john r. hopper [email protected] leibniz institute for marine science, kiel, germany thomas k....

18
John R. Hopper [email protected] Leibniz Institute for Marine Science, Kiel, Germany Thomas K. Nielsen [email protected] Maersk Olie og Gas A/S, Copenhagen, Denmark Volcanic Productivity during Continental Breakup from Numerical Modeling of Mantle Convection: Application to Atlantic Rifted Margins

Upload: marylou-craig

Post on 05-Jan-2016

217 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: John R. Hopper jhopper@ifm-geomar.de Leibniz Institute for Marine Science, Kiel, Germany Thomas K. Nielsen thomas.kofoed@mail.dk Maersk Olie og Gas A/S,

John R. Hopper [email protected]

Leibniz Institute for Marine Science, Kiel, Germany

Thomas K. Nielsen [email protected]

Maersk Olie og Gas A/S, Copenhagen, Denmark

John R. Hopper [email protected]

Leibniz Institute for Marine Science, Kiel, Germany

Thomas K. Nielsen [email protected]

Maersk Olie og Gas A/S, Copenhagen, Denmark

Volcanic Productivity duringContinental Breakup

fromNumerical Modeling of Mantle Convection:

Application to Atlantic Rifted Margins

Volcanic Productivity duringContinental Breakup

fromNumerical Modeling of Mantle Convection:

Application to Atlantic Rifted Margins

Page 2: John R. Hopper jhopper@ifm-geomar.de Leibniz Institute for Marine Science, Kiel, Germany Thomas K. Nielsen thomas.kofoed@mail.dk Maersk Olie og Gas A/S,

North Atlantic Rifted MarginsNorth Atlantic Rifted Margins

3333

2727

1818

1616 1818

~30~30

20-4020-40

<5<5

0!0!

1.5 - 41.5 - 4

0-50-5

??

??

From: Hopper et al. 2003 JGRFrom: Hopper et al. 2003 JGR

Page 3: John R. Hopper jhopper@ifm-geomar.de Leibniz Institute for Marine Science, Kiel, Germany Thomas K. Nielsen thomas.kofoed@mail.dk Maersk Olie og Gas A/S,

•Single transient pulse of anomalous volcanism (double steady-state)

•Decay to background productivity in ~10m.y.

•Variation in crustal thickness since 47 Ma ± 10% - 15%

•Single transient pulse of anomalous volcanism (double steady-state)

•Decay to background productivity in ~10m.y.

•Variation in crustal thickness since 47 Ma ± 10% - 15%

Summary of Key Observations

Summary of Key Observations

Page 4: John R. Hopper jhopper@ifm-geomar.de Leibniz Institute for Marine Science, Kiel, Germany Thomas K. Nielsen thomas.kofoed@mail.dk Maersk Olie og Gas A/S,

Fundamental guiding principle

Fundamental guiding principle

A successful model of breakup volcanism should naturally evolve to steady-state,

plate-driven oceanic accretion.

A successful model of breakup volcanism should naturally evolve to steady-state,

plate-driven oceanic accretion.

Page 5: John R. Hopper jhopper@ifm-geomar.de Leibniz Institute for Marine Science, Kiel, Germany Thomas K. Nielsen thomas.kofoed@mail.dk Maersk Olie og Gas A/S,

Model FormulationModel Formulation

• Citcom: Multi-grid Finite Element Code

• Consider convection as a corner flow response to a constant velocity surface boundary condition (will also consider edge-driven convection)

• Viscosity varies with temperature, pressure, and degree of dehydration due to melting

• Buoyancy sources include thermal, compositional, and retained melt

• Melting is implemented following the method of Scott, 1992.

• Citcom: Multi-grid Finite Element Code

• Consider convection as a corner flow response to a constant velocity surface boundary condition (will also consider edge-driven convection)

• Viscosity varies with temperature, pressure, and degree of dehydration due to melting

• Buoyancy sources include thermal, compositional, and retained melt

• Melting is implemented following the method of Scott, 1992.

Page 6: John R. Hopper jhopper@ifm-geomar.de Leibniz Institute for Marine Science, Kiel, Germany Thomas K. Nielsen thomas.kofoed@mail.dk Maersk Olie og Gas A/S,
Page 7: John R. Hopper jhopper@ifm-geomar.de Leibniz Institute for Marine Science, Kiel, Germany Thomas K. Nielsen thomas.kofoed@mail.dk Maersk Olie og Gas A/S,
Page 8: John R. Hopper jhopper@ifm-geomar.de Leibniz Institute for Marine Science, Kiel, Germany Thomas K. Nielsen thomas.kofoed@mail.dk Maersk Olie og Gas A/S,
Page 9: John R. Hopper jhopper@ifm-geomar.de Leibniz Institute for Marine Science, Kiel, Germany Thomas K. Nielsen thomas.kofoed@mail.dk Maersk Olie og Gas A/S,
Page 10: John R. Hopper jhopper@ifm-geomar.de Leibniz Institute for Marine Science, Kiel, Germany Thomas K. Nielsen thomas.kofoed@mail.dk Maersk Olie og Gas A/S,

High Viscosity CaseHigh Viscosity Case Low Viscosity CaseLow Viscosity Case

Page 11: John R. Hopper jhopper@ifm-geomar.de Leibniz Institute for Marine Science, Kiel, Germany Thomas K. Nielsen thomas.kofoed@mail.dk Maersk Olie og Gas A/S,

Varying the mantle reference viscosityVarying the mantle reference viscosity

IncreasingViscosityIncreasingViscosity

Page 12: John R. Hopper jhopper@ifm-geomar.de Leibniz Institute for Marine Science, Kiel, Germany Thomas K. Nielsen thomas.kofoed@mail.dk Maersk Olie og Gas A/S,

Effect of dehydration viscosity increaseEffect of dehydration viscosity increase

Various assumptions aboutviscosity andbuoyancy sources

Various assumptions aboutviscosity andbuoyancy sources

Page 13: John R. Hopper jhopper@ifm-geomar.de Leibniz Institute for Marine Science, Kiel, Germany Thomas K. Nielsen thomas.kofoed@mail.dk Maersk Olie og Gas A/S,

Add 50 km thick hot layer beneath the continentAdd 50 km thick hot layer beneath the continent

100 °C100 °C

200 °C200 °C

100 °C, dehyd.100 °C, dehyd.

200 °C, dehyd.200 °C, dehyd.

Page 14: John R. Hopper jhopper@ifm-geomar.de Leibniz Institute for Marine Science, Kiel, Germany Thomas K. Nielsen thomas.kofoed@mail.dk Maersk Olie og Gas A/S,

Edge ConvectionEdge Convection Edge Convection +Rifting

Edge Convection +Rifting

Page 15: John R. Hopper jhopper@ifm-geomar.de Leibniz Institute for Marine Science, Kiel, Germany Thomas K. Nielsen thomas.kofoed@mail.dk Maersk Olie og Gas A/S,

Melt Production for Edge Convection + RiftingMelt Production for Edge Convection + Rifting

Previous slidePrevious slide

1% thermal perturb.1% thermal perturb.

low viscosity caselow viscosity case

intermediate visc.intermediate visc.

Page 16: John R. Hopper jhopper@ifm-geomar.de Leibniz Institute for Marine Science, Kiel, Germany Thomas K. Nielsen thomas.kofoed@mail.dk Maersk Olie og Gas A/S,

ConclusionsConclusions

• Models that exhibit small scale convection and edge convection with significant excess melt productivity never evolve to steady-state oceanic accretion.

• A dehydration induced viscosity increase stabilizes the system, but lacks the time dependent behavior needed to allow small-scale convection followed by state-state spreading.

• Models that exhibit small scale convection and edge convection with significant excess melt productivity never evolve to steady-state oceanic accretion.

• A dehydration induced viscosity increase stabilizes the system, but lacks the time dependent behavior needed to allow small-scale convection followed by state-state spreading.

Page 17: John R. Hopper jhopper@ifm-geomar.de Leibniz Institute for Marine Science, Kiel, Germany Thomas K. Nielsen thomas.kofoed@mail.dk Maersk Olie og Gas A/S,

ConclusionsConclusions

• Volcanic margin formation like off Greenland seems to require an exhaustible reservoir of anomalous material beneath the lithosphere at the time of breakup.

• Characterizing the nature of this layer (chemical or thermal?) and understanding how it is emplaced beneath the continent require further work.

• Volcanic margin formation like off Greenland seems to require an exhaustible reservoir of anomalous material beneath the lithosphere at the time of breakup.

• Characterizing the nature of this layer (chemical or thermal?) and understanding how it is emplaced beneath the continent require further work.

Page 18: John R. Hopper jhopper@ifm-geomar.de Leibniz Institute for Marine Science, Kiel, Germany Thomas K. Nielsen thomas.kofoed@mail.dk Maersk Olie og Gas A/S,

For Future Work:For Future Work:

• Require better understanding of the thermal structure of continents prone to rupture

• Require better understanding of melt extraction/retention during early stages of melt production (pre-rupture)

• Require better understanding of the thermal structure of continents prone to rupture

• Require better understanding of melt extraction/retention during early stages of melt production (pre-rupture)