konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till...

94
Konvertering av högtemperaturugnar från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING UTVECKLING DEMONSTRATION

Upload: others

Post on 19-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

Konvertering av högtemperaturugnar från olja och gasol till naturgas

- Verkningsgrad - Kapacitet - NOx-bildning

IDJ•lSwedeGasAB 1988 FORSKNING UTVECKLING DEMONSTRATION

Page 2: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

Inst. proj.nr: 10601

Rapportdatum:

1989.01.27

RAPPORT

från

VÄRME- OCH UGNSTEKNIK

KTH

Projekttitel: Konvertering av högtemperaturugna

från olja ochgasol till naturgas­verkningsgrad, kapacitet och nox­bildning

Författare:

dos Santos,

Arcindo M.

Conversion of High-temperature Furnaces from Oil and LPG to Natural Gas-Efficiency Capacity, and NOX Formation

Postadress; Postal address: Kungl. Tekniska Högskolan

S; 100M STOCKHOLM

Swm.ltin

Besöksadress: Street address: Brinullvägen 23

Godkänd: ~ /!,/~;, 'hl(~-r.

Professor,prefekt

Tel: vx Telex: 08-790 60 00 103 89 kthb STOCKHOLM

direktval 08·790 84 01 Telefax: Telcphone:

N" 08·7906000 08-20 52 04 In: .. :r, A /'10 PA III

Page 3: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

riLISTHHCT

th·e questions t•aised by an

industrial ftlt'naci: or• ballet' ust!r cur·~'ently u~ing fu!:!l-oil or

LPG and conddcr·ing switching to nat~lt'c'tl yas. The iss~tes of

changes of perfor'm-'ince and pollutant e1nission at·e addressed.

These are accomplished by a two-fold study: <i litel'atut•e stn•vey

and discussion of nitrous oxides forwation; a study from first

pr·inciple5 suppcwtf'd by a literature survey of a l'adiative

enclosure analysis relevant to fm•nace and boiler applications.

The lattet' pt·esentatlon aims at clt.u•ifying the diffet•tmces

between a 1aixture camposed of spectt•al gases and soot, and a

mixture of only spectral gases.

A main quE>stian being ilsked is: Can the str•ongly spectr•al

products af COIUbliStion of natm·al gas be analy:zed withotlt

recourse to fltll :>pect,·al rc~.diation analysis? The answer being

"yes,'' a simplified MOd~l iL develaped and validated by

coJ~parison to t•esults found in the liter·aturt?. So1de illustr·ative

cases ar·e presentt-d anti a progr•am 1oanual is included. Typically 1

the pt'Ofjl"am takes on ·t:he order• of a fe1~ minutes to r·un on a

desk-top compute1·. The pt•ogr•ar~ is intended for industrial

furnace and boiler m~ner!> to use as a prelilainat'Y .:~ssesS111ent of

performance changes if they wer·e to s~1itch ft·om their current

fuel to natllt'al gas.

Rapporten iir beställd av Mats Jot1ansson, Swedegas, och ingår i

Swedegas fUD-pt'ogt•alll för• 1908.

Page 4: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

TnBLE OF CONTENTS

CHAPTER 1: GENERAL COI>Jl;IDEHATIONS • • • .. • • • • • • • • • • • • • • • • • • • • • 2

CHAPTER 2~ FOm•IATIOI>l OF NHRUUS OXIDES ••••••••••• , , • • • • • • • • 6

2. l BACKGHOUND ••••••••••••• , • , •••••••••••••••••• , • • 6

2. 2 CHEMICALIKINETIC ASPECTS OF NO• FORMATION •••• , • 7

2. 3 FUELS AND N01 • , •••••••••••••••••••• , • • • • • • • • • • • 14

2. 4 STRATEGIES FOR REOUCTION: NATURAL GAS USE •• , • • • 17

2. 5 SUNI,IARY ••••••••••• , ••• , • , •••••••••••• , •••• , • • • • 23

CHAPTER 3: l•lATHEt~ATICAL ~iODELING: RADIATIVE HEAT TRANSFER • • 24

3. 1 GENERAL CONSIDERATIONS • , .... , .... , .......... , • • 24

3, 2 RADIATION FROI~ COMBUSTION PRDDUCTS: SPECTRAL

VERSUS NDNSPECTRAL CHARACTERISTICS ••.•.•.•••.•. 26

3. 3 SOOT AI>JD RADIATION INCLUDING SOOT ••••••• , •• , •• , 40

3. 4 SUN~IARY • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 48

CHAPTER 4: MODEL DEVl:LOPI<IEt>JT • • • .. • • • • • • • .. • .. • • • • • • • • .. • .. • 60

3.1 GOALS .......................................... 3. 2 ~IODEL DEVELP/l1ENT ............................... 3, 3 t<IDDEL VALl DIHION

60

63

65

3. 4 ILLUSTRATIVE USES OF MODEL • • • • • • • .. .. • .. • .. .. .. 68

REFERENCES l: ~IODELING OF RADIATIVE HEAT TRANSFER • • • • • • • • • • 72

REFERENCES 2: FORI•1ATION OF NITROUS OXIDES , •••••••••••••• , , • BO

APPENDIX l: USER 1 S I•IAii!UflL ..... , ...... o .............. o.,.... 85

Page 5: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

CH{IP"fEk l: bi:.NEfi?lL COhiSIDEHArlUI~S

In the way of llYI;i'ociuctlon and for the sake of completion we

will present Many featut'E>s of natur~al gas which make it a very

aUr•active and C01~petitlve fuel in today' s mat'ket. The stage has been

set for the widespread u~"' of natm·al gas, alllongst other t•easons, by:

• the steady inci'e<:i!>ir1g pt•ice of fossil fuels;

• the atte111pt of govet·nwents to dive;·sify tneit' ener·gy som·ces;

• the ernphasis of society on pollution reduction; and

• the dtH.•mphas1s on nuclear· powet'.

This conjuncture opened the stage for new fuel alter·natives.

Natural gas has become '' pt'llue candidate in Eur·ope, and Seandinavia

specifically, because:

1 vast •·eser·ves of the fl1td ft•orn vat·ioltS countries have been

discover•ed, Ru~n·gas Aktiengesellschaft (1984)§;

• it is consid~red a ''clean fuel;''

l i t is eons idtn't!d a ver·satile fuel fot' stat ionary

applicationsj ~1nd

• expet•ience for· i1>s ~Jidespt~ead use can b~ gathered ft·o1o the

USA and more recH,tly, Late 1960s, froru England, see Bt·itish

Gas (19BBl.

A range of indliStt'i~l "'-PPlications have been cited for natural

gas, Cha.ignon and lkeney l1987i a.nd Svenska Gc:,sföt'eningen (1986).

Particular advantages of this fuel at·e:

§ All references at'e l ist ed in REFEAENCES l by authot• (yeat');

references reli>ting specifically to NO~, Chaptet• 2, are listed

i n REFERfhiCES 2.

2

Page 6: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

"' contains no fuel bound f1ih·ogen, thet·efm·~ no fuel-NO• is

pr·oduced;

IIi has low :;u l f m• conton t;

• possesses good mlHlng charactt.-ristics r·estdting in low ait•

consuu1ptlon, v1hich 111 turn r·esults in r•educed fan power and

in t•educed NO, emissions;

• delivers even radiative flux tu load--t·adiation not

concentr•ated in fla1i1e;

• low conc::~nt1·ation o-r soot and suspended solids means 1ov1

maintenance co~ts, <:>liuJination of filtet'lng/solids t•ecovery

equipment, etc; and

• whet·e applicable, t•eft·actory lining life is extended because

of the low sulfur content.

It is only n~,tur·td that with the potential supply of the gas

fields in the Nethedands, DemJat·k, Nor·way, and the availability of

Soviet natm•al gas, the inten·est in the conver·sion and optimization

of old oil-fired tmits and the introdltction of new single and dual­

fuel furnaces is on the agenda. The conversion of oil-fit•ed fur·naces

and boilet·s to natural gas hdng has been covered t•elatively v1ell in

the liter•ature. In Em·ope 1 tlus has occm·red citte to the intt•oduction

of natut·al gas 1 for ex<uple 1 in Bt•itain in the 1960s 1 • As a t•esult

rouch theoretical wot•k was done in the late- &os~ and eady 70s1 in

this at•ea: l•hdlands Ree-eat•ch station, owned by Bt'itish Gas, the

International Flame Reseiu·ch Fotmdation, in the Netherlands, and

othet•s in the United States, Germany, and mor•e t•ecently in Japan have

contributed for clarifying the diffet·ences between the tv10 fuels.

We will cancern o•Jt'selves in this paper with the technical

aspects of fuel pet·fot'IBtince as far• .0:1s heat tl·ansfet• and furnace

perfot•ntance. The rather intet·estiny econo1dc, envit·onmental, and

geopolitical t:u;pects, ~Jhich are a must for a complete comparison of

the two fuels, will not be covered. Ft·om the~e nontechnical conc1:t'ns

alone indicate natur.:ll yas is indeed a good "'ltet·native to fuel-oil.

3

Page 7: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

From the point of vie~J cd the, fut•nace ownl::!t~ though, the question of

th<:r'rnal pet•fot'mance arises ~111a will be addr•es5ed in this paper·.

The important differ;;nces in perfot'l~ance t•elate to the irupact on

fut·nace efficiency and on ftn·•nace capacity. These cancerns naturally

arise because, fit•stly, it is hnown that the radiation E'~Jitted by a

luminous flame, e.g., that of heavy oil, is higherthan that eruitted

by a nonl~1111inous one, e.y., that of nahwal gas; secondly, wuch

opet·ating exper•ience h-l:> been accuruulated on fuel-oil fut·nace

operation. lt must be cleady E<xplained to the f~n-nac~ owner that a

performance coldpar·ison of the h1o fuels is inadequate if kept only to

this ''visible'' difference. lt is i~portant to point out that the

flame is only one par•t of the total cumbustian/heat tr•ansfet~

environruent in the furnace chamber.

A car11parison of tht:! hlll fuels, then, must addt·ess the following

differences:

L LuutinoliS ver•suo;; nonluminoliS flames;

2. Spectral charact~:ristics af the pr·oducts of combustion;

3. Pat~tial presslwes of t'<:;diating gase:=;;

4. E~cess ait~ requirements;

5. Fiarue telapet'atut'eo;;; and

6. Iwpact of convection and wall t·adiation.

These items will be addt'essed 111 this r·epot't. In accot•dance with

Swedegas AB 1 the goals of th!:' project are:

l. Treatment of NO. for·mation during the combustion of natural

gas and oil, and to ~ smaller extent of propane. This will

include a litet'<:\hwe 'JUI'VI!Y and a discus~Jion of published and

unpublished findings in this area.

2. Development of the theor·et i ca l di ffet'ences bet we en natural

gas-fit•ed and oil-fit'ed industt'ial fllt'naces in the at'e.?,s of

4

Page 8: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

capacity, efficiency, and t'elated topics. This discussion

will include a liter· .. ;hrr•e search of t'el~v.:mt mat~t·ial and

dwell ~pecifically on the radiative modeling of one fuel

versus another and take special account of the tt·eatment of

the spectral radiative differences between thern. In this

light, it will covt:n' luwinous ver•sus nonlulllinous flarnes.

3. Deliveo·y of a \.l~er-ft'it:ondly mathematical ruodel to Swedegas

which can be easily run on a pet·sonal cornputet'. This model

will covet• <~n indu!:.b•ial fm·nace or· boiler of simple

geomett•y; it will account in a sintple but accur•ate manner· fot•

the effects of spectl·al r•adiation in the furnace; tlithin

the u ser• ca-n speci fy the geometry, the fuel

type, and some opel'ating conditlons as to enable the

perfor1aance co,npa,·i son between on e fue l and another·. Som e

validatian of this model by comparison with published data

will be made.

This t•epor·t is or·gc:,ni.:~d as follows. Chapter 2 covers the

liter•atut•e and discu~ses the fol·'mation of nitrous oxides in

combustion. The ref~renc~s for this chapter· ar·e listed separ•ately

frotu all others for clarity in fhdl:'rences 2. Chapter 3 covers fm•nace

modeling and associated r~eviel'l of the litet'iltUt'e. Chaptl:r 4 details

the development of the ruodel arld its validatian and application.

Page 9: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

2. l BACKGROU1%

The generic sy1ubulism rept'ei'-ented by the t~:;··m nitt'OUS DXides,

NO., reders to i.1 whol2 gt·oup of N-0 compounds, mostly NO and N08 , but

also N01 1 N~O, N~o .. , NQO:.. Dut'lng a combustion process, in the

presence of relatively high temperatures atomic, nitrogen is combined

with atomic oxygen to fut'u• for· the u1ost par·t nitr·ogen IIIOnoxide, NO-­

about 90~ of all nitrou~ oxides formed. Eventually this gas is

fur·ther oxidizeCl to NO;. by t'esidu<;~l ox1dants in the flue gas (or· in a

sawpling pr·ob~o>!) a.nd aft~t' c.Jisch~wge into the ~•tmospher·e.

The solwces of NO. c~.n usually be traced to the combustion of

some fossil fttel. With the roore intense exploitation of other

alternate fuels, such as bi o mass, we can expect an incr•eased

contt•ibution ft•oru them too. Th!:! sotlrces can also be categorized as

stationary or as i11Dbil.:. (};amples of stationat'Y sources of nitrous

plants, and we cannot forget oxides an~ powet• plants 7 indust;dal

other sout~ces such as tlle 1ndoor polluters lille the unvented space

heater. The auto•••obile is the typical exautple of a mobile som~ce. The

automobile emits the most nitrous oxid~s followed by utility power

boilers, Nutcht-1' (198-'d.

It is not a doubt anyruore that nitrous oxides are serious

pollutants. Typically, 1110 fr•om COlilbustion l'eacts ~1ith atomic oxygen

in the atmosphere to produce NO~. NOa can then ~tnder·go photochemical

decornposition to atomic ~nd molecular uMyyen which will eventually

form ozone 1 o~. The pr·oblems t•esulting from ozone in the atmosphere

are now consider·ed vei'Y impor'tant. But on a mm~e visible and pressing

scale, the ozone l'ea.ct<j with unbut•ned hydt•ocat'bons, especially those

unsaturated, fornling multiple bDnds with the c.:wbon. The resulting

mess is known a5 'smog.' tmog, of course, r~duces visibility,

6

Page 10: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

irritat~s the ey~s and th~ t·~spiratot'Y m~gans, and eauses fot•est

damage.

As a have been put into effect by

governmental bodies to aroeliorate the situation. Dac~y (1985J, for

example, gives coroe figu1·es for the5e environmentally acceptable

limits from stationary sources:

1~0. (mg/m.~)

co~l o i l Natural Gas

USA-78 737 4b0 Eut·o. Comm.-75j800/40(J 450/220

318 350/180

In some problem areas cuch as in Ne1<.1 Yot•k City, special laws have

been promulgated. For exa111ple in 1971: 150 ppm fot' oil and 130 ppm

natural gas, at 10" ait·, bt:came thi! adopted emission limits.

2. 2 CHEMICAL/KINETIC ASPECTS OF ND 1 FORI"'ATION

Because N01 is made of niti-·ogen and oxygen atoms, it is obvious

that to star~t with we nel!d both elements pt•esent in the corubustion

zone. Nih·ous,oxide forra~.tion can then be classified as to thE! source

of the nitrogen atoms:

Molecular 1\1 CN8 ): Ait·-NO

N chemically bound to fuel CC.HvNJ: Fuel-NO

2.2.1 Air-NO

Unbound nib•ogen c::an ctnlibinl:! with oxygen tht·o~tgh two main

raechanisms: the1·mal-l~O and pt•orupt-NO. In ther·mal-NO thE! factors of

major influenct:i are: th~ flame temp1n-ature, the oxygen availability,

and the resid,·nce tiull::! in the coldbustion t·egion. Pt~ompt-NO is

basically the name giv~n to the r·eactions not desct'ib!:!d by the

Zeldovich Mechanism of thenral-1\.10, Ear•! y in -the flame ft•ont 1 and by a

7

Page 11: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

pt•oce-ss still not well und~t·stood, whet·e O concentt·ation is low, a

small amount of NO was i:'Xpi:'t··iment,:dly 1!\tl.:\Sln'ed to be formed, Fenimot'e

(1971). In this region, classic,-.1 fot·mation reaction~ ar·e too slow to

Thl:' process is believed to involve

t·eactions of~~~ ~lith fut:l fr-agments mainly thr·ough 1 Car·eto (1976) 1

CH + N11 (--} HCN + bl

The cyanide intl't'mediate, ttwuuyh 1··eact i on s aldn to those of fuel-ND,

results in NO:

N + OH <--> NO + H

Prompt-NO fot·ms Nell down stre.:.1m of the flame and at temperatures

below 1300°C so it is not very temperatut'e dependent as opposed to

thel'mal-ND which is disCliSSed neHt.

Thet'mal·-NO is fot'mt:d as a t•csult of high-temperatur•es and so it

is strongly tempet•ature-dependent. Downstream from the flame, NO

formation is well corr·elated by the classical r·eadions of Zeldovich

and Semenov (1949):

Na + O <--) NO + N

N + 01 <--> NO + O

Ne + O, <--> 2ND

(rate deterwining step)

Notice the chain mechanism of th~: two above reactions: the flame

provides h1o conditions fot' NO formation:

• the te111per·atur·e, i. e. 1 the activation energy 1 and

~ the reactions for· chain formation of NO.

The final a111ount of NO pt'oduced actually depends on much 111ore

than the highest temper'atut'C! reached duriny combustion. It is al so a

8

Page 12: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

function of both the ti-~ it is ~xposed to these temperatures and of

the oxygen concenb•ation. Of ti111e 1 since: if the NO fot'l~ation were as

fast as the combustion t't!actiun th.- NO ~cwult:l follm~ the equilibdum

concentt·ation coo•res.ponJir.y to the highe~t t.-mper·at~we (the fit·st

reaction abuvt! is !II~!Ch slo~r~~:!r than coirlbustion t·eactions except at

high temper•atur··e5). (Is it is, it lags and for·ms ~>Hdl into the post

flame region.

Figltres 1· thr·ough 3 taken ft•om the liter•ahn·e illustt•ate these

points. The longer th~: g<.\Ses a;-·e exposed to high temperatures, the

NO x 1%1

100%

75%

t 50%

25%

1200 1400

"l v

..• v -1600 1800

- Temperatur in !l C

l 1\

\ \

2000 2200

Figure 1 NO~ formatlem ,-,;; a function of temper'ature; Vaclavinek

( 1988).

----·--·--·----------

9

Page 13: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

highe~· the final NO canc~ntr·ation. So1ae implications of this behaviot'

owe as follows:

• Higher thet'mal NOK fot' coal vlwsus oil or gas;

• L.:wger furnac<:s often i1aply large~· residence time with

resulting ln.:.Tu<:iSed NOj

11 Rapid quenching of ya~es in postfla1ue t'egion will r•educe NO;

and

• Highet' tempe~·atu1·es fol' gas flan1es could ~·esult in higher

nitrous oxide pruduction.

240 l l l l l l l l l

110 -_,_Ar/Dz DN, AIR OFF

200 1- -180 1- -160 1- -

'" 1- -e • g 120 1- -

100 - -80- -.,_

-

.,_ -10- -• l l l l l _l_ _l _l_

TIME ··----·-·------·-·--------

Figure 2 Replacing combl\Stion air with Ar/011 eliminates thermal NO

(distill.:1te o i ll j Per·::.hing ,, al (1974).

-----·-----·- -··------- -·-·· ------------··

J(>

Page 14: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

~''r--------------------------,

IF Jaoo

i 3600

§_3400 5 3200 ~ .

3~ oXyeen present

!B, 12,000 ppm

rE. 900ppm

n'-"'-::;::;=~~..... re, 425 ppm

D, 50 ppm

•ooo WJ-~L---",--\-\-.....::~--

"" 2600

2«o,~--",,;,----;.,,;,----,;.,~§:~«o~----~., Time {M see)

----- ------ ·-· . ·--·-·------·- -----·

Figut•e 3 Net concentr·ations of NO resulting fro111 v.:u·ious time­

teulper·ature profi les in the pr•esence of 31- 0~~: j MacKinnan

and Ingr•cth<:IIR (1972).

-------------------------

The gr·aphs of Fig. 1~ taken from Edwar•ds (1974) qualitatively

describe NO formation. Bast!d on I·Jhat we know about temperature and

oxygen dependency we sho1-1 Fig. 5 also ft•om Ed~1ards, and conclude that

thermal NO is a sh·ong function of tempet•atut•e and combustion excess

air•.

------,------------~--

~ HYPER- EQUILIBRIUM .

Z [NO] T MAX . .., 2 1----'-=""----------: ~!;( ><« O l-

z ""' ~~ t: o zu

SUB-EQUILIBRIUM

' ', EQUJLIBRIUM

N2 +O :o:::! NO +N N +02~ NO+O .... ,_

X(ORt)

Figure 4 Fol~mation of 1110 as function of time ot• length of l~eactor;

Edwards (1974).

----------------------------------

11

Page 15: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

2.2.2 FUEL-NO

Fuel-11!0 is derivcd fl'UIII the oxidation of htel ft•agments ~Jhich

contain nitt··ogen atom·.;;. In th~; pr~eflawe-pt·eheating zone, or·ganic

nitrogen cDtllP•lltnds likt? NH1 and HCN ar•e for•uted which at'e oxidized

ven•y fast--on th"' saMe t:iruc ;;cale ~,,; the comb~tstion t'eactions:

Fuel-N --) HCN --) NH 1 --) NO

--} Na

Fuel nib·ogen can r·e.:.ct by eithtn• of

RN + Da

RN + NO

NO \fuel lean favoredl

(fu.:d r·ich favor·edl

The amount of Furd-N convet•tt·d to NO is lmown <>s the 1 ND yield 1 •

Therefore 1 the :.;econd \"'!)action has a lo~>J NO yield. These reactions

aJ~e neithet' vet'Y tempet•atur~ dependrmt, as illustr·ated in Fig. 6, not•

very excess air depend~nt, and so it is no surprise that the

t'eactions. leading to fuel··-NO ~d·e similat-- to those Ieuding to prompt-

NO.

41100 • ~ ~ 3~00

• ~ 21100 '-------+-------

1000

[ • 5 100

l 8

" §

~

"

LEAN, SlOICii QMETR1C·---"'~"~'-

Figure 5 Rdations.hip of fl.~1ue tewpet·atm•e and equilibt'ium nitric

oxid e concentr·at i on; Ed~1ar·ds l 1974).

12

Page 16: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

'"r--,--,----,----.~--.---, l l l l

100-

•• l

Figure 6 Flaw~ zone

lO l IS

EXCESS AIR, '1

l

~lO"f PRE11EAT -

-

l

tr;:l:p..!l'<.d;Ut't.- ha~ llttl!! l'ffect on fuel-NO

2. 2. 3 THE ~JI-!OLE PlCTUm::: I-1ND FUf(fHEH CONSIDERATlOI\15

Fig. 7 taken froill ti1a litardture gives a good sumroary of the

pathways to NO, during fossil fuel cambustion. Fig. 8 pt'esents in

clear terms the effect of tt.•hipl::.-'atm·e and excess ait' on fuel-NO. Fot'

coal the situaJ;iDn 1s av0n wore extreme since the amount of fuel-

bo und nitt'ogen is even high el' t han fot' u i Is.

FlXATlOII 01' ~2 BY ktDlloc.\liil~ FUGKE:ITS

't~t.:lOVlC"d IIEOU,NlS..'I

---- h"ET&llc:GillEOll""';-------------·

lltACIIO~S

RESIWE (CA~BOU,

llrTROO~ CO!ll':::'JIIDSI

QXYCY.uiOOE!lS ~ HO>: IOCI, ~CIJI l:J

,U.~ll SPEC~

l!f, ~H. NK2, NII:JI

u~" -~----j·,J_ ·-· --------------------

Figur·~ 7 l•lach.:..nistic pathway::; of nitr'ogen oxides For·uwtion in fossil

fl!i::l co~1bustion; Fat'111ayan et al (1985).

13

Page 17: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

... ooo

'"

'• •• 00 " " • " " " ' • flct:IHII,~

nem AIR.'

--.. ----

F i gllre 8 nir·-NO and Fl!id-NO: A--~>li t h p~'E.>heat {277 CJ and B--no

pr·Qhcat; Per·$hing et o l {1974).

We have discussed UH1 b~,sic p.:-n·ametet's leading to NO formation

in combustian. But in a 1··~~.1 furnace uth1:r par·ameter·s can be cr·ucial:

• fuel type: next section;

• bur·net' no;;:zle: s1-1it'l ver·sus no swir·l;

• turbul-ence;

• type of fur•nace:

- wall-fin·d ver·sus tangentially-fired, ~Jendt

Thompson and /1-lcEll·oy ( 1985} i

• plant size, Hä~änen et al (1986):

-confineruent, r~sid~nce time: Akiyarn~ (1987); and

" daily oper·-ation.

2.3 FUELS AND NOj

C 1980) and

We saw earher how ~::udssion limits var·y between fuels and how a

major contt'ibutot• to NO~ emission is nitrogen chemically bound to the

fuel: C1HvN. In this seetian we look at N01 emissions and their

14

Page 18: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

r-elation tu fuel-·1\l for· tlw ,;l.::,ill hydi'OC-'H'bon fuels. Tt1.:se fuels at'e 1n

h~avy cumpetition r1ith each utiH.'i' anc.l the p{Jllution each yenet·ates is

beco1ainy oni' llf the V<H'i<-,blt:s ir,fluencing theil' ~ffective cost.

Since fuel-1~ is ~,n impot·tant vat•iable in NO. formation--an

over·riding OJH? for• co.::d·--·1~.: now p;··esent SOIH' data on the nitt•ogen

content of so•u fu~lG. We should mentio11 in passing that ''waste

fl1els" and bionlass can cont-:;.in much fuel-t·l.

Natut•al g<:<.~ can c-ontain nitt·ogen but it is unbound and usually

in quantities l.:ss than 1.51- by volume; so compat·ed to the Na in air,

it is a S111all contribubon to total N. The sarue lo1-J fuel-N content is

true of othet' "clean" fuels such as t•efinery gases and light oils.

But heavy oilsj cr•ude and coals have a significant amount of fuel-N.

For these fuels fuel-ND. dominates over thermal-ND1 • So the large

di ffet•ence in N01 emissic;ns between these can be traced to the

difference in fuel-N. The following table yive!; typical va.lues found

in the litera.tm·e for tht- weight pet·centa.ge of fuel-bound nitrogen.

C o al

j, 17 (,5-"1.7}

(at•ound 1.)

Oil Nu. 6 (residua})

(1.3 0.3

Oil No. 2 (distill.~,tel

(. (15

Natural gas can result in lower ND1 emission tha.n these fuels

because:

• it conta.ins no bound-N --) no ftwl-NO; and

• it netJds lower' l!xcess air' for efficit!nt CO!oibttstion --) lowet'

thermal-NO.

Dn the other hand, with the higher f1,;,.111e tl!Japet·a.tltre usually

associated with natural gas, a slight increase in N01 could be

expected, The sa1ue can be said fot' pt•opane.

15

Page 19: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

A r.ut·vey of the liter~;tm·e ha:. revealed the typical average

emissions given b~low:

c o al No.6 No.2 NatLwal Gas

----- ----------

a. 7

Lo. 8

NO, <ppm> l ;~O"'

1r75 269 120 139

g/11)1 J

290 151 67 71

Cato et al 119"17)

.-------------------------c o al o i l gas. wo o d

------indltstrial 120 67 59 n. a • utilities 101 ~·:;.

"" 18 • c

"·" domest i c 16 17 13 6.5

Kavanalltgh (1987)

Häsänen et al <1966) in a "'tudy of Scandinavian plants compiled

the results given in Fig. 9.

IIIIIIII peal

~ cool

~==::! hecwy tuel o•l

D nalurol gas

NO x

------------------Figure 9 Emisr.ions fron1 an "avet•age powet' plant" per unit of fuel

enet'Q}'i Häsänen et al (1986).

16

Page 20: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

A recent survey by Vaclavinelt (1988) revealed the follolfling

relative emissions, with natu.t·al gas being assigned a figure of 1:

C o al

2. 3-1.8

Heavy oil Light oil

1.4 1.1

Nat. gas

l.

Natural gas produces lower· ovet'all N0 1 than the heavier oils of

widespread industrial use. But for liHht oils, s~tch oil no. 2, the

emissions are compa1·able. These lower emissions of natural gas

campared with other corupetitive

stringent emission lirnits for gas!

fuels is

Dacey

t•eflected in the mar~e

(1985) states that the

general consenSU$ fot• the emis,;,ion limits are 50-601- that of coal for

oil, and 30-5(11. that of coal fot• natm~al gas.

2.4 STRATEGIES FOR REDUCTION--NATURAL GAS CONTRIBUTlON

2.4.1 STRATEGIES

There ar"e four· yen~e1'al ways one can t'educe nitt·ous oxide

emissions froru cowbustion plants:

1. Use the leaE:.t pollutant fuel

* Use natural g~~!

2. Change oper·ating conditluns

* Low~r excess ~1r

* Lo~;d r'educt iun

3. Combustion modification~

* Low NO, bur·ner·s

* Two-stage COiilbu:;tion

* Ttwe~:-sta.gt.' ~ul1•bu~tiun (r•eburning)

* -Flue-gas r·~cir'cul~~tion

17

Page 21: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

• Water inj2ct1on

·k F~•st heat l'l!WOVLd ft'OIU flau1e

4. Post-cotlibustiun lrl!-:.ltlolent

* Selective Catalytic (SCR):

The post..-flal,,e gases arl' p.::tssed by a t'ed~tcing catalyst

favoring reactians of the type:

2ND + 2CU { --> N,. + 2CO,)

2NO + 21h (--~ 1-JQ + 2HQO

'ti'.IO + CH, ~--; 21·la T CD,. + 2Ha O

To t·educe emi!.isio11;;, an obvious choice would be to switch to

nattwal gas fit~ing swc·e we have shown th.:.t for industrial

applications 1t is in wost cases the least polluting fuel. Natural

gas can also play a role in option tvw listed Clbove. In general,

following this cout'se of reduction i111pacts adversely on furnace

efficiency Ot' capacity. But natut~al gas does wot'k at lower excess ait'

without a drop in efficiency ver'Sl\5 other' fuels. Even in ca.ses where

other' fuels ar'e of choice natural gas can still play a role in NOl

reductian as we will see n~xt.

Cotnbustion modifications are perhaps the most cost-effective

techniques for· l'lllission t'l!d~!ction, ltlaulbetsch et al (1986). The

combustion lrtodifications apply as well to natlu'al gas as to other'

fuels: we can take advantaye of low 1\10 1 burner·s and two-stage

combustion as viuble r.r~<thods to r·educe natural yas erUissions. Furnace

design and location of the flarne with t'espect to furnace walls and

load can bl:! done- as to inct·'c.::,sr: the "r'ate of heat r·emoval ft'Olll the

flame ther·eby t•educing its tempet·ature. Sometiraes this is easier to

a.ccoruplish for a gaseou::; fu<.!l th<.~n for a liquid ful:!l. As illustt~ated

dudng a r'ecl:!nt field b·ip to Svensl(t Sti\1 AB, one of the older

preheating furnaces burniny oil is opet·ating as depicted in Fig. lOA

below. The mixed dt~oplets of flu:l but'n on the r-eft·actory

18

Page 22: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

o' L '\3-\1 ~1....J~ ~ IL_

~\\\)\\\l

'

~

\j( \~r.

\

~\ ·-Le> At. --- -----

CJ ;J;j;),~t~.tS!~$t l} fl. %iLt12fJ':'f'lj~\FI<l':Si

Figure 10 A-Oil flam~; B-t:::xpected gas f1<:H11t!. Dbser·vations ft·om a trip

by the author· to Svenskt St.H AB, Borlänge, 1988.

walls and sometimes on th~ steel itself. With a planned switch to

natural gas the situation as desct'ibed in Fig. lOB is expected. The

gas can follo~tl tht> refractot'Y roof t'es~tlting in good heat transfer to

it and reduction of an other·wise quite hot flame temperatut·e. This

method of using a flat fla111~, st:.e Chedaille and Knopmans (1973) 1

(References ll is one way of inc~easing convection from the gas flame

and minimizing NOK.

2.4.2 STAGED COI>'IBUST101~ HI~D REBURNING

Because of its i111portance this section will be separately

devoted to combustion st.o.ging and to how natural gas lS an ideal fuel

for reburning. Staging, us the namf! implies, divides the combustion

19

Page 23: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

process inta several reactive stages. Fig. 11 shows how this is

accomplished. Staged ~;it' injection 1 als o kno~m as hJo-stage

combustion, can b~ und~rstood with the help of this figure. By having

combustion occur away "fi-·UII< the stoichlOIIJett~lc: point all the fuel can

still be blwned ~Jhile .. woiding IJJUch of the NOK production. Dne way

of doing this very comp3c:tly is by the use of a low NOK burner. Fig.

12 shows ho~J th1s type of bu(·ner' wm·ks. Gl<:n'borg et al {1~87) and

Collin and Vaclavinek {l~tJ.i,) present sevet•al types of low-NDK

but·ners.

Bl COMBUSTION

AIR-=~

AIR FLUE GAS PR<)BE

2 (FUEL LEAN)

Figure 11 Principles of st<.<gt:d combustion; Hadvig (1987),

=--.--=-""":::..--. .... .. ... - . - . . . .

Figure 12 Low-NO, burnet'j Chugai Ro Co. Japan (1988).

20

Page 24: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

For some fuels in t>Jhtch high an.ounts of NOK ~re gentwated {say

an ordet' of J,;agnitude ot' uJDr'"' than natur·cd gas) another type of

staged combustiun bec:omt!s ~;dv.:.;ntageous; staged fuel injection, also

known a..; r•ebut·ning. This p<:n'ticul<:•t'

over' 3(l years ;;:,go; it 1s based on

technique has been discovered

NO destruction by hydr·ocarbons.

This method 1s also iwpor-tc.nt Ut!Cause it opens up the possibility of

having low NOK opet'<.ition while combustion proceeds at very high

temperatures, suc11 as those deuJiHJded by the_rmophotovoltaics, PelHa et

al (19871.

What makes reburning wod;, Fig. 13, is that fuel added into a

reducing zone (low O concentration) consumes the alt•eady fot•med NO

generated in the previous stage--NO becorues the fuel oxidant. In a

fuel-rich :::one the follo1-1ing 1\10 r·eduction mechanisros can take place,

Knill (19871 1

C + NO {--> CN + O

CH + NO <--> HCN + O

CHR + NO <--> HCN + OH

HCN + O <--> N~ + O

Figure 13 Principles of t'ebur·ningj H.:\dvig <1987), Heap and Falsom

(1986).

21

Page 25: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

Natw•al gas, and or CIHn~se pt•opane 1 are vet•y good reburning

fuels becaus~, on t11e on~ kmd th~y cuntain nu ne~~ fuel-N to add to

the final stage 1 a11d on the oth&r hand, because udxing is very

im portant dur·ing the final cowblld i on st.::,ge gas e s at·e ideal. Fig. l't

taken ft·on1 a t•ec~?nt Intei··n.::,i;iunal Fla~1e Faundatian Resl!at·ch repot·t,

Knill (1987}, gives "' goud idea of natural gas pt:t•fot·mance in

reburning.

"' l l l

"l- ~/ ·----111-- -·-----====

s ~ -• • .. ; 'i. -o •

"r

..

' •r-

• •

• ' • " 0.75

J,.-

l l • -.

•NATURAL GAS

•OISlllLATE/RESIIIUAL FUEL Oll IU.I4%NilROG~NI

... OISTILLATf f UH OIL (0.01% NITROGU<l

l l l ... 1,00 1.DS 1.10 1.15

o. n O.IS 0.90

-

-

-

'"

Figure 14 Effectivenes~ of different fuels in r·eburning, Knill

(1987).

22

Page 26: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

• The envir•onruental r·isks associated witt1 nitt·ous oxides are

cover·t:.d togethet' \-Jith r•epr•esentative govet•nruental limits on

their emission fr·om fos.sil fuel combustion.

• NOx i=. found to be fonBed by two majen· pathways: therrual-NO

and fuel-NO; the chewical/kinetics and the parameters

influenciny the for·mation paths are covered. These include

temperatm·e, excess ait• 1 ah• residt;nce time.

• l"teasut•ements by workers taken from the literature campare NO.

emissions for a var•iety of fuels. Natural gas is found to emit

lessthan heavy oils and there is general agreement that it is

the cleanest fuels in all studies.

• The major techniques for NOx reduction are presented. These

include running at lower excess a1r 1 using low-N01 burners,

and combustion staging. Attention is drawn to the fact that

natural gas is a good rebtn•ning fltel since it mixes well and

has no fuel-bound nitr·ogen.

Page 27: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

CHAPTER 3; I•IATHE~1ATICAL NODELII~G: RADIATIVE HEAT TRANSFER

3. l GENERRL CONSIDER~HIQNS

To quantify the change in furnace perfot•mance when switching

fratJI ail to natural gas, a wodel must be able to pt•edict the

significant differences bt:<h·wen the two fuels. This can be done in

two differ·ent ways: by ulathema.tical modeling, and by gathet'ing

experimental data fro1a actlli.tl furnaces which have been modified (or

by r·unning canb·olled l.:IIJar·atot·y elcpet•ime~ts with the vat•ious fuels).

A literatllt'e sem·ch can also r·eveal llll!Ch about this topic.

Sophisticated mathe1uatical modeling can be used to pr•edict

performanc::e but several problems at'ise with this appt•oach:

• eKpensive/licensing;

• detailed infor•mation on burners 1 the fuel, etc, is required;

• the mode! rnight actltally not account for same of the rnot·e

iruportant aspects of conversion; and

!The last point needs so1ne elaboration. Nany comruet•cial codes which

prediet flow and combustion in detail often do not account fot• soot

concentration in the flame nor fot· nongray gases.)

• f'equire eKpert knowlt-dgf:' to implt!ment.

This modeling cel"tainly has a place in detuiled iruplementation

by the furnace Ltser of modifications, bLlt .;, preliminat·y assess111ent of

perfor111ance changes miyht be dune 111o~·e effectively with a siwpler~

model. This we might call, for Out' pur•poses here, engineering

modeling."

Page 28: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

Nodeling, and in p..:lr··ticul.:.H' engineering modeling 1 of different

fuels as far· as impact on 1=ur·nace perfot'!•t<.mce has been done by many

workiH's· as ~t~.>ntioned in chapte1~ 1: t.-Jtt (1969) 1 l•!ichelfelder and Lowes

(1972) 1 Abbott (1977), Hot~e1 and Sarofitu 097tH, and other•s. l'lany of

these appr·o.::tchcs neyl~<c·~ the aer·odyna.taiclt·eachve aspects in the

f'.lr'nace chatAb~:.<r and conL'<:rll:r-... 1te instead on r•adiative heat tr•c.msfer

given sowe asslmptions .;:,buut the fl~tid dynautics and the r•eaction

progress. Sot.tetif!les convectlott is accounted "l'ot' by assigning a mean

convective he.:.,t tl·an:;"l'~r- co~·fficieut to the walls.

A cotuplete cotopat·'ison of oil .o.~nd pr·opane with nat'.lral gas would

have to inchtde the filtid dync:1mics of reactive flow and detailed

infm·roation on bttr'niH' gt.>omett·y. This is outside the scope of this

work and so t h i s chapt er· 1r1i l l C{lnc.·entr<:~t e on the rad i at i ve heat

tt•ansfet' aspects. These ilt'l' 1 of com·se 1 VtH'Y impm·tant since the main

rnech~misrn of heat trL1nsft-r' 1n fttrnaces of indltstdal s1.:e is

radiation. i='md so, co,npar-in!) fuels can be l'educed to camparing theit'

radiative per·fol'u!io\llce. For· the most pad this has been the approach

taken by the lrJOdters nll~ntioned above and it will be the one taken

here.

In hoilers convection ls also very illlpOt'tant and accounts often

fot· over 50% of the total useful heat transfer·. But this heat

exchange occllt'S in the convective seetian of the boiler. We at'e here

cancerned with the radiative seetion--where the flame is and the

combustion takes place---since we I'IOuld lil(e to detet'mine wether the

pt•odltcts of cotnbustion of ndtur•al gas can be reasonably modeled with

a simplified t·adiative dll<.dy~1s. l~efet' to Fig. 1.

A discussion of r·~tdiL.._tive b'ansft.>t' 1'ot' the var·ious fuels luads

one to the ar-gument of ~~c:c:uunting for spectr~il effects. This is

because oil fl.:.Hues ''i'!.! to~or·e yr·.::~y Ut~m natm•al gas flawes and

therefore, a cor·r·ect pt'l·Uiction uf per·fot·m~ttlc~ changes when switching

Page 29: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

itself with JiJOdcling the h~tat transfer of the pt•od~tcts of cornbustion

to dete-rmine when to uue ~ siwplified analysis.

litet~ature st:•Ltrch on this topic will be done.

In the process, a

3. 2 RADIATION FRQiiJ CDtoiBUSriOJ'-1 PfmDUCTS: SPECTRAL VERSUS NONSPECTRAL

CHARACTERISTICS

The mediu1h in a fur'1121Ce ot~ boiler charuber is camposed of a

mixture of unburned h y d t' OC -.·w bo n s, comb~tstion p~·oducts, ah·,

polydispersions, and pollutants. For Padiative heat tt·ansfer we need

cancern ourselv~s with tho-;;e cOIIiponents ~~hich emit, abäorb 1 Ot'

scattfw radiation and ~lhich are pt•esent in concentr-ations significant

enough to do so. For yases, those components will be earban dioxide

and water vapot'. The s~tspended solids will vary rnuch in size, shape,

constitution, and in radiative pr·opedies. So1ue sirnplifications can

be made here for our put'poses.

For the combustion of coal and other particulate fluds such as

biomass, the scattedng of t•adiation can be quite irnportant and

usually the particle size falls in a t'egion in 1·1hich scattering

sirnply cannot be neglected and t'ecourse to 1nor•e saphisticated theory

is necessat'y. Fot'tunat~;ly fot' us in this t~eport the polydispersions

at•e negligible in the case of yas (unless sooting is artificially

induced) Ot' the partielllates at'e so fine as to make scattering

negligible--the case t>li'th oil combu~tion. Fot' our put•poses we will

call the fine mi;:tur·e of unbm•ned hydt•ocarbon chains and particles,

and othet' tiny suspended p<;wticulates soot.

Soot t'adiation is qualitatively differ·ent from gaseous radiation

but these diffet•ences ~~e •~ill leave fot• the following sections. In

this seetian we will concentr'ate on the gener•al tt•eatment of a

furnace chamber enclosing i:IO emittiny-absot•biny medium which can be

gray or spectt•al, i. e. 1 emission and absorption are independent o t•

dependent of t>lavelength, r·espectively. That dependence can be a

26

Page 30: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

c ont inuous funct i on, '"""' fot' the C<:1se of sout,

or banded, a~ fOl"' gas~s.

Ut' i t can be d i set· et~

Fig. 2 depicts a yent-ral geou1ett·y for a fttr·nace Dl' a boiler. The

diffet·ence t•ests essentio:dly on the types of boundat·y conditions: the

level and the t"·ldative tempt:t'dhwes of the walls. To simplify out'

terminology we will from nai'J on t•efer' to the two simply as furnace

and bring back the ter•ro boilet' when it is appt•opt'iate to do so. An

evaluatlon of the t>eat-exchangl' in this enclosut·e invalves two

ph y s ical en t i t i e s: the 1-1all s and the i n t et·ven i ng gaseau s we d i Ull\, Each

small surface element on the wall possesses a ternpet·ahwe, an

absorptivity, and an em;issivity (as well as a local convective heat

transfet• coefficient). Ead"l volume element in the charuber will have a

tempet•atm·e, a concenb•;,tion fot• each species, and an e1oissivity and

absorptivity. The volume element c~m alo;.o h<.~ve a certain cheruical

heat f'elease fr·om fuel combust i on.

We will here treat th~ chemical heat release only implicitly: as

it affects species conct!nb·ation and tempeJ•atlwe distribution. To

organize the discussion l-H! will now intr•oduce same 110rking

definitions:

Diffuse surface: Radiativl' pr•opeJ•ties are not a function of

incoming ot• outgoing <:lltgulal' dh·ectiom;. A standat•d assumption 1

one which rw l·lill follvl·J 1 i~ that the fut•nac~ 1-Jalls ar·e diffuse.

Black surface: Thl' theu,-·'"'tical III<.Udmum l'~tdiatian is emitted and

absot•bed 1 and i~ only a function of telopet•atur·e. The absm·ption

and emission of r'atJiatiLIIi follow a planckian clistr·ibution as a

function of VJi:welen!..jth, l.

Gra.y surface: If thl' db~•wption and l.'IUi~don of l'adiation <We

not wavelenyth-dt:-pL'I"HJL>nt. .:.neJ e1nit less than the awount of a

correspondiny blaclc body ,cd; a specified te!apl't··~ture 1 the walls

are cor,~idet'l'd !W~• Y· ~Je c.;.n a ho !.a y th,,t i f at an y 1-1avelength

27

Page 31: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

the ratio of the en~ryy aa1itted to that ernitted by a black body

is eonstant tht·oughout tiH~ spectrUin the sut•face is considered

gray. If flwthel' the l:!tnissivities and ·absot·ptivities at·e not a

function of temptn•atlwe we will call these proper·ties constant.

A wall can also be emissivl:!-gray, e~e(wavelengthl yet be

absot•pt i on-spectt·al, a;o!a (w.:we l ength) and vice-vet•sa.

Constant wall temperature: We will take each hwnace face to be

at a eonstant wall teuJpet•atut·e. Fot' a hoiler all walls will

generally be taken to be at the same temperature, For a steel or

a glass-melting fm·nace, for exahlple, one wall will be at the

load tenlpet•atur•e while others will be at an equilibrium

refractory tenlpet·atut·e.

Ho•ogeneous 111edium: When the species concentt•ations and

tempet•atures are invariant with spatial location in the furnace.

Otherwise the mediluR is nonhomogeneous or inhomogeneous. Notice

that we could have an approximately isathermal furnace chamber

and yet still have a nonhomogeneous situation if, for example,

the soot concentt·ation is higher~ in one zone than in another.

Homogeneity is related to the idealization of a well-stirred

t"eactor: the mixtut'e ther·ein would be homogeneous in both

temperat Ut'e and concent~~at i on.

6ray-gas: A gas Ot' mixtut·e of gases whose absot'ption coefficient

is not a function of wavelength of t'adiation. These properties,

though, can be a function of terupet'atur·e. Otherwise we will call

the gas a real gas. Fig. 3 gives a conceptual clarification of

these concepts.

Now we can take a t'e<:\listic case fot• the fut'nace and list the

combinations of thet'IIIO/radiative options for the homogeneity and for

the radiative properties. We will have each wall be diffuse-gray,

Then the mixture it encloses can be, in increasing order of

complexity:

28

Page 32: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

1. hornogeneou~-gray

2. hornogeneous-nongray

3. nonhomog~neous-gt•ay

4. nonhomogeneous·~non~way

We can explain these faut~ cases by taking the case of a pencil

of t•adiation (emitted by a ~·,~dl 1 say) and transversing an absorbing­

emitting mediuu1. Refet·· to fig. 4. These ar~e dit•ectional properties

and the intensity is li!ii:!\·jise dit•ectional. Total energy transfer

would require evaluatlon of the integration of the beam over all

solid anglas.

3. 2. 1 H0~10GENEOUS-GRAY GtlS

In this case the absot·ptance 1 a, of the gas is given by Bouger1 s

Law, see for example Siegel and Howeli C1984):

a= ICxl/ICOl = 1- exp(-Kx) (l)

Wher•e K, the absat•ption coefficient, is not a function of position OP

of wavelength •.

Siruilarly, the energy L'lfdtt;:d by the medium, the e1~ittance 1 which is

added in the direction of the pencil of r·adiation is given by:

1 = I. <xl/I. • 1 - axpi-Kw> (2)

Where 1 is the e1uittance and I, is the planckian black body emissive

power corresponding to the yas tempet·atuPe. Notice that in general a

w i 11 on ly equal e when the sam·ce tempet·atlJt'e and the gas tempet·atut·e

at•e the same.

This case then seems ta offet' no difficYlty, and it is indeed

the simplest situation one can find. But is it realistic? At·e there

any examples? Far a medium with low spectt·al dependence, st!Ch as a

29

Page 33: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

This case then seems to offe~' no difficulty, and it is indeed

the simplest situation one can find. B~1t is it ~·ealistic? Are there

any exarnples? For a IHedhlm with low spectral dependence, such as a

heavily sooted flame or sowe zones of a fire with heavy smoke 1 the

absorption and emission of the medium can indeed be approximated this

way 1 Bard and Pagni (1981). Sm·prisingly pet'haps, many sophisticated

simulations of hwnace radiation use this assumption so as to avoid

further complications. se~ fo"r' example Selt;uk (1985). Commercial

codes also use this sirnplified treatment.

3.2.2 HONOGENEOUS-NOI>.IGRAY GASj RAOIATIVE PROPERTIES OF REAL GASES

It is here a good place to explain the differences between a

gray gas and a t'eal gas as we first stated them in the previous

section. For· a gray gi\5 K is not a function of wavelength and

therefore it stays eonstant throughout the spectrum. If we refer back

to Fig. 3 we can see that the radiation absot•bed is a eonstant

function of the planck distribution. So at any temperatut•e, given the

cot•t•esponding absorption coefficient, we can detet·mine the energy at

any spectral location ~s well as the total energy by integration of

Planck 1 s distribution. The lat ter' would simply be:

• ICx> =J a

'

• I1, 01 = a J I1, 61 = h <O l

' (3)

Since a is a constant. This is tht> as eqn. (1).

But fot' a real gas eqn. (l) applies on ly, i. e., is exact, at a

single wavelength

a.1 = 1 - exp<-KI x) (4)

This is Bougers lavJ in a mot·e general form. The important thing

to r•ealize is that the quality of t'adiation as it tr•avels through the

medium changes. Hypothetically, sowe wavelengths will be absorbed

30

Page 34: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

planckian distt•ibution is entirely altet·ed, and the spectt•al emission

and absorption of enen1Y can be quite a coruplicated fltnction.

Fut•ther·, a change in the sour·ce temperatut•e will result in a

change in a due to the spt:ct1•al distt'ibution of tht: source shifting,

meaning it will go into a diffe.•rent zone of influence. This is shown

schematically in Fig. 5.

Fig. G illustrate5 how the total eruittance (integrated over all

spectrum) if a gas is t·eal, in this case water vapor, does not obey

the simple exponential t•elations given previously.

But in a situation in which the medium is appt·oximately

homogeneous, we could take a 1-zone of dimension L, where L is a

characteristic dimension or the length of the radiative bea111, and we

could calculate the amount arriving at the end quite accut•ately. So

this case we could handle by using a curve-fit of the gas ot• mixtut•e

of gases and soot emissivity to define a suitable mean emissivity for

the mixture as a function of L. These fits exist in various forms

calculated by several worket·s:

1. mixtut•e of gray-gases, Hottel and Sarafirn (1967);

2. variations of l.;

3. gases and soot, Taylor and Foster (1974);

4. cm~ve-fits of gases and soot, Modak (1978).

These curve-fits a1·e tal<en of eMperimental data. The oldest, and

used most extensively by the practicing engineer and the scientist

alilte 1 are those of Hottel and Say-ofim (1967>. Mot•e rece-ntly new data

taken by General Dyna111ics (1968) has been Juade available and

correlated by Leckner <1912a). It is impodant to realize that these

data are not written on ston!!. See fot· example Docherty (1982) fot• a

discusssion of their validity.

31

Page 35: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

All methods have been used successfully but we feel Modak' s

method is most recent, quite accura.te (with t•espect to e)(perimenta.l

data) and includes soot contribution while spanning, a wide range of

temperatures and species concent~~ations. It is the method we use in

this report. The subt•outine ABSORB as published by Modak in the above

reference is used in our computer model.

How do these mean t•adiative pt~operties work? By weighing the

emissivity at a each ~lavelength with its t•espective black body

intensity. Fot~ the total absm•ptance,

m I I, (O) <1 - e)(p (-a, x)) 61 •

a(x) = (5)

m

II,(0)61 •

Similarly for the total emittance,

m I I, bCTl (1 - expl-a, x>) 61 • eCx) = (6)

1, m

Notice how the detailed infot·raation about the spectrum is lost in the

integration. Therefore we can only obtain total enet•gy transfers,

which is all we are after in ruany industdal cases.

We can illustrate this loss of infot•mation with an example. Say

we have a ctwve-fit of emissivity, and let us take the case of a

pencil of radiation erossing an emitting-absorbing, non-gray mediu111,

The total absorption by the medium for a thickness L is given by:

aiU = ICU/1(0> m

And let us say that we wanted to know how much energy is being

absorbed by the ~edium in a particular location of length dx. This

would be given by the local absorptance:

32

Page 36: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

(8)

For a gray gas

(9)

and since K is eonstant

a (L) = 1 - e ( 1 0)

But for· a r•eal gas the fit·st equation does not equal to the

seeond and inste<:td:

a <>d = a <1+1>/a(l) ( 11)

The pradical conclusion is that if we are intet·ested in local energy

t~·ansfer within a zone, the local dimension is not enough to specify

it. Instead it is only complttable as a function of the initial

starting location: the histot•y of the beam is t•eqiJit•ed. Fot• a gt•ay

gas we need not lmow the temperatm•e and "history" of the beam of

radiation whe('eas now we do.

We have seen in this seetian how a spectt•al medium can be

tt·eated by a proper· use of total absot·ption/emittance pt·operties. The

medium of inttn·est in our· case would be products of combustion of

natural gas.

NONHOt~OGENEOUS, Glif..iY Gf..iS

Here the nonhoruogeneities can be in the temperature field, or in

the c:onstitut.>nts' concentt·ation, ot' in both simultaneously. The

res~!lt isthat if K is a function of temper•atttre and/or of species,

whic:h it llSltally is, th~ absorption/emission will be varying in

33

Page 37: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

s pace, in OUt' ca s<! in tt1e x-d i r~ e et i on of t ho be am tr•avel.

l'lathematically:

T, .. T, (x)

K • K CT 1 ) "" K<x>

and

L a <U = l - exp< -J KCxl bx) (12)

o

Notice if K= const, this equation si1uplifies to eqn. (1). If we know

the teloperature field, as a function of position, x, then we could

conceivably find K by integt·ation.

Let us again look at the practical case of dividing our medium

into homogeneous zones. The intensity of the original beaw of

radiation at any point will be given by,

x l <x l = I <Ol exp<-J KCxl Oxl

o ( 13)

If we assume then that we can divide the path into n homogeneous

zones, we can discretize the integral part of this equation:

ICH) .. I<O) ttHp(-K1dH, - KedH• - ••• ) (14)

Since the medium is gray the absol'ption/ernission in each zone is a

local propet·ty, a function of the local geometry, dx, concentration,

and temper•ature, so we notice no diffc~·ence between this and the

pt'evious equation for a nongray gas,

l(Ka.al.., l(H1 ) (1- liiHp(-Kdx)) ( 15)

and

Page 38: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

l(K) "'1(0) \:IKp(-K 1 dK 1 ) 11Kp(-K1 dx.) ••• {16)

but in general

a = 1 - exp(-Kdx) ( 17)

And we obtain

I().d/1(0) "'<OI(H) 01 (1-.a.) (1-a..) ••• ( 18)

This case can also b~ tt~eated t•ather si~1ply given that every

zone can indeed be tt•eated ~s gray and that we can appt·oxirnate the

continuum into a series of finite zones. Th1s analysis perroits us to

tt•eat, fm· ~Jian!pl~, a CUJ1bustion zone h!.!avily sooted but with region.,;

of varying teruperatm·e!:i ~md concentt·ation!>. Ot• a situation which is

sooted-gt·ay and another ~~ith only gases which we could neglect (a=O).

3. 2. 4 NONHO/I"IOGENEOUS, NONGI1;W GAS

In this ~ection we pt'('Sent the IIlOst general situation in which

the medium has a definite spectr·al, usually complex, distribution and

possesses nonhomogeneiti"s in eith1n' te111perahwe or species

concentration in the enclosure under considet·ation. Fot• the sake of

cornpletion we pt•esent the enet·gy equation for out•, by now fa1ailiar,

bearn of radiation. The t'.:idiative intensity at any point would be

given in this most genet·al ca~t: (J'ecall we tn-e negleeting scattering)

by a double integral invalving the space variable, x, and the

wqvelength vat·iable, l, see f os· example, Buckius and T i en (1977).

Since we have seen that t'adiation behaves quite is·regularly

tht'oughout the sp.:ctt'Uul 1 .:.1n exact solution is iropossible. solutions

involve a disct·etization of both the spectntm and the medium. The

finer the discretization the ruore exact the solution could becoroe.

35

Page 39: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

Gases absor·b in di<.;c·r•ete ::.i:~!JS ~hr•ouyhout the wavu specti"wn, eaused

by absorption or· emissio!"1 o-i· photons. The~e steps at'e seen as Iines.

Data .:n·e avaiLtble for' thi:!S<! nat•t~ow-bands 1 see Edwat·ds <1976) 1 but

this method pr·esents tlu·ee bas1c difficulties:

1. The availability of COI!Iplt:te and .öiCCut•ate data fot' gases over

the who le sp~ctr•um u f intet·est;

2. The amount uf coMpLitEtt' timt> reqllir·ed for even simple

calculations is enot'hlous <:~t today' s camputi ng speeds; and

J. In most engineet·iny applications the delicateness of the

gaseo1.1S emission spectt·um is blurr·ed by extraneous factors-­

soot, par·ticulates, lack of d1:tailed information on

concentr•ation and tewperature dish·ibutions.

This scenario eaused l'ese.::.t·chet'S to seeh simi-Jlet' discr-·etizations

of the spectrum. In thermal pi"ocesses of interest to us these

absorption linc-s are "l..<lur~t~t-d" by a process known as collision

bt·oadening. Gaseotts abso,·ption clltster•s at·ound definite wavenumbet'S

fot•ming bands which Ci.Hi bi! char•acterized by a cet'tain distribLitiun.

This resulted in the develop~o~ent of wide-band medels, see for• example

Edwat•ds and Balakrishan <1973). The spectt·um is then discretized inta

bands center•ed around euch wavenuu1bet' and the suitable mean

ab-:>orptance fot' each band is deten~ined. The t•esult is that for· each

beam we trace in space t/H.• frnergy in each b<.1nd is individually

h•acked. The total enet·gy tr-·.:tnsmitted is the su1a ovet' n bands.

This method givus e>ccl!ll.?-nt r·esults cowpat·ed to the mot·e exact

spectr·al line method. G.:net·ally

radiative analysis this 1s the

~~hen rt:searchet'S refer to spL>ctral

method they at'e r·efert•ing to. Thi:'

wide-band model i~ acttJ~dly us~:d as the nLtmer·ical yat•dstick to assess

total absot'ption curve-fits and othet' approximate pt•ocedm·es. Fot'

example 1 Modah (1978) used it to do just this.

3G

Page 40: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

We know the engineel' is by nature an impatient species with

tight schedules and often without a fast computer at his Ot' her

disposal. Often the exponential wide-band rnadel falls short of

convenlent implementation and sp~~d of computation. Often the

engineer will trade acc~n'acy fot' expediency. To thi5 end the methods

of seetian 3.2.2 were developed.

Now we stat't with a question: In this situation can we

appt'oximate a real gas as an equivalent gray gas? Specifically to us

in this repad: can we modtd the t•adiative tt•ansfer from the products

of combustion of natur'al gas in a nonhomogeneous field with good

results? The answer is a qu~dified "yes!" since information will be

lost fro1u one homogeneous zone to the next as disc•Jssed in pr•evious

sections. Here is a situation in which one would be tempted to

-:.implify this case to a method of the previous section. Ltot us take a

nonhomogeneous fm•nace and tracll a beam of radiation transversing it.

One would be tempted 1 wht!n tt·acing the intensity of the t•adiation

beams, to use a gray gas a.pproxiruation fot' each control volume the

beam crosses. We have shown in seetian 3.2.2 that this can lead to

significant ePt'Ot's especially the high&t' the spectr'al character of

the gas (tt•ue for 1~ost of fur•nace volume>.

But at•e thet'e app1·oaches onf! can take short of full tracing of

energy in each small wave inter'val? Indeed thet'e at·e and these we

will discuss n8xt. Going back to the nonhomogeneo~ts fut•nace, just

mentioned 1 one simple approach wot•th consideting is arriving at an

equivalent homogeneous wixture, fot• the temperatltt'e say, and then

applying the gray gas approximation to the whole of the volume. Since

we have shown before how this can be modeled with good res~tlts we can

appr·oach this nonho1110gcneous situation by developing suitable

equivalent pat'ametet'S of concentrat i on, teoopet•atui'E! 1

characteristic length.

Hottel and CohH• (1958) ltse a simple averaging

absorption coefficient of th~ for·m:

37

and/or

fot• the

Page 41: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

• LKixl 6x

K. v • = 119) x

when K is a function of sp1;1cies cancentration which is var•ying in

space. When the temper·ature of the medium is varying they make simple

appt'OHimations on K bas ed on the f act that fir•st, often it doesn' t

vary by mor·e than a fe-w per·cent over a larye tempet·atut·e span and

second 1 most emission/absorption will collie fr·ow the furnace walls.

Leckner (19"12cl defined t h• total absorptivity for a

nonhomogeneous, nongray by calculating an effective "mean value of

temperat ur e" ~~e i ght ed by a part i al pt•e ss lire:

T,,..

L J Tu a (x) p(xl

= L

J pbd Ox •

6x (20)

and on average partial pt'esstwe for the nonhornogeneous path.

Strömbet·g (19771 calCI.!lates a "radiative mean tempet•ature" by

weighing the gas ternperatut~e ~~aised to the fourth power with the

derivative of the local emissivity with respect to the spatial

coordinate. He then calculates effective emissivity analytically fot'

a furnace te1gperatut•e with an elliptical temperatut·e distt'ibution.

Gt•osshandl el~ ( 1980) i5 of the opinion that "neither narraw-band

nor wide-band models necessat·y to accurately mode l"

nonhomogeneous rniHtures of nongray gases. He presents a simplified

model which gives results within 10i(: accut•acy, r•uns quite fast and

was verified for the para111eter range of interest in fut·nace cases.

The rnadel is developed ft·oul the appt•oximation of Lecknet' presented

above. The reader is t'I?ferred to Grosshand l et•' s papet' for full

details.

38

Page 42: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

Theni ar•e also othel~ wor··ftN'S. which the author belleves have

us~ful publications in th.: ar·e~, of nonhO!oiogeneous, nongt•ay medi~uus of

interest to ft..trnace wod<.>l.ing: Kt•akow et al (1966l, Edwards et al

(1967) 1 Plass (1967l, Ces5 and Wang (1970) 1 Edw.;wds and Balakt•ishn<An

(1972) 1 Buckius and Tien (1977), Grosshandler and trfodak 11981), lien

anJ Lee (1982l, and Docher·ty and Fairweather (1988).

Each of these approxi1uations can be useful 1n modeling the

spectr·al radiation of tht> pr·oducts

actual running codes .:n·e ,;wailable is

also be ver'y useful and perhaps

combustion of natural gas. If

a different matter. It would

a pr•oject to be taken up by the

author, is an actual cumparison of these methods in as far as

accuracy and speed and ease of iillpleNentation.

But a simple approxih1ation taken t'olttinely by researchers is to

Illerely aver·age the fur•nace tl<lmpet"ature and concentration in same

simple algebr·uic mannt.r. This is not so unrealistic1 for exaruple,

trlengli4; (1985) pr•edicts that a variation of 100 K has little impact on

radiative pr·operties, especially if we consider" all the other

vat'iables' appt·oximations. The averaged pt•oper·ties of the mixtur·e can

then be attacked by the one-zone ~1ethod of Hottel and using th!!

analysis of seetian 3.2.2.

This can i'IOt'k well if the nonhomogeneities are not very high and

an appropriate averaging pr·ocedm·e is done, Gibb (1987> shows the

insensitivitie~ of furnace modeling to the radiative paraweter impact

because of the typically larye fu~·nace dimensions. An extension of

this approximate method kno~>"m ~Is the lang furnace 11odel has been

applied with good results to furnaces possessing one-dimensional

preference. The r·eader is ~·efer·red to the works of Lowes and Heap

(1971l, Beer (1972l, Lowes et al <1973) 1 Ström (1980l, lucker (1988) 1

Vaclavinek et al (1983l. By dividing the furnace longitudinally inta

seetians and treating 8ach individually by the ruethods described in

the above paragraphs, a reasonable treatment is accomplished.

39

Page 43: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

Assumptions will of coui·~e be made on the tt•ansmission of t•adiation

ft•om one zone to the next and on the avet•age tempet'ötut•e in each.

3.3 SOOT AND RADIATION INCLUDING SOOT

The pt•esence of soot dut'ing the combustion of liquid (and solid)

fuels results in a modification of the t•adiative envh·onment within a

fut•nace chamber vis-a-vis that of nahtt•al gas. Soot formation is a

sign of unmixed, unb~wned hydt·ocarbons, and thet•efore most likely a

sign of inefficient cornbustion! Despite its undesirability 1 a small

amount of soot will always forw during oil cumbustian which gives the

flame its characteristic luiiJinous y~:>llow color.

If hydrocc;.rbon combtlstion pt•oceeds to CO!~pletion the corubustion

pt•oducts of interest to t•a.diative heat tt•ansfer will be the same for

oil and natural gas, n<:1mely, water vapot· and earbon dioxide. But the

pt•opm•tions of the two will vary arnongst oils and especially between

oils and natural gas. Typically, the lattet· will result in partial

pl"essures of HaO twice as high as that of CD,. Fot' oils they are

appt•oximately the same, This pat'tial pressm·e difference itself will

t•esult in different r·adiative charactet•istics as is well knot .. m, see

fot' example W~t (1969).

Soot is a strong emitt~:t' of t'adiation so its impact will be mot'e

pronounced in smaller fur·naces possessing a small char·actet'istic

length, i.e., smaller 1nean beam length. To quantify soot 1 s ia!pact on

furnace heat transfer· we need to establish the par·ameters affecting

its radiative behavior.

It is then appropdate not--J to define what we mean by soot. As

pointed Oltt by Haynes and Wagner· C198U, soot for•med dut•ing

combustion "is not uniquely defined." But we can .on·rive at a working

definition:

Page 44: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

Soot is ~' nlixtllf'(.' of c.:wbon pat·ticles and con~lomerates formed

dut•ing th~ combustion of hytlt·ocarbon fu~ls which is

fine enou~1h to b~ tt·eated a.s r·adiatively non-scatt~:>IAing.

Soot is usually fot'nied under concentrations so small as to not

t·equire a t•eduction of the fu"'l enthalpy in the overall energy

balance. St1t despite its s111all concentt·a.tions soot can be a stt•ong

eulitter of radiation, especially in the visible pot•tion of the

spectrun1 1 therefot•e flames containing soot ~we called luminous.

How is soot concentr·ation given? Usually the choice is given in

ter111s of what optical/radiative model the resear•cher is using. The

most common is know as soot volume fraction,

f~ = volume of soot l unit volume, m1 1ml

Another definition is soot mass density,

f" = mass of soot l unit volume, glml

To connect the above quantities the mean specific soot density,

S11 .,. mass of soot l unit volume of soot, glml

needs to be kno~>m. The t•elation between the three quantities is given

simply by

where C will be a eonstant to accoruruodate the pat'ticular set of units

we 1oight use. The only reference the author has found on such a

specific soot density isthat given in Taylor and Foshr (1974>,

which gives

41

Page 45: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

This value can of cour•se be dubated but one can take some consolation

in the fact that using it ther'l' is a consistency of resl!lting vallu:>s.

Soot density is known, for' eHautple Zetlw<P.us (1988) 1 to fall somewhet'e

between 0.3 and 2 gram in the tl.:une zone, sowetiwes eHtending to 5 g,

in an heavily sooted flam~. Using these figm·es we could get

This value falls in the range given in most studies for soot

concentt•ation, 10wa to 10w~, ()·f cout·se, this is a span of t wo orders

of magnitude, so we need to be otore exact than this for an actual

furnace calculation.

Though much is written aboltt soot and about the fact it is

produced and "seen" in oil fiames little can be fol!nd that can answet'

the following:

"I have a furnace with so and so charactet'istics, rlmning at so

much eHcess ait' wi-th this fuel i what is the soot concentration

in the flame itself and in the f'eruainder of the fupnace

chambet•?"

Many measurements at'e carried out fot' a single flame, gt'Ollp of

flames, and fires, under labm·atot'Y conditions 1 for eHample Beer and

Claus (1962) 1 Gaydon and Wolfhar•d 0979) 1 Bard and Pagni (1981> 1 Kent

et al (1981>, Prado et al

and Habib and Vervisch

(1981>, Grosshandlet~ and Vantelon (1985) 1

(1988), These ~o1orks offet' us an in depth

understanding of soot forwing hlechanisms 1 but fall short of answet•ing

more industrially useful ~10rk was we placed abov~. A

Hein (1970> of

the question

presented by

Foundation, by

the Int~rnational Flame Research

Peterson and Skoog (1973), and Peterson <1972)'

Petet•son (1981).

Generation of soots from fuel oils depends on such factot•s as:

42

Page 46: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

' Di l type;

• Excess a i l';

• Load; and

• But·nel' type.

Oil type appe.:ws to be the mor.t important pat'aliletet• <lffecting soot

fm·mation. Unfodunat!:!ly, soot foi'mation does not cor·r•elate well with

the Stand.:wd classification fot• oils which is essentially .::1 t•ating of

Yiscosities. Ther·efol'e! ~~ fu11l oil mlmb(H' 5 dot!s not necessa.rily emit

mot•e soot t hen a fuel o i l fiL.unber 3. Indeed, Petet·son and Slwog ( 1973)

have shown in measureme11ts of oils all falliny within Class ED 4 that

emission of soot and "du~t", c.:m vary by a factot• of 30.

Peterson <1972 1 1981) has shown that soot is cor-r-elated better•

by the amount of very h&uvy -filolecules, asphaltenes, contalned in the

oil. During CO!Libustioil th<ls'" u1olecule5 yive t'ise to ceno~phet·es which

emit visibl~: r•.o~diation and ~Jhich might not but•n completE:ly befot•e

exhaust to the atliiOSphet·c.

The concludon is th.-::,t ~H: cannot pr·edict befot·ehand ~1hat the

soot enlis~ion forJq an oil fut·nace ~lill b~ 1vihtout ilaving niade

measut·ements on the p<.w-ticul~w oil it is using, etc. This does not

present such a big pt•oblel~ fot• the user•s of this r·epod and of the

ruodel provided with it--the rnadel aims at p~·edicting furnace

performance with natural g<.ls--per•for·mance with oil is alt·eady

av a i l ab le for t hat pad ie:ular·· fut·nace.

To pt·edict oil 1.!111issiun ~~u need to Sllpply the model with an

estimate of soot concenb•ation Ot' perhaps the best we can do is to

supply a r·easonable r·ange of value~ and the <Hithot' feels this ts the

best we can obtain ft·o111 the litet·ature at thi5 point.

Now that we have discussed soot concl:!ntt·ations in a fla1de and in

the furnace ch.::uo~ber w& need to det~t·mine the ilnpact of soot

43

Page 47: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

concenb•ation on radiutiv~ ht:at tt·ansfet'. lhl't'l' ar•e sever•al wo~·ks

detailing the optical propedies of soot. These pt•opedies a~·e a

function of the fuel bUl'ned, the numbel' and :;hape of the p.::1rticles

and tht!ir conglo,net·ation, density, the flow field. Along these lines

we have the wo~·k of B"wd and Pagni (1981>, Habib and Vet··visch (1987>,

Chat·alampopoulo~ and Chany (1988) 1 .:md othet•s.

It is gene~·ally ~q;weed, fw toKample Mengli~; and Viskanta (1985>,

t hat since the 1uean so o t part icle si z e is s111all sea t t ed ng is

negligible. The Jrli e them·y of pa~·ticle scattet•ing states t hat i t

depends on t h• pa.~·amettw (nD/1)~. Where D is t h• pat·ticle diameter

and l is t h~ wavel~nuth of r•adiation. Since in fm·naces the

teu1perature leans to the inft·a1·ed, and the soot padicles havl' quite

a small diameter· this value i':> much smallet• than the absor·ption

coefficient pt•opol'tional to (nD/1). Scattering can then be neglected.

The result is obtained in the small particle limit of the Mie

equations that the soot .;o.bsor·ption coefficient is not of function of

pal'ticle size and size and disthbution, Sarafirn and Hottel (1987>.

Fm·ther, i t can be 5hown theo~·et ically and has been shown

experimentally that th2 spcctr•al soot absor·ption coefficient is

c ont inuous and invet·se ly pr·c.por·t ional to l"jC:.We length:

Ka "' f(l/1)

Thet·efore IH'o' can el:pC!ct soot to emit (and absot•b) more at higher

tempet•atures 1 since the blackbody spectt·Uul will be shifted to shwter•

wavelengths. Fiy. 7 f~·om H.:1bib and Vet•visch (1988) pt•esents what ~~e

can take as a typical ai:Jsot·ption coefficient distl'ibution for soot.

This figm'l' also points out tht: iwportance of soot in flame t•adiation

itself.

One tends to taile sout has bt:ing gray because of the fact it

absor·bs continuously1 ~~nd b.:cau:;e 1 since the emissive power at any

particular wavelength is given by the pr·oduct t 1 E1 ~, when we consider

Page 48: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

E1 ~ is also varying, we hav~ an only sightly varying soot emissivity,

Yuen (1976).

The t•elation betwe~n K and c·oncf:!ntt•atic.on is found fro1u several

sources, fm• example, Tay1ot·· and Foster (1974) give

t•lodak (1979), whieh we will use, gives

by the relation

Ko- .., 7 f,/1 0 , l/1

Where 10 = O. 94 10-• 111.

Having established the t'adiative pt•operties of soot we need to

combine them with those of the real gases, H11 0 and C0111 to evaluate

their eombined effect on fut•nace heat transfer. Since soot is assumed

t o not sea t t er, i t s rad i at i ve ehat•act et' i st i c s can be i neorporated

directly inta earrelations fot· the gases.

Accounting for a mixtut'e of soot and speett-al gases considering

that theit• absorption cut·ves overlap means we cannot simply add the

emissivities of gases to that of soot. The total emissivity can be

given by:

i'lllll ::: ~"''' + 1111111 - latiiiLA'

This relation is instt•uctive because it gives a physically cleat'

pictut•e of the situation. For• low soot concentrations the seeond tet•m

dominates. The gaps between the gaseous absot•ption bands are bridged

by the soot emission and the mixture becomes less wavelength

45

Page 49: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

dependent: J110re gray. F i u. t (l taken from Dochet·ty and Fdirweather

(1988) reproduces well this phenomena.

So 1 fot' an oil-sooted flame 1 ~tJe could neglect the sp~ctt·al gases

bllt for the bulk of the flwnace but since it usually does not fill

the whole charober· then the specb·al/gas t•adiation has to be included

in same form. The iMportant thing is that in gen8ral if we have a

cor'relation for a mixtur·e of t•eal gases and soot it should be used.

Luckily those earrelations exist and the fact they wet'e developed

rueans that then: are indeed a lc:wge t'ange of applications fot' which

they are suitable and give good results.

We have mentioned the works of Taylor' and Foster (1974) and

Modak (1979) 1 amongst othet's. These cort•elations ar·e very pt·actical

because they include the mixture of the two gases and soot and

rept•odltce the data of Hottel quite well for large concentration and

temperature ranges but it is impot•tant to keep in 111ind that they

apply under the conditions of hornogeneity and for total heat exchange

between one gas zone volurue and its sur•rounding walls. When we need

to divide the furnace inta zones and apply such methods as discrete

transfer method (1981) 1 these curves have to be u~ed with caution.

This we discussed before in seetian 3.2.2.

Flame emissivity i!; cleady highet• fot· a luminous flame than for

its nonluminous countet•pat't. But the mattet' does not end here. The

fliuae does not fill the ~1hole cowbustion charnber, and often fills

only a small portion of it. Fur·ther the stt·ong absorption of the

flame can actually block the load from wall radiation. This phenoroena

as been well docuwented in the literature. We can conslllt wany

t'eferences detailing this: Lee t.<t al <1984) 1 Viskanta and trlengii9

<1987) 1 by Dochedy and Fairweather (1988). Fig. B clearly shows this

soot blockage effect. And, of cout•se, luminosity is often a reslllt of

bad combustion, resulting ft·om bad fuel/oxidant mixing 1 fuel

dt•oplets, etc.

46

Page 50: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

One concet•n in modeling the different radiativ~ behavi01· of the

two fuels, is the !;pedi•al ch~\f'acteristics of theit• pt•oducts of

combustion, a!: ~~e h<:we ali·~ady ~een. Fot' nuttu·al gas these are

sb·ongly b<:Hided-spectt•<.d, <-•nd for- oil these at•e continuous-spech·al

due to the smoothiny effect of the soot concentt·ation. In pt·actice

these diffet·ences at•e t·educ~.Jd by the fad that, fir•st, absorption and

re-emission by t1"1e w,.odls increases the "g1·ayness" of the chamber and

smooths the spectru1~j second, in n1a.ny situations an appr·oximate

accounting of spect1·al behaviot' by det'iving a globally equivalent

!:way gas t•esults in quite "'ccur·ate solutions of practical pt•oblems.

(especially t.·ue for· qlw~i·-holaogeneous mediums.) When more th<.m

integt•ated quantities, such as over•all heat flux and average wall

teropet•atm•es, a1·e reqtlit•ed 1 Ol' when the furnace chambei' tempet·atures

and species conc:entt·ations <.n't> highly nonhomogeneous, a spectral

b·eat111ent of t•adiation is r~.:quired, as covered in seetian 3.2.4.

Theratios Df ~o-tatet- vap"r to earbon dioxide at'e quite different

fot• the two cases, Typically 1 th~.:y at•e one-to-one fot• nahwal gas and

one-to-two "fol"' ail, Since wate;-· vapor is a betteremitter than cat-bon

dio>eide, a natut•.;:d ga~-fin•d fur~nace will didiver more radiation to

the load than an oil-fir•ed fur•nace with no soot. Fig. 9 shows this

eff e et.

Ideally, the cowplete combustion of heavy oil should be

accomplisMed ~o1ith, say, 5i"; excess air. In pr·actice 1 it is common to

t'lm an oil ftn~nace at l(lj{ eHcess air and sor1H.-times .:tt 20ilo 1 whereas

for natut·al gas, with mixiny .:md combustion occur·t•ing Slioothly, 5;.1.

excess ai1• and less is typic~d. The t•estllt of running at higher

excess air is that the energy of the fuel is increasinyly used to

heat llp unnecessal'Y lnolectd.:,t' nitt·ogen and oxygl'n in the combustion

.;;it•, This results in a lm·Jet' furnace teuJpet•atul""e and in inct•eased

stack losses. Davies and Oeppen (1972>, documented this quih well

when they cor.rpaN! tht! h!.!<:~t tr'ansfer from oil and ya!; at val'iot1s ai·r·

flows, Fig. 10.

47

Page 51: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

The fact that heo;\t transfet~ for natur'al gas t'elies less on flame

heat transfer und that the gases at'e mor•e radiutive due to highet'

water vapot• content rnc:-ans that h~at flux within the fur_nace is mrn-•e

evenly distr•ibutEld tht·oughout the fur·nace than for• oil co1abustion. Wu

(1959) has shown this Elffect for· the case of a long furnace.

3. 4 SUM~1ARY

• Aftet' listing subH: of the difficulties in nmning co1~plex

models the case is made to develop a simple furnace r·adiative

heat tt•c;msfer• medel. This medel must be c~pable of accOunting

fot• the spectr·al radiative ch.:wactedstics of natural gas

comb~tstion pt•oducts.

11 To pr·oceed we leoked at the vat•iou!i> situations one could

encounter· in a yenecal enclosure containing a homogeneous ot•

nonho1nogeneom. 1 gray ot· nongr•ay ml!dil..tm. The fow• combinations

ar·e covet•ed by simply st1..tdying one beam of t'adiation

tt·ansversing the 1uedi~1111. In the process a cleat~ undet·standing

of spectral ver·sus rway ~·adiation at·ises.

• The real gas (nongl~.?.y) vet'sus tht- gt•ay gas ar~e discussed and

the i t• char•acted!>t ics compat't::d. l t is shown that total enet·gy

flo~n; ~.::russ one homogeneous zone--homoyeneous, nongt'ay--can

be computed accm·ately

mixtut'es 1

litet·atul'e.

radiative

and several curve-fits of ga~/soot

propet·ties ar'c- available in the

• The 111or!:' gcmer··.::d .:.nd coruplicated case of nonhomogeneolt~,

is cover·ed and approximations from the

literatlu·e ,;n'e pt'ef.entt:~d to show how this system can be

simplified in w.:my c:.tses to thi:' pt•evious one. Fot• a global,

simplified medel of a fllt•nace this case can bethen treatf:!d

in an appcoxim.-:\tt::d yet accut'ate wanner' also.

48

Page 52: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

• Fol'mation and r•adiative p1·opedies of soot are tt·eated. It is

shot•m how soot influenc~s 1~edium radiative behaviot·. Soot can

be incot·porated l'elatively simply inta eldssivity cLu-ve-fits,

since it is essentially non-scattering, for total gases'

pr•operties. It is concluded that the presence of soot in a

fm•nace does not necessar·ily increase its efficiency. Soot

blockage of the walls hc:1s been well documented.

49

Page 53: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

RADIATIVE SECTION CONVECTIVE SECTION

Figm·e l R~idiative section ~\nd convi:ctive :.l'ction of' a boile1··.

Page 54: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

WAT~L 5 (TOP)

WALL 1 (LEFT)

l

l l

l

l~ A L I. 6 (BACK)

-.. l

L2 l

L3

Figure 2 Furnace enclosure.

l

l

l 1--------

t l

lqALL 4 (FRONT) WALL 2 (RIGHT)

l~ALL 3 (BOTTQ>I) L1

51

Page 55: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

-'e u

; •

REAr~ GAS

GRAY GAS

-· -------- ·- --···-·-· ___ .... ----- - ---------~- --------- ----------

Figure 3 Gr~y gas ver~us r~~~ ya~ .

.,-.-, ~'c

Page 56: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

WALL ' / /

-; /

I (O l / I (XI -'

/ -~--~--

---·----

'

/ ~EDIUM

/

Page 57: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

450

400

350

300

\250 N

'E

• "' 200

J 150

100

50

-~ c

Band de~iqnation

'· ,. to r /.-15

,-10.4 '

. 8 l

ltl ;''' .6 ~-~

·' .1

010 10 8 b 5

/"4.3

' J Wavelength )., 11m

2000K

0.5 lO 15 2.0 2.5 30 Wovelength,). !j.. m)

Figur·e 5 Band "dJ5ut'ptlon.

\, 1. 5 2 !.67

3.5

Page 58: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

1.0 0.8

o.•

o.•

0.2

i-:i!: O.J t1 0.06

~ 0.06

0,04

0.02

0.001

Equimolol H2 O l C02 miKture at 1400 K --

0.01

- € • 1-e~tp 1·3pl. l

0.1

pL (bor mi

Figtwe 6 Absur·pt i on of ~p-.:~ y ~l~•S and of t'eal gas.

1.0

.~---·-~

Page 59: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

L-7cm s

H.A.B.- 17 . .5 nun 4 l

l T-12SO.K l l

.J3 l ~ l ~ \

\ 2

1

----1 z 3 4

WAVELENGTH ~ 1-1M

·---·-----

Figun~ 7 Typic'"d soot absur·ption clwve--dashed line; Habib and

Vet' V i sc-h ( 198[1).

Page 60: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

~

~

~

"' l E u ~ -,., 0 c ~ -c

• o

1-

7

6 o Narrow band rnadel

-- Present mo del 5

4

3

2

1

~~o~-ä.~~~~1~o~-"8-J~~~~1~o~-~,~-L~~1~o~-~-L~~wu~1~o- 5

Soot volurna Iraetian

Figure 8 Soot blockagE:; Doch.,,·ty and Fai~'I>H!~>ttn.;r· ( 1988).

Page 61: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

/ /

~1soo•c

J

' i

o.ot '-"---~~~L.~.cL-~-~-'-~'-"" [),01 0.10 1.00

Pe.L. Pw.l (m.otm.)

Figure 9 Non-luminous em1ssiviti~s of co~ and HaD vapours; Wu

(196.9).

58

Page 62: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

lO gas oil 20% excess alf"

:S: flame emissiv11y 04 :;:

f 015

05

o 25

750 1000 1250

Chorqe femperature, o c

excess or% o 5 Kl

20

Figure 10 Impoo·t~1nco of e;...c.:s.s air· in co1aparing oil with n<:,tur·al gas

flameq Davies and Oc-ppen \i972).

59

Page 63: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

4.1 GDnLS

In Chapter· 3 :~2 cu,•ct'.!d the pr-inciples behind ~--.;:,diative heat

tJ·ansfet'; """' consid~:r,:d d !J.owtlculat' line of sight or' "pencil of

radiation'' ct'ossiny an a~ittir1g-absorb1ng medium. To apply those

concepts to achtal f1J1'nacw "wdeliny we need to go fi.trthet• and

consider the g~ometry of the tystem with the result that we will have

not one beam of r-adiation i'J•.d; .:ma infinit!! <Hiount.

Out' goal for this ch.::1ptt;-t' is to talte this camplex problem ttJhich

when analysed differently result~ in difficult nonlinear differential

equations, Viskanta anJ f•lt.'ngi.it; (1987), requiring ntunerical 111ethods

for their solution, and ,;u•e only analytically solvable in the

simplest of cases, and deve~op a simplified global model satisfying

the following criteri~:

1 Applicable to a 1at'Y8 r·anye of box-type geolaett-y fur•naces and

boilers;

1 incol'POl'i:\tL' noJogr·.::,y appt·oximations of

t•adiative propedi"'''l

gas/soot mixtures'

• prediet the dii'rt•l't:nces in capacity <~:xit tempet·ature and

loadJ and effici~ncy b.:to~een an oil-fir·ed and a natur·al gas­

fired fut'nace;

1 allow for individu~lly specified walls;

• to run on a personal computer in the ord0r of a few minutes;

• to ba user-friendly.

(o (l

Page 64: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

It 1s also iwp~l·t~~L to stat~ wh~t w~ are not expecting th~

model to do:

• To give he;;.t fll!,( or· tt_,iap!?t"atllt'tl distr·ibutions fot• the walls;

• to pt·edict

concenb·at i on

ot' ... se medium tempet•atun: and species'

distributions--instead, the propedtes will be

avera.ged into a well-miJCed houtogeneous llliMtur·e;

• to be a design tool fot' ne1-1 fttrnaces, eMcept at an eady stage

of development.

The main put·pose of tiH! model is to comp,:we the t•elative differ·ences

in operation eaused by 1'ue1 changes in furnaces and boilers,

specifically, fo1~ diffe1·ent htd-oils, natut•al gas. and propane.

Any worker in the field knows that actua.lly no fut'n.:tce is a.

cylinder, or a paralelipi~d, or infinitely wide, or two-dimensional,

but h e or she als o knows that very good pt·act i ca l and accur·ate

results can be obtained ~1ith thesc- simplifica.tions. With this in mind

we can refer to Fig. 2 of chopter 3, and claim that this genet'ic

geometry is indeed typical of a lar·ge assortment of furnaces,

boilers, and industrial avens, by met•ely sb•etching ot· contr•acting

onc of its diruensions. For exarnple, stretching the furnace along the

hor•izontal dircction we ~Jauld have a "Iong furnace" typical of heat

treatment processes, conveytn·ized processes, etc. Flattening the

height ~>le could have .. ., ylass welting pool, for example. l'lake the

three dimensions about th!? sauH: and we coltld have the r·adiative

seetian of a boilet' or' of a district heating plant. An added

camplexity which we wil1 not take up het'e

geometry at'e

location of

also accompanied by changes

the bur•nt:w!:. Since we ar·e

is that these changes in

in the amount, type, and

developing a well-mixed

combustion cha1rrber· this ~lill not be accounted fot·.

"'

Page 65: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

We can clas~ify the fur'llaC:J? as accol~ding to its: 1. geometry; 2.

boundary conditions; and 3. state of homogent::ity in tht- chamber·. The

boundcn•y conditlons r·efef· tu the si>! 1·1alls:

1 are they blc.\ck Ot' gr·<--.y?

111 are all ~~t the Si.<II!L' tewper·atur"'e?

1 have the same e~issivity (for non-blackl?

1 can we yive each 1-1<:dl a r·ealistic eonstant tewperatLtre?

1 is ther•e other hi!at t1·ansfer modes besides r-adiation? (e.g.,

convection from hot gases or conductian (heat loss) to the

outside envir•onfl!entl

The geomeb·y has inq:.lie:ations for· the walls and for the

homogeneous as~umptions. For' eJ(aJaple, it is rather obvious that a

"long fur•nace" will rc-sult 1n flow downstr·ea~l being different than

flov1 upstt•eam,

stream, and so will the chamber

~o1ill vary

mixtut·e' s,

ft'OIQ up to down

temperatttt·e and

concenh·ations. Thet•efor•e we could state that deviations fo;·m cubic

geomett"'y will call fot' a 1110rl! deta.tled tt•eatment of the furnace: its

divisions into "zone~" or· into spatial grids of pt•oper•ties.

The type of bur·ne1', the a111ount of s~oJit•l, flow t•ates with t'espect

to furna.ce valume ~~i l l als o either· incr·ease Ot' decrease

nonhomogeneities. As an e,:~111pl~o:

tangentia.lly-fir·eJ bollt:r' .i.n

of relatively well-wiKed flow, a

which t•f>cit•culation is sb·ong,

turbulence and .-.wit•l an:: hi~]h i.111d we would expect eKtensive mixing.

On the othet' hand, fm·n.-..,c~:.. in ~·1hich the fla1ues will occupy a small

space will have l.cn•ge conc~ntl•ottion ~;nd teltiJ.Jel~atut·e gradients.

In oth~r words, a rel~tively large group of cases could be

studied ei;ich with a pt'olllinJ:nt feah1re. And this has indeed been done

by a large mtmber· of r.:;::e~u·cher·s and engineet·s over· the years. J"rlany

var•iations of models h;::we been presented and the r·eader is t'lderred

to the follo1-Jiny refl't'L-nces which have special t'!devance to out•

topic: Beer· (1972), E1n1Hol'ich l:t al (1988) 1 Lowes and Heap (19711,

62

Page 66: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

Lwes et al (1973i, /Jhclit!lft<s'der and Lowes i1973), Scholand <1978l,

Song and Viskanta (198&1, Sb~ösa (1980) 1 Tuchr (19&8l, and Wtt 0969>.

We will now ctwtail ~h<: discussion het'e since we would be

d8Viationg fro~s our :;isup18 wodel. But one iruportant point usust be

made. Often one 1>1ilt f1nd in the litet'atut'e sophisticated

discretization of radlatlon problems, fot' example, Selcltk 1 i'lenguc,

Kent, yet discover tn..:..t th<J absor'ption coeffici~:"nt for the gas

mixture will be taken to b~: constant. These, we must str'ess, are not

minor simplifications. F·or' eKaftlple, making walls nonblack forces a

simple application of the Disct'ete Transfet' method, Lockwood and Shah

(1981) 1 to become an iter'ative solution. Noneonstant K throws us into

the foes of nongt'ay-nonhcusroyE>neous mediuras as discussed in the last

chapter. Seen in this light, a simple model with physically realistic

assumptions can lead to vet'Y ltseful results. To that end we now

devote the remalnder of the chapter.

4. 2 /JIODEL DEVELOPI'"IENT

Development of a simplified rnadel consists of four sections:

1. Assumptions: does the mode l pt'oposed illustrate the

diffet~ences betweeen oil and natut'al gas, i. e., do e s i t

account for diffet~ences in gray vet'sus nongt•ay radiation?

2. Propose and develop model.

3. Nuruerical impl~~~entation.

4. Validatian and application (same cases studied by om' model

and how the t'esults campare with the literatm-e).

Given the time schedule of the project, abiding the desire to

63

Page 67: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

have a fast ,··ur.ing modt•l 1 .:;,,,o cunfldent that gootl re$ults can be

obtained by .;., c.iurple r .. uJd, th<: 1--wopo.,;ed urodel is chat•acterized by:

Geo11ret1'Y: Box-typ;::.

Wall s: Nonblack, J1 f fusl', individually sp~cifi~d emis~ivities

and heat fl ows; t•adiative equilibt'ium

(conduction and r.ur.vt!c~iun heat tt~ansfer at·e zet'o).

~ledium: onf!-zon~, ,,rell-stir·r·ed homogeneous co~orbustion and

mixture of combustion products and soot; given this, the

analyses for hornogeneous-nongt·ay medium applies.

Since each wall .:1s a whole can have its own thet·mal

chat•acter•istics we have to tr·eat its radiative intet•change with each

othet' wall and 1-1ith the mixtllt'e as a whole. The analyses het·e follows

the standard proced•Jre, see Siegel and Howell (1981>, of the net­

radiation method. In this pr·ocedure an enet•gy balance is applied to a

three dimensional enclosur·e with n-s,.wfaces enclosing an emitting­

absorbing mediun1.

This fot~ullll<)tiun is

wavelength. In pr·acticc: to

qui te g•me1·al and can be integr~ated over

tack!~ it we could divide the spectrurn

into bands over~ which C~<-t~tain pt'operties could bf:' taken as consta.nt,

this would lead to a ''wide-band rnodel", Edwards (1976al. Or we could

take an avet~age over whole the spectt·um, and at't'ive at overall

tt·ansmittance, emittance pt•opet•tit>s. The lattln' is the pr~ocedut'e

followed in otw current r;rod!O'l.

We are left now witt, determining these values. Again we could

use sevet'al Htftods. We ~~ill tJse a method published by Dunkle (1964) 1

and used with ver•y good l'esults 1 Siegel and Howel (1981). We ~Jill not

detail her·e Dunkle' s tr·c.oz,twent or' assumptionr- 1 that is done we l l by

the authot' ai1d discl,sse!.l by Edwards in the ol'·iginal papet·. The urajot'

appt·oximation lieo,; in as~ur.ring a lineat' absor•ption law fot' the gas.

64

Page 68: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

By approximating the 2.bso~·pt1on by a linear function we at'e left with

a geowett·ically dependcnt ini;egr·al which can be tabulated fot' various

geometries.. Fot' our enclosur·~, these .on'e the perpendicltlat' rectangles

sharing one side, and the directly parallel rectangles. Explicit

equations are !-JlVen for· tht:-se by Dunkle and are used in our 111odel.

This cha.ractet•istic length 1s used to obtain the emittance between

ea.ch pair of sut·faces.

In gener•al the gas ~1ill b~ at a temper·atut•e different than the

wall. So emission will not t:qual absorption. To account fot• th~s the

original worl1 by Hottel (later· t•efined by Edwards (1976b)) i5 used.

We are now in possession of a squat·e matt• ix of siwth ordet·, i. e., with siM unknowns. The unl·mo~ms can be any combination of wall heat

fluwes or wall te111peratw•es. We still don't know the gas temperatut•e.

Of course, we could simply s.pecify it but in a realistic situation we

would not know this value å pdori. The appt·oach we take is to

provide a cedain fuel flo1<J rate at a certain level of excess air.

Then energy conset•vation ~rJith no combustion air pt•eheat will give:

Energy t•eleased by f u el "' useful enet'gy re mo ved by Jolall (s)

+ enet·gy cat'r'ied by exhaust gases

Where we assume T ~on TuM' = T ,u 11111 , 1 to be consistent with our

asstU~ption of a well-stit'r·ed t·~actot'.

The rnadel could be opt ir1rized in

computation. The converg~nce procedttre

physically t'ealistic iroputs as discussed

t11e future for faster•

is slow but certaln--given

in the Nanual. It could

also 1 of com·se be modified to fit the users needs, include preheat,

and to iroprove its approxiroations as well.

65

Page 69: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

4. 3 MODEL Vi1LIDATION

In valiLlating the 1!\odel we should aim to check expecially

certain asp~cts. Na~ely,

• To what e>,tent can this "box-type" ruodel be used for "long"

furnaces?

• To what level of accuracy does it prediet the pet•forr~ance fo

gas-fired fm·naces ver·sus oil-fir•ed furnaces?

111 Whether it pt•edicts b·ends cot•t•ectly.

• lo stipulate the bounds (limits) on its opet•ating t•ange,

outside which its r•esuh;s will be misleading.

• Whether even for• tlH! expanded opet•ating t·ange it indeed gives

accuratt.> and useful t't>sults.

We will 1nake here a first atter11pt at this cornplete validatian by

t•unning solile checks:

• Self-consistency;

• A FLUENT Plm; and a case in the literature.

Consistency does not in itself validate the ruodel but it is the

first step to be taken to dett.>ct gross errot•s. We aim to determine

whether the nrodtd "rnake~ sense". To do this we t•un several simple

cases for which we can use intuitive reasoning coupled with physical

laws as checks. In oth1H' wor·ds, does the physics of the answer given

by the model ~ake sense?

We can look for• the following indicators of trouble:

~ Enet·gy balance;

66

Page 70: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

1 Symmeb·y;

1 Violation of physical laws 1 e. g., seeond law; and

1 Right or~det~ of magnitude.

Several simple cases wert~ r1.m 1 which of course the ltser can

easily duplicate, to insure all these criteria were met. These simple

checks showed that the wodel is indeed waking "physical sense."

We also had at our· disposal pt•edictions for a t•eal boiler

obtained with a co~tmerci.:d., FLUENT, to see actual perfot·mance

compat•isons. These t•esults wer~e presented t•ecently by Collin and dos

Santos (1988). The hoiler charactedstics are as follo~Hd

dimension: 6 * 6 * 6 m

emissivity of walls: 0.95 <?l

fuel flow t'ate: 57 ll!W o il No. 4

te111perah1re of walls:· 250°C

excess air: 15j{.

so o t concentt•at i on: O. O (-~l

Some input values to out' Modtol are uncer•tain (?) since v;e wet•e not

positive on ·the values J.tsed by FLUENr. The predietians for the

radiative sectio11 of the boilet' at•e as given in Table 1.

TABLE 2

FLUENT TH I 5 r'lODEL j{. DIF

RADIATIVE OUTPUT

EXHAUST TENPERATURE FROM RADlA­liVE SECT.

23.91 M·J

0:58 CONPAD 386S RUN T JtoiE NA (min:secl

21 J·lW 12:;1.

-19j{.

2:40 Bondwell 286

67

Page 71: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

Validation of Il! O d~} takes t•unning many cases, same

e~<pet•irnental 1 and finio>·-tuning to inct·ease predietlon accut•acy. One

case form the litet•atul'e 15 no1-1 cu~1pared. It invalves a vet·y long­

fut·nace pt·esentc>d in Schol.:.nd {1978). For this case of sb·ong

deviation form a "box" geoh!ett·y we would expect the model to be less

accurate than for' the pr·evious case of the boilet·. Fut'ther, this

pat'ticular furnace is cylindr·ical and we appro~<irnate it 1-1ith our

car·tesian coordianates as a Iong box. The length is 5 rneters and the

diameter rueasures 0.9 meters. The e~<perirnental results give, t•efer to

paper1 total heat absorbed by load of O. 5 J1JW 1 whereas the mode l

overpt•edicts by giv i ng O. 5 liJW. Sor~e of the discrepancy is due to the

fact we don't have all the oper·ating conditions at our disposal.

4. 4 ILLUSTRATI VE USES OF THE I•IODEL

In this seetian we opply the rnadel just developed to same

situations which collld -"Iris~

on the radiative diffet·ences

firing. These will addt•ess

in industry and which throw same light

between oil-firing and natm·al gas­

sont concentration, and the CDa and HaO

pat•tial pressur~es differences between fuels.

Even though the roadel works for oils as well as for natural gas,

that is, for fut·naces 1-lith visible fla111es as

w i t h blue flarues, ca t• e has t o be taken w i t h

well as for furnaces

the oil cases. The

assumption of well-mil<ed fur•nace chamber containing only products of

combustion is roer•ely a r·ough appi'OI<imation. The performance is quite

sensitive to soot concentt·ation and these vall.1es will be hard to

determine and input. W~: co~tld sa y, as ;.u: discltssed in seetian 3. 3

that the model would simulate better natut•al gas than oils because of

the sooted fla.me.

The best llSe of the model is that which would actually occur in

pt•actice with potential Swedegas costuwers:

68

Page 72: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

"I hav~ ~n oil fir~J-furnace using this ruuch oil flow-rat~ and

deli'-'8t"ir,<] this much r.,~.:n; to u1y luad. If I ~ubstitut~ the oil

vJith lh'itur~tl g~1s._ Wlll r net.>d mol~e fl1el 1 ~1ill my load t'each tht.>

requi;'ed pr'Dces:; t~"lpcr·.:,tur-e? l.Jhat 1'lue ga:; temperatut'L'!i would 1

expect?"

We present two ;---e)ir'<.•s,mtative cas<--s ft•om Collin and dos Santos

{1988) ~ihich vJ<:r·e pr·ep~n·ed using the mode! developed her·e. Fig. l

presents the case of ~' fm•nact.- and Fig. 2 the case of a boiler·.

--~~-~---~ -------------

0.60 -~1----·l-·--1·----1----·---+ ·--~-······+·

0.55 1!1 NATURGAS (l M) (') OL.JA, l . 05 ( 1 M)

0.50 A OL.JA, l . 1 5 (1 M) + NATURGAS C2 M)

= 0.45 x cc

OL.JA, 1 . 05 (2 M) a:

"" ~ OL.JA, 1 . 1 5 (2 M)

UJ 0.40 " "' z ~ 111 ®

~ (') --z 0.35 v;? A -"" ~ o Il< a: --w > 0.30 V/ v -~-+

v --El

0.25

0. 20 +--~-+-·--~-~f•-.~---t--L. ~---+ 0 0.20 0.40 0.60 0.80 1.00

sOTKONCENTRATION CG/M3)

Figut·e l Illustr•<:,tive 1uodel r•esults fot· a fur•nace.

-----~-- ·----·---·-·----~-----~

69

Page 73: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

The 1110del should 1·1ur·k W'-'ll for~ this case since corobustion will

be well distt~ibuted thr·oughout the boiler·. For example, in a

tangentially-fit•ed boil\;1' the tlwbltlent ball of fit~e essentially

fills most of the boiler's radiative section. Figure 3 summarizes the

results of interest cuncer·ning this application. We can cn-l'ive at the

following conclusions:

1. Natur·al g.:~s, as shtwm in the exumple::; 1 can give supe1·ior·

t'adiat i ve p e l·' f t!l'sn.:mcc:- t han o i l fot' lo~1 so o t concenb·at ions;

2. Soot is only l•ffective to a certain low level after· which no

inct·ease in pet•for·mance is seen; and

3. Increase in p~l~for··rnanc:e might not ouhHtigh maintenance and

cleaning/emission control equipment.

/0

Page 74: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

o cc 0: (f)

<:.:> z ~

:z:

"" 0: w >

0.60 t--+---l·-··-·+--··f--·---l--+----+--···+·-·-1·---t

0.55

o .50 t ----·---·--+

l

0.45

0.40

0.35

0.30

0.25

0.20 o

f!!----!!l--E'l-----, ---&----·---··-··-····--

l .00 2.00

l!l NA TURGAS (') OL..JA CN; l . 05) l> OL..JA CN; l . l 0) + OL..JA CN; l . 20)

3.00 4.00 sOTKONCENTRATION CG/M3)

5.00

------------------------Figllre 2 Illustt•ative results fol-' a boiliH'.

71

Page 75: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

REFE:RENCES 1: l•lDDi~LWG OF RADIAT1VE HEAT TRf.lNSFER

Abbott, E. (19-/7) 1 "A COIUJJ~It'ison of Glass Fut•nace Operation with Oil

and Natur·al G.:ts 1 " Glt1ss lechnology, Vol. 181 N. 51 pp. 143-147.

Sat'd, S. and Pagni, P. J. (1981> 1 "Carbon Par·ticulate in Small Pool

Fit"'e Flarnes," Journal of Heat Tr·ans·fet"'1 Tt·ansactions of the

ASME 1 Vol. 103,

Be et"', J. N. O ~72l,

pp. 357-362.

"IO:ecent advances in the technology of furnace

flames 1 " Journal of "l:he lnstit~1te of Fuel, July, pp. 370-382.

Beer, J. M. and Cl.::1llS 1 J. (1961) 1 "The "Traversing" Method of

Radiation measut•ement in L~uuinous Flames 1 " ?, pp. 437-443.

Br•itish Gas (1988) "Key Publications about the Gas lndustry,"

BGPR/AJW/ 1 London.

Buckius, R. O. and T i en, C. L. (1977) 1 "In frared F lame Radiation,"

Int. J. Heat !~ass Tr·ansfer, Vol. 20, pp. '.D-106.

Cat•valho, ~1. G., Oliveir·a, P., and Serniao, V. (1988) 1 "A

three-dimensional t•lodelling of an Industr•ial Glass Fut·nace,"

Journal of the Institute of Energy 1 September, pp. 143-15€..

Cess, R. D. and ~lang, L. S. (1971)), "A Band

for Nonisothermal Gaseous Radiation,"

Mass Transfer, Vol. 13, pp. 547-555.

Absorptance For•wulation

Int. Journal of Heat and

Chat'alampopoulos, T. T. and Chang, H. (1988l, "In Situ Optical

Properties of' Soot Padicles in the Wavelength Range h·ora 340 n1u

to 600 nm," Combustion Science and Technology, Vol. 59 1 pp.

401-421.

Chedaille, J. and Koopman!>, G. (1973) 1 "lndustrial Use of Radiant

But•ners," Gas Wrme International, Bd. 22, No. 8, pp. 314-319.

Chedaille, Von J. and Koopmans, G. (1973) 1 "Industrielle Anwendung

von Deckenstt•ahlbrennet·n," Gas Värme International, Vol. 22,

No. B, p p. 314-319.

Claus, Ir. J. and Luning, O. E. (1970) 1 "Ergebnisse von

Wärmeubet•t"r•agungsmessungen in tdnem mit schwer•em Heizl, leichtem

Heizl und Erdgas befetwten zylinddschen Fet1erraum,"

72

Page 76: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

VDI-Bi?t'ich~e, 1\lo. l':G.

Cullin, H. and dos Santus, rl. ltl. <1988) 1 "Heat Tt'ansfet' in Oil and

Natu'r"'al Gas Fit·ed r:urnaces--l>lathematical and Physical Nodeling,"

in "Resear•ch and Development in Natw·al Gas Use," No'r"'disk

Gasteknisk Center· Confet·ence, Helsinki 1 Detaber 17-181 pp. 221-

230.

Collin, R. and Vaclavinell 1 J. (1984) 1 "Föt•bt·äning av Natut·gas i

Industriella Ugnar," Deh·appot•t inom Pt•ojektet "Naturgas-Hälsa­

Miljö," Inst. för Vät·we- och Ugnsteknik, KTH, Stockholru.

Davies, R. tol. and Oeppcn, B. (1972>, "Combustion and Heat Transfer in

Natural Gas Fit•ed Fur•naces," Journal of the Institute of Fuel,

July, pp. 383-390.

Docherty, P. and Fait·weathet•1 ltl. (1988) 1 "Predictions of Radiative

Transfer from Nonhoruogeneous Combustion Pt·oducts Using the

Disct•et Tt•ansfet• Jl1ethod 1 " tornbustian and Flarue, No. 71 1 pp.

79-87.

Docherty, P. and Tuclli?t' 1 R. J. (1985) l "The Influence of Wall

En1issivity on Fut·nace Perforfllance," Jom·nal of the Institute of

Energy, trlat•ch, pp. 35-37.

Docherty, Peter (1982i, "Prediction of Gas Emissivity for a Wide

Rang e of Pr~ocess Conditions," Seventh Int. Heat Transfer·

Conference, l'>lunich, September, pp. 481-485.

dos Santos, A. ltl. and Yuen, W. (1988) 1 "A high-tempet·atut•e t•evolving

fttrnace," ASIT\E National Heat Transfer Conference, Houston, Vol.

1, pp. 115-130.

DunKle, R. V. (1964) 1 "Geometr~ic ltlean Beam Lengths for~ Radiant

Heat-Transfer Calc~ll<.\tions," Journal of Heat Transfer, February,

pp. 75-80.

Edwards, D. K. (1976) 1 "Noleculat· Gas Band Radiation," in Ad Advances

in Heat Transfer, T. F. Irvine, Jt•. and J. P. Hat•tnett, eds.,

Acadewic Press, New Yod< 1 Vol. 12, pp. 115-193.

Edwards, D. K. and BalaKt·ishnan, A. (1973) 1 "Thet•mal Radiation by

Combustion Gases," lnt. J. Heat Mass Transfer, Vol. 16, pp.

25-40.

73

Page 77: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

Edwards, D. K. and Balakt·ishnan, A. {1972) 1 "Volume Inte-r·change

F actors fol~ l~onhomogt.'nl!ou::; G<lses," Jo~n·nal of Heat Tr·ansfer,

Transactions of the ASI11E, l'llay, pp. 181-188.

Edwards, D. K. and t·l~ttavosian, R. (1984) 1 "Scaling Rules fm· Total

Absot•ptivity and E:missivity of Gases," Jour·nal of Heat Tt•ansfer,

Transaction=> of the r1SJ<JE, Vol. 106 1 pp. 684-689.

Edwar•ds, D. K., Glass~n, L. 1"~., Hauset· 1 W. C. 1 and Tuchscher•, J. S.

(1967), "r~adiation Heat Transfer 1n Nonisother•mal Nongray

Gases," Journal of Heat Tt·a.nsfer·, Tt·a.nsactions of the ASME 1

August, pp. 219-229,

Emmerich, V., Leuci(el 1 W., and Wachter•, G. "Heat Exchange by Gas and

Soot Radiation in Combustor·s and Fm·naces," 1st European Conf.

on Industrial Furnaces and Boilet·s, INFUB Lisbon, Portugal,

March 21-24.

Far·ag 1 lhab H. "Non Luruinous Gas Radiation: Appt•oximate Eoo:issivity

Models 1 " pp. 487-492.

Gaydon, A. G. and Wo l fhat·d, H. G. <1979) 1 "Flames: Their Structure,

Radiation and Temperature," Four•th Edition, Halsted Press, Wiley

& Sons, New York.

Gaz de Ft·ance and Svenska Gastreningen (1986) "Franco-Swedish

Symposiu1a on Natur-al Gas," Gteborg, Sweden, Apdl 3rd 1 4th.

Gibb, J. (?), "Furnace pBrfot'loance pt·ediction," pp. 11-25.

Gosman, A. D., Lockwood, F. C., /1"1egahed 1 I. E. A, and Shah, N. G.

<1982) 1 "Prediction of the Flow, Reaction, and Heat Tt·ansfer in

a Glass Furnace," J. Energy, Vol. 6 1 No. 6 1 pp. 353-360.

Gray, W. A. and /olllt:!l' 1 R. (1974) 1 Engineering Calculations in

Radiative Heat Tt·ansfer, P<O'rga111on Press, Q){ford.

Gray, W. R., Kilham, J. f{., and Nller, R. (1976), Heat Transfe-r fron1

Flames, Elek Science, London.

Grosshandler, W. L. (1980), "Radiative Heat

Nonhomogenenus Gas.es: A Si1aple Appt•oach 1 " Int.

and Nass Trans fet', Vol. 23, pp. 1447-1459.

Grosshandlet·, ~J. L. and l•lodak, A. T. (1981),

Nonhomogenenus Combu~tion Products," 18th

Tt·<.tnsfe-t• in

Journal of Heat

"Radiation ft·om

Intet•national

Symposium on Combustion, The Combustion Institute, pp. 601-609.

74

Page 78: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

Gr'osshandler, W. L. and Vantelon, J-P. <1985) 1 "Pr•ediciting Soot

Radiation in Laruina,· Diffusion Flaeres," Combltst. Sci. and

Technology. Vol. 44, pp. 125-141.

Habib, Z. G. and Vervisch, P. (1988) 1 "Ne~tl Concepts on Heat Transfer

Pt•ocesses in Hiy11 Fur·nac:es," Vol. 59, pp. 26.1-274.

Handa, K. and Tumita1 Y. (1984) 1 "Developraent of Highly Luminous Gas

Burner and its Hpplication to Save Enet~gy in the Steal

Indt1Str"'y 1 " 1984 Intet'n<.ttional Gas Research Confer•ence."

Haynes, B. S. and Wagner·, H. G. (1981) 1 "Soot Fot·mation," Prag.

Energy Combustion Sci., Vol. 7, pp. 229-273.

Hein, K. (1970) 1 "Flecent nesults an the Fot~Jllation and Combustion of

Soot in Tut•bulent Fuel-Dil and Gas Flames," Flawe Chemistry

Panel, I.F.R.F. IJmuiden, Decewbet• 1 Doc.nr 607/a/1.

Hottel, H. C. and Cohen, E. s. (1958) 1 "Radiant Heat Exchange in a

Gas-filled Enclostn·e: Allowance of Nonunifor-mity of Gas

Temperatut•e," A. I. Ch. E. Journal, Vol. 4, No. 11 pp. 3-14."

Hottel, Hoyt C. and Sar•ofim, Adel F. (1967), Radiative Transfet' 1

McGraw-Hi 11 Book Cornpany, New York.

Kent, J. H., Jander 1 H., and Wagner', H. G. (1981) 1 "Soot Fot•mation in

a Laminar Diffusion Flame," 18th Int. Sympo:;ium on Combustion,

The Co111bustion Institute,pp. 1117.

Kohlgrubet', K. (1986), "Formeln zur Berechnung des Emissionsgrades

van C02- und H20-Gasstrahlung bei Industriefen, Br•ennkamrdet·n und

Wt'meaustauschern," Gas Wt'me International, Band • .35 Heft. 8.

Krakow, B., Babr·ov, H.J., Naclay 1 J., and Shabott, A.L. <196.6) 1 "Use

of the C~n·tis-Godson Appt'OKimation in Calculations of Radiant

Heating by Inhomogeneous Hot Gases," Applied Optics,Vol. 5, No.

l,pp. 1791~1800.

Kremer, Von H. (1988), "Neue Nethoden der Gasvet·wendung," Gas Wt'llle

In t er•nat i ona l, Vo l. 37 1 1-Jo. 9 pp. 450-454.

Leckner, Bo (1971) "Flamsotets strlningsegenskapet' 1 " Rapport A71-18 1

Inst. fr Energiteknik, Chalrnet'S Tekniska Hgskola, Gteborg,

Sweden.

Leckner, Bo(1972a) "Specb•id and Total Emissivity uf Water Vapot' and

Carbon Dioxide," CorHbustiun and F lame, No. 19 1 pp. 33-48.

75

Page 79: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

Leckner~, Bo (1972b) 1 "Radiative heat h·ansfet· in non-homogeneous

gases ~Jith speci.:tl appl:i.cation to flames," Report A72-201 Inst.

ft· Ener-giteknik, Chal!tlel''~ lkeniska Hgskolan, Gtebor·g, Sweden,

A pr i l.

Leckner, Bo0972c) 1 "Absot·ption of radiation emittE-d by gr·ey or black

wall s," Hepot•t FJ73-46, Steam Enyineering Dept. 1 Chalmers

University of Technology, Gteborg, December.

Leckner, Bo C1973) 1 ''Total e~issivities and absorptivities of H20 and

C02 at very small pathlengths," Report A73-451 Steam Engineering

Oept., Ch.:ilwer·s Univer•sity of Technology 1 Gteborg, t•lay.

Lee, K. Y., Zhong, Z. V., and lien, C. L. <1984) 1 "Blockage of

Thet·r~al Radiation by the Soot Layet' in Gombustian of Condensed

Fuels," 20th Int. Symposium on Combllstion, The Combustion

Institute, pp. 1629·-1636.

Lockwood 1 F. C • .::md Shah, G. (1981>, "A New Radiation Solution l>lethod

for Incorporation in Genl!t•al Combustion Pr·ediction Procedlwes,"

1Bth Int. Symposium on Combustion, The Gombustian Institute, pp.

1405-1414.

Lowes, T. M. and Heap 1 l•i. P. <1971>, "The Mathe1uatical Modelling of

Heat Flux Distribution in Furnaces," I.F.R.F., IJmuiden, Doc.m·.

1<20/a/60.

Lowes 1 T. 1'1. 1 Michelfeldet' 1 5. 1 and Pai 1 B. R. (1973) 1 "Nathematical

Modell i ng of Combustion Chambet· Perfot•mance," Jom•nal of the

Institute of Fuel, December, pp. 343-351.

Nat'x 1 E. (1986) 1 "Industriebr·enner flit' alternativen odet· kombiner•ten

Betrieb mit Heizgc:.s und Heizl," Gas Wrme International, Band 35,

Heft 10.

NengUt;, M. P. and Viskanta, R. (19B8>, "Effect of Fly-Ash Particles

on Spectral and Total Radiation Blockage," Combustion Sci. and

Tech., Vol. 60, pp. 97-115.

trJengil~_;, M. P. and Viskanta, R. C1985) 1

of Polydispersions~ H Si~1plified

Technology, Vol. 4't, pp. 143-159.

"On the RadiatiVI! Properties

Appr·oach," Comb. Sci. and

Mengtit;, ~1. P. and Viskanta, fl. (1987) 1 "A Sensitivity Analysis for

76

Page 80: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

Radiative Heat Tr-~tnsfer' in a Pulvt:t'ized Coal-Fir·ed Furnace 1 "

Combust. Sci. and Tc:cnn. 1 tJol. 51 1 pp. 51-74.

l'olengi.i~;;, l•ll.tst.::.Fa Pinat' \1S8::D, "l'lucJeling of Radiative Heat Tr·ansfer in

Multidiwensianal Enclo~•..tf'i.JS Using Spher·ical Hat·monics

Approximation," Ductor-~d The sis, Purdue Univet'sity.

MichelfeldiH' 1 S. and Lo1·st:s 1 T. (1973), "Str·ahlungsaustausch in

Glasschmelzftm," Glastechn. Bet·., Jaht·g. 44, Heft.

99-108.

p p.

ll'wdak, Ashok T. 0978), "Radiation h•om Pr·oducts of Combustiun," Fit'e

Resear•ch, Vol. 1, pp. 339-361.

Noble, J. J. (1975) 1 ''The Zone ltJethod; Explicit Matt•ix Relations for

Total Exchange Af'!:! as," Int. Jour'nal of fleat and Nass Tr·ansfet' 1

Vol. 18.

Omori, T. "Pt·~:diction of Fm·ncce Perforruance using Zone />'iethod, ""

"Peterson, Folke (1981), "Asphaltenes and Soot Fot•mation,"

Tekniska !•ledde landen, Inst. Uppvrmnings- och

Ventilaticmsteknik, Vol.ll, No. 4 pp. 29-32.

Peterson, Folk~ and Skoog, Kurt (1973) "Stoftbildning vid

oljeedningsanlggningar," statens institut fr byggnadsforskning,

Report R54:1973, Stocltholln.

Pet et·son, K. F. (1972) "Stoftbildning vid Ol.je""ldning," Ooctoral

Thesis, KTH 1 Stockhollll.

P lass, G. N. 0967) 1 "Radiation frout Non i sothermal Gases," Hpplied

Optics, Vol. 6 1 No. 11, pp. 1995-1999.

Prado, G. 1 Jagoda, J. 1 l~eoh, K., and Lahaye, J. (1981), "A Study of

Soot Formation in Premix~td Pt·opane/Oxygen Flarnes by In-Situ

Optical Techniques and Sampling Probes 1 " 18th Int. Symposium on

Combustion, The Co111bustion Institute,pp. 1127-1135.

Ruhrgas Aktiengesellschaft (1984) 1 "Natural Gas Today and Tomorrow, n­

Essen, July.

Sarofim, A. F. and Hottel, H. C. (1978) 1 "Radiative Tt~ansfer in

Combustion Chambers: Influence of Alternative Fuels," 6th

Intet·national Heat Tr-ansfer~ Confei'ence, Tor·onto, Vol. 6, pp.

199-217.

77

Page 81: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

Scholand, E (1982), "Hadiation Heat Tt·ansfet' Calculations in

Enclosures like F1.n'n-:.~ces and Combustion Chalnbet·s," Inb:rnational

Heat Trans. fl:' r' Conft:!l'ence, f>ii.inchen, Vol. 2, p p. !:)47-5::52.

Si:!l!Juk, l\levin \1~85), "Exact Soiution$ for· Radiative Heat Tr·ansfer in

Box-Shaped Fm·naces," Jout·nal of Heat Tt·ansfer, Transactions of

the HSI'IE, Vol. 107, pp. 648-655.

Shul'ts, L. A., Lleb~dev 1 N. N., and Voitelev,

"lnvestigation of the Hbsot·ption of Thermal

Particles of Soot Suqwr.ded in the Products

v. v. (1977),

Radiation by

of Incomplete

Combustion of Natur~;l Gas," Shel in the USSR,Narch, Vol. 7 1 pp.

182-184.

Siegel, Robert and HoL<;ell 1 John R. (1981>, Thermal Radiation Heat

Transfer, Uemispher·e Publ. Corp. 1 W-"H>hington.

Sivathanu, Y. R., Sore, J. P., and Faeth, G. M. (1988) 1 "Scalar

Propet•ties in the Ovet'fit·e Hegion of Sooting Tur•bulent Diffusion

Flames 1 " Combttstion and Flan11~, Vol. 73, pp. 315-329.

Song, T. H. and Viskanta, R. (1988l, "Pt'edicition of Thermal

Pet•formance of an lnd~tstt•ial Natural-Gas Fir•ed Furnace," Gas

Wrme International, Bd. 37, No. 11 pp. 22-30.

Str•ömberg, Lars (1977), "Calculation of the Heat Flux Distribution in

Fln•naces," Dept. of En.:rgy Conver•sion, Chalmers University,

Gteborg, Sweden.

Ström, B.

the

(1980), "A Simple Heat Transfer t•iodel for Furnaces Based on

Zoning I•Jethod," Wr·rue- und Stl.lffubet•tt•agung, Vol. 131 pp.

47-52.

Stt•öm, B. (197~) "A Simplified

Reheating Fw•naces," Royal

Heat-/Furnac:e Techn. Stocl<holru.

Dynanlic M.otthemat i c al

Inst. of Technology,

/~ode l

Dept.

of

of

Taylw, P. B. and Foster', P. J. (1974) 1 ''The Total Emissivities of

Lundnous and Non-Luminous FLarnes," Int. J. Heat fr1ass Transfer,

Vol. 17, pp. 1591-1605.

Tien, C. L. and Lee, S. c. (1982) 1 "Flame Radiation," Prog. Energy

Cornbustion. Sci., Vol. O, pp. 41-59,

Tucker, R. J. (1988) 1 "An Intr·oduction to Modell i ng Techniques," Syrnp.

78

Page 82: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

on He<.,tlng Pl~tnt D~S1!jn and Spec. Us.ing Comp~tter lotodelling,

Bdtish Gas H&D D1nsion 1 Solihull, England.

VaclavineH 1 J., Collin, R., at\d Zethr'lflls, B. (198~), "Scaling

C~·iter·ia for· ConiiJ~tstion and Heat Tt•ansfer in Gas Fit·ed

Fl.tt•naces," L F. f~. F. members c:onference, Xjmuiden.

Viskanta, R. and l1lengU9 1

Combustion Systems,"

97-160.

N. P. (1987) 1 "Radiation Heat Transfer in

Pt•og. Energy Combustion Sci., Vol. 131 pp.

Von NadziaHiewicz, J. {1987J' "Experirnentelle Unter~uchungen det·

Str·ahlungse1 gen sch~, t' t en von Gasflammen," Gas Wät•rue

International, Band. 36 Heft 10.

Wtt, H. L. { 1969), "Campar· i son o f the Perfor•mance o f Na.t ut• al Gas and

Oil Flarnes in a Cylindrical furnace," Journal of the Institute

of Fuel, pp. 316-322.

Yu, Q.-z. (1987> 1 "A Siurple Combined-Band Model to Calculate Total

Gas Radiative Propet'ties," Heat Transfer• Science and Technology.

Yuen, W. i-J. (1982) 1 "Badiative Hl'at Tt•ansfer Characteristics of a

Soot/Gas lltiJ<ture," International Heat Trans fe~· Confe1·ence,

MUnchen, Vol. 2, pp. 577-582.

Yuen, W. W. and Tien, C. L. {1976) 1 "A Simple Calculation Scheme fot•

the Lu~Jinous-Flarlle Emissivity," 16th Int. Symposium on

Combustion, Institute of Combustion, pp. 1481-1487.

Z,ethr~us, Björn {1988) 1 Pf:'r•sonal Corawunic~tion, Dept. of Heat and

Furna.ce T e ch no l og y, KTH, St ocHhol nr.

79

Page 83: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

llEFEREI-lCES: FOfilol~iriON OF Nl rROUS OXIOES

Act·ee, N. A. and L~-;/~l\<! 1 A. O. (1988) 1 "Fot'tschrittl1che Systeu1!? Zut'

Emi!isions-frlindenmg dui'Ch NOii-Red•Jktion im FeuetY'"H.un," Die

Industriefeverung, E!>ser1 1 No. 5 pp. 8-12.

Akiyama, T. (1987)' "NUx Reduction fr•om Reheat Fur·nac10 Btwner• 1 "

i='t'e!:>t.>nt~:>d to JEflNKDNTOHETS - NILDAG, held at Ave!:>ta, Sweden.

Becket•vor-der'5andr'or-th, C. P., Kr·emer, H., Fla1ame, l'tl., and Lth, E.

<1986) 1 "Stand de\·-- hiOlt-Eiolisdonen und l•linderungsmassnahmen bei

Industrifen in det' Ilietal l- und Keramikindishwie," Gas Wärme

International, Vol.35, No.4, pp. 196-207.

Caretto, L. S. (1976) 1 "Mathematical /l"lodeling of Pollutant

Formation," Pt•og. En!:'ryy Combustion Science, Vol. 1, pp. 47-71.

Cato, G. A., Hall, R. E., and t<luzio, L.J. (1977l, "Reduction of

Pollutant Ewissions Ft'OUI Industt·ial Boilet'S by Cowbustion

Modification 1 " Journal of Engineering fot' Power, Trans. of the

ASJtiE, pp. 320-328.

Chaignon, B. and Breney, F. (19tl7l, "le gaz natm·el dans la chimie et

la par·c;.chimie," Infur'1110.tions Chiwie, no. 282, pp. 161-172.

Ch en, S. L., 111cC.:•t'thy. J. 1•1., C lad<, W. D., H e ap, 1•1. P., Seeker, W.

R. {1986) 1 "Bench and Pilot Scale Pt•ocess Evaluatian of

Rebut•ning fot' In-Fut'n.:>c~ NOx Reduction," 21 Int. Symposium on

Combustion, The Comb!Jstlon Instihtte, pp. 11:i9-1169.

Chigier, Norman A. (19/:.i), "Pollution Formation and Destruction in

Flalge:;·~-Intt•oduction," Pr·og. Enet·gy Corubustion Science, Vol. 1,

pp. 3-15.

Chugai RO Co. Ltd. (198t:ll, "Fl/C Low NOX Burner," Pr•od\.tct Information

Bt•ochure ECB-132-·01, Osaka, Japan.

Collette, H. J. (19861, "1985 Update on NOx Emission Control

Technology at Co10btJstion Enginl:et'ing," Proceedings:1985 Sywp. on

Stationary Comb. f-lOx Control, RcUt·ex Corp., California, Vol. 11

Paper 9.

Dacey, W. P. (198~), "An Overview of International NOX Contt•ol

B (i

Page 84: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

Regulation!>~" Pr~oct!edings: SymposiUiu on Station.::wy NOX Control,

Boston, Vol. L P~pt!r 3.

Diehl, H. (1986) 1 "E111issionen ~md NOx-Mind!!rung bei gasgefeuerten

Grokssl.'lanlagen," Gas ~.Ji'fole Inte~·national, Vol.35, No.4, pp.

212-216.

do' Sant os, A. N. (1988), Tri p Report of Visit to Svenskt Stl Al:\

Bot•lange, I n st. fr• Vät•••le-och Ugnstekn i k, KTH, StocHholm.

Edwards, J. B. ( 1974) l Corubustion: Forwation and Emission of Trace

Species, Tec::hnornic Pub l. Co., Laneast et•, Pen n.

Envit•onrnental Pt·otection Board of Sweden, <1971), "Joint Group on Air

Pollution fi•om F~tel Combustion in Sta.tionary Sout•ces," National

Sweden 1 Organisation for Econornic Couperation and

Development, Pai"is, Pf.IC/70.4/18.

Farmayan, W. F., Toqan 1 N. 1 Yu, Tae-U., Te are, J. D. 1 and Ber·, J. M.

(1985) 1 "Reduction of NOx Eruission Ft•ow Nahwal Gas Fiames by

Staged Fuel lnjection, Pr·oc. 1985 Symposium on Stationary

Combustion l\IOX Contt•ol, Accurex Cot•p., Mountain View,

Califot•nia, Bo$ton, Vol. 11 Paper 48.

Glarborg, P., Nillet•1 J. A. and Kee, R. J. (1985), "Kinetic l<lodeling

and Sensitivity An~lysis of Nitrogen O~ide Formation in Well

Stit•red Reactors," POJbl. WSS/cl 1-58, Sanaia National

Laborator• i es, Li ver·r<tore, USA.

Glat·borg, P., f1asmussen, N. B., and Hadvig, S. (1987) 1 "Reduktion af

NO~- udsendelse fra nah1rgasfyr·~de kedier," Enet•giministet'iets

forskn. pt•ogr·. Fy~·ings- 8.- Forbi·a~ndingsteknik, Lab. fot' Var"me

og Klimateknik, DTH.

Glarborg, P., RashlUSsen, N. B. 1 and Hadvig, s. (1987) 1 "Reduktion af

NOX Udsendelse fra Natur•gasfyrede Ked l et•," Energiministeriets

fot"skingspt•oyralll Fyrings- og forbrndingstelmik, projekt EFP-84,

Mads.

Glassman, Irvin <1977) 1 Combustion, Academic Press, New York.

Green e, S. B., Ch en, S. L, Pet•shing, D. W. 1 Heap, /1-1. P., Seeker,

W.R. <1986-), "Bench Scale Process Evaluation o'f Rebm·ning of

In-Fur"nace NO~ Reduction," Journ. of Engineering for Gas

Tttt"bines a.nd Power 1 f~St1iE, Vol. 1081 pp. 450-545.

81

Page 85: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

Hadvig, Sven (1987) 1 "Fundallll?ntcds in Combustion Technology," in

Combustion: Fuels 1 tt!ciJnology and envir·onment, Publ. Danish

Minish•y of Enet•gy, pp. 13-19.

Harsha 1 P. T., Ed~lman, fl. B., and Fr•ance, D. H. (19BOJ,"Efficient

Utilization of Altet·natl' F~tels - Developotent fo Models for the

Predietian of Interchangeability, Design and Pet•formance of Gas

Bm•ner/ Gombustor Syst('111S~" Heport GRI-79/0034, Gas Rese.,n•ch

Institut~, Chicago, Illinois.

Heap, 14. P. and Folsot11~ B. ~l. (1986) 1 "Using Nahtr<-11 Gas to Contro l

SOx/NOx Etnissions Tlwough Sot·bent lnjection and Reburn

Technology," Proc. of the Thit'teenth Energy Technology

Conference, \tJashington, D. C. 1 Mat•ch 17-191 pp. 985-993.

Häsänen, E., Pohjola, V., Hahkala, M., Zilliacus, R., and Wickstrm, K

( 1986) 1 "Emissions front Power Plant s F u el ed by Peat, Coa l

Natural Gas and oil 1 " The Science of the Total Environment,

Elsevier Science Pltbl. B. V. Amster·dam, No. 54 1 pp. 29-51.

Jessen, P. F. and Melvin, A. (1977>, "Combustion Fundamentals

Relevant to the Bur·ning of Natu~~al Gas," Pt•og. Energy Combust.

Sci., Vol.2, pp. 985-993.

Kavanaugh 1 i'lichael (1986), "Estim<ites of Futut·e co, N20 and NOX

Emissions from Enet•gy Cowbustion," Abtospheric Environment

Pergamon Pt·~ss, Vol. 21, No. 3, pp. 463-468.

Knill, K.J. (1987) 1 11 A /~evicw of Fuel Staging in Pulverised Coa.l

Combustion Systns," Sb..tdy Repor·t, Inter•national F lame Reseat·ch

Foundation, IJruuiden~ The Nethe Doc No Gl3/a/3.

Kolar, Van J. (1986) 1 "NOx-Gr-enzwet"te und

Emissionsminderungsll!assnah1uen im Intentationalen Vergleich," Gas

Wärme International, Vol.35 1 No.4 1 pp. 227-238.

Kremer-1 Von H. (1986) 1 "Gt•undlagen der NOx-Ensteh~mg und -Minderung,"

Gas Wät•me International, Vol.35, No.4 1 pp. 239-246.

MacKinnon 1 D. J. and lngt·aham, T. R. (1972) 1 "Minimizing NOX

Pollutants fr·om Steant Boilers," Jout·nal of the Air Pollution

Contro l Association, Vol. 22, No. 6 pp. 471-472.

Makansi 1 Jason (1986) 1 Low NOx Burne~·s Can Play Key Role in

Retrofits, Upgrades 1 " Powet·, September·, pp. 61-62.

82

Page 86: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

Maltlbetsch, J. S., McEh~oy, N. W., and Eskinazi 1 D. (1986) 1 "Retrofit

NOX Contt'Dl Options," Contl-·ol Technology, Jout·nal of the Ah'

Polllttion Control At:.s. 1 Vol. 361 No.11 1 pp. 1294-129&.

1'-lulholland, J. R. and Lanier· 1 W. S. (1985) 1 "Application of Rebut•ning

fot' NOX Contro l to a Fi1·ehtbe Package Boil~r," Jout·nal of

Engineering for Gas Tur·bines and Power 1 ASNE 1 Vol. 1071 pp.

739-"143.

Nutcher, P. B. (1984) 1 "f"ot·ced Draft 1 Low-NOx Burners Applied to

Process Fh•ed Heat ers," Plant/Operations Pt·ogr~ss, Vol. 3, No.3,

pp. 168-173.

Ogunsola, O. I. and Reuthi:!L~, J. J. (1988) 1 "NOx and Sraoke Emission

Charact eri st ics o f Coal-Ded ved Liquid Fue l s F i r• ed in a Pt•oces s

Fut'nacl'," Journal of the Institute of Enet·gy, June, pp. 110-115.

Pelka, D. P., dos Santos1 A. M., and Yuen 1 W. W. (1986) 1 "Natut'al

Gas-F i red Thermophotovoltaic System," Proceedings of the 32nd

Intet·national POwer Sour·ce Symposium, June, pp. 110-123.

Pershing, D. W., Mat'tin, G. B., and Bet•kalt1 E. E. (1974?) 1 "Influence

of Design Vat·iables on the Productian of Thermal and Fuel NO

Froru Hesidual Oil and Coal Combustion," AIChE Symposium Set·ies;

Air: II. Vol. 71,No.14B pp. 19-29.

Sanders, W. A., Lin, C. y,, and Lin 1 M. C. (1987>, "The Importance of

the Reaction CH21·N2 -} •ICN + NH as a Pl""·ecursor for Prompt NO

Fot·mation," Cor11bust. Sci. and Tech., Vol. 51, p. 103.

Smith, K. O., Angello, L. C., and Kut•zynske, F. R. {1986) 1

"Pt•eliminary Development of an Ultra Low NOX Gas Turbine

Cornbustot• 1 " Die Industt'iefevet·uns 1 Essen, pp. ~2-58.

Strandbet~g, O. (1988) 1 "Kvveoxidbildning vid Ft'bt'nning av Organiska

Branslen," /{o l bladet, Shtdsvik AB No. a, pp. 9-13.

Thompson 1 R. E. and /llcElroy, M. W. (1985) 1 "Guidelines for Rett•ofit

Low NOX Co111bustion Conb·ol 1 " Pt•oceedings: Symposium on

Stationat'y Corr~bustion NOX Contro l, Boston, Mass., Vol. 1, Papl't'

27.

Vaclavinek, Jit'i (1988) 1 "l<vveoxidet• vid fl'brnning illoru jt•n- och

stlindltstt'in ·-Bildning och t•educktion," Litter.:~tut·studie inom

83

Page 87: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

projekt 2016, Royal Inst. of Technology 1 Dept. Heat-& Furnace

Techn., STOCKHOLM.

Wendt, J. O. L. (1980) 1 "Fundameut8l Coal Corubustion r•1echanisms and

Pollutant Fot'J1Jation in Fur·n~-\ces," Pr·og. Ener~gy Coll!bust. Sci. 1

Vol. 6 1 pp. 201-222.

Zeldovich1 Y. and Seruenov, l. N. (1949) 1 Zhur. Fiz. Khim., Vol. 23 1

p. 1361.

Page 88: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

APPENDIX: USERS' JiiANUAL

85

Page 89: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

Program Diskette: two directories

EXECUTE

CODE

To change to either dit·ectory from DOS type:

} cd execute

or

> cd code

(NOTE: any command must be followed by pt'essing the RETURN key to be

executed.)

1. DlRECTORY EXECUTE contains:

• one executable file

UGN.EXE

TO START THE MODEL the user changes dil'ectory to execute and types

> ugn

This executable file has been compiled from FORTRAN. To t'Un thE> model

little help ft·om this manual should be needed: Siruply follow the

instructions on the sct·een and vet'Y importantly: ENTER THE DU.1ENSIONS

ACCORDING TO FIGURE A. l.

Once the command ugn is entet•ed the uset' is pt•ompted fot' input.

Each input is followed by pressing the RETURN key. The georuetry

assumed by the rnadel is as given in Fig. A. l. The user mustenter the

values accot'dingly!

86

Page 90: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

WALL 1 (LEFT}

_L2 l

l l

l

i'IAT~L 5 (TOP)

l l J--

l

l ' l

l l

WALL 6 (BACK)

WALJ~ 2 {RIGHT)

lC I<TALL 4 (FRONT)

NALL 3 {BOTTmt) L1

Figure A. 1 Eneloslire geometry and coordinate system u sed by the

mode l.

As discussed in Chaptet• 4 of this report, there are seven

unknowns:

• One equation for each wall t•adiative heat balance, fot• a total

of si~ equations; and

• One eqllation fot' the overall conser•vation of energy between

the fuel input and the liseful enet•gy absobed by the load and

the amount of leaving the radiative enclosut'e in the flue

gases.

The uset' has to specify the wall boundary conditions. A

combination of six unknowns can be handled: each wall will have

either a te111perature or a total radiative flow. Each unkno~m is

entered as a ~1'' for a total of six "ls.'' Fig. A.2 is a copy of how

87

Page 91: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

the screen will typically look for the ca_se of a boilet~. Fig. A.3 is

a copy of how the screen will look for the ca.se of a hwnace.

ENTER FUEL: NATURAL GAS ( 100:4 i~ETHANEl, (Q)

OJL NO. l, l l) OlL NO. <> 1 14l OIL NO. G, 16) GASOL, PROPAN 95, (7)

o LENGTH OF SIDES, ll-13, lllo

6 6 6 WALL EMISSIVITIES, el-e6

,9 .9 .9 .9 .9 .9 EN TER WALL UNKNOWN AS A '' 1 " 1 FOR A TOTAL OF 6 UNIHJWNS FOR Q AND T

WALL TEI~PERATURES 1 Tl-T6, C 200 200 200 200 200 200

WALL HEAT FLOW, Ql-06, MW 1 l l 1 l l

POWER INPUT, MW 60

EXCESS AIR, ' 5 SOOT CONCENTRAT lON, g/m3

o

SOOT CONCENT RATION, g/m3 o

ITERATION NO. l ITERATION NO. ' ITERATION NO. 3 ITERATION NO. 4

METHANE POWER INPUT: 60. 00 11W

Ll-L3, .. 6.(1 6.0 G. O wall eJuss: . 90 ·" .90 .90 Excess A >e (:4): 5.0 Soat Cancentratton (g/m3l: .oo

.90 .90

Wall Temper.at>.lre Tl-TG (Cl: Wall Heat Flaw QI-Q6 rt~Wl:

200. o 200. o 200. o zoo. o 200. o 2(•0. (l 3.ft7 ~~ L~ L917 L~ Ln7

Furnace Radia.ti\le Output IMWl: .240E+Oi:! Furnace Ha.d1a.t1ve EfflCI~ncy .4•) Gas Telftpi!r.J.ture (C): 1267.4

WOULD YOU LIKE ANOTEH RUN? YESI1l 1 NOW)

Figut'e A.2 Hoiler case.

BB

Page 92: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

ENTER f'UEL: NATURAL GAS (100% METKANE), (O) OIL NO. l, (l) OIL NO. 4, (4) OIL NO. 5, (5) OIL NO. 6, (6) GASOL, PROPAN 95, (7)

o LENGTH Of' SIDES, 11-ll, m,

' ' ' WALL EHISSIVITIES, el-e6 .8.8.9.8.S.S

ENTER WALL UNKNOWN AS A "1n, FOR A TOTAL OF 6 UNKOI•INS FOR Q lt.ND T

l

o

" 5

o

WALL TEMPERATUREs , T1-T6, c l 1000111

WALL HEAT FLOW, Q1-Q6, MW o l o o o

POWER INPUT, MW

EXCESS AIR, %

SOOT CONCENTRATION, .,., ITERATION HO. l ITERATION HO. ' ITERATION HO. ' ITERATION HO. • ITERATION HO. '

HETHANE POWER INPUT: 20.00 MW

L1-Ll, m: 6.0 2.0 6.0 wall emiss: .so .so .90 .so .so .so Excess Air (%): 5.0 Soot Concentration (g/ml): .00

Wall Temperature T1-T6 {C): Wall Heat Flow Q1-Q6 (MW): Furnace Radiativa Output (HW): Furnace Radiative Efficiancy Gas Tamperature (C): 1426.1

1276.1 1276.1 .000 .ooo .6lOE+Ol

·" WOULD YOU LIKE ANOTER RUN? YES(1), NO(O)

Figure A. 3 Fut'nace ca se.

B9

1000.0 6.301

1276.1 .ooo

1256.3 .000

1276.1 .ooo

Page 93: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

RANGE OF VALIDITY AND CONVERGENCE PROBLEMS

The model attempts a description of reality, therefore, input

which does not mt:~ke physical sense will result in either an error,

with interrupt and kicl{-back to DOS, or in no convergence--the

pt~ogram will run for evet~. While the model is runing the ITERATION

NUMBER will be displayed. Based on e)(perience aftet• about 20

iterations the pt•ogram is intert•upted automatically since it is

assumed it will not convet•ge with further iterations.

The following are typical situations of nonconvergence:

• QFUEL is not enough to heat the wall(s) to the ltset• specifled

temperature. To corr·ect: i nerease QFUEL or decreas e wall

temperatures.

• TGAS is too close, order of 10°C, to the wall (s) tentperature,

this t~esults in oscillation of the gas temperature. To correct:

lower wall te111perature (s) or i nerease QFUEL.

1 The results at•e questionnable if either P*L fot' cat•bon dioxide

or water vapor exceed 5.98. This sitltation would occur for very

long furnaces. It probably will not occur in practice.

1 Too ruuch fuel is added so TGAS } 20001<. The results at•e

questionable since the cot•r•elations for mixtut•e t•adiative

pt•operties are not valid over this limit. (the err~ors increase

and trends could be misleading.)

The following are recommended limits for the input variables:

length: ratio between the largest side and the smallest

side to remain as close to one as possible

90

Page 94: Konvertering av högtemperaturugnar från olja och gasol ... 1989... · från olja och gasol till naturgas - Verkningsgrad - Kapacitet - NOx-bildning IDJ•lSwedeGasAB 1988 FORSKNING

O ;{ soot concentration, g/m 41 i 5 (?)

Excess air .?. OiG

0.0 i wall emissivity i 1.0

200°C i wall tempet•ature i 1700°C

QRAD/FlJRNACE VOLUME i 1.5 MW/m3

Best wishes, "lydta ~ill~" !f all fal.Js; the authot' Ci'iln be

reached at KTH, <08) 790 8407.

2. DIRECTORY CODE

The directory entitled CODE contains all the code required to

assemble UGN.EXE. These subroutines at'e written in FORTRAN. The

compiler used was:

MS-FORTRAN 1 VERSION 4.0

91