kondo physics from a quantum information perspective

48
Kondo Physics from a Quantum Information Perspective Pasquale Sodano International Institute of Physics, Natal, Brazil 1

Upload: katy

Post on 26-Feb-2016

27 views

Category:

Documents


2 download

DESCRIPTION

Kondo Physics from a Quantum Information Perspective. Pasquale Sodano International Institute of Physics, Natal, Brazil. Sougato Bose UCL (UK). Henrik Johannesson Gothenburg (Sweden). Abolfazl Bayat UCL (UK). References. An order parameter for impurity systems at quantum criticality - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Kondo Physics from a Quantum Information Perspective

1

Kondo Physics from a Quantum Information Perspective

Pasquale SodanoInternational Institute of Physics, Natal,

Brazil

Page 2: Kondo Physics from a Quantum Information Perspective

2

Abolfazl BayatUCL (UK)

Sougato BoseUCL (UK)

Henrik JohannessonGothenburg (Sweden)

Page 3: Kondo Physics from a Quantum Information Perspective

3

References• An order parameter for impurity systems at quantum criticality A. Bayat, H. Johannesson, S. Bose, P. Sodano To appear in Nature Communication.

• Entanglement probe of two-impurity Kondo physics in a spin chain A. Bayat, S. Bose, P. Sodano, H. Johannesson, Phys. Rev. Lett. 109, 066403 (2012)

• Entanglement Routers Using Macroscopic Singlets A. Bayat, S. Bose, P. Sodano, Phys. Rev. Lett. 105, 187204 (2010)

• Negativity as the Entanglement Measure to Probe the Kondo Regime in the Spin-Chain Kondo Model A. Bayat, P. Sodano, S. Bose, Phys. Rev. B 81, 064429 (2010)

• Kondo Cloud Mediated Long Range Entanglement After Local Quench in a Spin Chain P. Sodano, A. Bayat, S. Bose Phys. Rev. B 81, 100412(R) (2010)

Page 4: Kondo Physics from a Quantum Information Perspective

4

Contents of the Talk

Negativity as an Entanglement Measure

Single Kondo Impurity Model

Application: Quantum Router

Two Impurity Kondo model: Entanglement

Two Impurity Kondo model: Entanglement Spectrum

Page 5: Kondo Physics from a Quantum Information Perspective

Entanglement of Mixed States

Entangled states: i

Bi

AiiAB p

How to quantify entanglement for a general mixed state?

There is not a unique entanglement measure 5

Separable states:

i

iii

Bi

AiiAB ppp 1 ,0

Page 6: Kondo Physics from a Quantum Information Perspective

6

Negativity

Separable:

i

Bi

Aiip

i

Bi

tAii

T pA )(

Valid density matrix

0AT

Entangled: 0)( AT

Negativity:

ATN ,2)(0

Page 7: Kondo Physics from a Quantum Information Perspective

7

Gapped Systems

Ground state

Excited states

||

:ji

xj

xi e

The intrinsic length scale of the system impose an exponential decay

Page 8: Kondo Physics from a Quantum Information Perspective

8

Gapless Systems

0 : N Ground state

Continuum of excited states

|| jixj

xi

There is no length scale in the system so correlations decay algebraically

Page 9: Kondo Physics from a Quantum Information Perspective

9

Kondo Physics

Despite the gapless nature of the Kondo system, we have a length scale in the model

K

KK T

Page 10: Kondo Physics from a Quantum Information Perspective

10

Realization of Kondo EffectSemiconductor quantum dots D. G. Gordon et al. Nature 391, 156 (1998). S.M. Cronenwett, Science 281, 540 (1998).

Carbon nanotubes J. Nygard, et al. Nature 408, 342 (2000). M. Buitelaar, Phys. Rev. Lett. 88, 156801 (2002).

Individual molecules J. Park, et al. Nature 417, 722 (2002). W. Liang, et al, Nature 417, 725–729 (2002).

Page 11: Kondo Physics from a Quantum Information Perspective

11

Kondo Spin Chain

2

2211312211 ..)..('i

iiii JJJJJH

(gapfull)Dimer :

(gapless) Kondo :2412.0

21

2

21

2

c

c

JJJ

JJJ

E. S. Sorensen et al., J. Stat. Mech., P08003 (2007)

Page 12: Kondo Physics from a Quantum Information Perspective

12

Entanglement as a Witness of the Cloud

A BImpurity

L

01 : SBSAK EEL

01 : SBSAK EEL

01 : SBSAK EEL

'/)'( JK eJ

Page 13: Kondo Physics from a Quantum Information Perspective

13

Entanglement versus Length

Entanglement decays exponentially with length

Page 14: Kondo Physics from a Quantum Information Perspective

14

Scaling

),(),,(NLNENLE

KK

),(),,(LNLENLE

K

Kondo Regime:

Dimer Regime:

A BImpurity

L N-L-1

Page 15: Kondo Physics from a Quantum Information Perspective

15

Scaling of the Kondo Cloud

'/ JK e

4K

N

),(),,(NLNENLE

KK

),,( NLE

Kondo Phase:

Dimer Phase:

K

Page 16: Kondo Physics from a Quantum Information Perspective

16

Application: Quantum Router

Converting useless entanglement into useful one through quantum quench

Page 17: Kondo Physics from a Quantum Information Perspective

Simple Example

43.'

RJ21.'

LJ

32.

mJ )0(

)0()( iHtet

RLm JJJ '' }4

)4cos(31,0max{)(14tJtE m

17

Page 18: Kondo Physics from a Quantum Information Perspective

18

With tuning J’ we can generate a proper cloud which extends till the end of the chain

1)'( NJ optK

optJ '

Extended Singlet

Page 19: Kondo Physics from a Quantum Information Perspective

19

1)'( LLL NJ

LJ ' RJ '

1)'( RRR NJ

mJ

RL GSGS )0(

)0()( tiHLRet )(1 tN )(1 tE N

Quench Dynamics

Page 20: Kondo Physics from a Quantum Information Perspective

20

1- Entanglement dynamics is very long lived and oscillatory

2- maximal entanglement attains a constant values for large chains

3- The optimal time which entanglement peaks is linear

Attainable Entanglement

Page 21: Kondo Physics from a Quantum Information Perspective

21

For simplicity take a symmetric composite:

2/)2()'( NJL

'J 'J

2/)2()'( NJR

mJ

)2

2,(),(),,()',,(

NN

NtEN

NtENtEJNtE

Distance Independence

Page 22: Kondo Physics from a Quantum Information Perspective

22

RJ 'LJ 'mJ

RLm JJJ ''

LJ ' RJ 'mJ

)'')(( RLm JJNJ )

2()( 2 NLogN

Optimal Quench

2'/

log1' Je J

K

Page 23: Kondo Physics from a Quantum Information Perspective

23

Optimal Parameter

Page 24: Kondo Physics from a Quantum Information Perspective

24

LJ ' RJ 'mJ

K: Kondo (J2=0) D: Dimer (J2=0.42)

Clouds are absent

Non-Kondo Singlets (Dimer Regime)

Page 25: Kondo Physics from a Quantum Information Perspective

25

1)'( LLL NJ

LJ ' RJ '

1)'( RRR NJ

mJ

Asymmetric Chains

Page 26: Kondo Physics from a Quantum Information Perspective

26

Symmetric geometry gives the best output

Entanglement in Asymmetric Chains

Page 27: Kondo Physics from a Quantum Information Perspective

27

Entanglement Router

Page 28: Kondo Physics from a Quantum Information Perspective

28

Two Impurity Kondo Model

Page 29: Kondo Physics from a Quantum Information Perspective

29

Two Impurity Kondo Model

2

2221131221

2

2221131221

..)..'('

..)..'('

R

L

N

i

Ri

Ri

Ri

Ri

RRRRRR

N

i

Li

Li

Li

Li

LLLLLL

JJJJJH

JJJJJH

RKKY interaction

RLII JH 11 .

Page 30: Kondo Physics from a Quantum Information Perspective

30

Impurities

GS

,011 3

1k

kk TTppRL

0)( 21

0)( 21

11

11

RL

RL

Np

Np

Entanglement

Page 31: Kondo Physics from a Quantum Information Perspective

31

Entanglement of Impurities

Entanglement can be used as the order parameter for differentiating phases

' ' JJJ I

cIJ

Page 32: Kondo Physics from a Quantum Information Perspective

32

Scaling at the Phase Transition

'/1 J

KK

cI eTJ

The critical RKKY coupling scales just as Kondo temperature does

Page 33: Kondo Physics from a Quantum Information Perspective

33

Entropy of Impurities

)1log()1()log()( 1,1 ppppSRL

,011 3

1k

kk TTppRL

0)( :0

2)( :0

)3log()( :0

1,1

1,1

1,1

RL

RL

RL

SJ

SJ

SJ

I

I

I

1 :01/4 :00 :0

pJpJpJ

I

I

I TripletIdentitySinglet

Page 34: Kondo Physics from a Quantum Information Perspective

34

Impurity-Block Entanglement

Page 35: Kondo Physics from a Quantum Information Perspective

35

Block-Block Entanglement

Page 36: Kondo Physics from a Quantum Information Perspective

36

2nd Order Phase Transition

Page 37: Kondo Physics from a Quantum Information Perspective

37

Order Parameter for Two Impurity Kondo Model

Page 38: Kondo Physics from a Quantum Information Perspective

38

Order ParameterOrder parameter is:

1- Observable2- Is zero in one phase and non-zero in the other3- Scales at criticality

Landau-Ginzburg paradigm:

4- Order parameter is local5- Order parameter is associated with a symmetry breaking

Page 39: Kondo Physics from a Quantum Information Perspective

39

Entanglement Spectrum

Entanglement spectrum:

Page 40: Kondo Physics from a Quantum Information Perspective

40

Entanglement Spectrum

NA=NB=400J’=0.4

NA=600, NB=200J’=0.4

IJ IJ

Page 41: Kondo Physics from a Quantum Information Perspective

41

Schmidt GapSchmidt gap:

IJ

Page 42: Kondo Physics from a Quantum Information Perspective

42

Thermodynamic Behaviour

IJ IJ

J’=0.4 J’=0.5

In the thermodynamic limit Schmidt gap takes zero in the RKKY regime

Page 43: Kondo Physics from a Quantum Information Perspective

43

Diverging Derivative

IJ

In the thermodynamic limit the first derivative of Schmidt gap diverges

IJ

Page 44: Kondo Physics from a Quantum Information Perspective

44

Diverging Kondo Length

IJ

Page 45: Kondo Physics from a Quantum Information Perspective

Finite Size Scaling

22.0

45

)|(|

)|(|/1/

/1/

NJJfN

NJJfNcIIS

cIIS

5.0)( NJJ cII

||

|| cII

cIIS

JJ

JJ

Page 46: Kondo Physics from a Quantum Information Perspective

46

Schmidt Gap as an Observable

Page 47: Kondo Physics from a Quantum Information Perspective

47

SummaryNegativity is enough to determine the Kondo length and the scaling of the Kondo impurity problems.

By tuning the Kondo cloud one can route distance independent entanglement between multiple users via a single bond quench.

Negativity also captures the quantum phase transition in twoimpurity Kondo model.

Schmidt gap, as an observable, shows scaling with the right exponents at the critical point of the two Impurity Kondo model.

Page 48: Kondo Physics from a Quantum Information Perspective

48

References• An order parameter for impurity systems at quantum criticality A. Bayat, H. Johannesson, S. Bose, P. Sodano To appear in Nature Communication.

• Entanglement probe of two-impurity Kondo physics in a spin chain A. Bayat, S. Bose, P. Sodano, H. Johannesson, Phys. Rev. Lett. 109, 066403 (2012)

• Entanglement Routers Using Macroscopic Singlets A. Bayat, S. Bose, P. Sodano, Phys. Rev. Lett. 105, 187204 (2010)

• Negativity as the Entanglement Measure to Probe the Kondo Regime in the Spin-Chain Kondo Model A. Bayat, P. Sodano, S. Bose, Phys. Rev. B 81, 064429 (2010)

• Kondo Cloud Mediated Long Range Entanglement After Local Quench in a Spin Chain P. Sodano, A. Bayat, S. Bose Phys. Rev. B 81, 100412(R) (2010)