jonathan p. dowlingbaton.phys.lsu.edu/~jdowling/talks/tulane07.pdf · • fiber and free space q....

43
QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling Quantum Science & Technologies Group Hearne Institute for Theoretical Physics Louisiana State University Tulane University, 25 April 2007 quantum.phys.lsu.edu * JP Dowling & GJ Milburn, Phil. Trans. Roy. Soc. Lond. A 361 (2003) 1–20 (quant-ph/0206091)

Upload: others

Post on 19-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

QUANTUM TECHNOLOGIES:THE SECOND QUANTUM REVOLUTION*

Jonathan P. DowlingQuantum Science & Technologies Group Hearne Institute for Theoretical Physics

Louisiana State University

Tulane University, 25 April 2007

 quantum.phys.lsu.edu

* JP Dowling & GJ Milburn, Phil. Trans. Roy. Soc. Lond. A 361 (2003) 1–20 (quant-ph/0206091)

Page 2: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

Nano-Technology Quantum Technology

"There's Plenty of Room at the Bottom.”— Richard Feynman

{1010010100101101}

"There's Plenty MORE Room In HilbertSpace!" — JPD

A 16 bit register stores 16bits at a time.

A 16 QUBIT register “stores”216 bits at a time!

|1010010100101101>

Page 3: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

Quantum Sciences—The First Revolution

1900s Planck Blackbody Law1920s Quantum Mechanics Completed

1920s Relativistic Quantum Mechanics1920s Dirac Quantizes E&M Field

1930s Bloch’s Theory of Solid State1940s Quantum Electrodynamics

1950s Nuclear Magnetic Resonance1950s Masers and Atomic Clocks

1950s Theory of Superconductivity 1960s Invention of the Laser

1980s Laser Cooling of Atoms and Ions1990s Bose-Einstein Condensates

Page 4: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

Quantum Technology—The Second Revolution:Harnessing Entanglement and Coherent Quantum Systems

1970s Optical Tests of Bell’s Inequalities1980s Quantum Cryptography (QKD) Invented

1980s Quantum Computing Invented 1994 QKD Demonstrated over 10km Fiber

1994 Factoring Algorithm Discovered1994 Ekert’s Talk on Factoring Algorithm at ICAP

1994-95 NIST & DoD Workshops on QC1995 DoD Funding for QC Comes Online

1996 Quantum Error Correction—QC Scalable!1997 XOR in Ion Traps and Cavity QED

1998 Kane Scheme for QC in Semiconductors1999 Nakamura Observes Rabi Oscillations in SQUIDs

2000 Four-Fold Entanglement in Ion Trap2001 Scalable Linear Optical Quantum Computing

2002 Clark Constructs Four-Qubit Kane Prototype Mockup2003 Nakamura Entangles a SQUID Pair

Page 5: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

Schrödinger’s Cat Revisited

Page 6: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting
Page 7: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

Paradox? What Paradox!?

(1.) The State of the Cat is “Entangled” with That of the Atom.

(2.) The Cat is in a Simultaneous Superposition of Dead & Alive.

(3.) Observers are Required to “Collapse” the Cat to Dead or Alive

Page 8: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

Quantum Entanglement

“Quantum entanglement is the characteristic trait ofquantum mechanics, the one that enforces its entiredeparture from classical lines of thought.”

— Erwin Schrödinger

Page 9: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

Einstein, Podolsky, Rosen (EPR) Paradox

AlbertEinstein

Boris Podolsky

“If, without in any way disturbing a system, we canpredict with certainty ... the value of a physicalquantity, then there exists an element of physicalreality corresponding to this physical quantity."

Nathan Rosen

Page 10: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

Hidden Variable Theory

+A B A B

Can the Spooky, Action-at-a-distance Predictions(Entanglement) of Quantum Mechanics…

+A B A B

…Be Replaced by Some Sort of Local, Statistical,Classical (Hidden Variable) Theory?

Page 11: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

NO!—Bell’s Inequality

The physical predictions of quantum theory disagree withthose of any local (classical) hidden-variable theory!

John Bell

Page 12: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

Quantum Technology: The Second Quantum RevolutionJPD & GJ Milburn, Phil. Trans. Roy. Soc. Lond. A 361 (2003) 1–20 (quant-ph/0206091)

QuantumMechanical

Systems

PendulumsCantileversPhonons

CoherentQuantumElectronics

SuperconductorsExcitonsSpintronics

Quantum Optics

Ion TrapsCavity QEDLinear Optics

QuantumAtomics

Bose-EinsteinAtomic CoherenceIon TrapsQuantum

InformationProcessing

Page 13: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

Relationship Between Quantum and Nano-Technologies

QuTech NanoTechQuantumComputer

QuTech Drives NanoTech

NanoTech Drives QuTech

Page 14: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting
Page 15: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

Quantum Computing & Information

• Quantum Search and Integrals

• Factoring Algorithm

• Quantum Error Correction

• Fault Tolerant Q. Computing

• Q. Computing Complexity

Quantum Algorithms

• Quantum Cryptoanalysis

• Quantum Key Distribution

• Relativistic Quantum Information Theory

• Quantum Channel Capacity

• Quantum Message Authentication

Quantum Information

• Cavity QED Logic Gates

• Fiber and Free Space Q. Key Distribution

• Nuclear Spins on a Chip

• Coulomb Blockade Device

• Superconducting Quantum Interference

Quantum Information Hardware

Ion Trap Q. Register

Solid State QuantumLogic Gate

Error Correction

Page 16: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting
Page 17: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

Quantum Atomics and Atom Optics

• Atom Interferometric Gyros

• Atomic Gravity Gradiometers

• Nanofabrication by Atom Interference

• Atom Holography

• Atom Lens, Mirror, Beamsplitter

Atom Optics

• Laser Cooling Techniques (Nobel 97)

• Magneto-Optical Trapping

• All Optical Trapping

• Evaporative Cooling

• Improved Atomic Clocks

Atom Cooling and Trapping

• Bose-Einstein Condensates

• Atom Lasers

• Atom Holography

• Improved Atom Interferometry

• Entanglement-Improved Signal to Noise

Coherent States of Atomic Matter

Atom Laser

Ion Trap Atomic Clock

Page 18: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

Coherent Quantum Electronics

• Artificial Atoms

• Excitons—Artificial Atoms II

• Cavity QED in Solid Solid State

• Control of “Phonon-The-Destroyer”

• Excitonic BEC Just Around the Corner?

Quantum Dots

• Electron Phase Devices

• Superconducting Phase Interference

• Charge Based Interference

• Quantum Size Effects

• Entangled SQUIDS -- Super Mag. Sensors?

Coherent Mesoscopic SQUIDS

• Electron Spin Transport in Solid State

• Nuclear-Electronic Interactions

• NMR Computing Qubits

• Single Nucleus as Sensor

Spintronics

Exciton

Superconducting Q. Circuit

Q. Dot

Page 19: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

Quantum Nano-Electro-Mechanical Devices (Q-NEMS)

• Phonon Resonators

• Phonon Interferometer

• Phononic Band-Gap Materials

• Control of “Phonon-The-Destroyer”

• Phonon Laser and Squeezed States

Coherent Phonon Manipulation

• Cantilever

• Pendula

• Single Spin Magnetic Force Microscopy

Quantum Nano-Mechanical Devices

• Bucky Ball Interferometers

• Mesoscopic Cat States

• Entangled States of Mech. Resonators

Macroscopic Interference

Phonon Squeezing

Q. Mech. Resonator

Page 20: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

Where Do You Want to Go Tomorrow? ™

Page 21: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting
Page 22: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting
Page 23: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

TWO-SLITS & QUANTUM NONLOCALITY

CLASSICALTwo particles(resources) required tolearn about two slits.

QUANTUMOnly one particle (wave)required to “learn” abouttwo slits.

“... a phenomenon which is impossible, absolutely impossible, to explain in any classicalway, and which has in it the heart of quantum mechanics. In reality, it contains the onlymystery. We cannot make the mystery go away by ‘explaining’ how it works. We will justtell you how it works. In telling you how it works we will have told you about the basicpeculiarities of all quantum mechanics.” -Feynman

Page 24: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

Traveling SALESMEN &QUANTUM Parallelism

A

B

E

D

F

C

A

B

E

D

F

C

CLASSICALExponential number ofclassical “bees”(particles/resources)needed to examine N!paths.

QUANTUMOnly one quantum bee(particle/wave) required to“learn” about N! paths.

c-bee

q-bee

Page 25: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

THE ROLE OF ENTANGLEMENT

A

B

E

D

F

C

Program nonlocal quantum correlations (entanglement) into theinput register. Lift out shortest path by constructiveinterference using only N instead of N! q-bees. Exponentialspeed up in resource usage!

The readout problem: one q-bee makesone “click” on the detecting screen. Informationabout the N! paths is lost.

Page 26: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

Quantum Parallelism & Entanglement

Classical 16-Bit Register:[1,0,0,1,0,1,0,0,1,1,1,0,1,0,0,1] 2X2X2…X2= 210

Can hold only one of 210 possible numbers at a time.

Quantum 16-Bit Register in Superposition:[0,0,0,0,0,0,0,0,0,0,000000]+…+ [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]

Can hold all 210 possible numbers simultaneously!

Page 27: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

BITS VERSUS QUBITS & UNIVERSALITY•Qubits can be in a quantum superposition of {0} and {1}.• The general state can be represented by a vector on the unit sphere.

A universal quantum computer can be constructed using rotations on Hilbertspace (sphere) and a Controlled-NOT gate (XOR).

|0> =

|1> =

Page 28: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

QUANTUM FACTORING:Shor’s AlgorithmSecurity of the public key cryptographydepends on the assumed inabilityof a classical computer to factor C (publickey) into P and Q (private key) rapidly.Classical sieving is exponentially slow.

C=10N

10Nsteps

C/2 C/3 C/5 C/7 C/13 C/17 •••A quantum state can test anexponentially large number offactors without usingexponentially large amount ofresources.

! = " an | exp(2#iC/n)$

Constructive interferenceoccurs for computational “paths”corresponding to divisors of Cwith no remainder.

Page 29: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

Peter Shor

Separated at Birth?

Gene Shalit

Page 30: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

NEEDLE IN A HAY STACK

Needle

Best classical algorithm: Start at one end and prick your finger withone straw at a time until you yell “OUCH!” at the needle. Sometimesyou’ll be lucky and the needle will be near the beginning, sometimesnot and it will be near the end. On average, N/2 tries will be neededto find it. Best you can do.

Page 31: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

GROVER’S ALGORITHM

Note from classical antenna theory: Power from an unphased arrayof N antennas scales like N, but when phased scales like N^2.

Page 32: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

Lov Grover at Work….

Page 33: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

Episode 12: The Getaway

At SD-6, Sloane offers Sydney a new mission: toretrieve Triad's prototype quantum gyroscope missileguidance system. She and Dixon are to interceptCarl Shatz, the courier who is transporting thegyroscope from Berlin to a lab in East France.Vaughn's countermission for Sydney is to steal thegyroscope and create a defective one for SD-6.

Quantum Sensors: Fantasy?

Page 34: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

Quantum Sensors: Realty!

The potential payoffs are many. Entanglement and other quantum weirdness mayboost the accuracy of radar, Global Positioning System (GPS) receivers, and othernavigation devices.

It may improve manufacturers' ability to lay down tiny structures on microchips,expedite explorations for oil, improve the vision of telescopes, and increase theaccuracy of atomic clocks.

Gadgets from the QuantumSpookhouseNavigation devices and other technologies may gainfrom queer quantum effectsPeter Weiss

Quantum technology might even enable us to see objects without actuallylooking at them — and without being seen ourselves.

Page 35: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

Photon Laser Gyro Atom Laser Gyro

Atom Gyro Prototype

Page 36: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

Quantum Atomic Gravity Gradiometer

Pattern Shift Proportional to Changing Gravity Gradient

Atom

Page 37: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting
Page 38: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

Objectives

Approach Status• Use quantum Optics techniques to create,manipulate and measure the collectivestate of an assembly of superconductingqubits.• cavity QED approach• Adapt techniques used in ion trapexperiments to evaluate the uncertaintyon the energy estimation (spectrometry).

Established the first relation between theuncertainty on the electric charge Qg (ormagnetic flux Fx) estimation and the numberN of qubits:

NQ xg /1!"!##

Develop theoretical techniques toenable Heisenberg-limited magneticand electric field measurementswith superconducting circuits.

Entangled SQUID MagnetometerA Guillaume & JPD, Physical Review A 73 (4): Art. No. 040304 APR 2006.

Page 39: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

Quantum Clock Synchronization

Page 40: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

Quantum MetrologyH.Lee, P.Kok, JPD,J Mod Opt 49,(2002) 2325

Page 41: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting

a† N a N

AN Boto, DS Abrams,CP Williams, JPD, PRL85 (2000) 2733

Page 42: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting
Page 43: Jonathan P. Dowlingbaton.phys.lsu.edu/~jdowling/talks/Tulane07.pdf · • Fiber and Free Space Q. Key Distribution • Nuclear Spins on a Chip • Coulomb Blockade Device • Superconducting