kok fook seng - eprints.utm.myeprints.utm.my/id/eprint/48680/1/kokfooksengpfcee2014.pdf ·...

36
BIOPROCESS STRATEGY FOR THE PRODUCTION OF LACTOBACILLUS RHAMNOSUS NRRL B442 WITH HIGH CELL-B-GLUCOSIDASE ACTIVITY KOK FOOK SENG UNIVERSITI TEKNOLOGI MALAYSIA

Upload: vandung

Post on 16-Mar-2019

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

BIOPROCESS STRATEGY FO R THE PRODUCTION OF LACTOBACILLUS RHAM NOSUS NRRL B442 W ITH HIGH CELL-B-GLUCOSIDASE

ACTIVITY

KOK FOOK SENG

UNIVERSITI TEKNOLOGI MALAYSIA

Page 2: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

FERMENTATION STRATEGY FOR THE PRODUCTION OF LACTOBACILLUS RHAMNOSUS NRRL B442 WITH HIGH CELL-P-GLUCOSIDASE ACTIVITY

KOK FOOK SENG

A thesis submitted in fulfilment of the requirements for the award of the degree of

Doctor of Philosophy (Bioprocess Engineering)

Faculty of Chemical Engineering Universiti Teknologi Malaysia

JANUARY 2014

Page 3: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

Specially dedicated to my beloved family members. May this achievement inspirethem.

Page 4: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

iv

ACKNOWLEDGMENT

I would like to express my deepest appreciation to my supervisors, PM. Dr. Ida Idayu Muhamad, PM. Dr. Lee Chew Tin and PM. Dr. Firdausi Razali for their guidance, encouragement and advices.

Special thanks go to the laboratory staffs of Bioprocess Engineering Department, who provided technical assistance throughout the research work.

I would also like to acknowledge with much appreciation the Agricultural Research Service (ARS) for providing the bacteria strain of Lactobacillus rhamnosus NRRL B442 in this research work.

Last but not least, a sincere appreciation goes to my beloved family members for their endless love and support.

Page 5: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

v

ABSTRACT

This study aims to strategize the fermentation process for the production of probiotic with high cell-P-glucosidase (CBG) activity using Lactobacillus Rhamnosus NRRL B442 as model microbe. The fermentations were carried out in a 2L bioreactor under anaerobic condition, and CBG activity was measured using the standard substrate of O-nitrophenyl-P-D-glucopyranoside (O-NPG). The fermentation parameters were investigated using factor-by-factor optimization method. The cell pellet from shake flask culture was used in the determination of optimum testing condition for the measurements of CBG activity. The condition at 46oC and pH 6.5 was found to be optimum for the measurement of CBG activity. The strategy began with the optimization of the fermentation condition for the maximum production of biomass and CBG activity in a batch system. Four fermentation parameters were investigated, and these include pH, temperature, type of nitrogen source, and type of carbon source. The results suggested that the fermentation condition at pH 6 and 40 oC, using yeast extract and glucose as nitrogen and carbon source, respectively provided maximum biomass yield, high CBG activity, and low production cost. In addition, the glucose repression effect on CBG activity was confirmed in the bacteria strain studied. Under this primary optimized condition in batch system, the growth kinetics study was performed based on Monod equation. The maximum specific growth rate, |imax; saturation constant, Ks; yield of biomass, Yx/s, and doubling time, £d, were 0.4672 h-1, 1.128 g glucose/l, 0.313g dcm/g glucose, and 1.483 h, respectively. Based on the profile of specific CBG activity conducted under batch condition, three direct factors including specific growth rate, starvation, and yeast extract concentration were investigated using the proposed operating tool of Chemostat. Another strategy was proposed to increase the CBG activity. This includes: 1) to maximize the growth rate, 2) to supply high concentration of yeast extract, and 3) to supply low concentration of glucose. Using this strategy, an improved specific CBG activity of 11.24 UE/mg dcm (6.25 folds increase in activity compared to control) was obtained at maximum specific growth rate of 0.264 h-1, low feeding glucose concentration of 20g/l, and high feeding yeast extract concentration of 60 g/l. The enzymatic kinetics of CBG activity was investigated experimentally and found to match the Michaelis-Menten model. The kinetics properties of maximum specific rate of reaction, Vm, and Michaelis-Menten constant, Km were 7.86 UE/mg dcm and 0.049 mM of O-NPG, respectively. As conclusion, the current study has successfully strategized the bioprocess for the production of Lactobacillus rhamnosus NRRL B442 with high CBG activity.

Page 6: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

vi

ABSTRAK

Kajian ini bertujuan untuk merangka strategi proses fermentasi untuk penghasilan probiotik yang mempunyai aktiviti sel-P-glucosidase (CBG) yang tinggi dengan menggunakan Lactobacillus Rhamnosus NRRL B442 sebagai bakteria model. Fermentasi dijalankan di dalam bioreaktor 2L di bawah keadaan anaerobik, dan aktiviti CBG diukur menggunakan substrat asas, iaitu O-nitrophenyl-P-D-glucopyranoside (O- NPG). Semua parameter dikaji dengan menggunakan kaedah faktor-ke-faktor. Gumpalan sel dari kultur kelalang secara berputar digunakan dalam penentuan keadaan penilaian optimum untuk pengukuran tahap aktiviti CBG. Keadaan pada 46 oC dan pH6.5 didapati adalah keadaan optimum dan ia seterusnya diaplikasikan dalam pengukuran tahap aktiviti CBG. Strategi ini bermula dengan mewujudkan keadaan fermentasi yang optimum untuk tujuan penghasilan biomas dan aktiviti CBG yang maksimum dalam sistem kelompok. Empat parameter yang telah dikaji termasuk pH, suhu, sumber nitrogen dan sumber karbon. Keputusan menunjukkan keadaan fermentasi pada pH 6 dan 40 oC, dengan menggunakan ekstrak yis dan glukosa sebagai sumber nitrogen dan sumber karbon masing-masing, telah menghasilkan hasil biomas yang maksimum, aktiviti CBG yang tinggi, dan kos penghasilan yang rendah. Selain itu, kesan penindasan glukosa terhadap aktiviti CBG telah dipastikan dalam jenis bakteria yang digunakan. Dengan keadaan optimum primer dalam sistem kelompok, kajian kinetik pertumbuhan sel dilakukan berdasarkan persamaan Monod. Kadar pertumbuhan maksimum spesifik, |imax, ketepuan malar, Ks, hasil biomas, Yx/s, dan masa penggandaan, ft, adalah masing-masing, 0.4672 h-1, 1.128 g glukosa g/l, 0.313 g dcm/g glukosa, dan 1.483 h. Berdasarkan profil aktiviti CBG spesifik yang dijalankan di bawah keadaan kelompok, tiga faktor termasuk kadar pertumbuhan sel spesifik, kelaparan, and kepekatan ekstrak yis dikaji dengan menggunakan Chemostat yang dicadangkan. Kajian ini mencadangkan satu strategi untuk meningkatkan aktiviti CBG iaitu: 1) memaksimakan kadar pertumbuhan sel, 2) penggunaan kepekatan glukosa yang rendah (kebuluran), dan 3)penggunaan kepekatan yis ekstrak yang tinggi. Dengan penggunaan strategi tersebut, peningkatan aktiviti CBG spesifik kepada 11.24 UE/g dcm (6.25 gandaan lebih tinggi dalam aktiviti berbanding dengan ‘kawalan’) telah diperolehi pada kadar pertumbuhan sel spesifik maksimum iaitu 0.264 h-1, penggunaan kepekatan glukosa yang rendah iaitu 20 g/l, dan penggunaan kepekatan ekstrak yis yang tinggi iaitu 60 g/l. Kinetik aktiviti CBG telah diselidik melalui eksperimen dan menunjukkan ia selaras dengan model Michaelis-Menten. Kajian menunjukan kadar spesifik tindakbalas yang maksimum, Vm, and kemalaran Michaelis-Menten, Km adalah masing-masing, 7.86 UE/mg dcm dan 0.049 mM O-NPG. Kajian ini telah berjaya merangka strategi bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG yang tinggi.

Page 7: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

vii

CHAPTER TITLE PAGE

DECLARATION iiDEDICATION iiiACKNOWLEDGEMENTS ivABSTRACT vABSTRAK viTABLE OF CONTENTS viiLIST OF TABLES xiiLIST OF FIGURES xivLIST OF ABBREVIATIONS xvii

LIST OF SYMBOLS xixLIST OF APPENDICES xx

1 INTRODUCTION 11.1 Research Background and Definition 11.2 Objective 41.3 Scopes 41.4 Novelties of Study 51.5 Thesis Outline 5

2 LITERATURE REVIEW 72.1 Introduction 72.2 The Applications of CBG Activity of Probiotic 8

2.2.1 The CBG Activity of Probiotic in HumanIntestinal Tract 8

TABLE OF CONTENTS

Page 8: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

viii2.2.1.1 Contribution of CBG Activity on

Intestinal Absorption Of Antioxidantfrom Onion. 8

2.2.1.2 Contributions of CBG Activity to Improve Antioxidant Properties of Naturally Occurring Quercetin Glucosides in the Onion 10

2.2.2 Probiotic with High CBG Activity as Biocatalyst 122.3 Enzyme P-Glucosidase 13

2.3.1 The Effect of pH on P-Glucosidase Activity 142.3.2 The Effect of Temperature on P-Glucosidase

Activity 172.3.3 The Effect of Salt on P-Glucosidase Activity 20

2.4 Screening of Lactic Acid Bacteria for P-Glucosidase Activity 21

2.5 F ermentati on of Lacti c acid B acteria 242.5.1 The Effect of pH on the Cell Growth 252.5.2 The Effect of Temperature on the Cell Growth 262.5.3 The Effect of Nitrogen Source on the Cell Growth 272.5.4 The Effect of Agitation Rate 392.5.5 The Effect of Inoculums Size 30

2.6 The Effect of Fermentation Condition on theProduction of P-Glucosidase 302.6.1 The Effect of pH 302.6.2 The Effect of Temperature 312.6.3 The Effect of Carbon Source 322.6.4 The Effect of Nitrogen Source 34

2.7 Growth Patterns and Kinetics Model in Batch System 352.8 Chemostat 382.9 Model Development and Kinetics Properties of Enzyme

P-Glucosidase 392.10 Summary 42

Page 9: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

ix3 MATERIAL AND METHODOLOGY 43

3.1 Introduction 433.2 Equipment and Material 453.3 Methodology 47

3.3.1 Stock Culture 473.3.2 Fermentation Medium 473.3.3 Shake Flask Culture 473.3.4 Batch Fermentation 483.3.5 Chemostat 503.3.6 Determination of Cell Concentration 513.3.7 Determination of Sugar Consumption 51

3.3.7.1 DNS Method 513.3.7.2 HPLC Method 52

3.4 Screening of Intracellular and ExtracellularP-Glucosidase Activity 523.4.1 Sample Preparation 523.4.2 DEBG Assay 53

3.5 CBG Assay 533.6 Enzyme Kinetics of CBG Activity 543.7 Total Nitrogen Content 543.8 Data Analysis 54

4 EFFECTS OF REACTION pH AND TEMPERATURE ON CBG ACTIVITY OF LACTOBACILLUS RHAMNOSUS NRRL 442 554.1 Introduction 554.2 The Presence of Enzyme P-Glucosidase 564.3 The Optimal pH for CBG Activity 574.4 The Optimal Temperature for CBG Activity 614.5 Summary 64

5 BATCH FERMENTATION5.1 Introduction5.2 The Effect of Fermentation pH

656565

Page 10: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

5.2.1 The Effect of pH on the Cell Growth and Sugar Consumption 66

5.2.2 The Effect of pH on CBG Activity 685.3 The Effect of Fermentation Temperature 71

5.3.1 The Effect of T emperature on the Cell Growth and Sugar Consumption 71

5.3.2 The Effect of T emperature on the CBG Activity 735.4 The Effect of Nitrogen Source 75

5.4.1 The Effect of Nitrogen Source on the Cell Growthand Sugar Consumption 76

5.4.2 The Effect of Nitrogen Source on the CBG Activity 815.5 The Effect of Carbon Source 84

5.5.1 The Effect of Carbon Source on the Cell Growth and Sugar Consumption 84

5.5.2 The Effect of Carbon Source on CBG Activity 865.6 The Effect of Starvation on the CBG Activity 895.7 Growth Kinetics in Batch System 905.8 Summary, Challenges and Bioprocess Strategy 93

6 FERMENTATION STRATEGY USING CHEMOSTAT 986.1 Introduction 986.2 The Effect of Specific Growth Rate 98

6.2.1 The Effect of Specific Growth Rate on the CellYield 99

6.2.2 The Effect of Specific Growth Rate on CBGActivity 102

6.3 The Effect of Glucose Concentration 1036.3.1 The Effect of Glucose Concentration on the Cell

Growth 1036.3.2 The Effect of Glucose Concentration on the CBG

Activity 1056.4 The Effect of Yeast Extract Concentration 106

6.4.1 The Effect of Y east Exract Concentration on the CellYield 106

x

Page 11: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

xi6.4.2 The Effect of Y east Extract Concentration on the

CBG Activity 1076.4.3 Fermentation Strategy on the CBG Activity 109

6.5 The CBG Activity Upon Storage 1106.6 Enzyme Kinetics of CBG Activity 1116.7 Summary 113

7 CONCLUSIONS AND RECOMMENDATIONS 1147.1 Introduction 1147.2 Overall Findings 114

7.2.1 Cell Growth of Lactobacillus Rhamnosus NRRLB442 115

7.2.2 CB G Activity of Lactobacillus Rhamnosus NRRLB442 116

7.2.3 Fermentation Strategy 1177.3 Conclusion 1197.4 Recommendation for Future Work 120

REFERENCESAppendices A - C

121131-177

Page 12: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

xii

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Radical scavenging activity of quercetin and its related compounds 11

2.2 The optimal pH of enzyme P-glucosidase from differentsources 16

2.3 The optimal temperature of enzyme P-glucosidase from different sources 19

2.4 The P-Gucosidase activity of lactobacillus and Bifidobacterium (Marazza et al., 2009) 23

2.5 The optimal pH for the growth of lactic acid bacteria 252.6 List of nitrogen sources used in lactic acid fermentation 282.7 Summary of kinetic properties of lactic acid bacteria 372.8 The kinetic properties of enzyme P-glucosidase from

different sources 413.1 The list of chemical and microorganism used in the present

study 453.2 The list of main equipment used in the present study 463.3 Experimental design for batch fermentation 494.1 The enzyme P-glucosidase of Lactobacillus rhamnosus

NRRL 442 564.2 Summary of the optimal pH values of CBG and DEBG

Activity in different production host. 604.3 Summary of the optimal temperature of CBG and DEBG

activity in different production host. 635.1 The total nitrogen content of each nitrogen source studied 79

Page 13: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

xiii5.2 Growth kinetics properties of Lactobacillus rhamnosus

NRRL B442 926.1 The maximum specific growth rate of lactic acid bacteria

in batch and chemostat system 101

Page 14: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

xiv

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 Enzymatic activity of P-glucosidase 11.2 The mechanism of cell-P-glucosidase activity 32.1 Molecular structures of quercetin and its related compounds

(Murakami et al., 2008) 102.2 The target substrates of enzyme P-glucosidase 132.3 Effect of pH on P-glucosidase activity

(Marazza et al., 2009) 152.4 Effect of temperature on P-glucosidase activity

(Marazza et al., 2009) 172.5 Effect of Salt concentration on P-glucosidase activity

(Bowers et al., 2007) 202.6 Typical growth curve for a bacterial population in batch

system (Shuler and Kargi, 2002) 352.7 Simple schematic diagram of chemostat

(Shuler and Kargi, 2002) 382.8 Wash-out phenomenon of lactic acid fermentation in

Chemostat (Pinelli et al., 1997) 393.1 The research flow chart 443.2 Schematic diagram of Chemostat 504.1 The effect of pH on the CBG activity of Lactobacillus

rhamnosus NRRL B442 at 37oC 58

Page 15: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

4.2

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.105.11

5.12

5.13 6.1

6.2

6.3

xvThe effect of temperature on CBG activity ofLactobacillus rhamnosus NRRL B442 at pH 6.5. 61The growth pattern and glucose consumption ofLactobacillus rhamnosus NRRL B442 in uncontrolledpH batch fermentation at 37oC. 66The effect of pH-controlled environment on (a) cellgrowth and(b) Glucose consumption 67The effect of fermentation temperature on (a) CBG activityand(b) Specific CBG activity 69The effect of fermentation temperature on (a) Cell growthand(b) Glucose consumption 72The effect of fermentation temperature on (a) CBG activityand (b) Specific CBG activity. 74The effect of nitrogen sources on the (a) Cell growth and(b) Glucose consumption. 76The effect of nitrogen sources on (a) CBG activity and(b) Specific CBG activity. 81The effect of carbon source on (a) Cell growth and (b) Sugarconsumption. 84The time course profiles of (a) CBG activity and (b)Specific CBG activity, in different carbon source 87The effect of starvation on the CBG activity 89The time course profiles of biomass production and specific growth rate of Lactobacillus rhamnosus NRRL B442 in glucose-yeast extract medium at pH 6.0 and 40oC 91Hanes-Woolf plots for the growth kinetic of Lactobacillus rhamnosus NRRL 442 in batch system under anaerobic condition at controlled pH 6 and 40oC. 92Direct and indirect factors of CBG activity 96The effect of dilution rate on the cell yield and glucose consumption of Lactobacillus rhamnosus NRRL B442 99The effect of dilution rate on the specific CBG activity of Lactobacillus rhamnosus NRRL B442. 102The effect of feeding glucose concentration on the cell

Page 16: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

xvigrowth and glucose consumption 103

6.4 The effect of feeding glucose concentration on the cellyield, Yx/s 104

6.5 The effect of feeding glucose concentration on (a) CBG activity and (b) Specific CBG activity, of Lactobacillus rhamnosus NRRL B442 105

6.6 The effect of feeding yeast extract concentration on the cell Yield and sugar consumption of Lactobacillus rhamnosusNRRL 442 107

6.7 The effect of feeding yeast extract concentration on specificCBG activity of Lactobacillus rhamnosus NRRL 442 108

6.8 The specific CBG activity in different operating systems 1096.9 The effect of storage period on the specific CBG activity at

-18oC 1106.10 The time time course profile of the production of

O-nitrophenol 111

6.11 The Hanes-Woolf plot for Michaelis-Menten kinetics ofCBG activity 112

Page 17: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

xviii

LIST OF ABBREVIATIONS

B. - BifidobacteriumBr- - BromideBSPG - Broad-specific P-glucosidaseCa+2 - Calcium ionCBG - Cell-P-glucosidaseC2H3NaO2 - Sodium AcetateCl- - ChlorideClO4- - PerchlorateCu+2 - Copper (II)Cs+ - Cesium iondcm - Dry cell massDEBG - Direct enzyme P-glucosidaseF - Flavonoid aglyconeF- - FluorideFe+2 - iron (II)Fg - Flavonoid glucuronideFG - Flavonoid glucosideFs - Flavonoid sulphateHCl - Hydrochloric acidHPLC - High-Performance Liquid ChromatographyI- - IodideK+ - Potassium ionKH2PO4 - Potassium phosphateL. - LactobacillusLi+ - Lithiu ionLPH - Lactase phloridzin hydrolase

Page 18: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

xixMgSO4 - Magnesium sulphateMnSO4 - Manganese sulphaseMRP - Multidrug resistance-associated proteinsNa+ - Sodium ionNa2HPO4 - Disodium hydrogen phosphateNaOH - Sodium hydroxideNH4+ - Ammonium ionNO3- - NitrateOAc- - AcetateO-NPG - O-nitrophenly-P-Dglucopyranosidep-NPG - p- nitrophenly-P-DglucopyranosideRb+ - Rubidium ionS. - StreptococusSD - Standard deviationSO42- - SulfateSGLT - Sodium-dependent glucose transporterSULT - SulfotransferaseUE - Unit enzymeUGT - UDP-glucuronosyltransferaseZn+2 - Zinc ion

Page 19: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

xx

LIST OF SYMBOLS

D - Dilution rateE - Enzymekd - Death rateKm - Saturation constantKs - Michaelis-Menten constantX - Biomass concentrationXo - Initial biomass concentrationS - SubstrateT - TimeV - Rate of reactionVm - Maximum rate of reaction

- Specific growth rate|im - Maximum specific growth rate

Page 20: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

xxi

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Example of chromatography diagram 131

B Calibration curves 132

C Experimental data 136

Page 21: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

CHAPTER 1

INTRODUCTION

1.1 Research Background and Definition

P-Glucosidase is an enzyme that catalyses the hydrolysis of glycosidic bond linking P-glucose and glucose-substituted substrates. The target substrate of this enzyme is also known as P-glucan. Figure 1.1 illustrates the enzymatic activity of P- glucosidase upon one of its target molecules of quercetin-P-glucoside.

quercetin- 4 ’ - O- f>-D- glucoside quercetin glucose

Figure 1.1 Enzymatic activity of P-glucosidase

Page 22: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

2Enzyme P-glucosidase is widely found in the microorganisms such as fungi

(Kaur et al., 2007), yeast (Villena et al., 2006) and lactic acid bacteria (Marazza et al., 2009). For the microorganisms, this enzyme is an essential tool for hydrolysis of P-glucans to produce simple sugar of glucose for growth.

The activity of enzyme P-glucosidase to catalyse the hydrolysis of various P- glucans has brought to the great concern of researchers due to its wide applications in different industries. In food industry, this enzyme is used to improve the aroma properties in wine (Gallifuoco et al., 1998) and tea beverage (Su et al., 2009), also helps to reduce the citrus bitterness of juices (Villena et al., 2006). In another way, the enzyme P-glucosidase activity posed by the lactic acid bacteria is used to produce bioactive isoflavone aglycone in soymilk (Tsangalis et al., 2004; Marazza et al.,2009). Besides, this enzyme also plays important role in hydrolysis of cellulose waste to release glucose for ethanol production (Bhat and Bhat, 1997).

The wide application of the enzyme has brought to the increasing interest of many. However, the expensive process cost for enzyme extraction and purification is not economically susceptible in large scale industrial production especially for those low end products. As such, another alternative is suggested in which the probiotic possessing P-glucosidase activity is used as the catalyst instead of using the expensive purified enzyme. This concept has been successfully proven by Marazza and co researchers (2009) who used the lactic acid bacteria as starter culture in soymilk fermentation. The isoflavone glucosides were hydrolysed into bioactive isoflavone aglycone by the enzyme P-glucosidase released by the bacteria.

In relation to this concept, the present study defined the ability of cells to break the P-glucosidic bond through the expression of enzyme P-glucosidase as cell- P-glucosidase (CBG) activity. The mechanism of the CBG activity upon one of its target molecule of quercetin-4’-P-D-glucoside is illustrated in Figure 1.2.

Page 23: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

3

Figure 1.2 The mechanism of cell P-glucosidase activity.

On the other hand, the CBG activity of probiotic has more applications other than that of catalyst. Being the probiotic in human intestinal tract, its CBG activity may function to improve the anti-oxidation quality of the oral consumption of quercetin glucosides from onion (Murakami et al., 2008), and also helps to facilitate their intestinal absorption (Murota and Terao, 2003). For these reasons, the CBG activity becomes one of the important functions of probiotic in human intestinal tract. The probiotic with high CBG activity may become one of the keys to increase its market value.

For these novelties, the production of probiotic with high CBG activity is remarkably important in many aspects. Based on the previous reports, enzyme synthesis of P-glucosidase is significantly affected by the fermentation condition. Generally, the studies achieved an agreement that the enzyme synthesis of P- glucosidase is growth-dependent. Besides, the presence of certain nitrogen and carbon sources may probably lead to the induction or suppression effect on the enzyme synthesis of P-glucosidase (Mahajan et al., 2010; Joo et al., 2010; Villena et al., 2007).

Page 24: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

4The objective of the present study is to strategize the fermentation system for

the production of high CBG activity probiotic. Based on the literature, the high potential probiotic of Lactobacillus rhamnosus is used as the study model. In this study, several fermentation parameters were investigated and optimized. This study proposed a bioprocess strategy to overcome the limitations and to control the key factors identified for the improvement of CBG activity. By the end of this study, a hypothesis is made where the CBG activity of the probiotic is improved to a significant extent by the bioprocess strategy proposed.

1.2 Objective

To strategize the fermentation process for the production of probiotic with high cell-P-glucosidase activity using Lactobacillus rhamnosus NRRL B442 as model microbe.

1.3 Scopes

i. To determine the optimal testing condition (pH and temperature) for the CBG activity of Lactobacillus rhamnosus NRRL B442.

ii. To investigate the effects of fermentation pH, temperature, nitrogen source, and carbon source on the cell growth and CBG activity of Lactobacillus rhamnosus NRRL B442 in batch system.

iii. To determine the growth kinetics properties of Lactobacillus rhamnosus NRRL B442 in batch system based on Monod equation.

Page 25: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

5iv. To strategize fermentation process for the production of high CBG

activity of Lactobacillus rhamnosus NRRL B442 using chemostat strategy.

v. To determine the enzyme kinetics of CBG activity of Lactobacillus rhamnosus NRRL B442 produced under the strategized chemostat condition.

1.4 Novelties of Study

I. In this study, Lactobacillus rhamnosus NRRL B442 is used as the model microbe. Up to now, the related study on this bacteria strain is relatively rare. This study is reporting the fermentation data that describes the response of this bacteria strain to the environment change. These include: the determination of optimal growing environment, growth kinetics and limitations of the fermentation process.

II. This study proposed a fermentation strategy to improve the CBG activity of the bacteria strain up to a significant extent. This strategy also provided a basic guideline in selecting the operating system and the fermentation condition.

1.5 Thesis Outline

Generally, present study reported the development of bioprocess strategy to improve the CBG activity of Lactobacillus rhamnosus NRRL B442. This dissertation consists of seven chapters. Chapter 1 introduces the research background and objectives of study. Chapter 2 reviews the related fundamental

Page 26: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

6knowledge and reported case studies. The literature review includes the novelty and application of CBG activity of probiotic, fermentation technology for growing of lactic acid bacteria and also the potential key factors for development of the bioprocess strategy to improve the CBG activity. Chapter 3 describes the research methodology with the detail of working protocols and experimental designs. Chapter 4 investigates the effect of reaction pH and temperature on the CBG activity. The optimal values identified are applied in the measurements of CBG activity in the following experimental phase. Chapter 5 investigates the effect of fermentation parameters (pH, temperature, nitrogen source, and carbon source) on the cell growth and CBG activity. This investigation identified the potential key factors, and thus suggested the switch of the operational tool to enable better control of the key factors to improve the CBG activity. Prior to the process strategy, the growth kinetic properties in batch system based on the Monod equation are first determined. Chapter 6 validates the process strategy as suggested in Chapter 5 to improve the CBG activity using a different operational tool of chemostat. Besides, the ability of cell to retain its high CBG activity after the storage at low temperature was discussed. This chapter also describes the kinetic properties of the CBG activity using Michaelis-Menten kinetic model. Finally, Chapter 7 summarizes the overall findings and also suggestions for the future work.

Page 27: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

REFERENCES

Adamberg, K., Kaska, S., Laht, T. and Paalme, T. (2003). The Effect Of

Temperature And Ph On The Growth Of Lactic Acid Bacteria: A Ph-

Auxostat Study. International Journal o f Food Microbiology. 85, 171-183.

Aguirre-Ezkauriatza, E. J., Aguilar-Yanez, J. M., Ramirez-Medrano, A., and

Alvarez, M. M. (2010). Production Of Probiotic Biomass (Lactobacillus

Casei) In Goat Milk Whey: Comparison O f Batch, Continuous And Fed-

Batch Cultures. Bioresource Technology. 101, 2837-2844.

Apostolidis, E. Kwon, Y. and Shetty, K. (2007), Inhibitory Potential Of Herb, Fruit

And Fungal-Enriched Chese Against Key Enzymes Linked To Type 2

Diabetes And Hypertension. Innovative Food Science and Engineering

Technologies. 8, 46-54.

Bajpai-Dikshit, J., Suresh, A. K. and Venkatesh, K. (2003). An Optimal Model for

Representing the Kinetics of Growth and Product Formation by Lactobacillus

rhamnosus on Multiple Substrates, Journal o f Bioscience and Bioengineering.

96 (5), 481-486.

Bhat, M. K. and Bhat, S. (1997). Cellulose Degrading Enzymes And Their Potential

Industrial Application. Biotechnology Advances. 15(3), 583-620.

Bokkenheuser, V. D., Shackleton, C. H. L. and Winter, J. (1987). Hydrolysis Of

Dietary Flavonoid Glycosides By Strains O f Intestinal Bacteroides From

Humans. Biochemical Journal. 248 (3), 953-956.

Bowers, E.M., Ragland, L.O. and Byers, L.D. (2007). Salt Effects On B-Glucosidase:

pH-Profile Narrowing. Biochimicaet Biophysica Acta. 1774, 1500-1507.

Busairi, A.M. and Mat, H. (2002). Lactic Acid Fermentation O f Pineapple Waste By

Lactobacillus Delbrueckii. Doctor Philosophy, Universiti Teknologi Malaysia,

Skudai.

Page 28: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

122

Cheng, P., Mueller, R. E., Jaeger, S., Bajpai, R., and Iannotti, E. L. (1991). Lactic

Acid Production From Enzyme-Thinned Corn Starch Using Lactobacillus

Amylovorus. Journal O f Industrial Microbiology. 7, 27-34.

Chun, J., Kim, J. S. and Kim, J. H. (2008). Enrichment Of Isoflavone Aglycones In

Soymilk By Fermentation With Single And Mixed Cultures Of Streptococcus

Infantarius12 And Weissella Sp.4. Food Chemistry. 109, 278-284.

Chen, M., Qin, Y., Liu, Z., Liu, K., Wang, F., and Qu, Y. (2010). Isolation And

Characterization Of B-Glucosidase From Penicillium Decumbens And

Improving Hydrolysis Of Corncob Residue By Using It As Cellulase

Supplementation. Enzyme And Microbial Technology. 46, 444-449.

Chien, H. L., Huang, H. Y. and Chou, C. C. (2006). Transformation Of Isoflavone

Phytoestrogens During The Fermentation O f Soymilk With Lactic Acid

Bacteria And Bifidobacteria. Food Microbiology. 23, 772-778.

Cort, D. S., Kumar, S. H. M. C., and Vrachtert, H. (1994). Localization And

Characterization Of A-Glucosidase Activity In Lactobacillus Brevis. Applied

And Environmental Microbiology. 46-63.

Corzo-Martineza, M., Corzoa, N., and Villamiel, M.A. (2007). Biological Properties

Of Onion And Garlic, Food science and technology. 18, 609-625.

Coulon, S., Chemarin, P., Gueguen, Y., Arnaud, A. and Galzy, P. (1998).

Purification And Characterization O f An Intracellular Beta-Gucosidase From

Lactobacillus Casei ATCC393. Appl. Biochem. Biotechnol. 74(2), 105-114.

Cuzens, J. And Miller, J.R. (1997). Acid Hydrolysis O f Bagasse For Ethanol

Production. Renewable Energy. 10 (2/3), 285-290.

Gallifuoco, A., D'Ercole, L., Alfani, F., Cantarella, M., Spagna, G., Pifferi, P.G.

(1998). On The Use Of Chitosan-Immonilized B-Glucosidase In Wine­

Making: Kinetics And Enzyme Inhibition. Process Biochemistry. 2, 163-168.

Gerez, C. L., Torino, M. I., Rollan and G. and Valdez G. G. D (2009), Prevention Of

Bread Mould Spoilage By Using Lactic Acid Bacteria With Antifungal

Properties. Food Control. 20, 144-148.

Goksungur, Y., and Guvenc, U. (1997). Batch And Continuous Production O f Lactic

Acid From Beet Molasses By Lactobacillus Debrueckii IFO3202. J. Chem.

Biotechnology. 69, 399-404.

Gonzalez-Vara, A. Y. R., Pinelli, D., Rossi, M., Fajner, D., Magelli, F., and

Matteuzzi, M. (1996). Production Of L( +) And D( -) Lactic Acid Isomers By

Page 29: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

123

Lactobacihs Casei Subsp. Casei DSM 20011 And Lactobacillus

Coryniformis Subsp. Torquens DSM 20004 In Continuous Fermentation.

Journal o f Fermentation and Bioengineering. 81( 6), 548-552.

Gullon, B., Yanez, R., Alonso, J.L. and Parajo, J.C. (2008). L- Lactic acid

Production From Apple Pomace By Sequential Hydrolysis And Fermentation,

Bioresource Technology. 99, 308-319.

Grabovac, V. and Bernkop-Schnurch, A. (2006). Improvement Of The Intestinal

Membrane Permeability Of Low Molecular Weight Heparin By

Complexation With Stem Bermelain, International Journal o f Pharmaceutic.

326,153-159.

Guggi, D. and Bernkop-Schnurch, A. (2005), Improved paracellular uptake by the

combination of different types of permeation enhancers, International

Journal o f Pharmaceutic, 288: 141-150.

Ha, M.Y., Kim, S.W., Lee, Y.W., Kim, M.J., and Kim, S.J. (2003). Kinetics Analysis

of Growth and Lactic Acid Production in pH-Controlled Batch Cultures of

Lactobacillus casei KH- 1 Using Yeast extract/Corn Steep Liquor/Glucose

Medium, Journal o f Bioscience and Bioengineering,. 96(2), 134- 140.

Hang, Y. and Chen, H. (2008), Characterization Of B-Glucosidase From Corn Stover

And Its Application In Simultaneous Saccharification And Fermentation.

Bioresource Technology. 99, 6081-6087.

Hernandez, L. F., Espinosa, J. C., Fernandez-Gonzalez, M. and Briones, A. (2003).

P-Glucosidase Activity In A Saccharomyces Cerevisiae Wine Strain.

International Journal o f Food Microbiology, 80, 171-176.

Hjorleifsdottir, S., Seevaratnam, S., Holst, O. and Mattiasson, B. (1990), Effects of

Complete Cell Recycling on Product Formation by Lactobacillus casei ssp.

rhamnosus in Continuous Cultures. Current Microbiology. 20, 287-292.

Hujanen, M. and Linko, Y.Y (1996). Effect Of Temperature And Various Nitrogen

Sources On L (+)- Lactic Acid Production By Lactobacillus Casei. Appl.

Microbiol. Biotechnology. 45, 307-313.

Jager, S., Brumbauer, A., Feher, E., Reczey, K., and Kiss, L. (2001). Production And

Characterization Of B-Glucosidase From Different Aspergillus Strains, World

Journal o f Microbiology and Biotechnology. 17, 455-461.

Page 30: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

124

Joo, A., Jeya, M., Lee, K., Lee, K., Moon, H., Kim, Y. and Lee, J. (2010). Production

And Characterization Of B-1,4-Glucosidase From A Strain Of Penicillium

Pinophilum, Process Biochemistry. 45, 851-858.

Kask, S., Adamberg, K., Orlowski, A., Vogensen, F.K., M0 ller, P.L., Ardo, Y., and

Paalmea, T. (2003). Physiological Properties Of Lactobacillus Paracasei, L.

Danicus And L. Curvatus Strains Isolated From Estonian Semi-Hard Cheese,

Food Research International. 36, 1037-1046.

Kaur, J., Chadha, B.S., Kumar, B.A., Kaur, G.S. and Saini, H.S. (2007). Purification

and Characterization of P-Glucosidase from Melanocarpus sp. MTCC 3922.

Electronic Journal o f Biotechnology. 10 (2), 260-270.

Kobayashi, H., Yamakoshi, Y., Hosaka, Y., Yabushita, M. and Fukuoka, A. (2013).

Production of sugar alcohols from real biomass by supported platinum

catalyst. Catalysis Today. , http://dx.doi.org/10.10167j.cattod.2013.09.057.

Korish, M. and Salem, M. (2007). A Broad-Specificity B-Glucosidase From A Wild

Type O f Yeast Isolate And Its Potential Use In Food Industry. Alex. J. Fd. Sci.

and Tecnol.. 4 (1), 63-72.

Konda,T., Yano, H. And Yoshinaga, F. (1997), Effect Of Agitator Configuration On

Bacterial Cellolose Productivity In Aerated And Agitated Culture, Journal o f

Fermentation and Bioengineering. 83(4), 371-376.

Kristo, E., Biliaderis, C.G. and Tzanetakis, N. (2003), Modelling Of Acidification

Process And Rheological Properties Of Milk Fermented With Yogurt Starter

Culture Using Response Surface Methodology. Food Chemistry. 83, 437-446.

Lavarack, B.P., Griffin, G.J. and Rodman, D. (2002). The Acid Hydrolysis Of

Sugarcane Bagasse Hemicelluloses To Produce Xylose, Arabinose, Glucose

And Other Products. Biomass and Bioenergy. 23, 367-380.

Lecas, M., Gunata, Z., Sapis, J.C. and Bayonove, C. (1991). Purification And Partial

Characterization Of Beta-Glucosidase From Grapes. Phytochemistry. 30,

451-454.

Lee, J.H., Kwon, K.S. and Hah, Y.C. (1996). Regulation Of B-Glucosidase

Biosynthesis In Aspergillus Nidulans. FEMS Microbiology Letters. 135, 79­

83.

Li, K. B. and Chan, K.Y. (1983), Production And Properties O f Alpha-Glucosidase

From Lactobacillus Acidophilus. Appl. Environ. Microbiol.. 46(6), 1380­

1387.

Page 31: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

125

Li, Z., Han, L., Ji, Y., Wang, X. and Tan, T. (2010). Fermentative Production Of L-

Lactic Acid From Hydrolysate Of Wheat Bran By Lactobacillus Rhamnosus,

Biochemical Engineering Journal. 49, 138-142.

Liew, S. L., Ariff, A. B., Raha, A. R. and Ho, Y.W. (2005). Optimization Of

Medium Composition For The Production O f A Probiotic Microorganism,

Lactobacillus Rhamnosus, Using Response Surface Methodology.

International Journal o f Food Microbiology. 102, 137-142.

Lombard, K., Peffley, E., Geoffriau, E., Thompson, L. and Herring, A. (2005).

Quercetin In Onion (Allium Cepa L.) After Heat-Treatment Simulating Home

Preparation. Journal o f Food Composition and Analysis. 18, 571-581.

Lotito S.B. and Frei, B. (2006), Consumption Of Flavonoid-Rich Foods And

Increased Plasma Antioxidant Capacity In Humans: Cause, Consequence, Or

Epiphenomenon. Free Radical Biology & Medicine. 41, 1727-1746.

Lund, B., Nordahl, B. and Ahring, B. (1992). Production Of Lactic Acid From Whey

Using Hydrolysed Whey Protein As Nitrogen Source. Biotechology letters.

14, 851-856.

Ly, T.N., Hazama, C., Shimoyamada, M., Ando, H., Kato, K. and Yamauchi, R.

(2005), Antioxidative Compounds From The Outer Scales Of Onion, Journal

o f Agricultural and Food Chemistry. 53 (21), 8183-8189.

Madigan, M. T., Martinko, J. M. and Parker (2003), Brock Biology of

Microorganism. 10th. Ed. Upper Saddle River, N.J.: Prentice Hall.

Magalhaes, L.M, Segundo, M.A., Reis, S. And Lima, J. L. F. C. (2008),

Methodological Aspects About In Vitro Evaluation Of Antioxidant Properties,

Analytica Chimica Acta. 613, 1-19.

Mahajan, P. M., Desai, K. M. and Lele, S.S. (2010). Production Of Cell Membrane-

bound a- and P-glucosidase By Lactobacillus Acidophilus. Food Bioprocess

Technol. DOI 10.1007/s11947-010-0417-2.

Maldonado, A., Ruiz-Barba, J. L. and Jimenez-Diaz, R. (2003), Production Of

Plantaricin NC8 By Lactobacillus Plantarum NC8 Is Induced In The Presence

Of Different Types O f Gram-Positive Bacteria. Arch Microbiol.. 181, 8-16.

Marazza, J. A., Garro, M. S. and Giori, G.S.D. (2009). Aglycone Production By

Lactobacillus Rhamnosus CRL981 During Soymilk Fermentation. Food

Microbiology. 26, 333-339.

Page 32: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

126

Mataragasa, M., Metaxopoulosa, J., Galiotoub, M. and Drosinosa, E. H. (2003).

Influence Of Ph And Temperature On Growth And Bacteriocin Production

By Leuconostocmesenteroides L124 And Lactobacillus Curvatus L442, Meat

Science. 64, 265-276.

Mel, M., Karim, M.I.A, Salleh, M.R.M. and Abdullah, R. (2007). Determination Of

Critical Point Of Po2 Level In The Production Of Lactic Acid By

Lactobacillus Rhamnosus. Journal o f Applied Science. 7 (4), 523-526.

Mombelli, B. and Gismondo, M.R. (2000). The Use Of Probiotics In Medical

Practice. International Journal o f Antimicrobial Agents. 16, 531-536

Murakami, A., Ashida, H. And Terao, J. (2008), Multitargeted Cancer Prevention By

Quercetin. Cancer Letters. 269, 315-325.

Murota, K. And Terao. J (2003), Antioxidative Flavonoid Quercetin: Implication Of

Its Intestinal Absorption And Metabolism, Archives o f Biochemistry and

Biophysic. 417, 12-17.

Murray, P., Aro, N., Collins,C., Grassick, A., Penttila, M., Saloheimo, M., and

Tuohy, M. (2004). Expression In Trichoderma Reesei And Characterisation

Of A Thermostable Family 3 B-Glucosidase From The Moderately

Thermophilic Fungus Talaromyces Emersonii, Protein Expression and

Purification . 38, 248-257.

Nancib, A. Nancib, N., Meziane-Cherif, D., Boubendir, A., Fick, M. and Boudrant, J.

(2005). Joint Effect Of Nitrogen Sources And B Vitamin Supplementation

Of Date Juice On Lactic Acid Production By Lactobacillus Casei

Subsp.Rhamnosus. Bioresource Technology. 96, 63-67.

Nuutila, A.M., Kammiovirta, K. And Oksman-Caldentey, K. M. (2012).Comparison

Of Methods For The Hydrolysis Of Flavonoids And Phenolic Acids From

Onion And Spinach For HPLC Analysis. Food Chemistry. 76, 519-525.

Perez-Martin, F., Sesena, S., Izquierdo, P.M., Martin, R., Palop, M.L. (2012),

Screening For Glycosidase Activities Of Lactic Acid Bacteria As A

Biotechnological Tool In Oenology, World J. Microbiol Biotechnol.. 28,

1423-1432.

Pinelli, D., Gonzalez-Vara, A., Matteuzzi, D., and Magelli, F. (1997). Assessment Of

Kinetics Models For The Production Of L- And D- Lactic Acid Isomers By

Lactobacillus Casei DSM 20011 And Lactobacillus Corniformis DSM 20004

Page 33: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

127

In Continuous Fermentation. Journal o f Fermentation and Bioengineering. 2,

209-212.

Pitson, S.M., Seviour, R.J. and Mcdougall, B.M. (1999). Induction And Carbon

Source Control Of Extracellular B-Glucosidase Production In Acremonium

Persicinum. Mycol. Res.. 103(2), 161-167.

Pontoh, J. and Low, N. H. (2002). Purification And Characterization Of B-

Glucosidase From Honey Bees (Apismellifera). Insect Biochemistry and

Molecular Biology. 32, 679-690.

Prachyakij, P., Charernjiratrakul, W. and Kantachote., D. (2008). Improvement In

The Quality Of A Seaweed Beverage Using An Antiyeast Starter Of

Lactobacillus Plantarum DW3 And Partial Sterilization. World J. Mirobiol

Biotechnol. 24, 1713-1720.

Price, K. R., Bacon, J. R. and Rohdes, J. C. (1997). Effect Of Storage And Domestic

Processing On The Contents And Composition O f Flavonol Glucosides In

Onion (Allium Capa L.), Journal o f Agricultural and Food Chemistry. 45:

938-942.

Price, K.R. and Rohdes, J.C. (1997), Analysis Of The Major Flavonol Glycosides

Present In Four Varieties Of Onion (Allium Cepa) And Changes In

Composition Resulting From Autolysis. JSci Food Agric.. 74, 331-339.

Pyo, Y.H., Lee, T.C. and Lee, Y.C. (2005). Enrichment Of Bioactive Isoflvones In

Soymilk Fermented With B-Glucosidase-Producing Lactic Acid Bacteria.

Food Research International. 38, 551-559.

Rao, M.S., Pintado, J., Stevens, W.F. and Guyot, J.P. (2004). Kinetics Growth

Parameters Of Different Amylolytic And Non-Amylolytic Lactobacillus

Strains Under Various Salt And pH Conditions. Bioresource Technolog. 94,

331-337.

Riou, C., Salmon, J., Vallier, M., Gunata, Z., and Barre, P. (1998). Purification,

Characterization, And Substrate Specificity Of A Novel Highly Glucose-

Tolerant B-Glucosidase From Aspergillus Oryzae. Applied and

Environmental Microbiology. 64, 3607-3614.

Roberts, J. S. and Kidd, D. R. (2005), Lactic Acid Fermentation Of Onions. Lebensm.

Wiss. U. Technol. 38,185-190.

Page 34: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

128

Rogosa, M., Franklin, J. G. and Perry, K. D. (1961). Correlation Of The Vitamin

Requirements With Cultural And Biochemical Characters Of Lactobacillus

spp, J. Gen. Microbiol.. 25,473-482.

Roldan-Marin, E., Sanchez-Moreno, C., Lloria, R., Ancos, B. D. and Cano, P. M.

(2009), Onion High-Pressure Processing: Flovonol Content And Antioxidant

Activity. Food science and Technology. 42, 835-841.

Sachin, R. K., Sudarshan, S. P., Kulbhushan, B. B., Jayant, M. K., Digambar, V. G.

(2006). Strain Improvement Of Lactobacillus Delbrueckii NCIM 2365 For

Lactic Acid Production. Process Biochemistry. 41, 120-126.

Schepers, A. W., Thibault, J. and Lacroixa, C. (2002a). Lactobacillus Helveticus

Growth And Lactic Acid Production During Ph-Controlled Batch Cultures In

Whey Permeate/Yeast Extract Medium. Part I. Multiple Factor Kinetic

Analysis. Enzyme and Microbial Technology. 30, 176-186.

Schepers, A.W., Thibault, J. and Lacroixa, C. (2002b). Lactobacillus Helveticus

Growth And Lactic Acid Production During Ph-Controlled Batch Cultures In

Whey Permeate/Yeast Extract Medium. Part II:Kinetic Modelling And Model

Validation. Enzyme and Microbial Technology. 30, 187-194.

Sellappan, S. and Akoh, C. C. (2002), Flavonoids And Antioxidant Capacity Of

Georgia-Grown Vidalia Onions. J. Agric. Food Chem.. 50 (19), 5338-5342.

Sestelo, A.B.F., Poza, M. And Villa, T. G. (2004). P-Glucosidase Activity In A

Lactobacillus Plantarum Wine Strain, World J. Microbiol. Biotechnol. 20,

663-637.

Sharififar, F., Dehghn-Nudeh, G. and Mirtajaldini, M. (2008), Major Flavonoids

With Antioxidants Activity From Teucrium Polium. Food Chemistry.112,

885-888.

Shuler, M.L. and Kargi (2002), Bioprocess Engineering Basic Concepts, 2th Ed,

Prentice Hall, Upper Saddle River NJ.

Silva, E. L. D., Piskula, M. K., Yammoto, N., Moon, J. H. and Terao, J. (1998),

Quercetin metabolite inhibit copper ion-induced lipid peroxidation in rat

plasma, FEBS letters. 430: 405-408.

Skory, D., Freer, S.N., and Bothast, R.J. (1996). Properties Of An Intracellular B-

Glucosidase Purified From The Cellobiose-Fermenting Yeast Candida

Wickerhamii. Applied Microbiology And Biotechnology. 46, 353-359.

Page 35: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

129

Su, E., Xia, T., Gao, L., Dai, Q. and Zhang Z. (2009). Immobilization Of B-

Glucosidase And Its Aroma Increasing Effect On Tea Beverage, Food and

Bioproducts Processing, doi:10.1016/j.fbp.2009.04.001.

Sun-Waterhouse, D., Smith, B. G., O’Connor, C. J., & Melton, L. D. (2008). Effect

Of Raw And Cooked Onion Dietary Fibre On The Antioxidant Activity Of

Ascorbic Acid And Quercetin. Food Chemistry. 111, 580-585.

Takafuji, S., Iwasaki, T., Sasaki, M. and Tan, P.S.T. (1995). Proteolytic Enzymes Of

Lactic Acid Bacteria. Developments in Food Science. 37, 753-767

Tari, C., Ustok, F. I. and Harsa, S. (2009). Optimization Of The Associative Growth

Of Novel Yoghurt Cultures In The Production Of Biomass, B-Galactosidase

And Lactic Acid Using Response Surface Methodology. International Dairy

Journal. 19, 236-243.

Tsangalis D., Ashton, J. F., Stojanovska, L., Wilcox, G. and Shah, N.P. (2004).

Development Of An Isoflavone Aglycone-Enriched Soymilk Using Germ,

Soy Protein Isolate And Bifidobacteria. Food Research International. 37,

301-312.

Valik, L., Medvedova, A. and Liptakova, D. (2008). Characterization Of The Growth

Of Lactobacillus Rhamnosus GG In Milk At Suboptimal Temperatures.

Journal o f Food and Nutrition Research. 47 (2), 60-67.

Villena, M.A., Iranzo, J.F.U, Gundllapalli, S.B., Otero b, R.R.C. and Perez, A.I.B.

(2006). Characterization of an Exocellular P-Glucosidase from Debaryomyces

Pseudopolymorphus. Enzyme and Microbial Technology. 39, 229-234.

Villena, M.A., Iranzo, J.F.U, and Perez, A.I.B. (2007). P-Glucosidase Activity In

Wine Yeasts: Application In Enology. Enzyme and Microbial Technology. 40,

420-425.

Wallace, R. G. W. (2008). Flavonoid Concentrates, United States Patent Application

Publication. US2008/0274519 A1.

Walle, T. (2004). Absorption and Metabolism of Flavonoids. Free Radical Biology

and Medicine. 36(7), 829-837.

Wei, Q. K., Chen, T. R. and Chen, J. T. (2007). Using Of Lactobacillus And

Bifidobacterium To Product The Isoflavone Aglycones In Fermented

Soymilk. International Journal o f Food Microbiology. 117, 120-124.

Page 36: KOK FOOK SENG - eprints.utm.myeprints.utm.my/id/eprint/48680/1/KokFookSengPFCEE2014.pdf · bioproses untuk penghasilan Lactobacillus rhamnosus NRRL B442 yang mempunyai aktiviti CBG

130

Ximenes, E. A., Felix, C. R., and Ulhoa, C. J. (1996). Production Of Cellulases By

Aspergillus Fumigatus And Characterization Of One B-Glucosidase. Current

Microbiology. 32, 119-123.

Xu, R., Ma, S., Wang, Y., Liu, L. and Li, P. (2010), Screening, Identification And

Statistic Optimization Of A Novel Exopolysaccharide Producing

Lactobacillus Paracasei HCT. African Journal o f Microbiology. 4(9), 783­

795.

Yamamoto, N., Moon, J.H, Tsushida, T., Nagao, A. And Terao, J. (1999). Inhibitory

Effect Of Quercetin Metabolites And Their Related Derivatives On Copper

Ion-Induced Lipid Peroxidation In Human Low-Density Liprotein. Archives

o f Biochemistry and Biophysics. 372(2), 347-354.

Yan, J., Pan, G., Ding, C. and Quan, G. (2010), Kinetics And Thermodynamic

Parameters Of B-Glucosidase Immobilized On Various Colloidal Particles

From A Paddy Soil. Colloids and Surfaces B: Biointerfaces. 79, 298-303.

Yoo, I. K., Chang, H. N., Lee, E.G., Chang, Y. K. , and Moon, S.H. (1997). Effect Of

B Vitamin Supplementation On Lactic Acid Production By Lactobacillus

Casei. Journal o f Fermentation And Bioenginnering. 84 (2), 172-175.

Yu, H., Xu, J., Lu, W. and Lin, G. (2007). Identification, Purification And

Characterization Of B-Glucosidase From Apple Seed As A Novel Catalyst

For Synthesis Of O-Glucosides. Enzyme and Microbial Technology. 40, 354­

361.

Yu, L., Lei, T., Ren, X., Pei, X. and Feng, Y. (2008). Response Surface Optimization

Of Lactic Acid Production Using Corn Steep Liquor As An Alternative

Nitrogen Source By Lactobacillus Rhamnosus CGMCC 1466. Biochemical

Engineering Journal. 39, 496-502.

Zheng, L., Lu, H., Yizhi, J., Xiaonan, W. and Tianwei, T. (2010). Fermentative

Production Of L-Lactic Acid From Hydrolysate Of Wheat Bran By

Lactobacillus Rhamnosus. Biochemical Engineering Journal. 49, 138-142.