john p. cunningham, byron m. yu, krishna v. shenoy and ... · john p. cunningham, byron m. yu,...

34
Empirical models of spiking in neural populations Jakob H. Macke, Lars Büsing, John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 () 1 / 19

Upload: others

Post on 26-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

Empirical models of spiking in neural populations

Jakob H. Macke, Lars Büsing,

John P. Cunningham, Byron M. Yu,

Krishna V. Shenoy and Maneesh Sahani

NIPS 2011December 15, 2011

() 1 / 19

Page 2: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

Characterizing neural functionI Single neuron recordings

I Simultaneous recordings from populations of neurons

−400 −200 0 200 400 600 800 1000 1200 1400

10

20

30

40

50

60

70

80

90

Neuro

n index

Time

→ need for appropriate statistical models

() 2 / 19

Page 3: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

Characterizing neural functionI Single neuron recordings

I Simultaneous recordings from populations of neurons

−400 −200 0 200 400 600 800 1000 1200 1400

10

20

30

40

50

60

70

80

90

Neuro

n index

Time

→ need for appropriate statistical models() 2 / 19

Page 4: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

Models of population activity: direct couplings or latent variables?

model class I

model class II

generalized linear models (GLM)

latent dynamical system (DS)

externalinput

directcouplings

observedneurons

externalinput

dynamical system

observedneurons

e.g. [Chornoboy et al., Biol Cybern, 1988]

[Gat et al., 97, Network], [Yu et al., NIPS, 2006]

[Paninski et al., Neuro Comp, 2004]

() 3 / 19

Page 5: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

Models of population activity: direct couplings or latent variables?

model class I model class II

generalized linear models (GLM) latent dynamical system (DS)

externalinput

directcouplings

observedneurons

externalinput

dynamical system

observedneurons

e.g. [Chornoboy et al., Biol Cybern, 1988] [Gat et al., 97, Network], [Yu et al., NIPS, 2006][Paninski et al., Neuro Comp, 2004]

() 3 / 19

Page 6: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

Statistical models offer insights into neural computation

model class I

I GLMs improve decoding of visualstimuli from retina recordings

[Pillow et al., Nature, 2008]

model class II

I DS facilitate single trial analysis ofcortical multi-electrode recordings

[Chruchland et al, Nature Neurosci., 2010]

I Brain-computer interfaces[Wu et al., IEEE Tans. Neural Systems, 2000]

→What are good models for cortical multi-electrode recordings?

() 4 / 19

Page 7: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

Statistical models offer insights into neural computation

model class I

I GLMs improve decoding of visualstimuli from retina recordings

[Pillow et al., Nature, 2008]

model class II

I DS facilitate single trial analysis ofcortical multi-electrode recordings

[Chruchland et al, Nature Neurosci., 2010]

I Brain-computer interfaces[Wu et al., IEEE Tans. Neural Systems, 2000]

→What are good models for cortical multi-electrode recordings?

() 4 / 19

Page 8: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

Statistical models offer insights into neural computation

model class I

I GLMs improve decoding of visualstimuli from retina recordings

[Pillow et al., Nature, 2008]

model class II

I DS facilitate single trial analysis ofcortical multi-electrode recordings

[Chruchland et al, Nature Neurosci., 2010]

I Brain-computer interfaces[Wu et al., IEEE Tans. Neural Systems, 2000]

→What are good models for cortical multi-electrode recordings?

() 4 / 19

Page 9: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

Data: Multi-electrode recordings from primate cortex

−250 0 250 500 750 1000 1250

10

20

30

40

50

60

70

80

90

Exam

ple

raste

r (s

ingle

trial)

N

euro

n index

Target on Go cue

−250 0 250 500 750 1000 12500

10

20

30Data used in analyses

Popula

tion P

ST

H

R

ate

(hz)

I Data from Shenoy’s lab

I Array with 96 electrodes in motor / premotor areas

I 92 units = dimensions, 120 s of recordings , 10ms binning

() 5 / 19

Page 10: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

Model class I: Generalized linear models (GLMs)

I Instantaneous firing rate λi(t) of neuron i

λi(t) = exp([

det. innovations︷︸︸︷b(t) + D︸︷︷︸

couplings

·

spike history︷︸︸︷s(t) ]i)

I Poisson observations

yi(t) | s(t) = Poisson(λi(t))

I We used up to five different decayingexponentials as basis functions for the spikehistory:time constants 0.1 - 80ms

b(t)

I We used L1-regularization of the coupling matrix D to avoid over-fitting

e.g. [Chornoboy et al., Biol Cybern, 1988], [Paninski et al., Neuro Comp, 2004]

() 6 / 19

Page 11: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

Model class I: Generalized linear models (GLMs)

I Instantaneous firing rate λi(t) of neuron i

λi(t) = exp([

det. innovations︷︸︸︷b(t) + D︸︷︷︸

couplings

·

spike history︷︸︸︷s(t) ]i)

I Poisson observations

yi(t) | s(t) = Poisson(λi(t))

I We used up to five different decayingexponentials as basis functions for the spikehistory:time constants 0.1 - 80ms

b(t)

I We used L1-regularization of the coupling matrix D to avoid over-fitting

e.g. [Chornoboy et al., Biol Cybern, 1988], [Paninski et al., Neuro Comp, 2004]

() 6 / 19

Page 12: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

Model class I: Generalized linear models (GLMs)

I Instantaneous firing rate λi(t) of neuron i

λi(t) = exp([

det. innovations︷︸︸︷b(t) + D︸︷︷︸

couplings

·

spike history︷︸︸︷s(t) ]i)

I Poisson observations

yi(t) | s(t) = Poisson(λi(t))

I We used up to five different decayingexponentials as basis functions for the spikehistory:time constants 0.1 - 80ms b(t)

I We used L1-regularization of the coupling matrix D to avoid over-fitting

e.g. [Chornoboy et al., Biol Cybern, 1988], [Paninski et al., Neuro Comp, 2004]

() 6 / 19

Page 13: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

Model class I: Generalized linear models (GLMs)

I Instantaneous firing rate λi(t) of neuron i

λi(t) = exp([

det. innovations︷︸︸︷b(t) + D︸︷︷︸

couplings

·

spike history︷︸︸︷s(t) ]i)

I Poisson observations

yi(t) | s(t) = Poisson(λi(t))

I We used up to five different decayingexponentials as basis functions for the spikehistory:time constants 0.1 - 80ms b(t)

I We used L1-regularization of the coupling matrix D to avoid over-fitting

e.g. [Chornoboy et al., Biol Cybern, 1988], [Paninski et al., Neuro Comp, 2004]

() 6 / 19

Page 14: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

Model class II: Latent dynamical system (DS) models

I Latent variable x(t) evolves linearly, withGaussian innovations

x(t + 1) = A x(t)︸ ︷︷ ︸dynamics

+

innovations︷ ︸︸ ︷b(t) + η(t)

I Gaussian linear dynamical system (GLDS):

y(t) | x(t) ∼ N (Cx(t) + d,R)

I Poisson linear dynamical system (PLDS):

yi(t) | x(t) ∼ Poisson(exp(Ci,:x(t) + di + Disi(t)))

I Parameters were learned by the EM algorithm

I We used a global Laplace approximation to the posterior for the PLDS

() 7 / 19

Page 15: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

Model class II: Latent dynamical system (DS) models

I Latent variable x(t) evolves linearly, withGaussian innovations

x(t + 1) = A x(t)︸ ︷︷ ︸dynamics

+

innovations︷ ︸︸ ︷b(t) + η(t)

I Gaussian linear dynamical system (GLDS):

y(t) | x(t) ∼ N (Cx(t) + d,R)

I Poisson linear dynamical system (PLDS):

yi(t) | x(t) ∼ Poisson(exp(Ci,:x(t) + di + Disi(t)))

I Parameters were learned by the EM algorithm

I We used a global Laplace approximation to the posterior for the PLDS

() 7 / 19

Page 16: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

Model class II: Latent dynamical system (DS) models

I Latent variable x(t) evolves linearly, withGaussian innovations

x(t + 1) = A x(t)︸ ︷︷ ︸dynamics

+

innovations︷ ︸︸ ︷b(t) + η(t)

I Gaussian linear dynamical system (GLDS):

y(t) | x(t) ∼ N (Cx(t) + d,R)

I Poisson linear dynamical system (PLDS):

yi(t) | x(t) ∼ Poisson(exp(Ci,:x(t) + di + Disi(t)))

I Parameters were learned by the EM algorithm

I We used a global Laplace approximation to the posterior for the PLDS

() 7 / 19

Page 17: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

Model class II: Latent dynamical system (DS) models

I Latent variable x(t) evolves linearly, withGaussian innovations

x(t + 1) = A x(t)︸ ︷︷ ︸dynamics

+

innovations︷ ︸︸ ︷b(t) + η(t)

I Gaussian linear dynamical system (GLDS):

y(t) | x(t) ∼ N (Cx(t) + d,R)

I Poisson linear dynamical system (PLDS):

yi(t) | x(t) ∼ Poisson(exp(Ci,:x(t) + di + Disi(t)))

I Parameters were learned by the EM algorithm

I We used a global Laplace approximation to the posterior for the PLDS

() 7 / 19

Page 18: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

Measuring performance: predicting neural firing from the population

I On test trials, for every neuron i :

I Compute cross-prediction E[yi,:|y\i,:] of neuron yi,: given all other neurons y\i,:

I Compute MSE between prediction and true trajectory

I We report improvement over a constant predictor (i.e. higher = better)

() 8 / 19

Page 19: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

Cross-prediction: Dynamical systems outperform GLMs

0 20 40 60 80 1000

0.5

1

1.5

2

2.5

3x 10

−3

Percentage of zero−entries in coupling matrix

Var

−M

SE

GLM 10msGLM 100msGLM2 100msGLM 150msPLDS dim=5

I GLM performance as a function of L1-regularization parameter:controls zero-entries in coupling matrix

I PLDS with 5-dimensional state space

I For our recordings PLDS outperforms GLMs with different history filters

() 9 / 19

Page 20: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

Cross-prediction: Poisson observations improve performance

2 4 6 8 10 12 14 16 18 202

2.2

2.4

2.6

2.8

3

3.2x 10

−3

Dimensionality of latent space

Var

−M

SE

GLDSPLDSPLDS 100ms

I Poisson observation model improves performance over Gaussian models

I Single neuron history filters result in an slight increase in performance

() 10 / 19

Page 21: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

Matching statistics of the data I: temporal cross-correlations

latent dynamical systems (DS)

generalized linear models (GLM)

−100 −50 0 50 100

0.01

0.02

0.03

0.04

0.05

Time lag (ms)

Cor

rela

tion

GLDSPLDSPLDS 100msrecorded data

−100 −50 0 50 100

0.01

0.02

0.03

0.04

0.05

Time lag (ms)

Cor

rela

tion

GLM 10msGLM 100msGLM 150srecorded data

I Data: peaks at zero time lag and broad flanks

I DS: matches cross-correlations well

I GLM: difficulties to reproduce peak due to lack of instantaneous couplings

() 11 / 19

Page 22: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

Matching statistics of the data I: temporal cross-correlations

latent dynamical systems (DS) generalized linear models (GLM)

−100 −50 0 50 100

0.01

0.02

0.03

0.04

0.05

Time lag (ms)

Cor

rela

tion

GLDSPLDSPLDS 100msrecorded data

−100 −50 0 50 100

0.01

0.02

0.03

0.04

0.05

Time lag (ms)

Cor

rela

tion

GLM 10msGLM 100msGLM 150srecorded data

I Data: peaks at zero time lag and broad flanks

I DS: matches cross-correlations well

I GLM: difficulties to reproduce peak due to lack of instantaneous couplings

() 11 / 19

Page 23: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

Matching statistics of the data II: population spike counts

0 10 20 30 400

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of spikes in 10ms bin

Fre

quen

cy

GLMGLM 2GLDSPLDSreal data

I Gaussian DS: under-estimates large population events

I Poisson DS: good match to the data

I GLM: no regularization; GLM2: optimal regularization

() 12 / 19

Page 24: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

How much variance of the data can we explain using cross-prediction?

% of explained variance

Comparison with PSTH predictor

0 50 100 150 200 250 300 350 4000

5

10

15

20

25

Binsize (ms)

Per

cent

age

of v

aria

nce

expl

aine

d

PLDS, d=1d=2d=5d=10d=20

0 50 100 150 200 250 300 350 400

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Binsize (ms)

Impr

ovem

ent o

ver

PS

TH

pre

dict

or

PLDS, d=1d=2d=5d=10d=20

I For small bins, more variance can be explained than would be possible if firingconditioned on latent state were Poisson

I PLDS models can explain up to twice as much variance as a model withindependent activity conditioned on PSTH

() 13 / 19

Page 25: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

How much variance of the data can we explain using cross-prediction?

% of explained variance

Comparison with PSTH predictor

0 50 100 150 200 250 300 350 4000

5

10

15

20

25

Binsize (ms)

Per

cent

age

of v

aria

nce

expl

aine

d

d=1d=2d=5d=10d=20Poisson

0 50 100 150 200 250 300 350 400

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Binsize (ms)

Impr

ovem

ent o

ver

PS

TH

pre

dict

or

PLDS, d=1d=2d=5d=10d=20

I For small bins, more variance can be explained than would be possible if firingconditioned on latent state were Poisson

I PLDS models can explain up to twice as much variance as a model withindependent activity conditioned on PSTH

() 13 / 19

Page 26: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

How much variance of the data can we explain using cross-prediction?

% of explained variance Comparison with PSTH predictor

0 50 100 150 200 250 300 350 4000

5

10

15

20

25

Binsize (ms)

Per

cent

age

of v

aria

nce

expl

aine

d

d=1d=2d=5d=10d=20Poisson

0 50 100 150 200 250 300 350 400

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Binsize (ms)

Impr

ovem

ent o

ver

PS

TH

pre

dict

or

PLDS, d=1d=2d=5d=10d=20

I For small bins, more variance can be explained than would be possible if firingconditioned on latent state were Poisson

I PLDS models can explain up to twice as much variance as a model withindependent activity conditioned on PSTH

() 13 / 19

Page 27: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

Summary & conclusions

I Dynamical systems match the investigated cortical recordings better than GLMs

I Cross-prediction

I Various statistics, e.g. cross-correlation structure

I GLM modelling assumptions (direct couplings) might not be appropriate for thistype of data:

I Multi-electrode arrays sample a neural population very sparsely

I Most inputs presumably come from outside the sampled population

I Latent dynamical systems are arguably the more natural models formulti-electrode recording from cortex

() 14 / 19

Page 28: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

Summary & conclusions

I Dynamical systems match the investigated cortical recordings better than GLMs

I Cross-prediction

I Various statistics, e.g. cross-correlation structure

I GLM modelling assumptions (direct couplings) might not be appropriate for thistype of data:

I Multi-electrode arrays sample a neural population very sparsely

I Most inputs presumably come from outside the sampled population

I Latent dynamical systems are arguably the more natural models formulti-electrode recording from cortex

() 14 / 19

Page 29: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

Summary & conclusions

I Dynamical systems match the investigated cortical recordings better than GLMs

I Cross-prediction

I Various statistics, e.g. cross-correlation structure

I GLM modelling assumptions (direct couplings) might not be appropriate for thistype of data:

I Multi-electrode arrays sample a neural population very sparsely

I Most inputs presumably come from outside the sampled population

I Latent dynamical systems are arguably the more natural models formulti-electrode recording from cortex

() 14 / 19

Page 30: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

Acknowledgements

I Jakob Macke (Gatsby Unit, UCL)

I Maneesh Sahani (Gatsby Unit, UCL)

I Krishna Shenoy & lab (Stanford)

I John Cunningham (Cambridge)

I Byron Yu (Carnegie Mellon)

Funding:

I Gatsby Charitable FoundationI EU-FP7 Marie Curie FellowshipI DARPA: REPAIR N66001-10-C-2010I EPSRC EP/H019472/1I NIH CRCNS R01-NS054283I NIH Pioneer 1DP1OD006409

() 15 / 19

Page 31: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

() 16 / 19

Page 32: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

Additional material

() 17 / 19

Page 33: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

Cross-prediction: area under ROC

0 20 40 60 80 100

0.58

0.6

0.62

0.64

0.66

0.68

Percentage of zero−entries in coupling matrix

AU

C

GLM 10msGLM 100msGLM2 100msGLM 150msPLDS dim=5

5 10 15 200.64

0.65

0.66

0.67

0.68

Dimensionality of latent space

AU

C

GPFAGLDSPLDSPLDS 100ms

I Same qualitative results as measured by MSE

I Benefits of history filters for PLDS are more pronounced

() 18 / 19

Page 34: John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and ... · John P. Cunningham, Byron M. Yu, Krishna V. Shenoy and Maneesh Sahani NIPS 2011 December 15, 2011 1 / 19. Characterizing

Correlations in data are well reflected by DS models

data bin at 10ms 5-dimensional PLDS

Neuron index

Neuro

n index

−0.1

−0.05

0

0.05

0.1

Neuron index

Neuro

n index

−0.1

−0.05

0

0.05

0.1

() 19 / 19