kadanoff-baym equations and baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · kadano -baym...

89
Kadanoff-Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Upload: others

Post on 20-Feb-2020

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Kadanoff-Baym Equations and Baryogenesis

Mathias Garny (DESY Hamburg)

KBE, Kiel, 13.10.11

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 2: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Nonequilibrium dynamics at high energy

Early universe

Reheating after Inflation

Dark matter freeze-out

Baryogenesis

. . .

Heavy Ion Collisions

LHC: ALICE

RHIC

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 3: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Outline

Matter-Antimatter asymmetry

Baryogenesis and Leptogenesis

Relativistic quantum kinetic theory for leptogenesis

Results in Marcovian and Thermal-bath limits

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 4: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Standard Model of Cosmology

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 5: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

No antimatter

Ratio of cosmic ray fluxes observed at Earth

Φ(anti-proton)

Φ(proton)∼ 10−5 − 10−3

kinetic energy [GeV]

­110 1 10 210

/pp

­610

­510

­410

­310

BESS 2000 (Y. Asaoka et al.)

BESS 1999 (Y. Asaoka et al.)

BESS­polar 2004 (K. Abe et al.)

CAPRICE 1994 (M. Boezio et al.)

CAPRICE 1998 (M. Boezio et al.)

HEAT­pbar 2000 (A. S. Beach et al.)

PAMELA

PAMELA Phys.Rev.Lett. 105 (2010) 121101

Antinuclei (e.g. anti-helium) < 10−6A. Alcaraz et al., Phys. Lett. B 461, 387 (1999)

Consistent with secondary production p + N → p + p + . . .

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 6: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

No antimatter

Galaxy: Antistars would accrete interstellar gas, leading toannihilation gamma-rays. Observations of discrete Galacticgamma-ray sources limit the fraction of antistars in the Galaxy to< 10−4

Galaxy clusters (106 − 107 lyr): annihilations would producehigh-energy gamma ray flux

N + N → π0, π± → γ Eγ & 100MeV

Non-observation yields a limit

anti-matter

matter. 10−6 − 10−9

G. Steigman JCAP 0810 (2008) 001

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 7: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

No antimatter

Particle physics: symmetry between particles and anti-particles(opposite charge, same mass, (almost) same interaction strength)

Paul Dirac (Nobel lecture 1933) proposed a symmetric universe(50% of the stars made out of anti-nuclei and positrons)

Why is there a matter/antimatter asymmetry?

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 8: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Matter-Antimatter asymmetry

Asymmetry parameter

η =nb − nb

nb = baryon density

nb = anti-baryon density

nγ = photon density

Consistent value inferred from Big Bang Nucleosynthesis (T ∼ keV) andthe cosmic microwave background (T ∼ eV)

η =nb − nb

nγ= (6.21± 0.16) · 10−10

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 9: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Matter-Antimatter asymmetry

(1) Initial baryon asymmetry after Big Bang

Problem:

Diluted by inflationWashed out by ∆B 6= 0 processes at high energy

(2) Dynamical creation: Baryogenesis

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 10: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Matter-Antimatter asymmetry

(1) Initial baryon asymmetry after Big Bang

Problem:

Diluted by inflationWashed out by ∆B 6= 0 processes at high energy

(2) Dynamical creation: Baryogenesis

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 11: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Matter-Antimatter asymmetry

(1) Initial baryon asymmetry after Big Bang

Problem:

Diluted by inflationWashed out by ∆B 6= 0 processes at high energy

(2) Dynamical creation: Baryogenesis

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 12: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Baryogenesis

Sakharov conditions Sakharov 1967

baryon number violation: 〈B〉 6= const.

C,CP violation: γ(i → f ) 6= γ(i → f )

deviation from thermal equilibrium: γ(i → f ) 6= γ(f → i)

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 13: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Baryogenesis within the Standard Model of particles ?

SU(3)c × SU(2)L × U(1)Y

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 14: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Baryogenesis within the Standard Model of particles ?

B-violation at quantum level t Hooft 76

∂µjµ =

g2

32π2Fµν F

µν

Exponentially suppressed for T < TEW ∼ 100GeV

Γproton ∝ e−16π2/g 2

= 10−165

Unsupressed for T > TEW (sphaleron) Klinkhamer, Manton 84; Kuzmin, Rubakov,

Shaposhnikov 85

∆B = ∆L

CP-violation in quark mixing

→ K 0/K 0 decay, Bd,s decay

Electroweak phase-transition: first-order for mH < 60− 80GeV

LEP limit mH > 114GeV ⇒ Third Sakharov condition is not fulfilled

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 15: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Baryogenesis

Baryogenesis in models beyond the Standard Model of particles

Electroweak baryogenesis

GUT baryogenesis

Affleck-Dine baryogenesis

Leptogenesis

. . .

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 16: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Motivation: Observation of massive neutrinos

Neutrino oscillation (νe ↔ νµ ↔ ντ )

m2ν1−m2

ν2= 7.6...8.6 · 10−5eV2

|m2ν1−m2

ν3| = 1.9...3 · 10−3eV2

Direct search (3H→3 He + e− + νe)

mνe < 2.2eV 95%C .L.

⇒ At least two massive neutrinos

⇒ Tiny mass

Standard Model: neutrinos massless

Superkamiokande

KATRIN (0.2eV)

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 17: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

SM + Right-handed neutrinos (νR)e,µ,τ

Neutrino masses

Majorana mass term

L = LSM−y νRh†`L−MR νRν

cR

See-saw mechanism

mνL' y2〈h〉2

MR' meV - eV

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 18: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

SM + Right-handed neutrinos (νR)e,µ,τ

↔ ↔

Neutrino masses

Majorana mass term

L = LSM−y νRh†`L−MR νRν

cR

See-saw mechanism

mνL' y2〈h〉2

MR' meV - eV

Matter-Antimatter asymmetry

B- via L-violation MR νRνcR

→ 0νββ: (A, Z)→ (A, Z + 2) + 2e−

(Gerda, Nemo, Exo, . . . )

CP-violation in ν-mixing→ ν-oscillation(Double Chooz, Daya Bay, . . . )

Expanding universe H = a/a

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 19: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Leptogenesis Fukugita, Yanagida

MνR,i→`L,αh† =yiα + . . .

MνR,i→`cL,αh =

y∗iα + . . .

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 20: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Leptogenesis Fukugita, Yanagida

MνR,i→`L,αh† =yiα +

y∗iβ

yjβ

yjα

+ . . .

MνR,i→`cL,αh =

y∗iα +yiβ

y∗jβ

y∗jα

+ . . .

Matter-antimatter (CP) asymmetry

⇔ interference of tree and loop processes

Γ(νR,i → `L,αh†)− Γ(νR,i → `cL,αh) ∼ Im(yiαyiβy∗jαy∗jβ) · Im

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 21: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Leptogenesis

B via L violation

νR,i → `h† νR,i → `ch

CP violation

εi =Γ(νR,i→`h†)−Γ(νR,i→`c h)Γ(νR,i→`h†)+Γ(νR,i→`c h)

∝ Im

(+

)

Deviation from equilibrium ?

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 22: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Leptogenesis

thermal plasma `, h, q,W ,Z , γ, gauge interactions ‘fast’

g4T � H ∼ T 2/Mpl

right-handed neutrinos νR,i ≡ Ni ‘slow’

ΓNi =(y†y)iiMNi

8π� g4T

. . . produced when T � MNi

. . . equilibrate if ΓNi e−MNi

/T > H

. . . decay when T < MNi and t > τNi

⇒ deviation from thermal equilibrium

K ≡ (ΓNi/H)|T =MNi

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 23: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Leptogenesis

thermal plasma `, h, q,W ,Z , γ, gauge interactions ‘fast’

g4T � H ∼ T 2/Mpl

right-handed neutrinos νR,i ≡ Ni ‘slow’

ΓNi =(y†y)iiMNi

8π� g4T

. . . produced when T � MNi

. . . equilibrate if ΓNi e−MNi

/T > H

. . . decay when T < MNi and t > τNi

⇒ deviation from thermal equilibrium

K ≡ (ΓNi/H)|T =MNi

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 24: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Leptogenesis

thermal plasma `, h, q,W ,Z , γ, gauge interactions ‘fast’

g4T � H ∼ T 2/Mpl

right-handed neutrinos νR,i ≡ Ni ‘slow’

ΓNi =(y†y)iiMNi

8π� g4T

. . . produced when T � MNi

. . . equilibrate if ΓNi e−MNi

/T > H

. . . decay when T < MNi and t > τNi

⇒ deviation from thermal equilibrium

K ≡ (ΓNi/H)|T =MNi

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 25: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Leptogenesis

10−2

10−2

10−1

10−1

100

100

101

101

102

102

10−11

10−11

10−9

10−9

10−7

10−7

10−5

10−5

10−3

10−3

10−1

10−1

101

101

z=M1/T

eq

zeq

NN1

|NB−L|

K=10−2

NN1

10−2

10−2

10−1

10−1

100

100

101

101

102

102

10−11

10−11

10−9

10−9

10−7

10−7

10−5

10−5

10−3

10−3

10−1

10−1

101

101

z=M1/T

eq

NN1

|NB−L|

K=100

NN1

zeq

Effective rate equations Buchmuller, Di Bari, Plumacher,. . .

dNNi

dt= −(Di + Si )(NNi − Neq

Ni)

dNB−L

dt=

i

εiDi (NNi − NeqNi

)

︸ ︷︷ ︸source term

− WNB−L

︸ ︷︷ ︸washout term

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 26: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Leptogenesis

final asymmetry

η =NB−L

Nγ= −3

4ε1κf

K

κf

[N1-dominated, D+ID, unflavoured] Buchmuller, Di Bari, Plumacher

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 27: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Leptogenesis

m1 (eV)

M1(G

eV)

[N1-dominated, D+ID, unflavoured] Buchmuller, Di Bari, Plumacher

lower bound on M1 Davidson, Ibarra

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 28: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Leptogenesis

10-4

10-3

10-2

10-1

100

m~1(eV)

108

109

1010

1011

1012

M1(G

eV)

MEG

PRISM/PRIME

Probing supersymmetric leptogenesis with µ→ eγ Ibarra, Simonetto 09

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 29: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Leptogenesis

Baryogenesis via Leptogenesis

CP violation in decay described by loop process

deviation from thermal equilibrium

Quantum nonequilibrium effects ?

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 30: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Kinetic theory: standard Boltzmann approach

NL(t) =

∫d3x√|g |∫

d3p

(2π)3

∑`

[f`(t, x, p)− f ¯(t, x, p)]

pµDµf`(t, x, p) =∑

i

∫dΠNi dΠh

× (2π)4δ(p` + ph − pNi )

×[|M|2Ni→`h† fNi (1− f`)(1 + fh) + . . .

− |M|2`h†→Nif`fh(1− fNi ) + . . .

]

fψ(t, x, p) : distribution function of on-shell particles

|M|2 : matrix elements computed in vacuum, off-shell effects

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 31: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Kinetic theory: standard Boltzmann approach

NL(t) =

∫d3x√|g |∫

d3p

(2π)3

∑`

[f`(t, x, p)− f ¯(t, x, p)]

pµDµf`(t, x, p) =∑

i

∫dΠNi dΠh

× (2π)4δ(p` + ph − pNi )

×[|M|2Ni→`h† fNi (1− f`)(1 + fh) + . . .

− |M|2`h†→Nif`fh(1− fNi ) + . . .

]

fψ(t, x, p) : distribution function of on-shell particles

|M|2 : matrix elements computed in vacuum, off-shell effects

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 32: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Corrections within Boltzmann framework

Bose-enhancement, Pauli-Blocking; kinetic (non-)equilibrium

quantum statistical factors 1± fknon-integrated Boltzmann equations

Hannsestad, Basbøll 06; Garayoa, Pastor, Pinto, Rius, Vives 09; Hahn-Woernle, Plumacher, Wong 09

Thermal corrections via thermal QFT

medium correction to CP-violating parameter ε = εvac + δεth

thermal masses, decay width

Covi, Rius, Roulet, Vissani 98; Giudice, Notari, Raidal, Riotto, Stumia 04; Besak, Bodeker 10

Kiessig, Thoma, Plumacher 10; . . .

Flavour effectsNardi, Nir, Roulet, Racker 06; Adaba, Davidson, Ibarra, Josse-Micheaux, Losada, Riotto 06; Blanchet,

diBari 06; . . .

Spectator processes, scatterings, N2, . . .

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 33: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Double Counting Problem

Naive contribution from decay/inverse decay

|M|2Ni→`h†= |M0|2(1 + εi ) |M|2`h†→Ni

= |M0|2(1− εi )

|M|2Ni→`c h = |M0|2(1− εi ) |M|2`c h→Ni= |M0|2(1 + εi )

dNB−L

dt∝ (|M|2Ni→`h† − |M|

2Ni→`c h)NNi

− (|M|2`h†→Ni− |M|2`c h→Ni

)NeqNi

∝ εi (NNi +NeqNi

)

⇒ spurious generation of asymmetry even in equilibrium

Origin: Double Counting Problem ↔ +

→ need real intermediate state subtraction

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 34: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Double Counting Problem

Naive contribution from decay/inverse decay

|M|2Ni→`h†= |M0|2(1 + εi ) |M|2`h†→Ni

= |M0|2(1− εi )

|M|2Ni→`c h = |M0|2(1− εi ) |M|2`c h→Ni= |M0|2(1 + εi )

dNB−L

dt∝ (|M|2Ni→`h† − |M|

2Ni→`c h)NNi

− (|M|2`h†→Ni− |M|2`c h→Ni

)NeqNi

∝ εi (NNi +NeqNi

)

⇒ spurious generation of asymmetry even in equilibrium

Origin: Double Counting Problem ↔ +

→ need real intermediate state subtraction

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 35: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Kinetic theory for leptogenesis

Goalderivation of kinetic equations starting from first principles

on-/off-shell treated in a unified way (avoid double-counting)

thermal medium corrections, . . . , resonant leptogenesis, coherent flavortransitions

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 36: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

CTP/Kadanoff-Baym approach and leptogenesis

Resolve double counting problems occuring in the Boltzmann approachassociated to real intermediate states Buchmuller, Fredenhagen 00, De Simone, Riotto 05,

MG, Kartavtsev, Hohenegger, Lindner 09,10, Beneke, Garbrecht, Herranen, Schwaller 10

Medium corrections to decay/inverse decay and scatteringsMG, Kartavtsev, Hohenegger Lindner 09,10; Beneke, Garbrecht, Herranen, Schwaller 10; Garbrecht 10

see also Bodecker, Besak, Anisimov 10; Kiessig, Thoma, Plumacher 10; Salvio Lodone Strumia 11

Finite width of lepton, Higgs, and non-equilibrium Majorana neutrinoevolution Anisimov, Buchmuller, Drewes, Mendizabal 08,10

Flavored leptogenesis: transition between flavored/unflavored regimesBeneke, Garbrecht, Fidler, Herranen 10

Systematic inclusion of higher-order effects (e.g. gradient corrections)MG, Kartavtsev, Hohenegger 10

Resonant leptogenesis

self-consistent resummation scheme for mixing particlesnon-equilibrium propagators for unstable/off-shell particlesinclusion of coherent N1—N2 flavor transitions (oscillations)

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 37: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Kinetic theory for leptogenesis

First Step: Bosonic toy model

L =1

2∂µNi∂

µNi + ∂µ`†∂µ`− 1

2Mi Ni Ni − yi Ni ``− y∗i Ni `

†`† − λ

4[`†`]2 + . . .

MNi→`` = + + + . . .

MNi→`†`† = + + + . . .

CP-violating parameter (vacuum, non-degenerate) xj = M2j /M

2i

εvaci =

Γ(Ni → ``)− Γ(Ni → `†`†)

Γ(Ni → ``) + Γ(Ni → `†`†)= −

∑j

|yj |28πM2

j

Im

(yi y∗j

y∗i yj

)[xj ln

(1 + xj

xj

)+

1

2(xj − 1)

]

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 38: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Kinetic theory for leptogenesis

Schwinger-Keldysh propagator: x , y ∈ C

D(x , y) = 〈TC`(x)`†(y)〉

Schwinger-Dyson equation

i(�x + m2)D(x , y) = δC(x − y) +

∫C

d4zΣ(x , z)D(z, y)

Integration over closed time path∫C d4z =

∫d4z+ −

∫d4z−

tinit ≤ z0 ≤ max(x0, y0)

Kadanoff-Baym equations

(�x + m2)D≷(x , y) = −i

∫ x0

tinit

d4z (Σ> − Σ<)(x , z)D≷(z, y)

+ i

∫ y0

tinit

d4z Σ≷(x , z)(D> − D<)(z, y)

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 39: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Kinetic theory for leptogenesis

B-L current

jµ(x) = 2i⟨

[Dµ`(x)] `†(x)− `(x)Dµ`†(x)⟩

= (nB−L,~jB−L)

dNB−L

dt=

∫d3x

√|g | Dµjµ

= 2i

∫d3x

√|g |⟨

[DµDµ`(x)] `†(x)− `(x)DµDµ`†(x)⟩

= 2i

∫d3x

√|g | �x [D>(x , y)− D>(y , x)]|x=y

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 40: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Kinetic theory for leptogenesis

B-L current

jµ(x) = 2i⟨

[Dµ`(x)] `†(x)− `(x)Dµ`†(x)⟩

= (nB−L,~jB−L)

dNB−L

dt=

∫d3x

√|g | Dµjµ

= 2i

∫d3x

√|g |⟨

[DµDµ`(x)] `†(x)− `(x)DµDµ`†(x)⟩

= 2i

∫d3x

√|g | �x [D>(x , y)− D>(y , x)]|x=y

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 41: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Kinetic theory for leptogenesis

B-L current

jµ(x) = 2i⟨

[Dµ`(x)] `†(x)− `(x)Dµ`†(x)⟩

= (nB−L,~jB−L)

dNB−L

dt=

∫d3x

√|g | Dµjµ

= 2i

∫d3x

√|g |⟨

[DµDµ`(x)] `†(x)− `(x)DµDµ`†(x)⟩

= 2i

∫d3x

√|g | �x [D>(x , y)− D>(y , x)]|x=y

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 42: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Kinetic theory for leptogenesis

dNB−L

dt= −

∫d3x

√|g |∫ t

tinit

d4z√|g |[Σ<(x , z)D>(z, x)− Σ>(x , z)D<(z, x)

+Σc<(x , z)Dc

>(z, x)− Σc>(x , z)Dc

<(z, x)]

x0=t

Σ≷(x , y) = + + . . .

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 43: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Kinetic theory for leptogenesis

N ↔ ``N ↔ `†`† |tree|2 tree × vertex-corr. tree × wave-corr.

``↔ `†`† s × t, s × u, t × u s × s, t × t, u × u

unified description of CP-violating decay, inverse decay, scattering

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 44: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Kinetic theory for leptogenesis

How to solve the equations?

Solve two-time equations numerically

Marcovian limit (zero-width limit, one-time)

Buchmuller, Fredenhagen 00

MG, Kartavtsev, Hohenegger, Lindner 09,10

Beneke, Garbrecht, Herranen, Schwaller 10

Thermal bath limit (finite-width, two-time, neglect back-reaction)

Anisimov, Buchmuller, Drewes, Mendizabal 08,10

MG, Kartavtsev, Hohenegger, 11

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 45: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Kinetic theory for leptogenesis

How to solve the equations?

Solve two-time equations numerically

Marcovian limit (zero-width limit, one-time)

Buchmuller, Fredenhagen 00

MG, Kartavtsev, Hohenegger, Lindner 09,10

Beneke, Garbrecht, Herranen, Schwaller 10

Thermal bath limit (finite-width, two-time, neglect back-reaction)

Anisimov, Buchmuller, Drewes, Mendizabal 08,10

MG, Kartavtsev, Hohenegger, 11

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 46: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Marcovian limit

Separation of fast/short and slow/large scales

∆xinteraction, λde−Broglie � λmfp, lhorizon

1/M, 1/T � 1/Γ, 1/y 2T , 1/H

Wigner transformation k ↔ s = x − y , X = (x + y)/2

D(X , k) =

∫d4s e iksD(X + s/2,X − s/2)

x

y

X

s

Gradient expansion ∂X∂k ∼ slowfast

∼ Γ,H,y2TM,T∫

d4z Σ(x , z)D(z , y)→ Σ(X , k)D(X , k) +i

2

(∂Σ∂X

∂D∂k− ∂Σ

∂k∂D∂X

)

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 47: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Marcovian limit

Separation of fast/short and slow/large scales

∆xinteraction, λde−Broglie � λmfp, lhorizon

1/M, 1/T � 1/Γ, 1/y 2T , 1/H

Wigner transformation k ↔ s = x − y , X = (x + y)/2

D(X , k) =

∫d4s e iksD(X + s/2,X − s/2)

x

y

X

s

Gradient expansion ∂X∂k ∼ slowfast

∼ Γ,H,y2TM,T∫

d4z Σ(x , z)D(z , y)→ Σ(X , k)D(X , k) +i

2

(∂Σ∂X

∂D∂k− ∂Σ

∂k∂D∂X

)

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 48: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Marcovian limit

Separation of fast/short and slow/large scales

∆xinteraction, λde−Broglie � λmfp, lhorizon

1/M, 1/T � 1/Γ, 1/y 2T , 1/H

Wigner transformation k ↔ s = x − y , X = (x + y)/2

D(X , k) =

∫d4s e iksD(X + s/2,X − s/2)

x

y

X

s

Gradient expansion ∂X∂k ∼ slowfast

∼ Γ,H,y2TM,T∫

d4z Σ(x , z)D(z , y)→ Σ(X , k)D(X , k) +i

2

(∂Σ∂X

∂D∂k− ∂Σ

∂k∂D∂X

)Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 49: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Marcovian limit

Marcovian evolution equation for NB−L

dNB−L

dt= −

∫d3X

√|g |∫

d4k

(2π)4

[Σ<(X , k)D>(X , k)− Σ>(X , k)D<(X , k)

+Σc<(X , k)Dc

>(X , k)− Σc>(X , k)Dc

<(X , k)]

In equilibrium: Kubo-Martin-Schwinger relations (β = 1/T )

Deq> = eβk0

Deq< Σeq

> = eβk0

Σeq<

⇒ vanishes automatically in equilibrium⇒ consistent equations free of double-counting problems

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 50: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Marcovian limit

Marcovian evolution equation for NB−L

dNB−L

dt= −

∫d3X

√|g |∫

d4k

(2π)4

[Σ<(X , k)D>(X , k)− Σ>(X , k)D<(X , k)

+Σc<(X , k)Dc

>(X , k)− Σc>(X , k)Dc

<(X , k)]

In equilibrium: Kubo-Martin-Schwinger relations (β = 1/T )

Deq> = eβk0

Deq< Σeq

> = eβk0

Σeq<

⇒ vanishes automatically in equilibrium⇒ consistent equations free of double-counting problems

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 51: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Quantum corrections

dNB−L

dt∝ Dµjµ ≈ 2 |y1|2

∫dΠpdΠk dΠq Θ(p0)(2π)4δ(k − p − q)

×(

DN1> (X , k)D`

<(X , p)Dh<(X , q)− DN1

< (X , k)D`>(X , p)Dh

>(X , q))

× ε1(X , k, p, q)

εvertexi (X , k, p, q) =

∑j

|yj |2Im

(yi y∗j

y∗i yj

)∫dΠk1

dΠk2dΠk3

× (2π)4δ(p + k1 + k2)(2π)4δ(k2 − k3 + q)

× [D`ρ(X , k1)Dh

F (X , k2)DNj

h (X , k3) + {k1 ↔ k2}

+ D`h (X , k1)Dh

F (X , k2)DNjρ (X , k3) + {k1 ↔ k2}

+ D`ρ(X , k1)Dh

h (X , k2)DNj

F (X , k3)− {k1 ↔ k2}]

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 52: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Quantum corrections

dNB−L

dt∝ Dµjµ ≈ 2 |y1|2

∫dΠpdΠk dΠq Θ(p0)(2π)4δ(k − p − q)

×(

DN1> (X , k)D`

<(X , p)Dh<(X , q)− DN1

< (X , k)D`>(X , p)Dh

>(X , q))

× ε1(X , k, p, q)

εvertexi (X , k, p, q) =

∑j

|yj |2Im

(yi y∗j

y∗i yj

)∫dΠk1

dΠk2dΠk3

× (2π)4δ(p + k1 + k2)(2π)4δ(k2 − k3 + q)

× [D`ρ(X , k1)Dh

F (X , k2)DNj

h (X , k3) + {k1 ↔ k2}

+ D`h (X , k1)Dh

F (X , k2)DNjρ (X , k3) + {k1 ↔ k2}

+ D`ρ(X , k1)Dh

h (X , k2)DNj

F (X , k3)− {k1 ↔ k2}]Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 53: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Quantum corrections to the CP-violation parameter ε

SM+3νR MG, Kartavtsev, Hohenegger, Lindner 2010

ε(k,T )

εvac

M1/T

〈ǫ1〉 /ǫvac1

UR NR

ǫth1 /ǫvac1 , N1→φℓ˙

ǫth1¸

/ǫvac1 , N1→φℓ˙

ǫth,conv1

¸

/ǫvac1 , N1→φℓ

1

10

0.1 1 10

Bose enhancement of the vertex/self-energy one-loop diagram

larger than previously considered thermal QFT result (black dashed line)

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 54: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Kinetic theory for leptogenesis

How to solve the equations?

Solve two-time equations numerically

Marcovian limit (zero-width limit, one-time)

Buchmuller, Fredenhagen 00

MG, Kartavtsev, Hohenegger, Lindner 09,10

Beneke, Garbrecht, Herranen, Schwaller 10

Thermal bath limit (finite-width, two-time, neglect back-reaction)

Anisimov, Buchmuller, Drewes, Mendizabal 08,10

MG, Kartavtsev, Hohenegger, 11

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 55: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Motivation: resonant enhancement

Efficiency of leptogenesis depends on CP-violating parameter, which is one-loopsuppressed

εNi =Γ(Ni → `φ†)− Γ(Ni → `cφ)

Γ(Ni → `φ†) + Γ(Ni → `cφ)∝ Im

+

Self-energy (or ‘wave’) contribution to CP-violating parameter features aresonant enhancement for a quasi-degenerate spectrum M1 ' M2 � M3

εwaveNi

=Im[(h†h)2

12]

8π(h†h)ii× M1M2

M22 −M2

1

Flanz Paschos Sarkar 94/96; Covi Roulet Vissani 96;

On-shell initial N1: p2 = M21 Internal N2: i

p2−M22

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 56: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Motivation: resonant enhancement

Efficiency of leptogenesis depends on CP-violating parameter, which is one-loopsuppressed

εNi =Γ(Ni → `φ†)− Γ(Ni → `cφ)

Γ(Ni → `φ†) + Γ(Ni → `cφ)∝ Im

+

Self-energy (or ‘wave’) contribution to CP-violating parameter features aresonant enhancement for a quasi-degenerate spectrum M1 ' M2 � M3

εwaveNi

=Im[(h†h)2

12]

8π(h†h)ii× M1M2

M22 −M2

1

Flanz Paschos Sarkar 94/96; Covi Roulet Vissani 96;

On-shell initial N1: p2 = M21 Internal N2: i

p2−M22

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 57: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Motivation: resonant enhancement

The enhancement is limited by the finite width of N1 and N2

Off-shell initial N1: p2 = M21 + iM1Γ1 Internal N2: i

p2−M22−iM2Γ2

In the maximal resonant case the spectral functions overlap

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

ρ(k 0

)/ρ m

ax

k0/m

Γ Γ

∆m

⇒ Need to go beyond the quasi-particle approximation which underlies theconventional semi-classical Boltzmann approach.

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 58: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Motivation: resonant enhancement

The enhancement is limited by the finite width of N1 and N2

Off-shell initial N1: p2 = M21 + iM1Γ1 Internal N2: i

p2−M22−iM2Γ2

In the maximal resonant case the spectral functions overlap

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

ρ(k 0

)/ρ m

ax

k0/m

Γ Γ

∆m

⇒ Need to go beyond the quasi-particle approximation which underlies theconventional semi-classical Boltzmann approach.

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 59: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Thermal bath limit

Self-energies for leptons and for Majorana neutrinos

�N

φ�ℓ

φ�ℓ

φ︸ ︷︷ ︸Σ`

αβ(x , y) =∂iΓ2

∂S`βα(y , x)

︸ ︷︷ ︸ΣN

ij (x , y) =∂iΓ2

∂S ji (y , x)

Idea: treat the medium of Standard Model particles as a thermal bath to whichthe right-handed neutrinos are weakly coupled

neglecting back-reaction ⇒ linearized KBEs ⇒ analytical solution

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 60: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Thermal bath limit

Analytical solution in the hierarchical case M1 � M2

Anisimov, Buchmuller, Drewes, Mendizabal 08,10 Phys.Rev.Lett. 104 (2010) 121102

SN,A(∆t) =

(iγ0 cos(ω∆t) +

M − ~p~γω

sin(ω∆t)

)e−Γ|∆t|/2

SN,F (t,∆t) = −(iγ0 cos(ω∆t)− M − ~p~γ

ωsin(ω∆t)

)×[ tanh(βω

2)

2e−Γ|∆t|/2︸ ︷︷ ︸

EquilibriumDamped w.r.t ∆t

− δfN (ω)e−Γt︸ ︷︷ ︸Non-equilibrium

Undamped w.r.t ∆t

]

∆t = x0 − y 0, t = (x0 + y 0)/2

SA = i(S> − S<)/2, SF = (S> + S<)/2

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 61: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Thermal bath limit

Cross-check with a full numerical solution of the two-time KBEs (for φ4-theory)Garbrecht, MG 2011

0.01

0.1

-30 -20 -10 0 10 20 30

relative time ∆t [1/mth]

|k| = 2.96mth

t = 17.5/mth

∆Fϕ (t,∆t,k)

∆Aϕ (t,∆t,k)

Statistical propagator ∆Fϕ = (∆>

ϕ + ∆<ϕ )/2 (red) and spectral function

∆Aϕ = i2(∆>

ϕ −∆<ϕ ) (blue) obtained from a numerical solution of the KBEs .

Dependence on the relative time ∆t for fixed central time t.

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 62: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Thermal bath limit

Garbrecht, MG 2011

0.01

0.1

-30 -20 -10 0 10 20 30

relative time ∆t [1/mth]

|k| = 3.0mth

t = 17.5/mth

∆Fϕ (t,∆t,k)

∆Aϕ (t,∆t,k)

Excited momentum mode |k| = 3.0mth. The statistical propagator

∆Fϕ = (∆>

ϕ + ∆<ϕ )/2 can be described by the sum of an exponentially damped

equilibrium contribution and an undamped non-equilibrium contribution.

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 63: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Thermal bath limit

Evolution of damped and un-damped components with the central time tGarbrecht, MG 2011

0.001

0.01

0.1

1

10

0 5 10 15 20 25 30 35 40 45

a(t)[1/m

th]

central time t [1/mth]

aundamped

adamped

δf(k) e−Γkt/ωk

(1 + 2fBE)/(2ωk)

∆Fϕ,fit ≡ (adamped (t)e−Γk |∆t|/2 + aundamped (t)) cos(ωk ∆t)

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 64: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Thermal bath limit

Where does it come from?

∆<,>ϕ (x0, y 0) = −

∞∫t0

dw 0

∞∫t0

dz0 ∆Rϕ(x0,w 0)Π<,>ϕ (w 0, z0)∆A

ϕ(z0, y 0)

+∆Rϕ(x0, t0)[∂x0∂y0 ∆<,>

ϕ (t0, t0)]∆Aϕ(t0, y

0)

+∆Rϕ(x0, t0)[∂y0 ∆<,>

ϕ (t0, t0)]∆Aϕ(t0, y

0)

+ ∆Rϕ(x0, t0)[∂x0 ∆<,>

ϕ (t0, t0)]∆Aϕ(t0, y

0)

+∆Rϕ(x0, t0)[∆<,>

ϕ (t0, t0)]∆Aϕ(t0, y

0)

For a thermal bath and in Breit-Wigner approximation

∆R,A(x0, y 0) ' ±Θ(±(x0 − y 0))e−Γϕ|x0−y0|/2 sin(ωϕ(x0 − y 0))

ωϕ

Then, one finds (finite t0):

i∆<,>ϕ (x0, y 0) = i∆<,>

ϕ,th (x0 − y 0) +1

ωϕcos[ωϕ(x0 − y 0)]e−Γϕ(x0+y0)/2δf (k)

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 65: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Thermal bath limit

Formulated in Wigner space:

i∆<,>ϕ (k, t) =i∆st<,>

ϕ (k) + δfϕ(k)2πδ(k2 −m2ϕ − ΠH

ϕ)e−Γϕ(k)t

Equilibrium contribution

i∆st<ϕ (k) = f eq(k)i∆Aϕ (k)

i∆st>ϕ (k) = (1 + f eq(k))i∆Aϕ (k)

with finite width

i∆Aϕ (k) =2ΠAϕ

(k2 −m2ϕ − ΠH

ϕ)2 + ΠAϕ2

Non-equilibrium contribution with zero-width?

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 66: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Thermal bath limit

KB Equation in Wigner space[k2 − 1

4∂2

t + ik0∂t −m2ϕ

]∆<,>ϕ − e−i�{ΠH

ϕ}{∆<,>ϕ } − e−i�{Π<,>ϕ }{∆H

ϕ}(1)

=1

2e−i� ({Π>ϕ }{∆<

ϕ } − {Π<ϕ }{∆>ϕ })

�{A}{B} =1

2(∂xA) (∂kB)− 1

2(∂kA) (∂xB) , (2)

Problem: k-derivatives hitting the on-shell delta function in ∆<,>ϕ are

unsuppressed ⇒ gradient expansion breaks down

Idea: resummation of gradients

e−i�{Π>ϕ }{∆<ϕ } = Π>ϕ∆<

ϕ,eff

Result

i∆<ϕ,eff (k) = (f eq(k) + δf (k))i∆Aϕ (k)

i∆>ϕ,eff (k) = (1 + f eq(k) + δf (k))i∆Aϕ (k)

⇒ recover KB Ansatz effectively

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 67: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Comparison KB – Boltzmann in resonant leptogenesis

0

0.2

0.4

0.6

0.8

1

0.1 1 10

t [1/Γ1]

nL(t,p)/nBoltzmannL (t = ∞,p)

Boltzmann

KB M2 = 1.5M1

KB M2 = 1.1M1

KB M2 = 1.025M1

KB M2 = 1.005M1

MG, Hohenegger, Kartavtsev; work in progress

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 68: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Comparison KB – Boltzmann in resonant leptogenesis

1

10

100

0.001 0.01 0.1 1

R

(M22 −M2

1 )/M21

RKBmax

RBoltzmannmaxRBoltzmannmax

M1Γ1+

M2Γ2

|M1Γ1−

M2Γ2|

RBoltzmann

RKB(t = ∞)

RKB(t = 1/Γ1)

RKB(t = 0.25/Γ1)

Γ2/Γ1 = 1.5

RBoltzmannmax = M1M2/(2|Γ1M1 − Γ2M2|), RKB

max = M1M2/(2(Γ1M1 + Γ2M2))

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 69: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Conclusions

↔ ↔

Neutrino oscillationsmν ∼ meV− eVseesaw-mechanism

SM + 3νR

Matter-antimatter asym.(nb − nb)/nγ ∼ 10−10

leptogenesis

Baryogenesis via leptogenesis is a non-equilibrium, quantum process

Closed-time-path approach can resolve double-counting issues of standardBoltzmann approach

Resonant leptogenesis: finite width + non-equilibrium⇒ Kadanoff-Baym in thermal bath limit

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 70: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Conclusions

↔ ↔

Neutrino oscillationsmν ∼ meV− eVseesaw-mechanism

SM + 3νR

Matter-antimatter asym.(nb − nb)/nγ ∼ 10−10

leptogenesis

Baryogenesis via leptogenesis is a non-equilibrium, quantum process

Closed-time-path approach can resolve double-counting issues of standardBoltzmann approach

Resonant leptogenesis: finite width + non-equilibrium⇒ Kadanoff-Baym in thermal bath limit

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 71: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Thermal initial correlations: 2PI

Closed time path C with αn

Feynman rules

−iλ∫C α3 α4 α5 α6 . . .

Example

Thermal time path C + I

Feynman rules

−iλ∫C −iλ

∫I

Example

Challenge

Encapsulate integrations over I into initial correlations αthn

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 72: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Thermal initial correlations: 2PI

Closed time path C with αn

Feynman rules

−iλ∫C α3 α4 α5 α6 . . .

Example

Thermal time path C + I

Feynman rules

−iλ∫C −iλ

∫I

Example

Challenge

Encapsulate integrations over I into initial correlations αthn

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 73: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Thermal initial correlations: 2PI

Closed time path C with αn

Feynman rules

−iλ∫C α3 α4 α5 α6 . . .

Example

Thermal time path C + I

Feynman rules

−iλ∫C −iλ

∫I

Example

Challenge

Encapsulate integrations over I into initial correlations αthn

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 74: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Thermal initial correlations

Thermal time path C + ISelf-consistent Schwinger-Dyson equation

G−1th (x , y) = G−1

0,th(x , y)− Πth(x , y) ⇔

(�x + m2)Gth(x , y) = −iδC+I(x − y)− i

∫C+I

d4zΠth(x , z)Gth(z, y)︸ ︷︷ ︸

Closed time path C with initial correlations αKadanoff-Baym equation for a Non-Gaussian initial state

(�x + m2)G(x , y) = −iδC(x − y)

− i

∫C

d4z [ΠGauss (x , z) + Πnon−Gauss (x , z)] G(z, y)

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 75: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Thermal initial correlations: 2PI

Thermal 2PI propagator connecting real and imaginary times

Gth(−iτ , t) = =

“Connection” MG, Muller (2009)

=

︸ ︷︷ ︸∝ δC(t − 0±)

+

Important: Same 2PI truncation for Matsubara and real-time propagators

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 76: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Thermal initial correlations: 2PIExample: 2PI three-loop truncation (〈Φ〉 = 0)

= +

Iterative Solution:

= +

+ + +

+ . . .

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 77: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Thermal initial correlations: 2PIExample: 2PI three-loop truncation (〈Φ〉 = 0)

= +

Iterative Solution:

= +

+ + +

+ . . .

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 78: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Thermal initial correlations: 2PIExample: 2PI three-loop truncation (〈Φ〉 = 0)

= +

Iterative Solution:

= +

+

+ +

+ . . .

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 79: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Thermal initial correlations: 2PIExample: 2PI three-loop truncation (〈Φ〉 = 0)

= +

Iterative Solution:

= +

+ + +

+ . . .

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 80: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Thermal initial correlations: 2PIExample: 2PI three-loop truncation (〈Φ〉 = 0)

= +

= ︸ ︷︷ ︸ΠGauss

+

︸ ︷︷ ︸ΠNon−Gauss

Non-Gaussian self-energy contains αthn (x1, . . . , xn) for all n ≥ 4

Πnon−Gauss (x , z) = + +

+ + + . . .

MG, Muller (09)

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 81: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Thermal initial correlations: 2PIExample: 2PI three-loop truncation (〈Φ〉 = 0)

= +

= ︸ ︷︷ ︸ΠGauss

+

︸ ︷︷ ︸ΠNon−Gauss

Non-Gaussian self-energy contains αthn (x1, . . . , xn) for all n ≥ 4

Πnon−Gauss (x , z) = + +

+ + + . . .

MG, Muller (09)

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 82: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Thermal initial correlations: 2PI

Thermal correlation energy (computed at initial time):

E eqcorr (t = 0) =

i

4

∫C

d4z [ΠGauss (x , z) + Πnon−Gauss (x , z)] G(z, x)

∣∣∣∣x=0

=

∣∣∣∣x=0

+

∣∣∣∣x=0

+

∣∣∣∣x=0︸ ︷︷ ︸

x0∫0

dz0 → 0

︸ ︷︷ ︸x0∫0

dz0 → 0

=

∣∣∣∣x=0

= E eq4−p. corr (t = 0)

...only the thermal 4-point correlation contributes

⇒ truncate initial correlations with n > 4

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 83: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Leading non-Gaussian correction for λΦ4 2PI 3-loop

Gaussian IC

G(x , y)|x0,y0=0 = Gth(x , y)|x0,y0=0

α4(x1, . . . , x4) = 0

αn(x1, . . . , xn) = 0 for n > 4

Non-Gaussian IC with αth4

G(x , y)|x0,y0=0 = Gth(x , y)|x0,y0=0

α4(x1, . . . , x4) = αth4 (x1, . . . , x4)

αn(x1, . . . , xn) = 0 for n > 4

Truncate thermal initial correlations

⇒ nonequilibrium initial states

The upper states are ‘as thermal as possible’

Expectation: Non-Gaussian state closer to equilibrium

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 84: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Leading non-Gaussian correction for λΦ4 2PI 3-loop

0.3

0.4

0.5

0.6

0.7

0.8

0.01 0.1 1 10 100

GF(t

,t,k)

t mR

k = 0

k = mR

k = 2mR

500 1000 1500 2000t mR

KB, Gauss (A)

KB, Non-Gauss (B)

ThQFT

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 85: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Leading non-Gaussian correction for λΦ4 2PI 3-loop

0.95

1

1.05

0 1 2 3 4 5 6 7GF(t

,t,k)

/GF(0

,0,k

)

k/mR

t mR = 2000

0.95

1

1.05

GF(t

,t,k)

/GF(0

,0,k

)

t mR = 10

0.95

1

1.05

GF(t

,t,k)

/GF(0

,0,k

)

t mR = 0.5

0.95

1

1.05

GF(t

,t,k)

/GF(0

,0,k

)

t mR = 0.0 KB, Gauss

0.95

1

1.05

GF(t

,t,k)

/Gth

(k)

t mR = 2.0

0 1 2 3 4 5 6 7

0.95

1

1.05

k/mR

t mR = 2000

0.95

1

1.05t mR = 10

0.95

1

1.05t mR = 0.5

0.95

1

1.05t mR = 0.0 KB, Non-Gauss

0.95

1

1.05t mR = 2.0

all modes remain close to equilibrium

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 86: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Leading non-Gaussian correction for λΦ4 2PI 3-loop

-0.3-0.2-0.1

0 0.1 0.2 0.3 0.4

0.01 0.1 1 10 100

µ/m

R

t mR

2

2.1

2.2

2.3T

/mR

500 1000 1500 2000t mR

KB, Gauss (A)

KB, Non-Gauss (B)

Thermal Eq.

︸ ︷︷ ︸build-up

︸ ︷︷ ︸kinetic -

︸ ︷︷ ︸chemical equilibration

correlated system ∆T ' 0

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 87: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Leading non-Gaussian correction for λΦ4 2PI 3-loop

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 1 2 3 4 5

Eco

rr(t

,k)

t [m-1R]

kmax=7mR

Correlation energy (Gaussian part)

Contribution from initial 4-point correlation

Sum

⇒ particles in initial state are ‘well-dressed’

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 88: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Leading non-Gaussian correction for λΦ4 2PI 3-loop

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 1 2 3 4 5

Eco

rr(t

,k)

t [m-1R]

kmax=7mR

kmax=10mR

kmax=7mR

kmax=5mR

Correlation energy (Gaussian part)

Contribution from initial 4-point correlation

Sum

⇒ particles in initial state are ‘well-dressed’

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis

Page 89: Kadanoff-Baym Equations and Baryogenesisbonitz/kbe11/talk_mgarny_kbe2011.pdf · Kadano -Baym Equations and Baryogenesis Mathias Garny (DESY Hamburg) KBE, Kiel, 13.10.11 Mathias Garny

Leading non-Gaussian correction for λΦ4 2PI 3-loop

0.9 1

1.1 1.2

0 1 2 3 4 5 6 7

GF(t

,t,k)

/Gth

(k)

k/mR

t mR = 2000

0.9 1

1.1 1.2

GF(t

,t,k)

/Gth

(k)

t mR = 10

0.9 1

1.1 1.2

GF(t

,t,k)

/Gth

(k)

t mR = 0.5

0.9 1

1.1 1.2

GF(t

,t,k)

/Gth

(k)

t mR = 0.0 KB, Gauss

0.9 1

1.1 1.2

GF(t

,t,k)

/Gth

(k)

t mR = 2.0

0 1 2 3 4 5 6 7

0.9 1 1.1 1.2

k/mR

t mR = 2000

0.9 1 1.1 1.2

t mR = 10

0.9 1 1.1 1.2

t mR = 0.5

0.9 1 1.1 1.2

t mR = 0.0 KB, Non-Gauss

0.9 1 1.1 1.2

t mR = 2.0

UV modes are not excited

⇒ suppresses unwanted back-reaction on IR modes

Mathias Garny (DESY Hamburg) Kadanoff-Baym Equations and Baryogenesis