john t.s.irvine, dragos neagu · 25/01/2016 1 nanomaterials at the edge: perovskite exsolutions...

32
25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S. Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January 2016 Curtin University

Upload: others

Post on 13-Feb-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

1

Nanomaterials at the edge:perovskite exsolutions

John T.S. Irvine, Dragos Neagu

Nanostructured Electromaterials for Energy18-19 January 2016 Curtin University

Page 2: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

2

Contents

• Background– Fuel Cells

• Perovskite Stoichiometry• Redox Exsolution

– Mechanism of growth– Stability– Activity

• Conclusions

Fuel Cells

• Electrochemically combust fuels– high efficiency

• 70% chemical to electrical

– Highly scalable• Decentralised - renewables

– Fuel flexibility– silent– clean– quality power

Page 3: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

3

Microstructure is criticalreactions occur at interface

e.g. Ni/yttria zirconia fuel electrodein SOFCs

Schematic of electrode materials palette

Page 4: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

4

Ni, ceria additioned strontium titanate electrode

(a) Electron conducting perovskite titanate backbone, (La,Sr,Ca)1‐aTiO3, is infiltratedwith surface also modified by fine layer of CGOMIEC

(b) YSZ backbone coated with a MIEC perovskite, (La,Sr)(Cr,Mn)O3

JTS Irvine, D Neagu, MC Verbraeken, C. Chatzichristodoulou, C Graves & MBMogensen, Nature Energy 1, 15014 (2016)

a

b

Page 5: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

5

Technology Drivers• Performance

– Materials, microstructure and processing, system management –nano is beneficial

• Durability– Materials, temperature, system – nano is problematic

• Cost– Manufacture, materials – nano can be expensive

• Fuel Flexibility– Materials, system management - nano is beneficial

• Retain focus on clean energy target– Whole cycle analysis

Exsolution in

A-site Deficient Titanate Perovskites

Page 6: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

6

Perovskite Non-stoichiometry

ABO3

LSTO-ABO3-

ABO3+

LSTAnBnO3n+2

A1-xBO3

LSTA-

A0.6BO3

A0.3BO3 O+

In-situ growth of catalysts in

operating conditions• Catalysts are initially incorporated as cations

under oxidizing conditions (synthesis), and

subsequently undergo partial exsolution upon

exposure to reducing conditions (operation).

• Many anticipated benefits:• Greatly reduced time and cost required for the

preparation of such complex microstructures

• Superior control of nanoparticle distribution on

the surface of the backbone (parent phase)

• Better nanoparticle anchorage leading to

enhanced stabilit and less a ein .

Page 7: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

7

Daihatsu studies

TEM image of Pt exsolution from CaTi0.95Pt0.05O3 at 900oCfor 100 hrs

Y. Nishihata, J. Mizuki1, T. Akao, H. Tanaka, M. Uenishi, et al, Nature 2002, 418, 164-167

Redox exsolution La0.8Sr0.2Cr0.82Ru0.18O3–GDC anode

W. Kobsiriphat, B.D. Madsen,Y. Wang, L.D. Marks, S.A. Barnett, Solid State Ionics

2009;180, 257-264

Pd - LSCD. M. Bierschenk, E. Potter-Nelson, C. Hoel, Y. G. Liao, L. Marks,K. R. Poeppelmeier and S. A. Barnett, J. Power Sources, 2011, 196, 3089–94

Page 8: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

8

Defects in perovskites

Perovskite nonstoichiometry and B-siteexsolution

O A VAH2

100 nm

100 nm

A‐site deficient, O‐stoichiometric(La0.52Sr0.28)(Ni0.06Ti0.94)O3

(x =0.06, 5% H2, 930˚C,20h)

Page 9: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

9

Terrace separation

Terrace edge

La0.4Sr0.4NixTi1-xO3-x/2

(x = 0.03, 5% H2, 930˚C, 20hthen wet 5% H2, 900˚C, 100h)

1100 nm

100 nm

A‐site stoichiometric, O‐excess(La0.3Sr0.7)(Ni0.06Ti0.94)O3.09

1 μm

Page 10: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

10

Importance of Surface

Cleaved vs sintered surfaces

Page 11: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

11

100 nm

Cleaved bulk

100 nm

Nativesurface

1 μm

Native surface

Cleaved bulk100 nm

A‐site deficient, O‐stoichiometric(La0.52Sr0.28)(Ni0.06Ti0.94)O3

1 μm

Page 12: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

12

Cleaved bulk

Native surface

100 nm

A‐site stoichiometric, O‐excess(La0.3Sr0.7)(Ni0.06Ti0.94)O3.09

Mechanism of Growth

Page 13: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

13

Key factors controlling particleexsolution

“Intrinsic” factors

“Extrinsic” factors

Defects

A-site vacancies (A1-αBO3)

B-site dopants(A1-αMxB1-xO3)

O vacancies (A1-αBO3-γ)

Perovskite surface (“extended defect”?)

Surface A-site enrichment

pO2

Atmosphere composition

Temperature

TiO2-δ exsolutions

Ni0 exsolutionsα = 0.2

α = 0.1

α = 0.05

α = 0

Co0 exsolutions

(100) SrO

(111) SrO3

(100) SrO

(110) SrTiO

(111) SrO3

(110) SrTiO

(100) Orientations arepredominant and form extended regions

Page 14: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

14

Native surface

Cleaved bulk100 nm

A‐site deficient, O‐stoichiometric(La0.52Sr0.28)(Ni0.06Ti0.94)O3

10 μm

Page 15: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

15

Particle etching in conc. HNO3 (15 h)La0.4Sr0.4Ni0.03Ti0.97O3‐γ

Page 16: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

16

Before After

Exsolved

Etched

Page 17: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

17

La0.4Sr0.4Ni0.03Ti0.97O3‐γ

‐XPS analysis of various surfaces‐

Porous Native Surface [Ox]

Dense Polished Surface [Ox]

A0.98BO3.96

La0.46Sr0.52TiO3.96

Porous Native Surface [Red]

A1.00BO4.16

La0.48Sr0.52TiO4.16

A0.78BO3.15

La0.38Sr0.4TiO3.15

Dense Polished Surface [Red]

A1.06BO3.25La0.61Sr0.45TiO3.25

Page 18: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

18

Reduction temperature (°C)

Stoi

chio

met

ryvs

. Ti (

Ti3+

+Ti4+

)

(La3++Sr2+)/Ti

La3+/Ti

Ti3+/Ti

Ni0

particle

VA

Surface

Bulk La3+ Ni2+

Page 19: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

19

Other metals

0.14

C Q

c 0.120

g 0.10

"eCc , 0.08·c-:::::,

"..C,0.06

"'0- 0.04c:Cl)C )

0.020

0.00

0.00 0.03 0.06

x (B-site dopant, Mm+)

0.09

Lao.4Sro.4MxTi1-xOJ-x(4-m)t2-<'

.0

O>

·cc::,(.)(.)0

>- Cl)

- c-c ·-

Q::), ..2CT OQ'-) Cxl)

LL Q)

o en- 6

.. • .a._> ·-o··

.g·····:

o·...j - ...• .• • Q)

.0

0 --,.

.o· 6 - 0.05o·...

. ....·····::::o

-·····. .•o .·...o·····

3

./LFe • (dry, 1000°C) .

Fe3 (dry,900°C)•

Mn3 (dry, 1000°C)•

--1 Cu2• (dry, 1000°C)

....o

....o

Fe3 (wet, 1000°C)•

Fe3 (wet, 900°C)•

Page 20: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

20

1μm

B‐site exsolution phenomena

100nm

100nm

100nm

Fe Ni

(La0.4Sr0.4)(Mn0.06Ti0.94)O3‐x/2Cu

100 nm

100 nm1 μm

Ni and CeO2-d nanoparticles exsolved from La0.8Ce0.1Ni0.4Ti0.6O3 (900 C, 5%H2/Ar)

Page 21: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

21

1 μm

25 30 35 40 45 50 55

XRD patterns:As-prepared perovskiteReduced perovskite

Peak positions:As-prepared perovskiteReduced perovskiteFluoriteNi metal

12

3 4

Dragos Neagu, George Tsekouras, David N. Miller, Hervé Ménard,& John T. S. Irvine

Nature Chemistry (2013) doi:10.1038/nchem.1773

Page 22: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

22

Stability

C D

SEM images and corresponding analysis of Ni particles grown (100% H2, 2.5 h) from polished bulk surfaces of

La0.4Sr0.4Ni0.03Ti0.97O3-γ at (C) 900 °C and (D) 850 °C

Page 23: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

23

Some perovskites with exsolvedparticles after oxidation

Reduced Reoxidised LCNT

Page 24: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

24

La0.46Sr0.34Fe0.06Ti0.94O3 after oxidation

Catalysis

Syed Bukhari, Stephen Gamble

Dragos Neagu

Page 25: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

25

La0.4Ca0.34Ce0.06Ni0.06Ti0.94O3 after reduction

Nickel nanoparticle exsolution observed after reduction at 900°C in 5% H2/Ar for 30 h. Sizes from ~20 –100 nm are observed. Exsolved particles on the cleaved surface are bigger.

Catalytic tests in Standard reformedbiogas at 900oC

Page 26: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

26

Infiltrated vs Exsolved Materials

La0.52Ca0.28Ni0.06Ti0.94O3

(exsolved)

La0.2Sr0.25Ca0.45TiO3 + 3wt%Ni(infiltrated)

•Tests carried out in standard reformed biogas at 900°C (4% H2, 4% CO, 36% CH4, 36% CO2, 20% H2O)

•Both infiltrate & exsolved materials show similar levels of reforming activity•Slight degradation in former due to Ni sintering

•Ni infiltrated specimen exhibits coking•Exsolved material shows no coking•This is also the case in dry reforming conditions

Temperature programmed oxidation of both materials

Sulfur sensitivity in biogas ofLa0.52Ca0.28Ni0.06Ti0.94O3

Input gas : 4% H2, 4% CO,36% CH4, 36% CO2, 20%H2O) at 900°C

standard reformed biogas

Start 5 ppm H2S

Stop 5 ppm H2S

Page 27: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

27

Deposited vs exolved Ni

on A‐site deficient strontium titanate

A B C

D E F

A) Ni particles grown from the polished bulk surface of La0.4Sr0.4Ni0.03Ti0.97O3-γ

(5%H2/Ar, 920 °C, 24 h); (B) after ageing (5%H2/Ar, 920 °C, 80 h)(C) after exposure to 20%CH4/H2 (800 °C, 4 h)(D) Ni particles on La0.4Sr0.4TiO3 produced by annealing an evaporatively-deposited Ni

film (H2, 800 °C, 4 h); (E) after ageing (H2, 650 °C, 24 h and 800 °C, 6 h); (F) afterexposure to the same conditions as sample (C)

Page 28: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

28

Ni

Oxide support Oxide support

CCarbon fiber

Ni

Tip growth Base growth

Car

bon

fiber

C

CH4

2H2

CH4 2H2

Coking on deposited Ni

Page 29: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

29

D. Neagu, T-S. Oh, D.N. Miller, H. Menard, S.M. Bukhari, S.RGamble, R.J. Gorte, J.M. Vohs, J.T.S. Irvine. Nat. Commun.

DOI: 10.1038/ncomms9120

Coking on Exolved Ni

Application to Solid Oxide Electrolysis

George Tsekouras

Page 30: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

30

-0.20 -0.15 -0.10 -0.05 0.00

1.2Electrolysis performance of

La Sr0.4 0.4 0.06 0.94 3-M Ti Oas a function of dopant Mm+

Ti (undoped) Fe3+

Co2+

Ni2+

Current density (Acm-2)

0.6

0.9

1.5

1.8

-P

ote

nti

al(V

vs.

air)

High Temperature Electrolysis carried out in

47% H2O N2,/ 53% at 900 oC after

conditioning at -1.7 V for 2-5 min.

Link toChargetransfer

actual onset

Extrapolated

onset

Page 31: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

31

3.0 2.5 2.0 1.5 1.0

CurrentDensity(A/cm2)

0.5 0.00.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.02.0

Vol

tage

(V)

900850800750700

0 1 2

CurrentDensity(A/cm2)

30.0

0.2

0.4

0.6

0.8

1.0

1.2

900850800750700

Vol

tage

(V)

0.0

0.2

0.4

0.6

0.8

1.0P

ower

Density

(W/cm

2)

-3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

CurrentDensity(A/cm2)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Vol

tage

(V)

H2+H2ON2+H2OCO2

La(Ca)Ti(M)O (20㎛)3

LSM-ScSZ (20㎛)

Electrolyte supported cell via tape-casting/screen-printing

ScSZ (100㎛)

SOEC : 69 % N2 & 31 % H2O

SOFC : H2

Reversible SOC : 69% H2 & 31% H2O

Summary

• Whilst elemental composition and microstructure are critically

important Stoichiometry ratios are also extremely important

Can enhance electronic conductivity

Facilitate Regenerative Exsolution

Influence chemical stability• B-site doping led to enhanced electrocatalytic properties due to

formation of electrocatalytically active exsolutions.

Manifested in (absolute) lowered onset

High catalytic activity demonstrated

• Not just photogenic step change functionality

Page 32: John T.S.Irvine, Dragos Neagu · 25/01/2016 1 Nanomaterials at the edge: perovskite exsolutions John T.S.Irvine, Dragos Neagu Nanostructured Electromaterials for Energy 18-19 January

25/01/2016

32

• EPSRC

• ONR

• EU Scotas

• EU Metsapp

• NSF Materials World• NSF EPSRC Chemistry

Royal Society

Acknowledgements