kev hhg and sub femtosecond k-shell excitation. ( using ir (2.1 m) radiation source )

27
keV HHG and Sub femtosecond K-shell excitation. ( using IR (2.1m) Radiation Source ) Gilad Marcus The Department of Applied Physics, The Hebrew University, Jerusalem, Israel Tel Aviv, 2-4, December 2013

Upload: aldan

Post on 24-Feb-2016

23 views

Category:

Documents


0 download

DESCRIPTION

keV HHG and Sub femtosecond K-shell excitation. ( using IR (2.1  m) Radiation Source ). Gilad Marcus The Department of Applied Physics , The Hebrew Universit y, Jerusalem, Israel. Tel Aviv, 2-4, December 2013. Acknowledgment. Ferenc Krausz 1 Reinhard Kienberger 1 - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: keV  HHG and Sub femtosecond K-shell excitation. (  using  IR (2.1  m) Radiation Source )

keV HHG and Sub femtosecond K-shell excitation.

( using IR (2.1m) Radiation Source )

Gilad MarcusThe Department of Applied Physics,

The Hebrew University, Jerusalem, Israel

Tel Aviv, 2-4, December 2013

Page 2: keV  HHG and Sub femtosecond K-shell excitation. (  using  IR (2.1  m) Radiation Source )

Acknowledgment

Xun Gu 1

Wolfram Helml 1

Yunpei Deng 1• Ferenc Krausz 1

• Reinhard Kienberger 1

• Robert Hartmann 2

• Takayoshi Kobayashi 3

• Lothar Strueder 4

1. Max Planck, Quantum Optic, Germany2. pnSensor GmbH, Germany3. University of Electro-Communications, Chofu, Tokyo,

Japan4. Max Planck, Extraterrestrial Physics, Germany

Page 3: keV  HHG and Sub femtosecond K-shell excitation. (  using  IR (2.1  m) Radiation Source )

• Currently, the photon energy of atto-second pulses is limited to ~150 eV ( l~8 nm).

Pushing the HHG toward the x-ray regime Shorter attosecond pulses Access to the water-window (300-500 eV) Time resolved spectroscopy of inner-shell processes X-ray diffraction imaging with a better resolution

Re-colliding electrons with higher energies Laser induced diffraction imaging with better resolution

Motivation for keV HHG

Page 4: keV  HHG and Sub femtosecond K-shell excitation. (  using  IR (2.1  m) Radiation Source )

Increasing the energy of the re-colliding electrons

I (PW/cm2) 0.15 0.5 1.0

λ (nm) 800 2100 800 2100 800 2100

Up (eV) 9.0 61.8 30 206 60 412

ħωmax (eV) 44 211 110 668 205 1321

2pU Il

By using a longer wavelengthwe can overcome the ionizationproblem

• Currently, the photon energy of atto-second pulses is limited to ~150 eV ( l~8 nm).

Page 5: keV  HHG and Sub femtosecond K-shell excitation. (  using  IR (2.1  m) Radiation Source )

The 2-cycles IR source

15 fsec740 µJ1 kHz

Self CEP Stabilization

nm

Page 6: keV  HHG and Sub femtosecond K-shell excitation. (  using  IR (2.1  m) Radiation Source )

OPA system output: Carrier wave-length: l=2.1mPulse duration: 15.7 fs (2 cycles)Pulse energy: 0.7 mJRep rate: 1000 Hz Automatically Carrier-envelope-phase-stabilized

wav

elen

gth,

nm

f-to-3f interferogram

2 cycles IR (2.1m) source

Long term (few hours) phase scanB.Bergues, et. al, New Journal of Physics 13, no. 6 ( 2011): 063010.

I. Znakovskaya, et al. PRL 108, no. 6 (2012): 063002.

Page 7: keV  HHG and Sub femtosecond K-shell excitation. (  using  IR (2.1  m) Radiation Source )

High Harmonic Generation

Page 8: keV  HHG and Sub femtosecond K-shell excitation. (  using  IR (2.1  m) Radiation Source )

THG FROG

compressor(bulk silicon)

Diagnostics for pulse compression measurement

THG FROG

focusing lens(CaF2, 250 mm)

High harmonic beam from N2

through 150nm Pd +500nm C

Ne/N2 gas target,pressure up to 3 bar!

PNCamera

keV high harmonics and K-shell excitation

Page 9: keV  HHG and Sub femtosecond K-shell excitation. (  using  IR (2.1  m) Radiation Source )

THG FROG

compressor(bulk silicon)

Diagnostics for pulse compression measurement

THG FROG

focusing lens(CaF2, 250 mm)

keV high harmonics and K-shell excitation

High harmonic beam from N2

through 150nm Pd +500nm C

Ne/N2 gas target,pressure up to 3 bar!

PNCamera

Page 10: keV  HHG and Sub femtosecond K-shell excitation. (  using  IR (2.1  m) Radiation Source )

Photon counting and photon’s energy resolving with the pnCCD

Two photons hittingtwo pixels.

The charge in each pixel is proportionalto the photon energy

Page 11: keV  HHG and Sub femtosecond K-shell excitation. (  using  IR (2.1  m) Radiation Source )

Photon counting and photon’s energy resolving with the pnCCD

Charge from one photons, spilled into neighboring pixels

Page 12: keV  HHG and Sub femtosecond K-shell excitation. (  using  IR (2.1  m) Radiation Source )

Photon counting and photon’s energy resolving with the pnCCD

Rejected as an error.Not a reasonable charge distribution

Cosmic ray trace

Page 13: keV  HHG and Sub femtosecond K-shell excitation. (  using  IR (2.1  m) Radiation Source )

keV high harmonics and K-shell excitation

500 1000 15000

10

20

30

40

50

60

photons energy [eV]

coun

ts /

bin

500 1000 15000

10

20

30

40

50

60

photons energy [eV]

coun

ts /

bin

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

tran

smis

sion

0

0.1

0.2

0.3

0.4 (b)(a)

500 1000 15000

10

20

30

40

50

60

photons energy [eV]

coun

ts /

bin

500 1000 15000

10

20

30

40

50

60

photons energy [eV]

coun

ts /

bin

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

tran

smis

sion

0

0.1

0.2

0.3

0.4 (b)(a)

High harmonics spectrum from a neon gas target through 500nm aluminum

Same spectrum through additional 500nm of vanadium (a) or iron (b)

Vanadium L-edge Iron L-edge

200 400 600 800 1000 1200 1400 1600 1800 2000 2200100

101

102

103

104

photons energy [eV]co

unt /

bin

HHG (Ne)T (3bar Ne)T (500nm Al)

10-3

10-2

10-1

100

tran

smis

sion

1.6 keVCut off

G. Marcus, et. al, PRL 108, 023201.

Page 14: keV  HHG and Sub femtosecond K-shell excitation. (  using  IR (2.1  m) Radiation Source )

Photon counting and photon’s energy resolving with the pnCCD

Two photons hittingtwo pixels.

The charge in each pixel is proportionalto the photon energy

Page 15: keV  HHG and Sub femtosecond K-shell excitation. (  using  IR (2.1  m) Radiation Source )

Photon counting and photon’s energy resolving with the pnCCD

Page 16: keV  HHG and Sub femtosecond K-shell excitation. (  using  IR (2.1  m) Radiation Source )

Real spectrum

Two pixels pseudo photons

Page 17: keV  HHG and Sub femtosecond K-shell excitation. (  using  IR (2.1  m) Radiation Source )

keV high harmonics and K-shell excitation

500 1000 15000

10

20

30

40

50

60

photons energy [eV]

coun

ts /

bin

500 1000 15000

10

20

30

40

50

60

photons energy [eV]

coun

ts /

bin

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

tran

smis

sion

0

0.1

0.2

0.3

0.4 (b)(a)

500 1000 15000

10

20

30

40

50

60

photons energy [eV]

coun

ts /

bin

500 1000 15000

10

20

30

40

50

60

photons energy [eV]

coun

ts /

bin

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

tran

smis

sion

0

0.1

0.2

0.3

0.4 (b)(a)

High harmonics spectrum from a neon gas target through 500nm aluminum

Same spectrum through additional 500nm of vanadium (a) or iron (b)

Vanadium L-edge Iron L-edge

200 400 600 800 1000 1200 1400 1600 1800 2000 2200100

101

102

103

104

photons energy [eV]co

unt /

bin

HHG (Ne)T (3bar Ne)T (500nm Al)

10-3

10-2

10-1

100

tran

smis

sion

1.6 keVCut off

G. Marcus, et. al, PRL 108, 023201.

Page 18: keV  HHG and Sub femtosecond K-shell excitation. (  using  IR (2.1  m) Radiation Source )

keV high harmonics and K-shell excitation

500 1000 150010

0

102

104

106

108

1010

Spectrum from Ne Target

photons energy [eV]

coun

ts /

bin

100 200 300 400 500 600

102

104

106

Spectrum from N2 Target

photons energy [eV]

coun

ts /

bin

Ne K-edge

NitrogenK-edge

Page 19: keV  HHG and Sub femtosecond K-shell excitation. (  using  IR (2.1  m) Radiation Source )

keV high harmonics and K-shell excitation

Enhanced peak at the K-edge

Better phase matching conditionsdue to the absorption lines

Inner shell excitation followed by x-ray emission

0.5 1 1.5

0

0.5

1

/0

Re(n)Im(n)

Page 20: keV  HHG and Sub femtosecond K-shell excitation. (  using  IR (2.1  m) Radiation Source )

keV high harmonics and K-shell excitation

Enhanced peak at the K-edge

Calculation shows: Plasmadispersion still dominate

Inner shell excitation followed by x-ray emission

0.5 1 1.5

0

0.5

1

/0

Re(n)Im(n)

Page 21: keV  HHG and Sub femtosecond K-shell excitation. (  using  IR (2.1  m) Radiation Source )

keV high harmonics and K-shell excitation

Enhanced peak at the K-edge

Inner shell excitation followed by x-ray fluorescence

Page 22: keV  HHG and Sub femtosecond K-shell excitation. (  using  IR (2.1  m) Radiation Source )

keV high harmonics and K-shell excitation

Enhanced peak at the K-edge

Inner shell excitation followed by x-ray fluorescence

2exdP ( ) / ( )i it D t dt =

2D

0exab

1 expSA P4

radav L

Aa

ub

ddt f L

=

0

rad Au

- in-elastic excitation cross sectionD - electron wave packed radius

- ionization rate- gas density

, - dacay rates (radiation , Auger)

Page 23: keV  HHG and Sub femtosecond K-shell excitation. (  using  IR (2.1  m) Radiation Source )

keV high harmonics and K-shell excitation

Enhanced peak at the K-edge

Inner shell excitation followed by x-ray fluorescence

2exP ( ) / ( )i it D t dt =

2D

0exab

1 expSA P4

radav L

Aa

ub

ddt f L

=

0 1 2 3 4

0

16

32

48

64

80

pressure [bar]

phot

on y

ield

0 1 2 3 40

20

40

60

80

100

120

140

160

180

pressure [bar]

phot

on y

ield

[cou

nts

/ sec

]

Page 24: keV  HHG and Sub femtosecond K-shell excitation. (  using  IR (2.1  m) Radiation Source )

keV high harmonics and K-shell excitation

Enhanced peak at the K-edge

Inner shell excitation followed by x-ray fluorescence

2exP ( ) / ( )i it D t dt =

2D

0exab

1 expSA P4

radav L

Aa

ub

ddt f L

=

0 1 2 3 4

0

16

32

48

64

80

pressure [bar]

phot

on y

ield

0 1 2 3 40

20

40

60

80

100

120

140

160

180

pressure [bar]

phot

on y

ield

[cou

nts

/ sec

]

Page 25: keV  HHG and Sub femtosecond K-shell excitation. (  using  IR (2.1  m) Radiation Source )

keV high harmonics and K-shell excitation

Enhanced peak at the K-edge

Inner shell excitation followed by x-ray fluorescence

x 0edP ( ) ( ) ( ) ( )i

i it

t t dt v v d

=

2D

eab

0xS 1 expA dP

4rad

av LA

abu

L df

=

0 1 2 3 4

0

16

32

48

64

80

pressure [bar]

phot

on y

ield

0 1 2 3 40

20

40

60

80

100

120

140

160

180

pressure [bar]

phot

on y

ield

[cou

nts

/ sec

]

0 0.5 1 1.5 2 2.5 3 3.5 40

50

100

150

pressure [bar]

phot

on y

ield

0 2 4

0

2

4

Page 26: keV  HHG and Sub femtosecond K-shell excitation. (  using  IR (2.1  m) Radiation Source )

keV high harmonics and K-shell excitation

Inner shell excitation followed by x-ray fluorescence

Page 27: keV  HHG and Sub femtosecond K-shell excitation. (  using  IR (2.1  m) Radiation Source )

Thank you