june 22, 2017 measurement of soil carbon stocks

13
1 June 22, 2017 Measurement of soil carbon stocks Ben Ellert and Charles Rice 1) Agriculture and Agri-Food Canada 2) Department of Agronomy, Kansas State University Soil versus non-soil Since the dawn of agricultural science, humans have been interested in measuring soil carbon. This typically involved collecting a soil sample from the field and analyzing the carbon content in the laboratory. The lateral and vertical variability of soils requires that the sampling locations, sampling depths, and even the sampling time are taken into consideration. To preserve the soil organic carbon at the time of sampling, soils typically are air dried to curtail biological activity. Even within the soil sample, the heterogeneous distribution of soil requires some form of processing before analyses can be repeated with confidence. The standard method of processing soil samples is to pass them through a sieve with 2 mm openings. The material that passes through the sieve is regarded as soil, while that which does not often is regarded as non- soil. The non-soil consists of stones or solid mineral fragments larger than 2 mm, but it invariably contains roots as well. Too often the non-soil has been merely discarded as something irrelevant to the study of soil science, but as will become apparent, the non-soil components often need to be taken into account when estimating the ecosystem quantities of C and other nutrients. Below-ground plant carbon Once the soil sample is removed to the laboratory, careful consideration must be taken not only on the physical dimensions of the sample but also on the nature of the materials (both soil and “non-soil”) contained within it. Seldom discussed is the extent to which plant roots should be included in the soil sample. Many regard roots that fail to pass the 2 mm cut-off as non-soil and exclude the larger materials, some attempt to exclude most root and surface plant residues from soil samples, while some of us cut and shred the larger pieces of organic matter so that it might pass the 2 mm sieve and thus included with the soil. Root carbon and above-ground plant residues on the soil surface are the most problematic pools to quantify in terrestrial carbon cycles. The size of the soil organic C (SOC) pool in terrestrial ecosystems usually is expressed as the SOC mass per unit area to a specified depth or mass of soil. The balance between SOC inputs (ultimately from plants) and outputs (decomposition of SOC back to CO 2 emitted from the soil) determines SOC stock or pool size. Measuring plant C inputs from the above-ground is straight-forward relative to those from below-ground (mainly roots, but also rhizomes and other plant structures formed below the soil surface). Below-ground plant C inputs and some portion of above-ground residues on the soil surface invariably are collected with soil samples. Often the larger and most obvious portion of these constituents are simply discarded, other times these constituents are carefully removed from and excluded from the SOC pool, and some argue that these

Upload: others

Post on 28-May-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: June 22, 2017 Measurement of soil carbon stocks

1

June22,2017

Measurementofsoilcarbonstocks

BenEllertandCharlesRice

1) AgricultureandAgri-FoodCanada2) DepartmentofAgronomy,KansasStateUniversity

Soilversusnon-soil

Sincethedawnofagriculturalscience,humanshavebeeninterestedinmeasuringsoilcarbon.Thistypicallyinvolvedcollectingasoilsamplefromthefieldandanalyzingthecarboncontentinthelaboratory.Thelateralandverticalvariabilityofsoilsrequiresthatthesamplinglocations,samplingdepths,andeventhesamplingtimearetakenintoconsideration.Topreservethesoilorganiccarbonatthetimeofsampling,soilstypicallyareairdriedtocurtailbiologicalactivity.Evenwithinthesoilsample,theheterogeneousdistributionofsoilrequiressomeformofprocessingbeforeanalysescanberepeatedwithconfidence.Thestandardmethodofprocessingsoilsamplesistopassthemthroughasievewith2mmopenings.Thematerialthatpassesthroughthesieveisregardedassoil,whilethatwhichdoesnotoftenisregardedasnon-soil.Thenon-soilconsistsofstonesorsolidmineralfragmentslargerthan2mm,butitinvariablycontainsrootsaswell.Toooftenthenon-soilhasbeenmerelydiscardedassomethingirrelevanttothestudyofsoilscience,butaswillbecomeapparent,thenon-soilcomponentsoftenneedtobetakenintoaccountwhenestimatingtheecosystemquantitiesofCandothernutrients.

Below-groundplantcarbon

Oncethesoilsampleisremovedtothelaboratory,carefulconsiderationmustbetakennotonlyonthephysicaldimensionsofthesamplebutalsoonthenatureofthematerials(bothsoiland“non-soil”)containedwithinit.Seldomdiscussedistheextenttowhichplantrootsshouldbeincludedinthesoilsample.Manyregardrootsthatfailtopassthe2mmcut-offasnon-soilandexcludethelargermaterials,someattempttoexcludemostrootandsurfaceplantresiduesfromsoilsamples,whilesomeofuscutandshredthelargerpiecesoforganicmattersothatitmightpassthe2mmsieveandthusincludedwiththesoil.Rootcarbonandabove-groundplantresiduesonthesoilsurfacearethemostproblematicpoolstoquantifyinterrestrialcarboncycles.ThesizeofthesoilorganicC(SOC)poolinterrestrialecosystemsusuallyisexpressedastheSOCmassperunitareatoaspecifieddepthormassofsoil.ThebalancebetweenSOCinputs(ultimatelyfromplants)andoutputs(decompositionofSOCbacktoCO2emittedfromthesoil)determinesSOCstockorpoolsize.MeasuringplantCinputsfromtheabove-groundisstraight-forwardrelativetothosefrombelow-ground(mainlyroots,butalsorhizomesandotherplantstructuresformedbelowthesoilsurface).Below-groundplantCinputsandsomeportionofabove-groundresiduesonthesoilsurfaceinvariablyarecollectedwithsoilsamples.Oftenthelargerandmostobviousportionoftheseconstituentsaresimplydiscarded,othertimestheseconstituentsarecarefullyremovedfromandexcludedfromtheSOCpool,andsomearguethatthese

Page 2: June 22, 2017 Measurement of soil carbon stocks

2

shouldbeincludedwiththesoilsample.Whilesuchconstituentstypicallyaccountforlessthan20%oftheSOCpool,theyusuallyarethefractionthatismostsensitivetolanduseandmanagement.Wesuggest,therefore,thatthesecomponentsshouldeitherbequantifiedasaseparatepoolorincludedinthe>2mmsoilsample.Thebelow-groundplantCinputsandsoilsurfaceresidues(onlypresentinsoilsamplesfromtheupper-mostsoillayer)mustnotbediscardedinahaphazardfashionbecausetheyareacriticalanddynamicpartoftheterrestrialCstock.

Oncesoilsampleshavebeenremovedfromthefield,air-driedandcrushedtopass2mm,theyarefundamentallydistinctfromthesoilsintheiroriginalnaturalstate.Theliquidphasehasbeenlargelyeliminated,thegasphasehasbeenhomogenizedandlargelydissociatedfrombiologicalactivity,andthestructuralarrangementofthesoilparticleshasbeenextensivelydisrupted.Whatisregardedassoil,especiallythearrayoforganicconstituentsincludedassoil,isoperationally-definedbythesampleprocessingprocedures.Methodsthatseektoseparatemacro-organicmatterfromthesoilmustbeuniformlyandquantitativelyimposeacrossallsamples,recognizingthatbelow-groundplantCinputsmayencompasscoarserootsaswellasfinerootletsandrootexudates(nowdriedontothesoilparticles)andevenmycorrhizalhyphae.Againthedistinctionrarelyisclear-cut,andsofractionssuchasmacro-organicmatter,aredefinedbytheproceduresusedtoisolatethemfromthesoil.Oftenitmaybepreferabletoincludemacro-organicmatterwiththe<2mmsoilsample,butinmanysettings,itisinappropriatetosimplydiscardthematerial.Beforesoilsamplesmaybeanalyzedtodeterminechemicalcomposition,theymustbeprocessed(dryingandsieving,atminimum).Sinceprocessedsoilsamplesoftenbearlittleresemblancetothenaturalsoilprofileorpedonfromwhichtheywereobtained,itiscriticaltoaccountforchangesduringprocessingsoilthatanalyticaldatamaybeplacedbackintothecontextofthepedon.

Soilorganiccarbonversusorganicmatter(SOCvsSOM)

Soilorganicmatterreferstothenon-mineralportionofthesoil,whereassoilorganicCreferstocarbonatomsthatarepresentwithinorganicmolecules.Organicmatterconsistsofadiversityofmolecules,rangingfromsimpleorganicanionslikeacetatethroughtolargehetero-polymersknownashumicsubstances.ConfusionpersistsregardingthedistinctionbetweenSOMandSOC,andmanyfarmersandextensionpersonnelstillseemtorefertoSOM,eventhoughanalysesofitarearchaic.Conceptually,thereisnothingfundamentallyerroneousaboutSOManddiscussinghowitmightbemanagedandhowitmightinfluenceecosystemfunction.Analytically,however,soilorganicmatterisdifficulttoassessreliably,andmostassaysaredefinedbythemethodusedratherthanthesubstancesoughttobeassessed.SOMtypicallyisdeterminedviawetoxidationwherebysoilismixedwithanacidicsolutionofpotassiumdichromate(K2Cr2O7).Overtheyearsadiversityofoxidationconditions(>2mmor>0.25mmsoilparticles;withorwithoutheating)andassayshavebeenusedtoestimatethemassfractionofSOMinthealiquotofsoiltakenfortheassay.Oftentheamountofunreacteddichromatewasdeterminedbyredoxtitration,suchthattheamountofoxidantremainingwasinverselyproportionalSOMcontent.CorrectionfactorstoaccountforincompleteoxidationofSOMusuallywererequired.Notonlyisthisanalyticalapproachempirical,withoxidantconsumptionequatedtoSOM(despitethecommonoccurrenceofothersoilconstituentsthatconsumetheoxidant),butitalsogenerateschromium-ladenwastes(includinghexavalentchromium)thatareknowntobetoxic.Althoughdeficienciesinwet

Page 3: June 22, 2017 Measurement of soil carbon stocks

3

oxidationmethodsforSOMwerenotedasearlyas1930byEnglishresearchers(WalkleyandBlack1934),andhavebeenacknowledgedrepeatedly(e.g.Chatterjeeetal.2009),suchmethodscontinuetoberegardedassimpleandinexpensivetoperform.

ThecontinueduseofwetoxidationmethodsbysoiltestinglabslikelycontributetothepersistencereferencetoSOM.ProducersandextensionagentsoftenaremorefamiliarwithSOMcontentsthanwithcorrespondingSOCcontents.MorecarefulconsiderationsofhowmanagementmightinfluenceSOMsoonraisequestionsaboutthedifferencesinthechemicalnatureandmolecularstructureofSOMrelativetotheplantmaterialsenteringthesoil.Comparedtorecentlydepositedplantresidues(roots,stems,leaves,chaff,flowers,seedcoats,etc.)amajorityofSOMhasbeenmodifiedbysoilbiologicalprocessesandchemicalinteractionswithsoilminerals.Toconstructcarbonbudgetstocomparesoilinputsandoutputswiththeamountpresent,thecarbonatomisconvenientlyadoptedasthecommondenominator.BecausetheSOCconcentrationandstockprovideusefulinsightstoCcyclingandinterpretationsofmanagementeffects,SOCoftenisestimatedasSOM÷1.724.ThelatterfactoroftenisreferredtoasthevonBemmelenfactorafteraGermanchemistwhoin1890assertedthatSOMcontained58%C.Ofcourse,therecanbenosingleconversionfactortoenableastraight-forwardinterconversionbetweenSOCandSOMbecauseSOMisvariableandheterogeneous.Relativetothefirsthalfofthe20thcentury,nowthereisamuchgreaterappreciationfortheassociationandevenorgano-mineralcomplexationbetweenmineralandorganicsoilparticles.IsolatingSOMfrommineralsoilstypicallyinvolvessomechemicalalterationofit,sodataontheelementalcompositionofSOMisolatedfrommineralsoilarerare.Anevensimplerbutrelatedproblemistheelementalcompositionofplantrootsbecauseelementalanalysesofrootsamplesfrommineralsoilsindicatethattherootorganicmatterhasbeendilutedbymineralparticles

Soilcarbonanalysis

ContemporarymethodsofsoilCanalysisinvolverequiringtheuseofautomatedcombustionanalyzersthatconvertcarbontoCO2whichsubsequentlyisanalyzed.ManyoftheseanalyzersalsodeterminetotalsoilNaswellviaautomationoftheDumasmethod,namedforJeanBaptisteAndreDumas,aFrenchChemistworkinginthemid-1800s.ThehightemperaturesrequiredforcompletecombustionororganicmatterandthermaldecompositionofcarbonatesalsoconvertsoilNtogaseousoxides,whichsubsequentlyarereducedtoN2bypassingthroughreducedcoppergrainsinaheattube.TheabilitytoreliablydeterminebothCandNcontentsinasingleanalysisisveryusefulbecausetheresultingC/Nratioprovidesvaluableinformationofthechemicalnatureofthesecrucialelements,aswellasimportantchecksonanalyticalperformance.MostoftheseinstrumentscanbeconfiguredtodetermineCandNatmuchgreaterconcentrationsthanthoseencounteredinmineralsoils,andsotheymayalsobeusedforanalyzingplantandanimaltissues,andotherorganicmaterials.MostcontemporaryCNanalyzersareequippedwithanautomatedsamplerwhichpermitsunattendedanalysesofsamplesetsthatmayvaryinsizefrom30to300individualsamples.Mostoftheanalyzersusepuregases,suchasHe,O2,N2orAr,typicallysuppliedfromcompressedgascylindersorgasgenerators.ThepuregasesareessentialtoflushawayambientCO2andespeciallyN2inthebackgroundatmosphere,andO2oftenisrequiredtoensurecompletecombustionoforganicmaterialstoCO2.Whenoperatingproperly,theanalyzershouldconvertallsoilCtoCO2,regardlesswhetheritispresentasorganicmatter,charor

Page 4: June 22, 2017 Measurement of soil carbon stocks

4

inorganiccarbonate.In2016thecostsofsuchanalyzerstypicallylieintherangeof$50,000to$150,000USD,dependingonconfiguration.Theanalyzersvaryconsiderablyinthesamplesizetypicallyrequiredforasingleanalysis(5to5000mgmineralsoil),incombustionprocess(tubeorientation,reagents/catalysts,temperatures,ashremoval,etc.),intheapproachesusedtoseparatethecombustiongases,andfinallyintheanalyticalprincipleusedtoquantifytheamountofCO2orN2inthecombustiongases.

AutomatedsoilCNanalyzersmeasuretotalcarbonandtotalnitrogenconcentrationoriginallypresentinthesoilsampleandleavebehindnon-combustibleashinthecombustiontubeorsamplecrucible/boat.Manysoilscontainappreciableamountsofcarbonate,sometimesatthesurface,butofteninthesub-surfacelayers.SoilcarbonateorinorganicCisfundamentallydistinctfromSOC,asitissubjecttoformationanddissolutionbyabioticprocesses,albeitwithconsiderableinfluenceofbiologicalprocesses.Usuallythetime-scaleassociatedwithchangesinsoilinorganicCareconsiderablylonger(100sto1000sofyearsormore),thanwithchangesinSOC(10sto100sofyears).Ofcourse,soilinorganicCmaychangerapidlyinresponsetoapplicationofagriculturallimetomanagesoilacidity,ortoothercarbonate-richamendments,includingcarbonate-richirrigationwater.Ongeologicaltimescales,precipitationanddissolutionprocessesdominatethecirculationofcarbonamongthelithosphere,hydrosphere,andatmosphere.Onthetimescaletypicallyassociatedwithanthropogeniclandmanagement,theprimaryfocustendstobeonSOCratherthaninorganicC.Consequently,itisimportanttoanalyticallydistinguishsoilinorganiccarbonfromSOCortotalsoilC.Wetoxidationtechniquesareunreliable,astheyrarelyrecoveralloftheSOC.OnlyslightlybetteraredualcombustiontemperatureapproachesthatattempttoexploitthefactthatmanycarbonatemineralsremainstableattemperaturesabovethoseatwhichSOCcombuststoCO2.Dualcombustiontechniquescannotbeimplementedonanalyzersthatemploydynamicflashcombustionbecausehightemperatures(1000°Candabove)andexothermicreactionstypicallyexceedthethermalstabilityofcarbonates.Thefundamentalproblemwiththedualtemperatureapproachesisthatsoilchemistryismessy,andratherthanbeingpresentassomewell-definedcrystalstructure,soilcarbonateisco-precipitatedwithanarrayofotherelements,andthestructurerangesfromcrystallinetoamorphous.Consequently,soilcarbonatemaydecomposeatlowertemperaturesthanwell-orderedminerals.Conversely,SOCmaybeoccludedorprotectedfromcombustionbycloseassociationwithmineralsurfaces,suchthatgreatertemperaturesarerequiredforcombustionthattypicallyexpectedfornon-complexedSOC.

SoilinorganicCmaybeeliminatedfromsoilsamplesbyacidificationbeforedirectautomatedcombustionanalysisofSOCpersistingafteracidification,orinorganicCmaybedetermineddirectlyasCO2produceduponacidificationofthesoil,andSOCthenmaybedeterminedastotalminusinorganicC.FullyautomatedinstrumentationspecificallydesignedfordeterminingsoilinorganicCisuncommon(withtheexceptionofthosesoldbyUICInc.inJolietILUSA).Manyreliabletechniques(includingmanualapparatus)fordeterminingsoilinorganicCareavailable,anddetectionofevolvedCO2oftenhasbeenautomatedthroughtheuseofnon-dispersiveinfraredgasanalyzersorgaschromatographs,andrelatedmodesofdetection.Variousacids(H2SO3,H3PO4,HCl)andassortedacidificationprocedureshavebeenusedtoeliminatesoilinorganicCbeforeusinganautomatedCNanalyzertodeterminetotalCwhichisequivalenttoSOC,providedinorganicChasbeeneliminatedsuccessfully.Potentially

Page 5: June 22, 2017 Measurement of soil carbon stocks

5

confoundingeffectsofimproperacidificationproceduresisthesolubilisationandsubsequentlossoforganicC(e.g.causedbywashingorrinsingthesamplewithaqueousacid)andbyweightchangesassociatedwithacidificationreactions.Stoichiometrically,forexample,thereactionbetweencalciumcarbonateandHClwillliberateCO2,theresultingCaCl2willhaveagreatermassthanthecarbonateitreplaced.Togetaroundtheseissues,insteadofacidifyingabulksoilsample,manyanalystsperformasmall-scaleacidificationofonlythealiquotofsoiltobeintroducedtotheautomatedCNanalyzer.Inthisway,themassoftheoriginalnon-acidifiedsampleisusedinthecalculationofSOCconcentration,andanymasschangescausedbyacidificationareimmaterialbecausetheseoccuraftertheoriginalmassisrecorded.ManyanalystsuseHCl,asafteracidificationanyexcesscanbeeliminatedbygentleheatinginavacuumoven,andsolubilisationisanon-issuebecausethesampleisdriedbeforeanalysiswithoutrinsingorwashingthatmightremovesolubilizedSOC.

Soilsamplecollection

Soilsamplecollectionisthemostcriticalaspectofmeasuringsoilcarbonstock.ThemostsophisticatedinstrumentproducingthemostaccurateandprecisedeterminationsofsoilcarbonconcentrationinthelaboratoryislikelytoprovidequestionableandevenmisleadingassessmentsofSOCstockifthesoilshavenotbesampledproperly.AssortedapproachestoevaluateSOCinsitu,withoutcollectingsamplesandanalyzingtheminalaboratoryarebeinginvestigated,butthestandardreferenceapproach,forallbutthemostcomplexsetting,involvescollectingsoilsamplesinthefieldandreturningthemtothelaboratoryforprocessing,preparation,andanalysis.Soilsarehighlyvariableinspace,andthesizeormorespecifically,theareacapturedinthesoilsampleoftenissmallrelativetotheextentofthepedonorsoilmanagementunit.Inevitablyandjustifiably,spatialvariabilitycombinedwiththesmallareacapturedbysoilsamplingleadstoconcernsabouthowwellthesamplerepresentstheareaofinterest.Whentheprimarygoalistomeasurethetemporalchangeinsoilcarbonstorage,contributionsfromspatialvariabilityareevenmoreconcerning.Astrategyofsimplificationmaybeadoptedtolessentheinfluenceofspatialvariabilityontemporalchangesinsoilcarbonstocks.Inthisinstance,thescopeisnarrowedtofocusontemporalchangesatamicrosite(e.g.anareaof10to15m2).SufficientmicrositesmustbesampledtoprovideestimatesofthedispersioninmeasuredSOCstocksaboutthemean.Withinanindividualmicrosite,however,itisassumedthatspatialvariabilityislessimportantthantemporalchanges.

Itiscrucialthattheinvestigatorisfullyawareofwhatisbeingmeasured.Thesoilsamplingapproachdiscussedherefocussesontheeffectsofbiologicalprocesses,namelythebalancebetweenplantCinputsandheterotrophicdecomposition.Insomelandscapes,SOCstocksalsoareinfluencedbygeomorphologicalprocessesorthebalancebetweensoildepositionandsoilremovalbyerosion.Theapproachpresentedhereisthesimplestcasewhereerosionanddepositionmaybenegligible.QuantifyingchangesinSOCstocksinlandscapeswithappreciabledepositionorerosionrequiresmoreinvolvedtechniquesappliedatthelandscapeorcatchmentsscale,andarebeyondthescopeofthisdiscussion.FailuretorecognizethecomplexityofgeomorphologicalprocessesinfluencingSOCstocksinerosionanddepositionallandscapeshascontributedmuchconfusiontoassessmentsofland-atmosphereCexchange.ThebiggesterrorstendtobeassociatedwithinadequateconsiderationofthefateofSOCinerodedsoil.UsuallyitisassumedtoberapidlydecomposedbacktoatmosphericCO2,

Page 6: June 22, 2017 Measurement of soil carbon stocks

6

whereasmorecarefulassessmentsoftensuggestasizablefractionofSOCbecomesstabilizedindepositedsoiland/orsediment,andthattherateofSOCaccumulationatrecentlyerodedsitesmayexceedthepre-erosionalrateofaccumulation.ThemicrositeapproachdiscussedherewillmeasuretemporalchangesinSOCatsiteswhereerosionanddepositionarenegligible.Theapproachisalsoapplicabletorareinstanceswheretherateofsoildepositionorerosionatthesiteispreciselyknown.

Soilsamplesmustbecollectedinsuchamannerthattheanalyticalconcentrationsdeterminedforahighlyprocessedsub-samplecombustedinautomatedanalyzersmaybeplacedbackintothecontextofthefield.Todothis,soilsamplesmustbecollectedfromawell-definedareaandacarefullymeasureddepthincrement.Theareaanddepthincrementdefinethevolumesampled,andthesoilweightperunitvolumetypicallyiscalledsoilbulkdensity.TheSOCstockiscalculatedastheproductofsoilbulkdensity,layerthickness,andSOCconcentration.Forexample,iftheSOCconcentrationis2%or20kgSOCMg-1soilfora15cmthicksoillayerwithabulkdensityof1.4Mgm-3,theSOCstockmaybecalculatedas:

!"$%&'()*%+,-.

×0.15𝑚× ).!*%+,-.)56 = 8.9$%&'(

5:

InvestigatorsusuallyrecognizetherelevanceofsoilthicknesstoestimatingSOCstocks,butmaynotfullyappreciatehowdifficultitmaybetoaccuratelymeasurethicknessinthefield,orthatsimpleestimateofsoilthicknessrarelyprovidequantitativeinsighttosoilerosion.SimplecalculationslikethatgivenabovealsohavealertedinvestigatorstotheimportanceofmeasuringsoilbulkdensitytoestimateSOCstocks.Unfortunately,thisawarenesssometimeselicitscomplicatedandindependentmethodstomeasureinsitusoilbulkdensitythatmightberelevanttocharacterizesoilphysicalprocesseslikewaterinfiltrationorgasdiffusion.ForthepurposeofestimatingSOCstocks,bulkdensitymeasurementsdonothavetobecomplicated,butthemeasurementsshouldbedeterminedfortheverysamesamplescollectedtodetermineSOCconcentrations.

Inpractice,mechanically-drivensoilcoringequipmentprovidesthemostefficientmeansofcollectingsamplesfordeterminingSOCstocksinagroecosystems.Thecrosssectionalareaoftheinsidediameterofthesoilcoretubebitdefinestheareaofsoilbeingcollected.Dependingonthesetting,acorediameterof5to10cmprovidesforanadequatevisualassessmentofsoilcharacteristics,andmanageableamountofsoilforprocessinginthelaboratory.Inthefield,thecoretubecontainingthesoilisremovedfromthehydraulicapparatususedtoinsertthetubeandwithdrawthesoilcore,thetubeisplacedinanhorizontalorientation,andthesoilcoreiscarefullypushedfromthetubeandcutintoappropriatedepthincrements.Asitispushedfromthesamplingtube,thesoilcoreisinspectedforbreakage,excessivecompaction,adhesiontothecoretubewalls,channelscarvedbystonesorwoodyplantmaterials,etc.Theendofthecoretubemaybeusedasacuttingguidetoimprovetheaccuracyofthicknessmeasurements.Thecoremaycrumbleasitistransferredintotraysorbagsforsubsequentprocessing,buttheoriginalvolumemustbewell-definedandpreciselyknown.Thedrymassofsoilandanystones(>2mm)willbedeterminedinthelaboratory,andthestone-freedrymassperunitvolume(bulkdensity)willbeusedtoestimateSOCstocks.Therecommendeddepthofsoilsamplingshouldbeadjustedtocomplywithstudyobjectivesandenvironmentalsetting,buttypicallywillbebetween40and120cm,withincrementsof15cmorsmaller.Ideally,allincrementsforaparticularsamplingpoint

Page 7: June 22, 2017 Measurement of soil carbon stocks

7

willbedrawnfromthesamecoreorcores.Sometimestwoorthreecoresmaybecombinedforasinglesamplingpoint,therebyincreasingtheareasampledandlesseningthepotentialeffectsofspatialvariability.Theimportantaspectisthatbulkdensityisdeterminedforthecoresactuallycollectedandthattheentirelayersamplediscollectedinacontiguousfashion(i.e.layerssectionedcarefullysothatnoincrementisexcluded).

Theconfigurationofsoilsamplingpointswithinamicrositemayvarydependingonthedesirednumberofcoressampledfromwithineachmicrosite,andthenumberoftimesthemicrocosmwillbesampled.Forexample,witha4x7mrectangularareasixinitialsamplesmightbecollectedalongtworowsat2mintervals.Atsomesubsequentsamplingtime(say5to10yearslater)sixadditionalcoresarecollected,butthesewillbeoffsetby1mbutinterspersedwiththecorescollectedinitially.Topreciselymarkthelocationswheretheinitialcoreswerecollected,electromagneticmarkers,suchasthoseusedbyurbanutilitycompaniesmaybeburiedwellbelowthedepthoftillage.Tominimizemicrositedisturbance,andespeciallyburialoftopsoilfromwithinthemicrosite,theholesleftbytheinitialsamplingshouldberefilledwithcorescollectedfromsomedistance(perhaps10m)outsideofthemicrocosm.ThesixcoresmaybecombinedsothemeanSOCstockmightbeestimatedfortheinitialsamplingtimesateachmicrocosm,andsothatanalyticalresourcesmaybedevotedtosamplingagreaternumberofmicrocosmswithinthefieldorsoilmanagementunit.Inpractice,carefulsamplingisexpensive,andinvestigatorsmayanalyzeSOCstocksforeachcorewithinthemicrosite.

Soilsampleprocessingandpreservation

Soilcoringequipmentusuallyworksbestinslightlymoist,butnotwetorverydryconditions.OntheCanadianPrairies,ourpreferredtimeofsoilsamplingisinthefallaftersoilmoisturehasbeendepletedandthecrophasbeenharvested.Thesoilsamplesareinafieldmoistcondition,inmostyearsambienthumidityisconducivetoair-dryingasameanstoslowmicrobialtransformationsandpreservethesoilsample.Soonafterthesoilsamplesaretransferredfromthefieldtothedryingroom,thetotalwetweightisrecordedandthecoresarecrumbledtoobtainrepresentativesub-samplestodeterminefieldmoisturecontent(bydryingasub-sampleat105°C;subsequentlydiscarded)andtoretainasampleatfieldmoisturecontentifrequiredformicrobialanalyses(preservedbyrefrigerationorfreezing).Typically,bulksamplesaredriedinAlfoiltrays(re-usable,withinlimits),andsamplesarestirredonadailybasistoacceleratedryingatambienttemperature(20°C).

Soilstypicallyarecrushedtopassasievewith2mmaperturestoseparatesoilfromthestones.Asdiscussedabove,procedurestohandlecoarsefragmentsofplanttissues,especiallyinsoilsfromthesurfacelayermustbedefinedattheoutset.Werecommendagainstarbitrarydistinctionsbetweensoilandnon-soilC,andinstead,prefertoretainallmaterialscollectedinthesoilcoreatsampling.Somelabscontinuetouseperforated(2mmroundholes)drummillssimilartotheRukuhiagrinderdescribedbyWatersandSweetman(195?).Themineralsoilaggregatesandwellasamajorityoftheplantmaterialiscrushedtoparticlessmallerthan2mm.

SincemostautomatedCNanalyzerstypicallycombusta5to500mgaliquotofmineralsoiltorepresentanentiresamplethatmayweightontheorderof1kg(evenmoreifsamplesarecomposited),fine-

Page 8: June 22, 2017 Measurement of soil carbon stocks

8

grindingisessential.FinegrindingmustreduceparticlesizetoensuretheSOCandtotalNishomogenouslydistributed,andthatthesmallaliquotintroducedtotheanalyzerrepresentstheentiresample.Ageneralguidelineisthatarepresentativesubsampleiscollectedfromthe2mmmaterial,andcrushedtopassaNo.60or100meshsievewithopeningsof250or150um.Representativesub-samplingandcarefulfine-grindingisessentialtoobtainreliableresults,andsometestingofsub-samplingvariabilitytoprobessourcesandamountsofsamplingvariabilitymaybeinstructive.Thesizeofthesub-sampleandconsequentlytheamountgroundmayvarywithavailablegrindingproceduresandequipment.Forexample,forhighvolumeprojectsweoftenusearollermillinwhicha7gsub-sampleislefttotumblefor18hoursinmetalcanisterscontainingmetalbarstoeffectpulverization.Thismillcangrindmorethan100samplessimultaneously,butthe7gsub-samplemustrepresenttheentiresample.Forsomeprojectsweuseavibratory‘dishringandpuckmill’,similartothoseusedtocrushoresamplesformetalanalyses.Dependingondishsize,sub-samplesof70gormorearepulverizedtoafinepowderyconsistency,sosub-samplingtendstobelessproblematic.Samplethroughput,however,isreducedandlaborrequirementsareincreased,becausesamplesmustbegroundoneatatime.Inmanycasesthe2mmsoilinthecatchtrayfortheperforateddrummillmaybethoroughlymixedandrandomscoopstakentocollectarepresentativesub-sample.Inothercasestheconeandquarteringtechniqueormanualriffledividersmaybeusedtoobtainrepresentativesub-samples.Sincethesamplemayhavetogothroughsuchaprocessmultipletimestoobtainamanageablesub-sample,suchproceduresmaybecomecostly,dustyanderror-prone.Intheseinstancessomesortofmechanicalsampledivider,suchasarotatingtubesub-sampler,maybeusedtocreateaflowingstreamofdrysoilsothatrepresentativeandunbiasedsubsamplesmaybeobtainedfromit.

Soilanalysis

Afterfinegrinding,soilsareretainedinsamplevialsorevenhigh-gradepapercoinenvelopes.Despiteasmallriskofcontributionsfromthepaperfiber,suchenvelopesareinexpensive,easytolabel,exposealargesurfaceareatodryingorequilibrationtoambienthumidity,andmostimportantarelesspronetothebuild-upofstaticchargewhichotherwisemaythwarttheaccuracyofmicro-analyticalweighing.AnalysesoftotalCandNarecalibratedusingpureorganicchemicals(e.g.acetanilide,glutamine,EDTA),matrixrelevantreferencematerials(e.g.soils,sediments,ores)developedin-houseorpurchasedfromcommercialsuppliers,orreferencematerialswithconcentrationsassignedbyrecognizedgovernmentagenciesorcertificationbodies(e.g.agenciesresponsibleforchemicalmetrology).

CalculationoftemporalchangeinSOCstocks

Assumingthatsampling,processingandanalysisofthesoilsampleshasbeendonecorrectly,andfurtherassumingthestone-freesoilbulkdensitiesattheinitialandsubsequentsampletimeareidentical,SOCstocksforsuccessivesoilthicknessesorvolumesmaybecalculatedsimplyastheproductofSOCconcentration,layerthicknessandbulkdensity,asdescribedpreviously.Inpractice,however,bulkdensitiesvaryamongmicrocosms,andespeciallybetweensoilsamplingtimes.Oftensoilmanagementofenvironmentalconditionswillbedissimilaratinitialandsubsequentsamplingtimes.TheanalyticalconcentrationsofCandNdeterminedforthesoilmustbeplacedbackintothefield

Page 9: June 22, 2017 Measurement of soil carbon stocks

9

contexttoassesswhetherappreciablechangesinSOCstockshaveoccurred.ManyinvestigatorsfailtorecognizetheinterdependenceofsoilmassandSOCmass,butgreaterbulkdensitiesforthesamesoilthicknessmeansagreatersoilmass,andthiswilltendtoinflateSOCstock.Insomesettings,theremaybegoodreasons(e.g.basedonsoilprofilemorphology)tovarythethicknessesofthesoillayerssampled,butthiswillfurtheraccentuatedifferencesinthemassesofsoilbeingcompared.

Toavoiderrorsassociatedwithcomparingunequalsoilmassesinsettingswheresoilredistributionisnegligible,thethicknessesofsoilbeingcomparedareadjustedtoattainanequivalentsoilmass.Theapproachdoesnothavetobecomplicated,butsomeinvestigatorsinitiallyfinditunsettlingtocompareSOCstocksinunequalsoilvolumesorthicknesses.Theequivalentsoilmassapproachsimplyadherestothepremiseofmassconservation,andadjustssoilthicknesssothatsoilmassisequivalent.Someassumptionsareinherentinthisapproach,becausethethicknessesofthesoillayersbeingcomparedmaynotexactlycoincidewiththosesampled,butinpracticetherequiredinterpolationsusuallyarepalatable,andtheuncertaintiesaboutSOCconcentrationsdiminishasdeeperlayersareconsideredwherevariationswithdepthtendtobesmall.

Page 10: June 22, 2017 Measurement of soil carbon stocks

10

Page 11: June 22, 2017 Measurement of soil carbon stocks

11

Modelofadissolvedorganicmattermoleculeorhumicsubstance.Colorcodesforatomtypesareasfollows:carbon(cyan),hydrogen(white),oxygen(pink),nitrogen(blue),andsulfur(yellow).from:SchultenH-R(1999)Analyticalpyrolysisandcomputationalchemistryofaquatichumicsubstancesanddissolvedorganicmatter.J.Anal.Appl.Pyrolysis49(1):385–415.

Page 12: June 22, 2017 Measurement of soil carbon stocks

12

Page 13: June 22, 2017 Measurement of soil carbon stocks

13

References

Bemmelen,J.W.Van.1890.DieZusammensetzungdesMeeresschlicksindenneuenAlluviendesZuidersee(Niederlande),In:DieLandwirtschaftlichenVersuchs-Stationen.Chemnitz,Bd.37,S.239

Chatterjee,A.,R.Lal,L.Wielopolski,M.Z.MartinandM.H.Ebinger.2009.Evaluationofdifferentsoilcarbondeterminationmethods.CriticalReviewsinPlantScience28:164–178.

Heanes,D.L.1984.Determinationoftotalorganic-Cinsoilsbyanimprovedchromicaciddigestionandspectrophotometricprocedure.Commun.SoilSci.PlantAnal.15:1191–1213.

Walkley,A.;Black,I.A.1934.AnexaminationoftheDegtjareffmethodfordeterminingsoilorganicmatter,andaproposedmodificationofthechromicacidtitrationmethod.SoilScience37:29-38.