessels including jet skis have also been recorded.

Despite much of Queensland’s coastal waters being protected in marine parks of some form (e.g. Great Barrier Reef, Great Sandy Bay, Moreton Bay), this does not ensure the protection of marine mammals from boat strike. Within the last decade, Queensland Parks and Wildlife Service together with Queensland Transport have installed 18 ‘go-slow’ signs within Moreton Bay Marine Park as a response to high mortality figures of turtles and dugongs from boat strikes. However, no binding mechanism limits boat traffic and speed limits and as a result the voluntary speed limits that areset are ineffective (Hazel et al., 2007).

Within the Townsville-Cardwell (Hinchinbrook Channel/ Missionary Bay) region, inhabited by large populations of turtles and dugongs, speedboats and other large planing vessels make up a total of 76% and 84% respectively of all boat movement in the area (Preen, 2000). Small to large speedboats make up 80% of boat traffic in the Hinchinbrook region (Preen, 2000). With the predicted construction of the two marinas in the Hinchinbrook area, (Oyster Point and Dungeness), boat traffic and consequently boat strikes are also expected to increase, with an escalating interest in vessel numbers and boating activity in the region.

Indigenous Values

5. INDIGENOUS CULTURAL SIGNIFICANCEIs the key threatening process known to have an impact on species or country culturally significant to Indigenous groups within Australia? If so, to which groups? Provide information on the nature of this significance if publicly available. Species impacted upon by the nominated key threatening process, such as marine turtles and dugongs, are culturally significant to coastal Indigenous groups throughout Australia.

Criterion A: non-EPBC act listed species/ecological communities

6. S P ECIES T H A T C O U L D BEC O M E ELI G IB L E F OR L I S T ING A ND J U ST I F IC A T I O N Provide details and justification of non-EPBC Act listed species that, due to the impact of the key threatening process, could become eligible for listing in any category, other than conservation dependent. For each species please include:

a. the scientific name, common name (if appropriate), category it could become eligible for listing in;b. data on the current status in relation to the criteria for listing;c. specific information on how the threatening process threatens this species; andd. information on the extent to which the threat could change the status of the species in relation to the criteria

for listing.Dugong (Dugong dugon)Could become eligible for listing as Vulnerable.

Page 4: KTP nomination form 2014-2015 Fatal injury to … · Web viewKey Threatening Process Nomination Form for amending the list of key threatening processes under the E n v i r on me n

Au stra lian con ser vat ion stat u s:National: Listed as a Marine and Migratory species under the Environment Protection and Biodiversity Conservation Act,1999.New South Wales: Listed as Vulnerable under the Threatened Species Conservation Act, 1995.Northern Territory: Listed as Protected Wildlife under the Territory Parks and Wildlife Conservation Act, 2001.Queensland: Listed as Vulnerable under the Nature Conservation Act, 1992.Western Australia: Listed as Specially Protected under the Wildlife Conservation Act, 1950

I n ter n a t io n al co n se r v a t ion st a t u s : - Listed on Appendix I of the Convention of International Trade in Endangered Species of Fauna and Flora (CITES).- Listed as Vulnerable on the International Union for Conservation of Nature and Natural Resources (IUCN) Red

List of Threatened Species.- Listed on Appendix II of the Convention on the Conservation of Migratory Species of Wild Animals (CMS).

Although there remains large uncertainty about accurate population figures, a decline in dugong numbers since the1970s is apparent (Preen, 2000). Marsh et al. (2005) reports on four decades of decline in dugong abundance in Queensland waters through a 40-year assessment of dugong catch per unit effort (CPUE) data in Queensland’s shark control nets, which found that the CPUE in 1999 was only 3% of that in 1962, which indicating a large decline in dugong populations over that period. Population decline measured in Queensland waters between the 1960s and mid-1990s would, if robust and extrapolated to the entire population, qualify the dugong for listing as “Critically Endangered” worldwide (Marsh, 2008).

The dugong is a long-lived mammal with a lifespan of 50-60 years and a low reproductive rate, the minimum pre- reproductive period for the dugong is roughly 9-10 years for both sexes, with one calf every 3-7 years (Marsh et al.1984). Mammals with these life history parameters (long-lived, low reproductive rate, long generation time and largeinvestment in each offspring) must sustain a high survival rate to maintain population numbers and are vulnerable to human induced mortality. Population simulations suggest that dugong populations are unlikely to increase by morethan 5% per year, with sustainability relying on high levels of adult survivorship. This model was simulated using optimallife history parameters including low natural mortality rates and no human-induced mortality. Therefore, the slightest decline of adult dugong survivorship may see a population crash (Marsh e. al. 1984).

Boat strikes pose a direct threat to dugong populations. The shallow water habitat of the dugong subjects the species to high contact with human populations, and further constrains dugongs ability to avoid boats by diving (Hodgson & Marsh,2007; Maitland et al., 2006). There are also concerns that frequent boat activity can displace dugongs from their preferred habitats (Hodgson & Marsh, 2007). Hodgson (2004) showed that it's likely dugongs initiate their response to approaching vessels appears as a function of distance rather than speed, meaning that when a boat approaches quickly the response may be too slow to avoid an impact.

One of the largest populations and feeding grounds of dugongs in Australia is found in the Townsville/Cardwell area. The Hinchinbrook region provides habitat for approximately half of all dugongs in the Great Barrier Reef south of Cooktown. Oyster Point is sheltered by the Hinchinbrook Channel and retains the world’s largest dugong population. As boat traffic in this area has increased since the 1970’s, the incidence of boat strike on dugongs has also increased andthe areas in which they commonly aggregate has decreased (Preen, 2000). Boat traffic in the Hinchinbrook region isincreasing due to development and increasing tourist activities, and is likely to continue to grow. This predicted increase in boat traffic can be expected to result in an increase in boat strikes (Preen, 2000).

Moreton Bay is home to the southernmost distribution of dugong on east coast of Australia. It is also an area of high boat usage adjacent to Brisbane and a region of high tourism activity. Dugong population size has increased in this area since the cessation of hunting for oil to a most recent estimate of 500 mammals. This small population size, combined with seagrass beds in close proximity to Brisbane leaves this dugong population especially vulnerable to continued anthropogenic effects.

The Department of Environment and Resource Management (DERM) of Queensland formerly kept an annual stranding and mortality database for dugongs, which included data on mortality due to boat strike. These annual reports, the most recent of which is Biddle et al. (2011), show the known level of dugong mortality as a result of boat strike between the years of 1996-2010, with a summary of this data being shown in the following table (Table 1). It can be reasonablyassumed that the actual mortality rate is significantly higher, due to not all incidences being detected, further incidences not being reported, and many instances not being able to be officially assessed and have cause of mortality confirmed .

T a b le 1: D u go n g m ort a liti e s c a u se d b y b oat strike in Qu ee n s la n d wa t e r s for t h e p e riod 1 9 9 6 - 2 0 10

Page 5: KTP nomination form 2014-2015 Fatal injury to … · Web viewKey Threatening Process Nomination Form for amending the list of key threatening processes under the E n v i r on me n

Year 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010Mortalities 3 4 2 0 3 4 7 3 5 4 2 2 2 3 4

Page 6: KTP nomination form 2014-2015 Fatal injury to … · Web viewKey Threatening Process Nomination Form for amending the list of key threatening processes under the E n v i r on me n

A more detailed table, including data on all known causes of dugong mortality, is listed in the appendices as Figure 1. When taking into account natural causes of mortality (such as disease and ill health), incidences where the cause of mortality could not be determined, and incidences which were unable to be confirmed, a more accurate picture of the proportion of additional impact on dugong populations boat strike has can be determined (Table 2). With a total of 46 dugong mortalities attributed to boat strike, the process was notably the leading cause of anthropogenic mortality in 7 of the 15 years data has been recorded.

T a b le 2 : Pr op orti o n o f an t h r op og e n ic m ort a lit i e s o f du go n g s a t t ri bu t ab le t o b oat strike for t h e p e riod 199 6 - 2010 Year 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010Total confirmed mortality 16 20 9 25 33 18 15 14 15 10 5 10 10 21 34Natural causes 3 7 4 10 23 11 5 6 2 3 0 2 3 10 16Anthropogenic 13 13 5 15 10 7 10 8 13 7 5 8 7 11 18% anthro. boatstrike 23.1 30.8 40.0* 0.0 30.0 57.1* 70.0* 37.5* 30.8* 28.6 40.0* 25.0 28.6* 27.3 22.2

* = boat strike caused more than or as many deaths than any other anthropogenic activity recorded

Data collected from carcasses in Moreton Bay suggests that the majority of boats involved in strikes on dugongs are not small recreational boats powered with outboard motors, but rather larger recreational and commercial vessels with twin propeller configurations (Limpus, 2002). Particularly at risk are regionally important Dugong populations in extensive shallow areas close to areas of high boat traffic (Marsh et al., 2002). On the urban coast of Queensland, areas of high recreational use such as the Hinchinbrook Island area, Cleveland Bay, Hervey Bay and Moreton Bay are of greatest concern (Marsh et al., 2002). Hodgson (2004) discusses mortality data and possible threat abatement measures for several priority areas of dugong habitat.

The plight of the dugong, as recognised through Marine Species and Migratory Species listings under the EPBC Act, as a protected species under New South Wales, Queensland, Northern Territory and Western Australian law, and international obligations with the species listed on Appendix I of CITES, Appendix II of the CMS and as Vulnerable on the IUCN Red list, clearly illustrates the high sensitivity of this species and the resulting need for a proactive and vigorous management approach. The above demonstrates that the threat posed by boat strike to Australia’s dugong population could be a significant contributing threat causing it to become eligible for listing under the EPBC Act as Vulnerable. Not only is the current known rate of boat strikes on dugong a cause for concern, but also the projection of that rate into the future, as boat traffic increases due to the growth in coastal human populations in key areas.

Australian snubfin dolphin (Orcaella heinsohni)Could become eligible for listing as Vulnerable.

A u s tr a lian c on se r v a t ion sta t u s : National: Listed as a Cetacean under the Environment Protection and Biodiversity Conservation Act, 1999.

I n ter n a t io n al co n se r v a t ion st a t u s : - Listed as Orcaella brevirostris on Appendix I of the Convention of International Trade in Endangered Species of

Fauna and Flora (CITES).- Listed on Appendix II of the Convention on the Conservation of Migratory Species of Wild Animals (CMS).

In 2005 the Irrawaddy dolphin (Orcaella brevirostris) was discovered to be two separate species, with one species retaining the original name and the other described as the Australian snubfin dolphin (Orcaella heinsohni). In Reeves et al. (2008), it is cited that Australian snubfin dolphins inhabit coastal, shallow waters of the tropical and subtropical zones of Australia, and possibly some parts of New Guinea (Beasley et al., 2005). In Australia, they occur from Broome,Western Australia, north and east to the Brisbane River, Queensland. The range along the northern Australian coast andNew Guinea is poorly documented (Parra et al., 2002).

As many national and international conservation agreements and pieces of legislation are yet to assess the Irrawady and Australian snubfin dolphins as separate species, various conservation statuses do not yet accurately reflect these species individual situations. It logically follows however, that when a threatened population is split, the status of the remaining populations become even more critical and vulnerable to anthropogenic threats. The effects of ongoing loss of only a small proportion of individuals from such small and possibly geographically isolated populations can be as severe as extinction over a relatively short time-frame (Thiele, 2010).

Thiele (2010) studied injuries in a population of 161 snubfin dolphins in Roebuck Bay, on the Western Australia Kimberley Coast, of which 124 had suitable images for determining whether an injury was present and its likely cause. Instances of boat strike were inferred from blunt trauma marks or propeller cuts, and it was found that there was

Page 7: KTP nomination form 2014-2015 Fatal injury to … · Web viewKey Threatening Process Nomination Form for amending the list of key threatening processes under the E n v i r on me n

evidence of vessel strike alone for 12 individuals (9.7% of those with suitable photographs) , and of vessel strike and

Page 8: KTP nomination form 2014-2015 Fatal injury to … · Web viewKey Threatening Process Nomination Form for amending the list of key threatening processes under the E n v i r on me n

fishing gear combined in 14 individuals (11.3% of those with suitable photographs). Therefore, of the 124 Australian snubfin dolphins in Roebuck Bay for which imaging was available, approximately 26.1% had evidence of being struck by boats.

These figures represent conservative figures of interactions as snubfin dolphins that have died following a boat strike are unlikely to be found in an area of such high tidal fluxes, with the high incidence of non-fatal interactions suggesting mortality is likely to occur (Thiele, 2010). Thiele (2010) goes on to hypothesise that the high rate of vessel relatedsnubfin dolphin injuries is likely attributable to the concentrated and active socialising behaviour of the species, during which they appear much less aware of their surroundings and may be unable to react quickly enough to avoid approaching boats.

7. EC O L O G I C A L C O MM UN I T IES T HAT C O U L D BE C OM E ELI G IB L E F OR L IST I N G A ND J U ST I F I C AT I O N Provide details and justification of non-EPBC Act listed ecological communities that, due to the impact of the key threatening process, could become eligible for listing in any category. For each ecological community please include:

a. the complete title (published or otherwise generally accepted), category it could become eligible for listing in;b. data on the current status in relation to the criteria for listing;c. specific information on how the threatening process threatens this ecological community; andd. information on the extent to which the threat could change the status of the ecological community in relation

to the criteria for listing.The nominator it not aware of any ecological communities that could become eligible for listing as a result of the nominated key threatening process.

Criterion B: Listing in a higher threat category

8. S P ECIES T H A T C O U L D B E C O M E ELI G IB L E FOR L I S T ING I N A HI G HER T H R E A T C A T E G O R Y A ND J U ST I F I C A T I O N

Provide details and justification of EPBC Act listed threatened species that, due to the impacts of the threatening process, could become eligible for listing in another category representing a higher degree of endangerment. For each species please include:

a. the scientific name, common name (if appropriate), category that the item is currently listed in and thecategory it could become eligible for listing in;

b. data on the current status in relation to the criteria for listing (at least one criterion for the current listed category has been previously met);

c. specific information on how the threatening process significantly threatens this species; andd. information on the extent to which the threat could change the status of the species in relation to the criteria

for listing. This does not have to be the same criterion under which the species was previously listed.It is possible that some of the species listed in Section 14 (below) may be pushed into a higher category of conservation threshold as a result of the nominated key threatening process. However, a lack of accurate population data has led to Criterion C more accurately reflecting the impact this key threatening process has.

9. EC O L O G I C A L C O MM UN I T IES T HAT C O U L D BE C OM E ELI G IB L E F OR L IST I N G IN A H IGH E R T H R E A T C A T E GO R Y A ND J U ST I F I C A T I O N

Provide details and justification of EPBC Act listed threatened ecological communities that, due to the impacts of the threatening process, could become eligible for listing in another category representing a higher degree of endangerment. For each ecological community please include:

a. the complete title (published or otherwise generally accepted), category that the item is currently listed in and the category it could become eligible for listing in;

b. data on the current status in relation to the criteria for listing (at least one criterion for the current listedcategory has been previously met);

c. specific information on how the threatening process significantly threatens this ecological community; andd. information on the extent to which the threat could change the status of the ecological community in relation

to the criteria for listing. This does not have to be the same criterion under which the ecological community was previously listed.

The nominator it not aware of any ecological communities that could become eligible for listing in a higher category as a result of the nominated key threatening process.

Page 9: KTP nomination form 2014-2015 Fatal injury to … · Web viewKey Threatening Process Nomination Form for amending the list of key threatening processes under the E n v i r on me n

Species 1999 2000 2001 2002 2003 2004 TotalChelonia mydas 69 57 66 55 48 65 360Caretta caretta 8 10 8 5 3 5 39Dermochelys coriacea 0 0 0 0 1 0 1Eretmochelys imbricata 0 3 1 1 0 0 5Lepidochelys olivacea 3 3 0 0 0 1 7Natator depressus 0 0 0 0 1 0 1Total 80 73 75 61 53 71 413

Criterion C: Adversely affected listed species or ecological communities

10. S P ECIES A DVER S ELY I M PAC T ED A ND J U S T IF I C A T I O N Provide a summary of species listed as threatened under the EPBC Act, that are considered to be adversely affected by the threatening process. For each species please include:

a. the scientific name, common name (if appropriate) and category of listing under the EPBC Act; and b. justification for each species that is claimed to be affected adversely by the threatening process.

M ar in e t ur tlesAustralian waters are home to six of the world’s seven species of marine turtle. These species are all protected under the EPBC Act and listed under the Convention of International Trade in Endangered Species of Wild Fauna and Flora (CITES) and the Convention for the Conservation of Migratory Species (CMS). Five of the species found within eastern Australian waters are also listed as endangered and critically endangered under the International Union for the Conservation of Nature’s (IUCN) Red List 2011 (IUCN, 2011). A marine turtle may take up to 30–50 years to mature (Marine Species Section, 2003), making them extremely vulnerable to impacts on population size.

It is stated within the Federal Recovery Plan for Marine Turtles in Australia (Marine Species Section, 2003) that "Marine turtles are vulnerable to boat strikes when at the surface to breathe and rest between dives. This is particularly an issue in waters adjacent to large urban populations (Limpus & Reimer, 1994) where there are large numbers of boats and other pleasure craft... The marine turtle populations affected by boat strike have been identified as: loggerhead turtles from the eastern Australian population; green turtles from the southern Great Barrier Reef population; hawksbill turtles from the north-eastern Australian populations; and flatback turtles from Queensland." Records illustrate the olive ridley turtle to be victim to boat strike on occasion (e.g. Haines & Limpus, 2001). Furthermore, boat strike is regularly mentioned in a review of impacts ‘of greatest relevance to turtle populations in the World Heritage Area’ of the Great Barrier Reef (Dobbs, 2001).

Australia is home to some of the largest nesting sites of the green, loggerhead and hawksbill turtles in the Indo-Pacific region, and the only nesting sites of the flatback turtle (Marine Species Section, 2003). A summary of the numbers of turtles known to have been killed by boat strike in Queensland between 1998 and 2002 is presented in Table 3, with data being obtained from the Queensland Department of Environment and Resource Management (DERM) Marine Wildlife Stranding and Mortality Database Annual Reports.

T a b le 3 : Mari n e tu rtle m ort a l i ties c aus e b y b oat strike in Qu ee n s la n d wa t e rs b e t w e e n 19 9 9 - 20 0 4

From 1998-2002, confirmed boat strike accidents accounted for an average of 80 annual turtle mortalities along the Queensland shoreline alone, although this is probably an underestimation since cause of death could not be determined in 57% of cases, plus we can assume many carcasses are not discovered. The majority of those killed were green turtles. Boat strikes have proven to be one of the leading causes of turtle fatality from human-induced causes. Between 1999 and 2002 an annual average of 36.8% of all sea turtle mortalities in which cause of death could be determined (15% ofall strandings and mortalities) within Queensland waters were due to boat strikes, with injuries consistent with propeller damage and fractures (Table 4).

T a b le 4 : R e cor d s o f d oc u me n t e d tu rtles mor t ali t i e s for Q ue e n s la n d wa t e r s fr o m 199 8 -2 0 02 s h o w i n g th e pe rc e n t a g e o f co n f ir m e d mor t aliti e s a t t ri bu ted t o b oat strike

Year Total number of dead or stranded marine turtles

Number for which cause of mortality could be determined

Number of turtles killed due to anthropomorphic causes

Number attributed to boat strike

% of confirmed deaths due to boat strike

1999 554 195 150 84 56.0*2000 495 172 130 78 60.0*2001 529 168 139 83 59.7*2002 526 172 149 65 43.6*2003 527 140 117 60 51.3*

Page 10: KTP nomination form 2014-2015 Fatal injury to … · Web viewKey Threatening Process Nomination Form for amending the list of key threatening processes under the E n v i r on me n

2004 574 173 156 75 48.1*Total 3,205 1,020 841 445 52.9*

Page 11: KTP nomination form 2014-2015 Fatal injury to … · Web viewKey Threatening Process Nomination Form for amending the list of key threatening processes under the E n v i r on me n

* = boat strike caused more than or as many deaths than any other anthropogenic activity recorded

It is worth noting that were cause of mortality proportions to remain consistent throughout the marine turtle strandings which were unconfirmed or had an unidentifiable cause of death, the number that would be attributable to boat strike (currently 445/1,020) would rise to approximately 1,400 individuals. Even this figure, focusing only on mortality on the Queensland coastline, is likely to represent only a fraction of actual mortality rates due to many instances going undetected or unreported. When considering this, it is clear that boat strike is a key threatening process to EPBC Ac t listed marine turtles in Australia.

The impact of boat strike on turtles is recognised in the Marine Turtle Recovery Plan (2003) as being particularly significant in the Moreton Bay and Harvey Bay areas. The Recovery Plan aims to increase turtle populations in the wild by reducing human induced mortality. Incidence of boat strike on marine turtles is of significance not only in Moreton Bay and Harvey Bay, but also in the Hinchinbrook area which is of increasing concern due to marine traffic and consequent injuries to turtles increase with increasing development (Limpus et al., 2002).

The impact of boat strike on green and loggerhead turtle populations is most evident through the data outlined in Table3, and these species will be focused on in more depth later in this nomination. This will also be the case with the leatherback turtle, which warrants closer scrutiny due to its conservation status as Critically Endangered internationally (IUCN, 2011) and listing under all State / Territory with coastline (ACT being the only exception) threatened species legislation.

Flatback (Natator depressus), olive-ridley (Lepidochelys olivacea), and hawksbill (Eretmochelys imbricata) turtles are recognised as threatened Federally under the EPBC Act, Internationally through CMS, IUCN and CITES, and under various State / Territory laws. They are uncommon in the Great Barrier Reef region and data is correspondingly lacking in DERM’s Marine Wildlife Stranding and Mortality Database Annual Reports, thus little data is available regarding cause of mortality. However, these Annual Reports, the most recent of which is Greenland et al. (2006), show that between1999-2004 one flatback, five hawksbill, and seven olive ridley turtles were recorded as stranded or killed by boat strike on the Queensland coast. Thus, even though data that fulfils the criteria for inclusion in the KTP is not comprehensive, it should be considered that three additional rare turtles in Australian waters are affected by this process, and may be more severely in other areas throughout their Australian range where they are more common.

Prior to 2012 there was no coordinated data collection on boat strikes in Western Australia, however efforts now include Ningaloo and elsewhere. The Western Australian Department of Parks and Wildlife hope to use StrandNet to collate records from the past 60 years, but approximately 6 months away from completion of the process they are not yet confident to release data (pers. comm., XXX XXX).

Green turtle (Chelonia mydas)

A u s tr a lian c on se r v a t ion sta t u s : National: Listed as Vulnerable, Marine and Migratory species under the Environment Protection and BiodiversityConservation Act, 1999.New South Wales: Listed as Vulnerable under the Threatened Species Conservation Act, 1995.Queensland: Listed as Vulnerable under the Nature Conservation Act, 1992.Western Australia: Listed as Vulnerable under the Wildlife Conservation Act, 1950

I n ter n a t io n al co n se r v a t ion st a t u s : - Listed on Appendix I of the Convention of International Trade in Endangered Species of Fauna and Flora (CITES).- Listed as Endangered on the International Union for Conservation of Nature and Natural Resources (IUCN) Red

List of Threatened Species.- Listed on Appendix II of the Convention on the Conservation of Migratory Species of Wild Animals (CMS).

According to Queensland Government’s Marine Wildlife Stranding and Mortality Database Annual Reports (see Table 3), green turtles account for approximately 87.2% of boat strike mortalities to marine turtles in Queensland. Annual mortality rates attributable to boat strikes surpass mortality rates from any other cause, including all natural causes combined and such anthropogenic impacts as shark net entanglement and traditional hunting.

Of the total confirmed green turtle mortalities where the cause of death could be determined contained within the Marine Wildlife Stranding and Mortality Database Annual Reports, greater than 50% (360/705) featured fractures and injuries consistent with boat strike and propeller damage (Table 5). Comparatively, only 15.2% of cause of death confirmed stranding and mortalities were due to natural causes such as disease and depredation, a figure which

Page 12: KTP nomination form 2014-2015 Fatal injury to … · Web viewKey Threatening Process Nomination Form for amending the list of key threatening processes under the E n v i r on me n

indicates the severe stress boat strike incidents are placing on non-impacted green turtle population dynamics.

Page 13: KTP nomination form 2014-2015 Fatal injury to … · Web viewKey Threatening Process Nomination Form for amending the list of key threatening processes under the E n v i r on me n

T a b le 5: R e cor d s o f r e p orted gr ee n tu rtle m ort a liti e s in Q u ee n s la n d wa t e rs f r o m 1 9 9 8 -2 002 s h o w i n g th e p e rc e n t a g e of co n f ir m e d mor t aliti e s a t t ri bu ted t o b oat strike

Year 1999 2000 2001 2002 2003 2004 TotalTotal confirmed mortality 134 108 125 118 108 112 705Natural causes 26 22 20 20 16 3 107Anthropogenic 108 86 105 98 92 109 598Boat Strike 69 57 66 55 48 65 360% anthro. boatstrike 63.9* 66.3* 62.9* 56.1* 52.2* 59.6* 60.2

* = boat strike caused more than or as many deaths than any other anthropogenic activity recorded

It is worth noting that boat strike was the leading confirmed cause of mortality of reported incidents on the Queensland coast in all of the six years for which data was collected, significantly higher than any other factor. It is stated within Hazel et al. (2007) that “Individual green turtles are known to maintain long-term fidelity to their coastal foraging areas, with only brief absences during breeding migrations spaced several years apart (Limpus et al. 1992, 1994). Thus, for each individual turtle in a foraging area that receives vessel traffic, the risk of collision persists over decades”. This behavioural trait may be a significant factor in why instances of boat strike on green turtles are so common.

A study (Hazel et al. 2009) showed that the large majority of green turtles spent 89-100% of their time at depth of equal to or less than 5m below surface. Additionally, for 80% of their time they were in charted (low tide) depths of 3m or less i.e. locations such as bay margins (Moreton Bay) where human activity is greatest. These locations often coincide with near shore foraging grounds.

The severity of the threat of boat strike to green turtles is rivalled only by that of Indigenous traditional hunting. It is however a threat that is relatively straightforward to abate compared to the indigenous use. If the threat of boat strike were to continue the species will continue to decline. Together with the loggerhead turtle (below), it meets the KTP listing criterion that the threatening process adversely affects an EPBC Act listed species.

Loggerhead turtle (Caretta caretta)

A u s tr a lian c on se r v a t ion sta t u s : National: Listed as Endangered, Marine and Migratory species under the Environment Protection and BiodiversityConservation Act, 1999.New South Wales: Listed as Endangered under the Threatened Species Conservation Act, 1995.Northern Territory: Listed as Endangered under the Territory Parks and Wildlife Conservation Act, 2001.Queensland: Listed as Endangered under the Nature Conservation Act, 1992.Western Australia: Listed as Rare or likely to become extinct under the Wildlife Conservation Act, 1950

I n ter n a t io n al co n se r v a t ion st a t u s : - Listed on Appendix I & II of the Convention of International Trade in Endangered Species of Fauna and Flora

(CITES).- Listed as Endangered on the International Union for Conservation of Nature and Natural Resources (IUCN) Red

List of Threatened Species.- Listed on Appendix I of the Convention on the Conservation of Migratory Species of Wild Animals (CMS).

It has been acknowledged at many levels of government that the loggerhead turtle, Caretta caretta, is under significant threat. The species is recognised under the EPBC Act as an Endangered species, acknowledging the fact that if the species’ survival remains threatened, it may become extinct, and the recovery of the population of loggerhead turtles in Queensland is threatened most significantly by boat strike (see Table 6). Loggerhead mortality as a result of boat strike appears to be increasing, which means that boat strike has the capacity to endanger the recovery of this reduced population (XXXX pers. comm.).

The loggerhead turtle is a relatively long-lived animal, with a life expectancy of at least 50 years and sexual maturity reached at between 8 and 15 years, with non-annual, periodic egg-production (NSW Scientific Committee, 2001). During the last two decades, loggerhead populations have been decreasing faster than any other marine turtle species, and it has lost up to 80% of its nesting population on the east coast (Parish, 2001).

Population models were developed using long-term mark-recapture data from loggerhead turtles feeding in the Heron Island region. These models indicate that small declines in annual survival rates of adult and sub-adult loggerheads can have an extreme impact on population dynamics. It is predicted that a loss of a few hundred loggerhead turtles can lead to the extinction of the eastern Australia population within a century (Heppell et al., 1996).

Page 14: KTP nomination form 2014-2015 Fatal injury to … · Web viewKey Threatening Process Nomination Form for amending the list of key threatening processes under the E n v i r on me n

Anthropogenic effects and disturbances on loggerhead population growth are difficult to measure due to the large time

Page 15: KTP nomination form 2014-2015 Fatal injury to … · Web viewKey Threatening Process Nomination Form for amending the list of key threatening processes under the E n v i r on me n

frame taken for maturity in this and other turtle species. There is therefore a lag time between the cause and effect of declining population numbers. For this reason, immediate and drastic action must be taken to significantly reduce mortality by means of anthropogenic causes, in particular boat striking. This also demonstrates that the precautionary approach must be used here.

Work et al. (2010) investigated the effects of vessel speed, vertical depth and type of propulsion system on loggerhead turtles through an experimental approach. Full-scale models with fibreglass carapaces were used in testing, with results supporting the existing view that vessel speed influences likelihood of catastrophic damage. Depth in water column was not a significant factor, while propeller guards were ineffective at planning speeds in 3-6m vessels and only slightly helpful at idle speed. Two different jet propulsion systems in a 5.8m skiff were tested: an 80hp four-stroke jet outboard and a 130hp personal water-craft with an inboard jet propulsion system. These yielded dramatic improvements inanimal safety.

The Department of Environment and Resource Management of the Queensland Government compiles ongoing stranding and mortality databases for marine wildlife. From 1998 until 2004, boat strike was the principal anthropogenic cause of stranding and mortality of loggerheads in Queensland (Table 6), with the Annual Reports indicating that the annual mortality rates due to boat strikes (total of 39 between 1999-2004) out-number mortality rates from all natural causes combined (5) significantly. Of the total confirmed loggerhead turtle mortalities where the cause of death could be determined contained within the Marine Wildlife Stranding and Mortality Database AnnualReports, approximately 35.8% (39/109) featured fractures and injuries consistent with boat strike and propeller damage (Table 6). Comparatively, only 22.9% of cause of death confirmed stranding and mortalities were due to natural causes such as disease and depredation, a figure which, as was the case with the green turtle, indicates the severe stress boat strike incidents are placing on non-impacted green turtle population dynamics.

T a b le 6: R e cor d s o f r e p orted l ogg e r h e ad tu rtle m ort a li t i e s in Q u ee n s la n d wa t e r s fr o m 1 9 9 8 - 2 0 02 s h o w i n g th e p e rc e n t a ge o f c on f i r me d mo r t a liti e s a t t ri bu ted t o b oat strike

Year 1999 2000 2001 2002 2003 2004 TotalTotal confirmed mortality 28 27 17 12 12 13 109Natural causes 6 9 3 0 5 2 25Anthropogenic 22 18 14 12 7 11 84Boat Strike 8 10 8 5 3 5 39% anthro. boatstrike 36.4* 55.6* 57.1* 41.7* 42.9* 45.5* 46.4

* = boat strike caused more than or as many deaths than any other anthropogenic activity recorded

It is therefore clear that this threat is adversely affecting this EPBC Act listed species, as it threatens the recovery of the species from its severe status of decline that resulted from years of being caught in trawling nets. The listing of ‘Fatal injury to marine mammals, reptiles, and other large marine species through boat strike on the Australian coast’ as a Key Threatening Process and development of a Threat Abatement Plan are essential to avoid the recovery of the species being compromised.

Leatherback turtle (Dermochelys coriacea)

A u s tr a lian c on se r v a t ion sta t u s : National: Listed as Endangered, Marine and Migratory species under the Environment Protection and BiodiversityConservation Act, 1999.New South Wales: Listed as Endangered under the Threatened Species Conservation Act, 1995.Northern Territory: Listed as Endangered under the Territory Parks and Wildlife Conservation Act, 2001.Queensland: Listed as Endangered under the Nature Conservation Act, 1992. South Australia: Listed as Vulnerable under National Parks and Wildlife Act, 1972. Tasmania: Listed as Vulnerable under Threatened Species Protection Act, 1995. Victoria: Listed as Threatened under the Flora and Fauna Guarantee Act, 1988.Western Australia: Listed as Rare or likely to become extinct under the Wildlife Conservation Act, 1950

I n ter n a t io n al co n se r v a t ion st a t u s : - Listed on Appendix I of the Convention of International Trade in Endangered Species of Fauna and Flora (CITES).- Listed as Critically Endangered on the International Union for Conservation of Nature and Natural Resources

(IUCN) Red List of Threatened Species.- Listed on Appendix I & II of the Convention on the Conservation of Migratory Species of Wild Animals (CMS).

Boat strike is relatively (when compared to green and loggerhead turtles) uncommon for leatherback turtles, with data from the Queensland Department of Environment and Resource Management’s Stranding and Mortality Database

Page 16: KTP nomination form 2014-2015 Fatal injury to … · Web viewKey Threatening Process Nomination Form for amending the list of key threatening processes under the E n v i r on me n

Annual Reports listing just one instance of leatherback boat strike mortality between 1999-2004 (Table 7). However,

Page 17: KTP nomination form 2014-2015 Fatal injury to … · Web viewKey Threatening Process Nomination Form for amending the list of key threatening processes under the E n v i r on me n

this low figure for boat strike for this species reflects its rarity in Australia, and it should be noted that only four mortalities from any cause were recorded in the databases – boat strike effectively being the cause of 25% of known cause mortality. Although this number appears very low, to a population reported to be in danger of extinction within less than 10 years (Science Daily, 2004) it is still a dangerous number of unnecessary deaths which, as was the case with previously mentioned species, is likely highly understated due to unreported or undetected incidents.

T a b le 7: R e cor d s o f r e p orted l e a th e r b ack tu rtle m ort a lit i e s in Q u ee n s la n d wa t e r s fr o m 1 9 9 8 - 2 0 02 s h o w i n g th e p e rc e n t a ge o f c on f i r me d mo r t a liti e s a t t ri bu ted t o b oat strike

Year 1999 2000 2001 2002 2003 2004 TotalTotal confirmed mortality 1 1 0 0 1 1 4Natural causes 0 0 0 0 0 0 0Anthropogenic 1 1 0 0 1 1 4Boat Strike 0 0 0 0 1 0 1% anthro. boatstrike 0.0 0.0 0.0 0.0 100.0* 0.0 25.0

* = boat strike caused more than or as many deaths than any other anthropogenic activity recorded

Ot h er s p e c i es af f e c t e d b y b o at st r i ke wh i c h m ay no t m eet E PBC A c t cr i t er i a Although the species described below may not meet the prescribed criteria for inclusion as part of the Key ThreateningProcess due to limited data being accessible to the nominator, they are included here in an attempt to provide a more complete picture of the impact of boat strike on marine wildlife.

Humpback whale (Megaptera novaeangliae)

A u s tr a lian c on se r v a t ion sta t u s : National: Listed as Vulnerable, Cetacean and Migratory species under the Environment Protection and BiodiversityConservation Act, 1999.New South Wales: Listed as Vulnerable under the Threatened Species Conservation Act, 1995. Queensland: Listed as Vulnerable under the Nature Conservation (Wildlife) Regulation, 2006. South Australia: Listed as Vulnerable under the National Parks and Wildlife Act, 1972. Tasmania: Listed as Endangered under the Threatened Species Protection Act, 1995.Victoria: Listed as Threatened under the Flora and Fauna Guarantee Act, 1988.Western Australia: Listed as Rare or likely to become extinct under the Wildlife Conservation Act, 1950

I n ter n a t io n al co n se r v a t ion st a t u s : - Listed on Appendix I of the Convention of International Trade in Endangered Species of Fauna and Flora (CITES).- Listed on Appendix I of the Convention on the Conservation of Migratory Species of Wild Animals (CMS).

It is likely that many ship strikes on whale species go undetected or unreported as they may occur in remote areas, the impact may not be detected, animals may be struck and passed over without being observed, or struck whales may drift out to sea, thus the actual number of strikes is undoubtedly greater than confirmed data shows (Jensen & Silber, 2004). According to Jensen & Silber (2004), humpback whales are the second most impacted upon whale species by boat strike throughout the world (with finback whales having the highest boat strike mortality count), with 44 being recorded as boat strike mortalities from the earliest record in 1885 up to 2002, with entries being highly varied chronilogically throughout that range.

As a characteristically coastal species of whale (Jensen & Silber, 2004), humpbacks are likely at greater risk of boat strike in areas of higher boat use than other migratory Australian species. In Australia, there is an east and a west coast population of migratory humpback whales that are considered to be genetically distinct (Baker et al., 1998), and there are records of humpback whales that have been found stranded and killed in Queensland (Greenland et al., 2005). Although confirmed cases with cause attributed to boatstrike are few and far between, to a small population of long- lived and large animals this still represents a threat. Furthermore, boat strikes on humpback whales are likely to increase if the humpback population continues to recover on the east coast and as boat traffic increases.

Whale shark (Rhincodon typus)

A u s tr a lian c on se r v a t ion sta t u s : National: Listed as Vulnerable and Migratory species under the Environment Protection and Biodiversity ConservationAct, 1999.South Australia: Listed as Vulnerable under the National Parks and Wildlife Act, 1972.Tasmania: Listed on the Fisheries (General and Fees) Regulations, 2006 under the Living Marine Resources ManagementAct, 1995.

Page 18: KTP nomination form 2014-2015 Fatal injury to … · Web viewKey Threatening Process Nomination Form for amending the list of key threatening processes under the E n v i r on me n

Western Australia: Listed as a totally protected fish under the Conservation and Land Management Act, 1984 and the

Page 19: KTP nomination form 2014-2015 Fatal injury to … · Web viewKey Threatening Process Nomination Form for amending the list of key threatening processes under the E n v i r on me n

Fish Resources Management Act, 1994.

I n ter n a t io n al co n se r v a t ion st a t u s : - Listed on Appendix II of the Convention of International Trade in Endangered Species of Fauna and Flora (CITES).- Listed as Vulnerable on the International Union for Conservation of Nature and Natural Resources (IUCN) Red

List of Threatened Species.- Listed on Appendix II of the Convention on the Conservation of Migratory Species of Wild Animals (CMS).- Listed on Annex I (Highly Migratory Species) of the United Nations Convention on the Law of the Sea (UNCLOS).

Rodger et al. (2010) states that whale sharks are vulnerable to boat strikes, with individuals observed to actively approach boats, possibly being attracted to bubbles created by idling engines. Stevens (2007) goes as far as saying that whale shark mortality related to human activity (other than fishing) occurs mainly through boat strikes.

Whale sharks spend a lot of time close to the surface, resulting in an increased chance of incidences of boat strikes, evidenced by a typical scarring pattern on the animals (Norman, 1999; Mau, 2006; Stevens, 2007). The incidence of fin damage and scarring on whale sharks observed during ecotourism activities, so common that such markings are used along with natural colouration to identify whale sharks through computer algorithms (Arzoumanian et al., 2005), suggests that non-fatal collisions, probably with smaller vessels, are not uncommon (Stevens, 2007). It is thought this may have further adverse impacts on the species, by resulting in whale sharks showing a higher level of boat avoidance behaviours, including the avoidance of areas which may be critical habitats (Mau, 2006).

According to Stevens (2007), Gudger (1940) documented many instances of collisions between whale sharks and large vessels and there have been several reports of whale sharks impaled on the bows of steamships earlier this century (Stead, 1963). With regard to modern shipping, large vessels are probably not aware of striking whale sharks, leading to the extent of such mortality to be unknown (Norman, 1999). The rarity of beached whale shark specimens, which would allow increased analysis of whale shark mortality and cause of mortality in Australian waters, suggest that R. typus tends to sink rapidly after death (Tubb, 1948).

11. EC O L O G I C A L C O MM UN I T IES A DVER S ELY I M PA C T ED A ND J U ST I F IC A T I O N Provide a summary of ecological communities listed as threatened under the EPBC Act that are considered to be adversely affected by the threatening process. For each ecological community please provide:a. the complete title (exactly as listed) and category of listing under the EPBC Act; andb. justification for each ecological community that is claimed to be affected adversely by the threatening process. The nominator it not aware of any ecological communities listed under the EPBC Act that are adversely impacted upon by the nominated key threatening process. However, 'Posidonia australis complex seagrass meadows' is an ecological community currently under assessment that is utilised for foraging by several of the species detailed in this nomination, such as dugongs and green turtles.

Threat Abatement

12. T H R E A T A B A T EMENT Give an overview of how threats posed by this process are being abated by current (or proposed) activities. Identify who is undertaking these activities and how successful the activities have been to date.Australian snubfin dolphinThiele (2010) lists conservation strategies required to protect Australian snubfin dolphins throughout their distribution across northern tropical Australia including: rapid population assessment and spatial habitat modelling as recommended by the Conservation on Migratory Species (CMS) to identify all critical habitat areas; protection of the areas identified through the appropriate designation of sanctuaries, Indigenous Protected Areas or other management frameworks; simple behavioural changes such as reduced boat speeds and minimising sudden changes of direction in critical areas; and uplisting current conservation status of the species to Threatened under the EPBC Act.

DugongThe Recovery Plan for the conservation of the Dugong (D. dugon) in Queensland 1999-2004 proposes three main management approaches. These include prohibiting high speed boat races in areas which coincide with dugong habitat; restricting vessel operation in particular regions such as Moreton Bay Marine Park; and monitoring boat traffic in areas such as these and restricting vessel speed limits where necessary in conjunction with the Department of Transport. The plan also identifies boat strike as a significant threat to the species, particularly in shallow waters and where fast boats are used (Queensland EPA, 1999).

Page 20: KTP nomination form 2014-2015 Fatal injury to … · Web viewKey Threatening Process Nomination Form for amending the list of key threatening processes under the E n v i r on me n

Future management of this region must focus on the reduction of boat strike incidence by creating additional “go slow” zones. Five “go slow” zones were introduced in Moreton Bay in 1997 whereby regulated speeds are prescribed for recreational vessels. Currently it appears that these zones are ineffective, with four out of five dugongs struck by boats in 2004 within the Moreton Bay Marine Park (Greenland & Limpus, 2005).

Vessel transit lanes have been installed in Missionary Bay with the use of 3 beacons and 3 navigation buoys. Speed limits of 10 knots over seagrass beds and 25 knots within these transit lanes are encouraged. This aims to create speed regulated lanes in deeper waters, away from shallow water feeding grounds, and in turn reduce incidence of boat strike, however it is unclear how these aims will be policed and enforced.

Hodgson (2004) found that the majority (64%) of boats observed travelling close to dugong herds on Moreton Banks were exceeding planning speeds, while Groom (2003) found that voluntary transit lanes and speed limits in the Hinchinbrook area had an even lower compliance rate (74% and 80% respectively).

An American study (Jett & Thapa, 2010) on the closely related manatee shows a negative impact on populations with growth in recreational watercraft. The research showed that vessel strikes accounted for 24% of known manatee deaths in 2006, and that compliance with vessel speed limits in designated conservation zones was poor (45%) despite self- reported compliance being 100%. This indicates that adequate monitoring and authority presence will likely be required for such threat abatement measures to be effective.

TurtlesActions to mitigate incidental mortality and monitor the boat strike of marine turtles recommended in the Federal Recovery Plan for Marine Turtles in Australia (Marine Species Section, 2003) can be found in Figure 2. Hazel et al. (2007) state that “Management authorities have sought to mitigate vessel-related injuries to wildlife by identifying locations of particular importance for vulnerable species. Vessel operators are urged to increase vigilance within these areas, where recommended or obligatory routes and speed restrictions may apply. Other protective measures such as acoustic warning devices have been proposed (e.g. Gerstein, 2002) but their utility in the wild remains uncertain.”

13. DEVE L O P M ENT O F T H R E A T A BA T EMENT P L A N Would the development of a threat abatement plan be a feasible, effective and efficient way to abate the process? What other measures could be undertaken?Yes, lower boat speeds and avoidance of known ‘hot-spots’ of impacted species, see section 18 for more details.

However, with regard to green turtles, Hazel et al. (2007) identified the trade-off between minimising potential inconvenience to vessel operators and optimal protection for marine wildlife as a management challenge, reinforced by results which indicated a very slow speed (around 4km/h) is necessary to assure ‘turtle-safe’ transit across shallow foraging sites.

14. ELEMENTS TO BE INCLUDED IN A THREAT ABATEMENT PLANIf the threatening process is recommended for listing under the EPBC Act, what elements could a threat abatement plan include?A Threat Abatement Plan (TAP) is an essential and effective means by which to administer a dedicated response to the threat of boat strikes on marine species. The ultimate goal of the TAP should be to minimise boat strike to marine animals along the eastern coast of Australia, by public awareness, legislation and a comprehensive system of enforceable speed limits along the coast.

Alternatives to speed reduction such as propeller guards are likely to be ineffective without speed limits, serving to limit damage to the boat but not reducing the sheer force of impact on the hit animal. Whether by a turning propeller or a stationary propeller guard, the issue causing injury is simply the speed of the vessel. Designating ‘go-slow’ zones has limited effect, as shown by the continued high levels of turtle boat strike in Moreton Bay.

This also illustrates that effective enforcement of speed restrictions is necessary. A TAP is needed to assess speed limits, formulating a system on water such as exists effectively and safely on our roads – with areas of high, moderate and slow speeds depending on the extent of marine life in danger of boat strike and general disturbance in the area. It hasproven politically difficult to impose speed limits on water, despite wildlife experts and authorities calling for them.Listing boat strike as a KTP will help to strengthen arguments by state wildlife authorities that such limits are necessary, and a TAP would help to introduce them. With modern technology it will also be possible to enforce these limits as it has not been in the past – there are speed guns which work on water, GPS tracking systems and most boats have speedometers on them.

Page 21: KTP nomination form 2014-2015 Fatal injury to … · Web viewKey Threatening Process Nomination Form for amending the list of key threatening processes under the E n v i r on me n

The installation of precautionary signage near Dugong Protected Areas and areas with resident turtle populations are an important form of public awareness, administered by the GBRMPA and the Hinchinbrook Regional Marine Resource Advisory Committee. These management options should be acknowledged and extended in a TAP for this threatening process.

Recognition of boat strikes as a major anthropogenic cause of injury and mortality of listed marine species, and the potential for unlisted species to become listed warrants action. A public awareness campaign is being conducted by the GBRMPA, incorporating advising the public to reduce boating speeds within the Marine Park via televised community service announcements (GBRMPA). Legal requirements as well as Best Environment Practices have also been developed by GBRMPA in order to educate vessel operators on the threat to marine species, and could be included in the TAP for this key threatening process.

Under the Adelaide Dolphin Sanctuary Act, 2005, an objective of which is to protect of the dolphin population of the Port Adelaide River estuary and Barker Inlet from direct physical harm (including boat strike), there is official encouragement to install propeller guards and a mechanism for incident reporting to the South Australian Department of Environment, Water and Natural Resources for recreational boats in the event discovery of an injured/debilitated or stranded animal, entangled animal, or those found in a dangerous location. Witnesses are encouraged to record details including the size and type of animal, injury details, age, condition and photograph specimen. Such measures should be included in any TAP developed as a result of this nomination.

Listing this KTP will help enforce practices such as speed zones, signage, posting information to local coastal residents as well as legislation and fines. The preparation of a TAP would be facilitate further co-operation between Queensland and Commonwealth agencies and stakeholders to abate this key threat which is projected to increase with increasing boat traffic.

15. ADDITIONAL THREAT ABATEMENT INFORMATIONIs there other information that relates to threat abatement that you would like to provide?Volunteer organisation Dolphin Watch/River Guardians publish photo identikit manuals for Indo-Pacific bottlenose dolphins in the Swan Canning Riverpark. Dolphins are identified by a combination of dorsal fin profile and visible scars/injuries. Despite a lack of data it is thought that dolphins which interact with humans for food suffer more boat strikes and entanglements than other dolphins (Coastal and Estuarine Dolphin Project, Murdoch University). There are similar concerns about the whale watching Industry.

Reviewers and Further Information

16. REVIEWER(S)Has this nomination been reviewed? Have relevant experts been consulted on this nomination? If so, please include their names and current professional positions.This nomination has been prepared and reviewed by Humane Society International staff, with research support voluntarily provided by Virginia Rimes.

17. MAJOR STUDIESIdentify major studies that might assist in the assessment of the nominated threatening process.Groom, R.A. (2003) The efficacy of the voluntary vessel transit lanes in Missionary Bay, Hinchinbrook Island for dugong conservation management. Honours thesis, School of Tropical Environment Studies and Geography. James Cook University, Townsville.

Hazel, J., Lawler, I.R., Marsh, H. & Robson, S. (2007) Vessel speed increases collision risk for the green turtle Chelonia mydas. Endangered Species Research 3: 105-113.

Hodgson, A.J. (2004) Dugong behaviour and responses to human influences. PhD thesis, School of Tropical Environment Studies andGeography. James Cook University, Townsville.

Maitland, R.N., Lawler, I.R. & Sheppard, J.K. (2006) Assessing the risk of boat strike on Dugongs Dugong dugon at Burrum Heads, Queensland, Australia. Pacific Conservation Biology 12: 321-26.

Norman, B. M. (1999) Aspects of the biology and ecotourism industry of the whale shark (Rhincodon typus) in north-westernAustralia. MSc Thesis, Murdoch University, 115 pp.

Page 22: KTP nomination form 2014-2015 Fatal injury to … · Web viewKey Threatening Process Nomination Form for amending the list of key threatening processes under the E n v i r on me n

Thiele, D. (2010) Collision course: Snubfin dolhpin injuries in Roebuck Bay. World Wildlife Fund Australia.

Page 23: KTP nomination form 2014-2015 Fatal injury to … · Web viewKey Threatening Process Nomination Form for amending the list of key threatening processes under the E n v i r on me n

18. FURTHER INFORMATIONIdentify relevant studies or management documentation that might relate to the species (e.g. research projects, national park management plans, recovery plans, conservation plans, threat abatement plans, etc.).Federal recovery plans developed by the Department of Sustainability, Environment, Water, Population andCommunities are available for the humpback whale, whale shark, and all marine turtle species.

19. REFERENCE LISTPlease list key references/documentation you have referred to in your nomination.Baker, C.S., Florez-Gonzalez, L., Abernethy, B., Rosenbaum, H.C., Slade, R.W., Capella, J. & Bannister, J.L. (1998) Mitochondrial DNAvariation and maternal gene flow among humpback whales of the Southern Hemisphere. Marine Mammal Science 14 : 721-737

Beasley, I., Robertson, K.M. & Arnold, P. (2005) Description of a new dolphin, the Australian snubfin dolphin Orcaella heinsohni sp. n. (Cetacea, Delphinidae). Marine Mammal Science 21(3): 365-400.

Biddle, T.M., Boyle, M. & Limpus, C.J. (2011) Marine wildlife stranding and mortality database annual report 2009 and 2010. Dugong.Conservation Technical and Data Report 2010 (2):1-59.

Dobbs, K. (2001) Marine turtles in the Great Barrier Reef World Heritage Area. Great Barrier Reef Marine Park Authority, Townsville.

Gerstein, E.R. (2002) Manatees, bioacoustics and boats. American Scientist 90(2): 154-163.

Greenland, J.A., Limpus, C.J., Currie, K.J. & Brieze, I. (2005) Marine Wildlife Stranding and Mortality Database Annual Report 2003, II. Cetacian and Pinniped. Queensland Environment Protection Agency.

Western Australia Department of Transport. Peel Region.Recreational Boating. Facilities Study 2010. Technical Report 449.

Groom, R.A. (2003) The efficacy of the voluntary vessel transit lanes in Missionary Bay, Hinchinbrook Island for dugong conservation management. Honours thesis, School of Tropical Environment Studies and Geography. James Cook University, Townsville.

Gudger, E.W. (1940) Whale sharks rammed by ocean vessels. How these sluggish leviathans aid in their own destruction. NewEngland Naturalist 7: 1-10.

Haines, J.A. & Limpus, C.J. (2001) Marine wildlife stranding and mortality database annual report 2000, III. Marine Turtles.Queensland Parks and Wildlife Service.

Harriot, V.J. (2002) Marine Tourism Impacts and their Management on the Great barrier Reef. Cooperative Research Centre ReefResearch Centre Technical Report No 46. Cooperative Research Centre Reef, Townsville.

Hazel, J., Lawler, I.R., Marsh, H. & Robson, S. (2007) Vessel speed increases collision risk for the green turtle Chelonia mydas. Endangered Species Research 3: 105-113.

Hazel, J., Lawler, I. R. and Hamann, M. “Diving at the shallow end: Green turtles behaviour in near-shore foraging habitat” Journal ofExperimental Marine Biology and Ecology 371 (2009) 84-92.

Heppell, S.S., Limpus, C.J., Crouse D.T., Frazer, N.B. & Crowder, L.B. (1996) Population model analysis or the loggerhead sea turtle,Caretta caretta, in Queensland. Wildlife Research. 23 (2): 143-59

Hodgson, A.J. (2004) Dugong behaviour and responses to human influences. PhD thesis, School of Tropical Environment Studies andGeography. James Cook University, Townsville.

Hodgson, A.J. & Marsh, H.M. (2007) Response of dugongs to boat traffic: The risk of disturbance and displacement. Journal ofExperimental Marine Biology and Ecology 340: 50-61.

IUCN – International Union for Conservation of Nature and Natural Resources. (2011) IUCN Red List of Threatened Species, IUCN Gland, Switzerland and Cambridge, UK.

Jefferson, T.A. (2000) Population biology of the Indo-Pacific hump-backed dolphin in Hong Kong waters. Wildlife Monographs.144:65.

Jensen, A.S. & Silber, G.K. (2003) Large Whale Ship Strike Database. U.S. Department of Commerce, NOAA Technical Memorandum. NMFS-OPR-, 37 pp.

Jett, J.S. & Thapa, B. (2010) 'Manatee Zone Compliance among Boaters in Florida', Coastal Management, 38: 2, 165 - 185

Limpus C.J., Miller, J.D., Parmenter, C.J., Reimer, D., McLachlan, N. & Webb, R. (1992) Migration of green (Chelonia mydas) and

Page 24: KTP nomination form 2014-2015 Fatal injury to … · Web viewKey Threatening Process Nomination Form for amending the list of key threatening processes under the E n v i r on me n

loggerhead (Caretta caretta) turtles to and from eastern Australian rookeries. Wildlife Research 19: 347–358.

Page 25: KTP nomination form 2014-2015 Fatal injury to … · Web viewKey Threatening Process Nomination Form for amending the list of key threatening processes under the E n v i r on me n

Limpus, C.J., Couper, P.J. & Read, M.A. (1994) The green turtle, Chelonia mydas, in Queensland: Population structure in a warm temperate feeding area. Memoirs of the Queensland Museum 35(1): 139–154.

Limpus, C., Currie, K.J. & Haines, J.A. (2002) Marine Wildlife Stranding and Mortality Database Annual Report 2002, II Cetacean andPinniped. Queensland Environment Protection Agency.

Maitland, R.N., Lawler, I.R. & Sheppard, J.K. (2006) Assessing the risk of boat strike on Dugongs Dugong dugon at Burrum Heads, Queensland, Australia. Pacific Conservation Biology 12: 321-26.

Marine Species Section. (2003) Recovery Plan for Marine Turtles in Australia. Approvals and Wildlife Division, Environment Australia.

Marsh H., Heinshon, G.E. & Marsh L.M. (1984) Breeding cycle, life history and population dynamics of the Dugong, Dugong dugon(Sirenia: Dugongidae). Australian Journal of Zoology 32: 767-88.

Marsh, H., Penrose, H., Eros, C. & Hugues, J. (2002) Dugong Status Report and Action Plans for Countries and Territories. UnitedNations Environment Programme, Nairobi.

Marsh, H., De'ath, G., Gribble, N. & Lane, B. (2005) Historical marine population estimates: triggers or targets for conservation? The dugong case study.

Marsh, H. (2008) Dugong dugon. In: IUCN 2011. IUCN Red List of Threatened Species. Version 2011.2. <www .i u c n r edli s t. o rg >. Downloaded on 18 March 2012.

Mau, R. (2006) Managing for conservation and recreation: The Ningaloo whale shark experience. Western Australia Department ofEnvironment and Conservation. 2nd International Wildlife Tourism Conference, Freemantle, Western Australia.

MSIAR - Marine Safety Incident Annual Report. (2003) Published for Maritime Safety Queensland.

NSW Scientific Committee. (2001) Loggerhead turtle – endangered species listing final determination.h t tp :// www . en vi r o n m e n t. ns w . g o v. a u / de t e r m in at i on s / Lo gge r he a dT u r tle E n d Sp L is t i ng . h tm

Norman, B. M. (1999) Aspects of the biology and ecotourism industry of the whale shark (Rhincodon typus) in north-westernAustralia. MSc Thesis, Murdoch University, 115 pp.

Parish, J. (2001) Col Limpus and His Turtle Cowboys. International Wildlife.

Parra, G., Azuma, C., Preen, A.R., Corkeron, P.J. & Marsh, H. (2002) Distribution of Irrawaddy dolphins, Orcaella brevirostris, inAustralian waters. Raffles Bulletin of Zoology 10: 141-154.

Preen, T. (2000) Dugongs, boats, dolphins and turtles in the Townsville-Cardwell region and recommendations for a boat traffic management plan for the Hinchinbrook Dugong Protection Area. Great Barrier Marine Park Authority. Research publication 67.

Queensland Environment Protection Agency (EPA). (1999) Conservation and management of the dugong in Queensland 1999-2004.

Reeves, R.R., Jefferson, T.A., Karczmarski, L., Laidre, K., O’Corry-Crowe, G., Rojas-Bracho, L., Secchi, E.R., Slooten, E., Smith, B.D., Wang, J.Y. & Zhou, K. (2008) Orcaella heinsohni. In: IUCN 2011. IUCN Red List of Threatened Species. Version 2011.2.<www .i u c n r edl i s t. o rg >. Downloaded on 18 March 2012.

Rodger, K., Smith, A., Newsome, D., Patterson, P. & Davis, C. (2010) A framework to guide the sustainability of wildlife tourism operations: examples of marine wildlife tourism in Western Australia. Cooperative Research Centre for Sustainable Tourism. pp. 23-25.

Science Daily. (2004) Pacific Leatherback Turtle could go extinct tin 10 years.h t tp :// www . s c ien c ed a i l y. co m/r ele a ses /2004/02/040226063 9 28 . h tm

Stead, D.G. (1963) ‘Sharks and Rays of Australian Seas’ (Angus and Robertson, Sydney.) 278pp.

Stevens, J.D. (2007) Whale shark (Rhincodon typus) biology and ecology: A review of the primary literature. Fisheries Research. 84 pp.4-9.

Thiele, D. (2010) Collision course: Snubfin dolhpin injuries in Roebuck Bay. World Wildlife Fund Australia.

Tubb, J.A. (1948) Whale sharks and Devil rays in North Borneo. Copeia 3, 222.

Work, P. A., Sapp, A.L., Scott, D.W. & Dodd, M.G. “Influence of small vessel operation and propulsion system on loggerhead sea turtle injuries.” Journal of Experimental Marine Biology and Ecology, 393 (2010) 168-175.

Page 26: KTP nomination form 2014-2015 Fatal injury to … · Web viewKey Threatening Process Nomination Form for amending the list of key threatening processes under the E n v i r on me n

20. APPENDIXPlease place here any figures, tables or maps that you have referred to within your nomination. Alternatively, you can provide them as an attachment.

Figure 1. Summary of dugong strandings and mortality by year and identified sources of mortality for Queensland,1996-2010 (Biddle et al., 2011)

Figure 2. Actions to mitigate incidental mortality and monitor the boat strike of marine turtles (Marine Species Section,2003).

The following indicative distribution maps were obtained from the respective species EPBC Act SPRAT profiles, and demonstrate that the impacts of boat strike on these species are likely to occur in all Australian waters where marine traffic is significant:

Page 27: KTP nomination form 2014-2015 Fatal injury to … · Web viewKey Threatening Process Nomination Form for amending the list of key threatening processes under the E n v i r on me n

Green turtle (h t tp : / / w ww . e nv iro n me n t.g o v . au /cg i - b i n / s p r a t/ pub li c / pub li cs p e c ie s . p l ? t a x o n _ i d = 17 65 )

Loggerhead turtle (h t tp : / / w w w . e n v iro n me n t.g o v . au /c g i - b i n / s p rat/ pub li c / pub li cs p e c i e s . p l ? t a x on _ i d = 1 76 3 )

Leatherback turtle (h t tp : / / ww w . e n v iro n me n t.g o v . au /c g i - b i n / s p rat/ pub li c / pub li cs p e c i e s . p l ? t a x on _ i d = 1 76 8 )

Page 28: KTP nomination form 2014-2015 Fatal injury to … · Web viewKey Threatening Process Nomination Form for amending the list of key threatening processes under the E n v i r on me n

Humpback whale (h t tp : / / ww w . e n v iro n me n t.g o v . au /c g i - b i n / s p rat/ pub li c / pub li cs p e c i e s . p l ? t a x on _ i d = 3 8 )

Whale shark (h t tp : / / w ww . e nv iro n me n t.g o v . au /cg i - b i n / s p r a t/ pub li c / pub li cs p e c i es . p l ? t a x o n _ i d = 66 6 8 0 )

Nominator's details

21. TITLEXXXX

22. FULL NAMEXXXX XXXX

23. ORGANISATION OR COMPANY NAME (IF APPLICABLE)XXXX

24. CONTACT DETAILSXXXX XXXXXXXX

XXXX XXXXXXXX XXXX XXXX

25. DECL A R A T I O N I declare that, to the best of my knowledge, the information in this nomination and its attachments is true and correct. I understand that any unreferenced material within this nomination will be cited as ‘personal communication’ (i.e. referenced in my name) and I permit the publication of this information.

Page 29: KTP nomination form 2014-2015 Fatal injury to … · Web viewKey Threatening Process Nomination Form for amending the list of key threatening processes under the E n v i r on me n