jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment...

91
jnsÂ:Ç4?‘ ' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:??: ,.У\^U^^Ái,i·*-\ ^ ■'■^■•^■^л.-^-у-*'і;‘*'\і.^-^::^х,^_^‘--^м’'і.^ ·4*/· , .'ѵ.уу.-Ѵ . . Ѵиі''^’’··^* '•‘f ·· ■ ‘¡ùi’ - ••r-^K.·^' ί·'Λ · . ’ i; ''i'fïL'· ■·*V - « i i r '-i ■'■i*^.-í···^ r*A··,·,- . . ;,'.- л;,''<»і^?^»,:'!:«'і-.··;.^· ·.■ÍífCT|s:.í¿.i.;j;J. 4 . 4 ’ =·-^.'. '··! : г «*· : - : :г.«с-і. Æ ; : ¡ *1 м'ЩХг .«.А J4^ W*‘.^>·. · ^; WV···*«·«^··^ •■■.ц-^--*-:<і.І-Чі,^· ■ U,„^.W , * i-* '.**·(·♦ '·. : /і.Ѵ··***"··'·'*^ »' ¡W ‘ .„¿•■'"••ν *- 'a* · , *,■>*!*■-· ■‘«■i·· l · ^ ц » ·^ . ■ . '-'ЧИЙЯ;^ :^д ' .. ■■ · >:.···- 4:; ν·;4·:> .·.: · ; ..··..*£ ,Ъ'· · ·; γ .- . ‘ ti·*··*··' » ’ ' Ä· '•Ä'*

Upload: others

Post on 28-Jul-2020

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

jnsÂ:Ç4?‘' гі-г/'і іггПг/й'ЛііЖі'Тзг»:??:,.У \^ U ^ ^ Á i,i·* -\ ■'■^■•^■^л.-^-у-*'і;‘*'\і.^-^::^х,^_^‘--^м ’' і . ^ ·4*/· , .'ѵ.уу.-Ѵ . . Ѵиі''^’’ ·· * ■'•‘f · · ■‘ ¡ù i’ - ••r-^K.·^' ί · 'Λ · .

’ i; ''i'fïL'· ■·*V- « iir '-i ■'■i* .-í··· r*A··,·,- . . ;,'.- л;,''<»і^?^»,:'!:«'і-.··;.^··.■ ÍífC T |s:.í¿.i.;j;J. 4 .4 ’ =·-^.'. ■'··! : г «*· : - : :г.«с-і. Æ ; : ¡

• *1 м'Щ Хг .«.А J4 W*‘.^>·. · ; WV···*«·« ·· •■■.ц- --*-:<і.І-Чі, · ■ U,„^.W , * i - *'.**·(·♦'·. : /і.Ѵ··***"··'·'*^ »' ¡W ‘ .„¿•■'"••ν *- 'a* ·,

*,■>*!*■-· ■‘«■i·· l · ^ ц»·^ . ■. '-'ЧИЙЯ;^ : д' .. ■■· ■

>:.···- 4:; ν·;4·:>.·.: · ; ..··..*£ ,Ъ'· · ·;γ.- .

‘ ti·*· ·*··'■ у» ’ ' Ä· ■ '•Ä'*

Page 2: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

RADIOCHRONOLOGY OF SEDIMENTS FROM VARIOUS REGIONS OF THE MEDITERANIAN SEA

BY DIRECT GAMMA SPECTROSCOPY USING NATURAL 2iopb,226Ra AND FALLOUT

A THESIS

SU B M IT T E D TO TH E D E PA R TM EN T OF CH EM ISTRY

A N D TH E IN ST IT U T E OF EN G IN EER IN G A N D SCIENCES

OF BILK ENT U N IV E R SIT Y

IN PARTIAL FU LFILLM ENT OF TH E R EQ U IR EM E N TS

FO R TH E D EG R EE OF

M ASTER OF SCIENCE

BySoheyl Tadjiki

June 1992 tarafından bağışlanmıştır.

Page 3: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

ß i o s i s

ыь

1 2 L|

Page 4: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in (juaJity, as a. thesis for tlu dcigrce ol Ma.st(M· c)l Sciencc\

Prof. Dr. Hasan N. Erten(Principal Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science.

Q ( · '/ c / u A . L ·Assoc. Fiof. Dr. Hale Göktürk

I certify tliat I have read this tlicsis and tliat in my o|)inion it is fnlly adcujnatii,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Zeki Kurtbğkı

Approved for the; Institute of ISiigineeriiig and Sciences:

Prof. Dr. Melmiet Baray Director of Institute of Engineering and Sciences

Page 5: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

ABSTRACT

RADIOCHRONOLOGY OF SEDIMENTS FROM VARIOUS REGIONS OF THE MEDITERANIAN SEA BY DIRECT

GAMMA SPECTROSCOPY USING NATURALAND FALLOUT ^ ^Cs.

Soheyl Tadjiki M.S. in Ghemistry

Supervisor: Prof. Dr. Hasan N. Erten June 1992

The and profiles are determined at two locations in south­ern coast of Spain, Three locations in southern coast of Turkey and two lo­cations in coast of Cyprus. Compaction-corrected sedimentation rates are derived for all locations using data. The rates range from 1..39± 0.12crn.y"' (0.50±0.04 g.cm“^.y“ ) to 0.08±0.01 cm.y“ (0.039±0.003 g.cm~'^.y“ ) (0.50±0.04g.cm"^.y~^). Except for BC-6A, for all of the locations the ^ ’ Cs profile is used to compute sedimentation rates which are in a good agreement with those of '^^°Pb method. The result of the Constant Initial Concentration and Constant Rate of Supply dating models are in a good agreement with each other whereas in BC-6A and KS-1 cores only Constant Rate of Supply model is valid to calculate sedimentation rate. The flux of unsupported '^^°Pb vary between 0.74±0.01 pCi.cm“ and 0.11 ±0.03 pCi.cm“ . The average deposi- tional flux is found to be considerably low in the coast of Turkey and Cyprus, whereas it is found to be high in the coast of Spain.

Key Words: ^^°Pb, '^’ Cs,Sedimentation rate,^^^^Cs profile. Constant Initial Concentration model,Constant Rate of Supply model,The flux of unsupported210pb.

m

Page 6: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

ÖZET

DOĞRUDAN GAMMA SPEKTROSKOPY KULLANILARAK, ^^^Pb ve YÖNTEMLERİYLE

AKDENİZ SEDİMENTLERİNDE SEDİMENTASIYON HIZITAYİNİ.

Sobeyi TadjikiKimya Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Haşan N. Erten Haziran 1992

İspanya, Türkiye ve Kuzey Kıbrıs sahellerinden elde edilen sediment örneklerinin çökeltme hızlan, doğal ve radyoaktif döküntü çekirdeği ^^^Cs kullanılarak tayin edilmiştir. Elde edilen çökeltme hızları 1.39± 0.12 cm.sene“ (0.50±0.04 g.cm“'^.sene“ ) den 0.08±0.01 cm.sene“ (0.039±0.003 g.cm“^.sene“ ) ye kader değişmektedir. BC-6A hariç, bütün sediment örnekleri için ^^^Cs dağılımını kullanılarak, çökertme hızları hesaplanmıştır. Hesaplanan bu sonuçlar, ^^°Pb yönteminin sonuçlarıyla uyum göstermektedir. BC-6A ve Ks-1 hariç, bütün sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod­ellerinin sonuçları birbiriyle uymaktadır. BC-6A ve KS-2 sediment örnekleri için sadece Sabit Birikme Hızı modeli kullanılabilmiştir. Hesaplanan beslen­meyen ^^°Pb akımı 0.74±0.07 pCi.cm“ den 0.11±0.03 pCi.cm"^ ye kader değişmektedir. Türkiye ve Kuzey Kıbrıs sahillerinde hava dan gelen ortalama beslenmeyen ^^°Pb akımı, 0.9 dpm.cm“^.sene~* den daha düşük , Ispanyanin sahillerinde ise daha büyük olduğu gözlenmiştir.

Anahtar Kelimeler:Çökeltme hızlan,Doğal ^^°Pb,Radyoaktif döküntü çekirdeği ^ ’ Cs,^^^Cs dağılımı,Sabit Başlangıç Yoğunluğu modeli,Sabit Birikme Hızı mod­eli,Beslenmeyen ^^°Pb akımı.

IV

Page 7: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

ACKNOWLEDGEMENT

I gratefully acknowledge to Prof. Dr. Hasan Erten for his guidance and fruitful discussions throughout this work. Without his remarks and ideas this study could not be completed.

I debt special thanks to Sepideh Tadjik!, Dr. Azer Kerimov and Ogan Ocah for their valuable helps in the course of this study.

I would like to express my gratitude to shoeleh for her continibus moral support, experimental help and valuable dicussions during this study.

Page 8: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

Contents

1 INTRODUCTION 1

1.0. 1 Distribution In the Atmosphere................................ 3

1.0. 2 ^^°Pb in Sediments.................................................................. 3

1.0. 3 Geochronology with ^^°Pb...................................................... 5

1.0. 4 Method for the determination of ^^°Pb............................ 8

1.0. 5 Mathematical M o d e ls :......................................................... 9

2 EXPERIMENTAL 16

3 RESULT AND DISCUSSION 25

3.0. 6 Cores taken from the southern coast of S p a in : ............. 28

3.0. 7 Cores From Southern T u rk e y :.......................................... 41

3.0. 8 Cores taken from Cyprus: 53

4 Conclusion 65

5 APPENDIX 67

VI

Page 9: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

List o f Tables

2.1 The list of the 7 rays of the background spectrum belonging to the natural radionuclides obtained with a High-purity Germa­nium detector.The gain of the Multichannel analyzer was chosen as 0.300 keV/channel. 19

2.2 The list of radionuclides used in the Energy and Efficiency cali­brations of the detector...................................................................... 20

2.3 Coring coordinates and sampling date of the sediments taken from the coasts of Spain, Turkey and Cyprus. 21

3.4 Porosity,corrected depth and mass depth data of BC-1 and BC-6A Cores............................................................................................... 30

3.5 Result of Activity measurements of Total ^^°Pb,Supported ^^°Pb and Unsupported ^^°Pb for BC-1 and BC-6A Cores.The unit of the activities are expressed by disintegration per minute for one gram of dried sample. The weighted average of Supported ^^°Pb activity for BC-1 and BC-6A cores is computed as 2.23±0.07and 3.18±0.08 respectively.............................................................. 31

3.6 The age of the each sediment section is computed from ConstantRate of the Supply model using the Equation. 1.5 for BC-1 and BC-6A C o r e s .................................................................................... 34

3.7 ^ ’’'Cs Activity measurement for BC-1 and BC-6A Cores. 37

3.8 Porosity, (j){z) Corrected depth, z (cm) and Mass depth, m (g.cm~^)of each section of sediment taken from southern Turkey............... 43

Page 10: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

LIST OF TABLES XI

3.9 Result of Activity measurements of Total Supportedand Unsupported ^^°Pb for core-2,core-3 and core-35 unit of the activities are expressed by disintegration per minute for one gram of dried sample. The weighted average of Supported ^^°Pb for core-2,core-3 and core-35 were computed as 0.48±0.07,0.55±0.08 and 1.32±0.27 dpm/g respectively.................................................... 44

3.10 Result of sedimentation rate analysis for Core-2,Core-3 and Core- 35. The sedimentation rates and flux values were calculated from weighted least square fit procedure which was applied tothe unsupp. ^^°Pb activity d a t a ..................................................... 45

3.11 Age determination of each section of sediment cores taken fromsouthern Turkey cores using Constant Rate of Supply model. . . 45

3.12 Measured ^ " Cs Activity for Core-2,Core-3 and Core-35............... 49

3.13 Result of the sedimentation rate analysis for KS-1 and KS-2cores using ^^°Pb and ^^^Cs methods............................................... 53

3.14 Porosity, Corrected depth, z (cm) and Mass depth, m (g.cm“ )data for KS-1 and KS-2 Cores........................................................... 55

3.15 Result of Activity measurements of Total,Supported and Unsup­ported ^^°Pb for KS-1 and KS-2 Cores. The unit of activities are in disintegration per minute for ten grams of dried samples.The weighted average of supported ^^°Pb activity for KS-1 and KS-2 were computed as 7.68±0.15 and 12.74±0.22 dpm/lOg respectively 56

3.16 Result of the ^^^Cs and ^ '*Cs Activity measurements for KS-1and KS-2 Cores.................................................................................... 58

3.17 Age determination of sediments taken from the KS-1 and KS-2cores using Constant Rate of Supply model.................................... 61

4.18 Result of the sedimentation rate analysis for sediments taken from the coasts of Spain,Turkey and Cyprus using ^^°Pb and ^^^Cs methods. * indicates the result of the Constant Rate of Supply dating m o d e l ..................................................................... 65

Page 11: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

LIST OF TABLES Xll

5.19 vertical distribution of Ni, Cu, Ag, Zn, Cd, Pb, P, Al, La, Tl,V, Cr, Mo, Mn, Fe, Co, Li, Va, K, Rb, Be, Mg, Ca, Sr and Ba (the concentration expressed in ppm.) in BC-1 core.The chemical analysis was done using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP/AES) by Prof. G.Evans atthe Geological Department of Imperial Collage, London...............67

5.20 vertical distribution of Ni, Cu, Ag, Zn, Cd, Pb, P, Al, La, Tl,V, Cr, Mo, Mn, Fe, Co, Li, Va, K, Rb, Be, Mg, Ca, Sr and Ba (the concentration expressed in ppm.) in BC-6A core.The chemical analysis was done using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP/AES) by Prof. G.Evans atthe Geological Department of Imperial Collage, London. 70

5.21 PH and Temperature profiles of BC-1 and BC-6A c o re s ............. 73

5.22 Grain size analysis, the percentage of the CaCOa and the per­centage of the Organic Carbon in Core- 2 ...................................... 73

5.23 Grain size analysis, the percentage of the CaCOa and the per­centage of the Organic Carbon in C o re-3 ...................................... 73

5.24 Grain size analysis, the percentage of the CaCOa and the per­centage of the Organic Carbon in Core-35 73

Page 12: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

List o f F igures

1.1 The natural decay series of ...................................................... 2

1.2 The pathway by which reaches lake se d im e n t................... 4

1.3 World-wide distribution of ^^°Pb in surface a i r ............................ 6

1.4 ■ World-wide distribution of ^^°Pb in rain ...................................... 6

2.1 A drawing of a Ge detector 17

2.2 Spectrum of the natural background obtained by with a High- purity Germanium detector. The detector was shielded a lead cylinder with a length of 420 mm, thickness of 90 mm and a diameter of 210 mm. The gain of the multichannel analyzer wasset at 0.300 keV/channel.The counting time was 8.0x10® sec. . . 22

2.3 Energy Calibration of the High-purity Germanium detector us­ing the calibration sources given in the Table 2.2. The gain of the multichannel analyzer was set at 0.300 keV/channel.Energy given in keV. 23

2.4 Efficiency Calibration for three different source-detector geome-try.a) source-detector distance was 19.60 cm. b) source-detector distance was 12.10 cm. c) source-detector distance was 0.61 cm. The gain of the multichannel analyzer was set at 0.300 keV/channel.......................................................................................... 24

3.1 The 7 ray spectrum of the sediment at the top section of BC-1 core taken from southern coast of Spain.The counting time was 2.5x10® sec............................................................................................... 27

Vll

Page 13: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

LIST OF FIGURES Vlll

3.2 Coring locations of the BC-1 and BC-6A cores taken from south­ern coast of Spain. 29

3.3 Porosity, < (z) and Mass depth, m (g.cm“ ) profiles of BC-1 andBC-6A Cores.D:BC-l.A;BC-6A................................................ 32

3.4 Profile of Total ^^°Pb activity (dpm/g) in the sediments corestaken from the southern coast of Spain.OrBC-l core, A:BC-6A core................................................................................................. 35

3.5 Profile of Supported ^^°Pb activity (dpm/g) in sediments corestaken from the southern coast of Spain.OtBC-l core, A:BC-6A core................................................................................................. 35

3.6 Profile of Unsupported ^^°Pb activity (dpm/g) in sediments cores taken from the southern coast of Spain.line is the result of weighted least square fit to the unsupported ^^°Pb activity data for BC-1core.................................................................................................. 36

3.7 The comparison of Constant Rate of Supply and Constant Initial Concentration dating models for BC-1 and BC-6A Cores. The points corresponds the Constant Rate of Supply model and theline represents the Constant Initial Concentration model . . . . 38

3.8 Profiles of ^^^Cs in BC-1 and BC-6A Cores. The first and thesecond peaks could be attributed to fallout from 1963 and 1954 when the nuclear weapon and device testings were occurred . . . 40

3.9 Coring locations of Core-2, Core-3 and Core-35 taken from south­ern coast of Turkey.............................................................................. 42

3.10 Porosity profile of Core-2,Core-3 and Core-35.□:Core-2. A:Core-3.0:Core-35. 46

3.11 Mass depth, m (g.cm“ ) of sediment taken from southern Turkey.DrCore-2.A:Core-3.0‘Core-35......................................................................... 46

3.12 Supported ^^°Pb activity of the sediment cores taken from south­ern Turkey. □:Core-2.A:Core-3.Q:Core-35....................................... 47

3.13 Total ^^°Pb activity profile in Core-2,Core-3 and Core-35.□:Core-2. A:Core-3.0:Core-35......................................................................... 47

Page 14: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

LIST OF FIGURES IX

3-14 Unsupported activity profile in Core-2,Core-3 and Core-35.The line in each figure represents the weighted least square fit to activity data.n:Core-2.A:Core-3.0:Core-35............... 48

3.15 The comparison of the result of the age determination usingConstant Rate of Supply and Constant Initial Concentration models.Point represents the result of the Constant Rate of Sup­ply model and straight line represents the result of the Constant Initial Concentration model............................................................... 51

3.16 ^ ' Cs activity profiles in Core-2, Core-3 and Core-35. The first and the second peaks could be attributed to the fallout from the weapon and device nuclear testing in 1963 and 1954 respectively. 52

3-17 The general view of the coring locations of the KS-1 and KS-2cores taken from the coast of Cyprus............................................... 54

3.18 The porosity, ^(z) and Mass depth, m (g.cm“ ) profiles for KS-1and KS-2 cores. DiKS-l core, A:KS-2 core..................................... 57

3.19 Total ^^°Pb activity profiles for KS-1 and KS-2 cores. The unit of the activities are in disintegration per minute for ten gramsof dried sample.DrKS-l core,A:KS-2 core................................. ; . 59

3.20 Supported ’ ^°Pb activity profiles for KS-1 and KS-2 cores. Theunit of the activities are in disintegration per minute for ten grams of dried sample. DrKS-l core,A:KS-2 core............................ 59

3.21 Unsupported ^^°Pb activity profiles for KS-1 and KS-2 cores.The straight line is the result of the weighted least square fit procedure which is applied to the unsupported ^^°Pb activity data........................................................................................................ 60

3.22 The distribution of the ^^^Cs in KS-1 and KS-2 cores. The firstand the second peaks could be attributed to the 1986 and 1963 respectively............................................................................................ 62

3.23 The comparison of the result of the age determination usingConstant Rate of Supply and Constant Initial Concentration models, points represent the result of the Constant Rate of Supply model and the straight line represents the result of the Constant Initial Concentration model............................................. 63

Page 15: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

Chapter 1

INTRODUCTION

The sediments of seas and lakes may provide historical information for recon­structing many aspects of impact and dramatic transformations done by man on the environment . In order to analyze these effects it is important to estab­lish accurate and detailed chronologies of sedimentation.These are required not only for dating events but also for calculating rate of sedimentation, elemental flux, and microfossil deposition.

One of the most accurate techniques of sediment dating on a time scale of about 200 years is by means of using natural radioisotopes of lead. The devel­opment of this method was initiated by Goldberg in 1963 [1] and it was first applied to the dating of lake sediments by Krishnaswamy in 1971 [2]. Among the 17 radioisotopes of lead, only '^^°Pb ( ii/2=22.26 yr.) and ^^^Pb ( ¿1/2=27 min.) which are in the natural series family (fig.1.1) have geochemical and geophysical significance. They are transferred from the earths crust to the atmosphere in major amounts, due to a remarkable and fortunate property of radioactive decay sequence. In the decay sequence of chain the isotope of the chemically inert radioactive gas ^^^Rn ( ¿i/2= 3.8 d.) is formed by the disintegration of the intermediate isotope ^ ®Ra ( ¿i/2=1600 yr.), and diffuses out of the crust. ^^^Rn gas is transported by turbulence and advection through the atmosphere. Because of it’s comparatively long half life some ^^^Rn reaches the upper troposphere and even the stratosphere. The ^^^Rn decay products are heavy metal atoms thus they rapidly become attached to natural aerosols and in time the longer lived decay products including ^^°Pb return to earth, lake, sea, and ocean surfaces through atmospheric scavenging processes (e.g, snow, rain, dry fallout, etc).

Page 16: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

90

234

m

m2,

45x,

0=y^

«^;3

I2

34

Pq

U.U

i4.4

7xl0

''y

23

0T

h,I

o

23

4jh

'ux

0.0

X I0

‘'y

24. I

d

Z

¿5■'-

’Ra, Rci

I.GO

X

lO^y

8521

0.2

IOn

r-

Po, F

iaF'3

0,4d

80

9?9

Rn, Rn

>aa

// 2

,01

^'®

Po.

RaA

?ld

^^

' r-i

y,

3.0

5 in

In

"'"'

pF

RaB

-

y/

oir

f^

20

.0m

in-1

----

yM

^ 1

O

r'4

.20

min

'^

Ali

o-^

y^

i,

206 Sl

obfo 2°

®T

I,R

aE-

206

Hg

Q.l m

in^

Z' q

: D

ecay

\ /

5 Decay

I IT

A II Denote

s M

ajo

r Bra

nch

185

J. ■'0

I o13

514

014

5

i i i33 s o t) c: o o to

Figu

re l

.t:

The

nat

ural

dec

ay .s

eries

of

■U

Page 17: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 1. INTRODUCTION

1.0.1 D istrib u tion In th e A tm osphere.

Because of the long residence time of in the atmosphere,which is of theorder weeks, it’s horizontal and vertical distributions are the result of the in­tegrated effects of the distribution and intensity of the sources, the large scale •motions of the atmosphere and the distribution and intensity of removal pro­cesses. Several series of measurements of the concentration of ^^°Pb in surface air over the world have been summarized by Rangarian [3]. The approximate range of variation in most measurements as a function of latitude is shown in Fig. 1.3. Lowest levels of atmospheric ^^°Pb occur at high latitudes, primarily because of the absence of large land masses and existence of a permanent ice and snow cover, which inhibit ^^^Rn escape from polar lands. Low ^^°Pb con­centration also occur over small land areas surrounded by ocean. Midlatitude high values probably reflect the distribution of continental land masses being relatively higher in the northern midlatitudes because of the higher proportion (factor of 3) of land area in the northern hemisphere. The trends apparent in the surface air are also seen in rain (Fig. 1.4)

1.0.2 ^ * Pb in Sedim ents.

^ ®Ra is supplied to lake and sea sediments as part of the particulate erosive input (pathway A in Fig. 1.2). The ^^°Pb formed by the decay of this radium is termed the supported ^^°Pb, and is normally assumed to be in equilibrium with ^ ®Ra. In general however, this equilibrium will be disturbed by a supply of ^^°Pb from other sources. Figure 1.4 outlines the main pathways by which excess ^^°Pb reaches the sediments. These components are identifled as:

Pathway B) Direct atmospheric fallout;

It has been discussed before.

Pathway C) Indirect atmospheric fallout:

Atmospheric ^^°Pb also reaches sediments indirectly by the catchment. Al­though the distinction may be less clear-cut in practice, it is convenient to separate a CT component which is incorporated into the drainage net

Page 18: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

i § is: 3 o c: o o is:

Figu

re 1

.2:

The

pal

lnva

y by

whi

ch ^

'“Pb

reac

hes

lake

sed

imen

t4^

Page 19: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 1. INTRODUCTION

and follows quickly to the lake, sea and ocean without being detained on solid terrestrial particles and a C2 component which may have along residence time in the catchment before being delivered to the marine basin in association with the erosive input of fine surface particulates to which it is attached.

Pathway D) ^^^Rn decay in the water column:

^^^Rn is delivered to the lake, sea and ocean waters by diffusion from the underlying sediments and decays to ^^°Pb in the water column.

^^°Pb activity (component B,C and D ) in excess of supported activity is called the excess or unsupported ^ ‘ Pb. The principle source of unsupported210pb is generally taken to be direct atmospheric fallout (component B ), al­though the importance of the other sources has not been extensively evaluated. Studies by Benninger ‘[4] showed that di.ssolved ^^°Pb in the river waters (com­ponent Cl )was quickly removed from solution by suspended particles. Further, stream-born particles (component C2 ) carried away no more than 0.8% of the atmospheric flux of ^ '^Pb which reached the catchment soils. Studies by Ha- mond [9] and Krishnaswamy [11] of the production of ^^^Rn and ^^°Pb in lake, sea and ocean waters (component D ) have indicated that this component too is may be negligible, around two orders of magnitude lower than the atmospheric flux and may be negligible.

1.0.3 G eochronology w ith

Three conditions are of fundamental importance in the development of a geochronol­

ogy:

1) The growth or accumulation of material must be ordered in time. While the rate of growth itself may be variable there must be some definite corre­spondence between a given part, such as a section of coal or layer of sediment and the time of i t’s formation as a discrete entity.

Page 20: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

50 20

O O O \ E a CL o <M

10

i ■P3

!2: O -t) ■c: :o s t-1 o

LATI

TUD

E

Figu

re 1

.3:

Wor

ld-w

ide

dist

ribu

tion

of ^

^°Pb

in

surf

ace

air

Figu

re 1

.4:

Wor

ld-w

ide

dist

ribu

tion

of ^

^°Pb

in

rain

Oi

Page 21: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 1. INTRODUCTION

2) Some component which can serve as a measure of time must be incor­porated into the growing part in such a way that i t ’s association is preserved in time. Ideally this condition would involve complete immobilization of time marker in accumulation parts as encountered in the case of varved sediments. On the other hand, ^^°Pb must also have no postdepositional geochemical mo­bility within undisturbed sediments.

3) A third requirement concerns the relation between the marker and time.

Not only must the marker be at least relatively immobile, but it must have definite relationship to time.In the case of varved sediments, the relation is clear; the marker characteristics bear a one to one correspondence to sea­sonal events. Geochronologies of course may be based also on non-periodic events. Thus the artificial radioactivities ^^^Cs,^^^Am and etc from nuclear detonations during the 20. “ century have provided useful markers bearing a definite relationship to their time of introduction. In contrast natural radioac­tive geo chronologies are distinguished by their continuous nature and by the fact that the time marker, at least ideally is not connected to external events at all, but relies on continuous radioactive decay following incorporation into accumulation parts. When the rate of supply of the radioactive marker is con­stant in time, the age associated with a given part may be determined from the ratio of i t ’s concentration to that of another part usually the most recent one, whose age is known. Under these circumstances, condition 3 is rigorously met because the marker is an internal clock regulated by nuclear processes which are unaffected by the geochemical environment. Thus for geochronologies in­volving the use of a natural radioactive marker, time variation in i t’s rate of supply is an undesired characteristic for which allowance must be made. As the correspondence between inferred internal clock time and real time will be disputed by variations in marker activity resulting from changes in the rate of supply, condition 3 may be restated for natural radioactive geochronologies. Thus optimum conditions for natural radioactive geochronologies are:

1) Growth or accumulation order in time.

2) Spatial localization of the time marker.

3) Known time variation in marker supply rate.

In dating by ^^°Pb, it is the unsupported component only which is used since once incorporated in the sediment, it decays exponentially with time in

Page 22: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 1. INTRODUCTION

accordance with i t’s half-life. The supported activity is estimated byassay of the ^ ®Ra. Although diffusion through the sediments may re­sult in a minor disequilibrium between ^ ®Ra and supported ^^°Pb near the sediment-water interface, the total ^^°Pb activity is well in excess of the ^ ®Ra activity,and a correction for this will generally be negligible. The unsupported ^^°Pb can be determined by subti'action of supported part from the total ^^°Pb activity, ideally, total ^^°Pb and ^^*^Ra-assays should be carried out on every sample. In practice, total ^^°Pb determinations may be scattered down a pro­file with intervening levels which are unanalyzed, and supported component is often estimated from only two or three ^*’Ra determinations, from amalga­mated samples, or simply from the total ^^°Pb activity of sediments too old to given any significant disintegration from unsupported ^^°Pb.

1.0.4 M ethod for th e determ ination of

In general there are three different ways of measuring the ^^°Pb activity;

1) Measuring the very energetic 0 emission {Emax=^AlmeV) from ^^°Bi (¿i/2= 5d) decay

2) Measuring the a particles from ^^°Po (¿i/2=138d) decay

3) Measuring the 7 emission (E=0.047meV) from ^^°Pb decay

Table 1.1 presents the various techniques for measuring the ^ ‘ Pb activity. The list is not exclusive but illustrates the range of materials and methods employed and mostly includes references where the analytical procedures are of primary importance.

1)0 C ounting M ethod:

Because of the short half life of ^^°Bi, comparatively little time is required to assume partial equilibrium between ^^°Bi and ^^°Pb in the 0 counting method. In determining the activity of ^^°Bi, both ^^°Pb and stable lead are isolated from samples by selective extraction or coprecipitation procedures, and ^^°Bi is subsequently separated in a second step. Two separations are usually required to ensure radiochemical purity for 0 counting. With the development of low background 0 counting, this method has been commonly used, particularly when prompt determinations are desired [12]. In 1975 Karamanos [13] has reported the use of Cerenkov radiation to detect the energetic 0 particles of

Page 23: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

This method would seem to offer a great advantage in terms of sample preparation because accurate measurement of ^°Bi can be made in the presence of the other decay products such as and ^^°Po. Cerenkov detectors areinsensitive both to weak ¡3 emission and to a. particles.

2)oc C ounting M ethod :

CHAPTER 1. INTRODUCTION c

To determine the ^^°Pb on the basis of the a activity of ^^°Po, several measurements spaced over a period of months may be necessary to distinguish supported from unsupported ^^°Po activity. ^^°Po is often separated from the sample by spontaneous electrodeposition on silver, nickel, or other metals and the activity of deposited ^^°Po measured by proportional gas counters or by a spectroscopy. This latter method is necessary in order to resolve a ’s of °®Po or °®Po when either of these isotopes is used as tracer to provide a control on chemical yields and counting efficiency. The a counting methods are superior to the ß method in terms of their low detection limit i.e O.Olpci [12].In 1968 Flynn [15] has studied the effect of interfering ions on the plating of ^^°Po on the silver discs. There is a discussion of the methods and factors effecting the spontaneous plating of ^^°Po on silver and nickel in the study by Mattsson [16]. Details of experimental methods for analysis of water and plankton samples and data reduction procedures can be found in the studies of Benninger [17] and Bacon [19].

3) 7 C ounting M ethod :

The levels of excess ’- ^ Pb present in the sediments may also be ascertained via direct counting of i t ’s 7 emission [15-20]. In 1976 Gaggeler [15] has used the low energy 7 (below 500 keV), detected by high resolution 7 spectroscopy with a Ge(Li) detector/Multichannel Analyzer system. A generally unrecognized advantage of this nondistructive approach is the simultaneous determination of ^^®Ra which facilitates derivation of reliable excess ^^°Pb values and also determination of ^^^Cs (ii/2= 30.1yr), a fallout nucleus which may be used for checking the results obtained by the ^^°Pb technique.

1.0.5 M ath em atica l M odels:

When a dating technique is based on the decay of a radionuclide, one makes two main assumptions;

Page 24: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 1. INTRODUCTION 10

1) The flux of radionuclide to the sediment-water interface has remained con­stant.2) No post-depositional migration of the radionuclide has occurred over the dating interval.Under these assumptions the activity of the nuclide in the sediment at any depth z is given by

A[t) — Ao-t -X.t (1.1)

Where,Ao = the activity of the radionuclide in dpm/g at t=0 A = decay constant t = time

since no post-depositional migration is assumed, time t may be written as

t = z /s ( 1.2)

Where;z = depth in sediment in cm s = sedimentation rate in cm.yr“^

Equation 1.1 then becomes

A(z) = (1.3)

If the initial activity Aq is assumed to be constant which implies that apart from the flux of the radionuclide, the sedimentation rate s is also constant, then a semilogarithmic plot of A(z) versus z should give a straight line with an intercept of log Ao and a slope of -A/s. From the slope, the sedimentation rate s may be determined. Since the initial activity Ao is assumed to be constant

Page 25: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 1. INTRODUCTION 11

this model is referred to as the Constant Initial Concentration (C.I.C) model. With increasing depth sediments are subjected to significant compaction over the depth range for which the method is useful. In order to correctfor the compaction effect, one can develop the models in terms of mass depth m(z) (g.cm“ ) instead of depth, z (cm) and sediment accumulation rate, r (g.cm“^.yr~^) instead of sedimentation rate s (cm.yr“^). Mass depth, m(z) can be computed from the porosity profile. Since porosity changes with depth, each sediment section Az, should be corrected for compaction according to the equation below [61] ;

Am = N z.{\ — ^z)-Ps (1.4)

where:Am; Weight of the each section in g.cm~^Az: The thickness of each section in cm

Porosity of sediment at depth z (the percentage of water content)The mean density of sediment solid (2.5-2.6 g.cm“ )

Another way of taking the compaction effect into account is to correct for linear depth, z by using the porosity result of each sediment section Az [53]

A z = A z .—------f A z1 - <i>o

(1.5)

where:Az: The corrected thickness of each section in cm $ 0 The porosity of sediment at depth z=0

If only a constant flux is assumed with a variable sedimentation rate, the corresponding model is called Constant Rate of Supply (C.R.S.) model. Ac­cording to this model the unsupported ^^°Pb activity vertically integrated to the mass depth, m must be equal to the flux of the unsupported ^^°Pb inte­grated over the corresponding time interval. Thus

nn ftY^(m ) = J A{iJ.)dfj, = j P.e~^''^dT (1.6)

Page 26: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 1. INTRODUCTION 12

Where ¡jl is the variable of integration in the units of g.cm“ and P is the atmospheric flux of unsupported since P is constant

TOO

5^ (00) = / yl(/i)d/i = P/AJ O

(1.7)

Thus the age-depth relationship using Equation 1.6 and 1.7 is given by

A J2iooY (1.8)

Page 27: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 1. INTRODUCTION 13

Material Method of sample preparation Detection method References

RaD(^^°Pb)Raclon tubes In aquaregia [28]

Rad solvent extractionidithizone in

C H C I 3 [29]

Carrier-free ^ °Pb G-M tube [30]

Biological samples Wet digestion in H C l f H N O s I ^ °Po on silver/ [31]

H C I O a alpha scintillation

Natural waters Coprecipitation with lead

chromate/ion exchange

2 i 0 ßi beta [33],[1]

Biological materials Solvent extractionrdithizone in ^ °Bi beta;gas [34]

^ ®Pb tetraalkyl C H C h flow proportional

counter

^ Pb beta from

gaseous Pb in

proportional counter

[35]

Minerals Solvent extraction: ^ °Po on silver/ [36]

diethyldithio-carbamate ^ °Pb by controlled

potential electro-

gravimetric separation

Uranium ores 2iopb 4 7 keV gammcLs/ [37]

scintillation spectroscopy

Ice ^^^Pb-free lead carrier; ^ °Bi beta [39]

ion exchange

Waters,ores Various digestion procedures/ 2 iOBi beta [40]

tailings,soil,dust

biological materials

solvent extraction

TABLE l.TSome methods for the determination of radioactive lead isotopes

Page 28: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 1. INTRODUCTION 14

Material Method of sample preparation Detection method ReferencesIce Coprecipitation of polonium- ^ °Po on silver/ [41]

sulfide with lead semi-conductor alpha spectroscopy

• Exposed air filters ^^^Pb/delayed-coincidence scillintation counts 2i4Bi-2i4po alpha pair

[42]

Exposed air filters ^^^Pb/delayed-coincidence [43]

Environmental samples Digestion with H F / H N O 3 ^ °Po on silver/interferences [15]rocks and ores studiedBiological samples Low temperature ashing:

residue in ifCZ/diethyl- dithiocarbamate extraction

^ °Bi beta/^^^Pb tracer [44]

Wood Wet ashing ' .HNO s/HClO A ^ °Po on silver [45]Sea water Solvent extraction: ^ °Po on silver/zinc-sulfide [46]

APDC-MIBK scintillationSediments H C l digestion,Pb carrier

also selective extraction with N a EDTA

2 i 0 ßi beta [2 ]

Seawter Ferric hydroxide scavenging on synthetic fibers

[47]

Sea water Coprecipitation with C a C O s ^ °Pb on silver/both proportional counting and alpha spectroscopy

[49],[50]

Sediments Wet ashed with ^ °Pb on silver/alpha [51]

H C I O a/ H N O s spectroscopy/^^°Pb tracer

Water/plankton Iron and lead carriers ^ °Po on silver/alpha [52]

for water/wet digestion spectroscopy/^°®Pb tracer [17]

in H N O s I H C I I H C W aI H F

for phytoplankton

[53]

Sea water/sediments Electrodeposition Multiple instrumentation [56]

and isotope dilution for many uranium/ thorium series nuclides

TABLE 1.1 continued

Page 29: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 1. INTRODUCTION 15

Material Method and sample preparation Detection method ReferencesExposed air filters ^^"^Pb/gamma spectroscopy

with lithium drifted germanium detector

[58]

sediments Wet digestion with H N O 3 /

electrodeposition of lead carrier on platinum

^ °Bi beta [59]

Soil/plant material Wet digestion/i/C/ or H N O 3 /

H C I O 4 / 1 1 0 chemical separation steps

beta via Cerenkov radiation counting

[13]

Exposed air filters Wet d i g e s t i o n / H C I / H C O 4 /

H C I O 4

^ ®Pb on silver or nickel/gas flow proportional counter counter

[16]

TABLE 1.1 continued

If sedimentation rate, s and linear depth, z are replaced by sediment ac­cumulation rate, r and mass depth, m respectively the Equation 1.3 can be written as follow:

A{m) = (1.9)

In the Constant Initial Concentration model the initial activity Aq is equal to P /r where P is the input flux of unsupported ^^°Pb in dpm.cm"^

Page 30: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

Chapter 2

EXPERIMENTAL

In this work the activity was d instrumentally determined without sep­aration by observing the 46.5 keV (4%) gamma line arising from the decay of ^^°Pb with a High Purity Germanium Coaxial Detector and Multichannel Analyzer. A drawing of the detector system is shown in Fig. 2.1. Detector was a p-type germanium detector with Aluminum end cup and its useful energy range was from 40 keV to 10 MeV. The outside diameter of end cup is 76 mm and its thickness is 1 mm . The front window of end cup had a 0.5 mm thickness. The characteristics of the crystal are listed below:

Diameter:Length:Active volume:Germanium head layer thickness: Detector to window distance:

50 mm 48 mm 9200 mm2 600 ¡JLXÍi < 5 mm

The performance specifications of High Purity Germanium Coaxial Detec­tor for the 122 keV gamma ray of ^ Co and 1.33 MeV gamma ray of ®°Co are listed as follows:

16

Page 31: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle
Page 32: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 2. EXPERIMENTAL 18

1.33 MeV FWHM: 1.90 keVFWTM/FWHM: 1.90Peak to compton ratio: 44:1122 keV FWHM: 900 eV

The Multichannel Analyzer used in this work was a microprocessor based stand alone analyzer. It provides complete data acquisition, storage, display, manipulation and input/output capabilities. An optional floppy disk data stor­age was available for the system, which was capable of storing fifteen 4096 channel spectra on each diskette. The disk system was compatible with IBM DOS version 2.00 which means that data stored on the disk may be retrieved and used by any IBM compatible computer, which used DOS version 2.00. The diskettes must be double-sided, double-density and soft-sectored The dried and powdered samj^les were stored in closed beakers for about one month to ensure equilibrium between ^ * Ra and ^^°Pb, which grow in with the 3.85 days half life of ^^^Rn. One to ten grams of dried samples in counting vial ( a polystyrene cup with a diameter of 50 mm) were counted for 2.5x10® sec. the (/ammo-peaks 46.5, 351.9 and 661.6 keV energies belonging to the decay of ^^°Pb, ^ ®Ra and ^^^Cs were observed by placing the counting vial directly on the detector.

In order to minimize background activity the detector was shielded by a lead cylinder with a length of 420 mm, thickness of 90 mm and a diameter of 210 mm. In all of the measurements, the effect of self absorption was assumed to be negligible since the thin sediment samples of about 2 mm were used in all cases. For all of the measurements, the Background spectrum was counted for 6.0x10® sec. and it is illustrated in Fig.2.2. The 7 peaks of the background spectrum were identified and they are listed in Table 2.1. In the all of the measurements the background spectrum was subtracted from each spectrum.

Page 33: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 2. EXPERIMENTAL 19

EnergykeV

Count rate lO-^s-^

Radionuclide

11.77 78.00 Rb-x23.25 4.47 Cd-x46.64 5.94 210pb63.53 9.85 234Th74.31 44.06 Pb-x84.92 13.79 Pb-x92.73 14.62 234Th144.22 2.26 ¿55 и185.73 6.24 235U^226j^a238.13 3.74 212pb295.93 1.85 214pb351.68 2.79 214pb511.34 30.57 Annihilation583.66 2.90 208'pi609.57 4.72 214ВІ728.15 0.63 214ВІ795.57 0.46 228Ac861.42 0.84 208 1

912.05 6.07 ■'28Ac935.39 0.57 214ВІ964.97 1.091121.18 5.23 214ВІ1156.73 0.66 214ВІ

Table 2.1: The list of the 7 rays of the background spectrum belonging to the natural radionuclides obtained with a High-purity Germanium detector.The gain of the Multichannel analyzer was chosen as 0.300 keV/channel.

The gain of the Multichannel Analyzer set at 0.300 keV/channel. The En­ergy and Efficiency calibrations of the detector were carried out before sample countings using the following calibration sources:

Page 34: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 2. EXPERIMENTAL 20

Isotope E (keV) IntensityMn-54 834.84 0.99Co-57 122.06 0.86Co-60 1173.24 0.99

1323.50 0.99Cs-137 661.66 0.85Ell-152 344.30 0.27Eu-154 723.36 0.20

1004.76 0.18Eu-155 86.54 0.31

105.30 0.21

Table 2.2: The list of radionuclides used in the Energy and Efficiency calibra­tions of the detector.

Figure 2.3 and Figure 2.4 illustrate the energy and efficiency calibrations respectively. The energy calibration curve show a linear relation of the photon energy with the channel numbers. For the efficiency calibration three different source-detector geometry were chosen:a) source-detector distance is 19.60 cm.b) source-detector distance is 12.10 cm.c) source-detector distance is 0.610 cm.

From the Efficiency calibration curve it is concluded that the efficiency of the detector is inversely proportional to the source-detector distance. Another observation that can be considered from efficiency calibration is that in the all of the source-detector geometries the efficiency of the detector is maximum at a certain range of the energy. In the a and b cases the maximum efficiency can obtained at 70 keV-80 keV range but in the c case this range is shifted to 100 keV-110 keV range.

Page 35: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 2. EXPERIMENTAL 21

Sediment samples were obtained using a gravity corer (Benthos, Inc). The samples were stored vertically at 4°C and later extruded and sampled at 1 cm intervals for the cores from Spain and Turkey and 0.5 cm intervals for the cores from Cyprus. Fixed volume sediment subsamples were dried at 110°C for up to 48 hours prior to analysis and percentage dry weight was recorded. These values together with wet weights were used to calculate the porosity. Table 2.3 shows sample stations, sampling depth. Latitude, Longitude, and sampling date of the analyzed cores.

Sampling Station Sampling depth (cm) Latitude Longitude Sampling DateCore 2 (Turkey) 53 36 33 33 34 16 48 Sept/1984Core 3 (Turkey) 83 36 32 18 34 18 30 Sept/1984Core 35 (Turkey) 180 36 28 06 34 22 30 Oct/1984Core BC-1 (Spain) 33 - - 1986Core BC-6A (Spain) 33 - - 1986Core KS-IA (Cyprus) 14 - - 1991Core KS-2A (Cyprus) 12 - - 1991

Table 2.3: Coring coordinates and sampling date of the sediments taken from the coasts of Spain, Turkey and Cyprus.

Page 36: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 2. EXPERIMENTAL 22

CHANNEL NUMBER

Figure 2.2: Spectrum of the natural background obtained by with a High-purity Germanium detector. The detector was shielded a lead cylinder with a length of 420 mm, thickness of 90 mm and a diameter of 210 mm. The gain of the multichannel analyzer was set at 0.300 keV/channel.The counting time was 8.0x10® sec.

Page 37: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

СНАРТШ 2. EXPERIMENTAL 23

CHANNEL NUMBER

Figure 2.3: Energy Calibration of the High-purity Germanium detector using the calibration sources given in the Table 2.2. The gain of the multichannel analyzer was set at 0.300 keV/channel.Energy given in keV.

Page 38: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 2. EXPERIMENTAL 24

ENERGY (keV)

Figure 2.4: Efficiency Calibration for three different source-detector geome- try.a) source-detector distance was 19.60 cm. b) source-detector distance was 12.10 cm. c) source-detector distance was 0.61 cm. The gain of the multichan­nel analyzer was set at 0.300 keV/channel.

Page 39: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

Chapter 3

RESULT AND DISCUSSION

A typical 7 ray spectrum of the sediments taken from the southern coasts of Spain is shown in Fig.3.1. An inspection of the spectrum shows that the photo peaks belonging to and ^ * Ra are well resolved from major potentialinterfering contributions from naturally occurring radionuclides. Among the five 7 emissions accumpaying the decay of ^ ®Ra, only the one at 185.2 keV is not resolvable on the detector used, from the 185.7 keV 7 emission from 235pj 226j^^ measured via the 295.2 (19.2%) or 351.9 (37.1%) keV 7

emissions of ^ '‘Pb. The one at 351.9 keV provides better sensitivity due to higher emission probability and the lower background in the spectral region. The Activity of the total ^^°Pb was determined by using 46.5 keV gamma peak (4.06%). Unlike most other reported studies on ^^°Pb dating where the level of supported ^^°Pb is inferred from few measurements on much deeper sections in the sediment core, we were able to estimate the level of ^ ®Ra in each section simultaneously. So the unsupported amount of ^^°Pb in each partition may be computed by subtracting the activity of ^ ®Ra from the total activity of ^^°Pb. The errors in the unsupported ^^°Pb activities reported include the propagated errors of the total and supported parts.

The efficiency calibration was carried out by using a standard solution, to compute the efficiency of the detector with respect to ^^°Pb and ^ ®Ra isotopes for the counting position at which all the samples were analyzed. Five grams of an inactive matrix was mixed with a known activity of standard solutions and the corresponding efficiency at the given geometry were found as 15.6% and 4.45% for ^^°Pb and ^ * Ra respectively.

25

Page 40: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION 26

CHANNEL NUMBER

Figure 9: The 7 ray spectrum of the sediment at the top section of BC-1 core taken from southern coast of Spain.The counting time was 2.5x10^ sec.

Page 41: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION 27

3.0.6 Cores taken from th e southern coast o f Spain:

The sediments cores were collected at two station (BC-1 and BC-6A) from southern coast of Spain (Fig.3.2). The pH and temperature profile and the result of vertical distribution of Ni, Cu, Ag, Zn, Cd, Pb, P, Al, La, Tl, V, Cr,

• Mo, Mn, Fe, Co, Li, Va, K, Rb, Be, Mg, Ca, Sr and Ba (the concentration ex­pressed in ppm.) in BC-1 and BC-6a cores are summarized in Appendix. The chemical analysis was done using Inductively Coupled Plasma Atomic Emis­sion Spectroscopy (ICP/AES) by Prof. G.Evans at the Geological Department of Imperial Collage,London.

The corrected depth, z and mass,depth, m of each section of BC-1 and BC- 6A cores was calculated from corresponding porosity data using Equation 1.4 and 1.5 and they are listed in Table 3.1. The result of activity measurements for BC-1 and BC-6A cores are summarized in Table 3.2. Figure 3.5 shows the distribution of ^^®Ra in BC-1 and BC-6A cores. The ^ ®Ra activity remains constant in the both cores for the depth of 50 cm. Total ^^°Pb activity profile in BC-1 and BC-6A cores are shown in Fig.3.4.

The totaP^°Pb activity in BC-1 core decreases with increasing of the depth and reaches equilibrium under the depth of 15 cm. A weighted least square fit (with weights inversely proportional to the square of estimated uncertian- ity in each data point.) of unsupported activity as a function of corrected depth, z for BC-1 core, leads to a sedimentation rate of 0.842±0.074 cm.y“ or 0.213db0.019 g.cm“^.y“ L One can also calculate the flu.x of unsupported ^^°Pb

as 0.740±0.007 pCi.cm“^.y“ using Equation 1.8. The value obtained is higher than the value reported in the literature as 0.360-0.450 pCi.cm"".y“ [8]

Page 42: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION 28

• G

Figure 3.2: Coring locations of the BC -1 and BC-6A cores taken from southern coast of Spain.

Page 43: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION 29

Depthcm

BC-1 BC-6APorosity

<t>U)

Corrected depth z

cm

Mass depth m

g.cm“^

Porosity<t>U)

Corrected depth z

cm

Mass depth m

g.cm“^1 0.95 1.19 0.16 0.910 1.13 0.262 0.95 2.38 0.31 0.910 2.50 0.533 0.94 3.74 0.51 0.91 3.69 0.824 0.94 5.17 0.73 0.90 4.94 1.145 0.93 6.93 1.07 0.90 6.24 1.506 0.92 8.83 1.47 0.89 7.59 1.887 0.92 10.83 1.90 0.79 10.23 3.338 0.91 12.98 2.41 0.87 11.83 3.869 0.91 15.19 2.94 0.88 13.33 4.3310 0.91 17.45 3.50 0.80 15.83 0.5611 0.91 19.71 4.06 0.88 17.33 6.1612 0.89 22.33 4.81 0.88 18.83 6.6913 0.88 25.31 5.78 0.89 20.21 7.0914 0.89 28.02 6.58 0.90 21.46 7.4115 0.90 30.48 7.24 0.89 22.83 9.1316 0.90 32.81 7.83 0.87 24.46 9.6817 0.91 35.02 8.37 0.92 25.46 9.8918 0.91 37.24 8.90 0.88 26.96 10.4219 0.91 39.45 9.44 0.81 29.33 11.5920 0.90 41.93 10.11 0.88 30.83 12.1321 0.89 44.64 10.91 0.87 32.46 12.68,22 0.89 47.35 11.72 0.85 34.33 13.4123 0.89 50.07 12.52 0.85 36.21 14.1424 0.88 53.04 13.49 0.78 38.96 15.7125 0.87 56.26 14.62 0.83 41.08 16.6526 0.87 59.48 15.74 0.82 43.33 17.7027 0.87 62.69 16.87 0.70 47.081 20.6328 0.88 65.64 17.82 0.83 49.21 21.5829 0.89 68.35 18.62 0.84 50.21 22.40

Table 3.4: Porosity,corrected depth and mass depth data of BC-1 and BC-6A Cores.

Page 44: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION 30

Depthcm

BC-1

dpm/g^ ^OPbsupp.

dpm/g^^ °Pbun,upp.

dpm/g

BC-6A^ °PbTct.dpm/g

A ^ °PbSupp.dpm/g

P U nsupp.dpm/g

1 11.33±0.94 3.20±0.32 8.13±0.99 25.89±2.43 3.25±0.09 21.65±2.529.72±0.94 0.52±0.09 9.20±0.95 5.00±0.58 4.02±0.38 0.98±0.717.06±0.68 4.80±0.51 2.26±0.444.62±0.50 0.77±0.10 3.85±0.51 4.09±0.71 2.80±0.47 1.28±0.853.07±0.32 2.97±0.38 0.10±0.49 5.91±0.81 4.38±0.32 1.53±0.879.72±0.88 2.04±0.28 7.68±0.93 5.23±1.14 4.17±0.56 1.06Ü.286.33±0.77 3.72±0.39 2.61±0.86 4.39±0.85 3.25±0.33 1.14±0.922.27±0.25 2.06±0.26 0.22±0.36 4.88±0.67 1.12±0.34 3.76±0.741.21± 0.12 1.32±0.16 5.21±1.11 1.32±0.36 3.89±1.15

10 3.11±0.32 1.43±0.31 1.68±0.44 4.10±0.72 2.66±0.43 1.44±0.8411 1.59±0.01 3.33±0.38 5.94±0.77 4.12±0.31 1.82±0.8312 2.99±0.28 6.72±0.62 3.82±0.23 2.90±0.6713 1.24±0.14 0.80±0.14 0.44±0.14 2.00±0.75 0.52±0.30 1.48±0.6514 4.43±0.52 0.60±0.08 3.83±0.52 8.06±1.20 1.12± 0.22 6.87±1.2315 1.26±0.14 2.17dz0.31 16.30db0.99 3.70±0.42 12.61±1.0716 1.95±0.19 0.43±0.06 1.51±0.20 22.63il.68 5.70i0.43 16.94il.7317 4.40i0.60 0.78i0.11 3.6Ü0.60 5.47i0.91 5.23i0.44 0.234il.0418 3.63i0.71 4.4Ü0.4619 3.37i0.37 3.18i0.34 0.19i0.51 2.37i0.72 1.95i0.33 0.4Ü0.7920 3.58i0.43 1.4Ü0.19 2.18i0.47 ll.2 6 il.2 6 4.24i0.31 7.02il.3621 2.39i0.22 5.96i0.59 10.22i2.24 10.38i0.9722 0.76i0.08 1.8Ü0.22 7 .6 7 il.l l 1.89i0.45 5.78il.20

Table 3.5: Result of Activity measurements of Total Supported ^^°Pband Unsupported ^^°Pb for BC-1 and BC-6A Cores.The unit of the activities are expressed by disintegration per minute for one gram of dried sample. The weighted average of Supported ^^°Pb activity for BC-1 and BC-6A cores is computed as 2.23i0.07 and 3.18i0.08 respectively.

The distribution of total ^^°Pb activity in BC-6A core shows nearly con­stant ^^°Pb activity which increases at lower depth (under 30 cm).For this reason no sedimentation rate can be determined using Constant Initial Con­centration model and calculation of a ^^°Pb chronology by any model other

than Constant Rate of Supply model was not feasible.

The observation of plateau region in ^^°Pb profile for BC-6A core is thought to occur from the nearness of BC-6A core to the shore where the sediments

may be mixed and redistributed by physical mixing which is more effective at the inshore regions.

Page 45: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION 31

DepLli (cm )

Depth (cm )

Figure 3.3: Porosity, and Mass depth, ni (g.cm ) profiles of BC-1 and BC-6A Cores.D:BC-l.A:BC-6A.

Page 46: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION 32

Beside the physical mixing, biological mixing [5],[6] should be taken in ac­count. There is a high amount of organic carbon in the average magnitude of about 5% and 3% in the top and deep sections respectively (Table 4.2 Ap­pendix) which indicate the existence of microorganisms.

The reason of the increasing ^^°Pb activity in the deep sediments could be explained by the effect of surface area of these sections on the adsorption and ion exchange capacities of the sediments. The high surface area provides high adsorption and ion exchange capacities for ^^°Pb and so increases the ^^°Pb activity in such a region.[60]

The Percentage of the ^ '^Pb inventory in BC-1 and BC-6A cores are com­puted from the equation bellow:

Vo Inventor y J2^m .Aun$/A

X 100 (3.10)

Where:Am.y4[/„iupp.=Total integrated unsupported ^^°Pb activity in dpm.cm"^

# = Atmospheric flux of ^^°Pb in dpm .cm ~^.yh A=Decay constant of ^^°Pb in y~^.

By assuming that the annual atmospheric flux of unsupported ^^°Pb is 0.9

dpm.cm“V~^ [57], the inventory of BC-1 and BC-6A cores were computed as 107% and 160% respectively.

Although in the BC-1 core, all of the atmospheric inventory seems to be collected , the assuming annual atmospheric flux of ^^°Pb may not be a proper value for calculating the percentage of ^^°Pb inventory in this region. The ab­

normally high inventory of BC-6A core is also a reason for such a conclusion.

An explanation for having such a high inventory may be from the existence of a atmospheric flux higher than 0.9 dpm.cm~^.y“ in those cores. Another

Page 47: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION 33

possible reason for such a behavior may be explained from the erosion pro­cess, which increases the load of the sediments delivered to the reservoir. As a result of erosion, one can assume that, beside the atmospheric flux of ^^°Pb, there must be another source of ^^°Pb which is carried by the eroded materials.

The Constant Rate of Supply model was used to determine the date of the each section of sediment column taken from BC-1 and BC-6A cores, using Equation 1.5. The result of the age determination of BC-1 and BC-6A cores using Constant Rate of Supply model are summarized in Table 3.3

Depth BC-1 BC-6Acm Date Date

yr· yr·1 1986±2.70 1986db3.122 1983±2.85 1985.8T3.133 1982±2.86 -4 1980±2.96 1985.4±3.145 1980±2.93 1985±3.166 1972±3.28 1984.6±3.147 1968±3.31 1983T2.968 1967±3.28 198Ü3.049 - 1979±3.0810 1964±3.40 1977T3.0211 - 1975±3.0412 - 1974±3.1013 1962±3.49 1973±3.1314 1946±4.40 1970T3.315 - 1962T3.716 1944±4.28 1939±5.817 1911±6.55 1938T5.818 - 1936E4.819 1909±6.8 1916±6.4

Table 3.6: The age of the each sediment section is computed from Constant Rate of the Supply model using the Equation.1.5 for BC-1 and BC-6A Cores

Page 48: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION 34

10 3.0

10 1.0

tiOg 10 - 1.0

nd

§ 1 0 "·° >Ü

TdoE-H

10 1.0

10 - 1.0

10 - 3.0

0.0 10.0 20.0 30.0 40.0

Corrected depth, z' ( c m )

60.0

Figure 3.4: Profile of Total ^^°Pb activity (dpm/g) in the sediments cores taken from the southern coast of Spain.□:BC-1 core, A;BC-6A core.

10 3.0

10 1.0

10 - 1.0

10 - 3.0

0.0 10.0 20.0 30.0 40.0 50.0

Corrected depth, z^(cm )

Figure 3.5: Profile of Su2>ported ^^°Pb activity (dpm/g) in sediments cores taken from the southern coeist of Spain.□:BC-1 core, A:BC-6A core.

Page 49: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION 35

0.0 10.0 20.0 30.0 40.0

Corrected depth, z' (era )

50.0

B C -6 A CORE

Corrected depth, z'^(cra)

Figure 3.6: Profile of Unsupporte(i activity (dpm/g) in sediments corestaken from the southern coast of Spain.line is the result of weighted least squaie fit to the unsupported ^^^Pb activity data for BC-1 core^__________

Page 50: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION 36

Figure 3.7 shows the age-depth relation in BC-1 and BC-6A cores. The points represent the result of the age determination of the sediments using Constant Rate of Supply model and the line represents the result of the age determination of the sediments using Constant Initial Concentration model. In the BC-1 core two dating model are in a good agreement with each other. The result of Constant Rate of Supply model shows that in the BC-6A core, there are two different regions, a region which is between 0-20 cm having high sedimentation rate of 1.390±0.118 cm .y^ (0.500T0.042 g.cm“^y“ ) and the one that is below 20 cm having a sedimentation rate of 0.229±0.119 cm.y“ (0.116±0.010 g.cm“^y~^).

Depthcm

BC-1 BC-6AA i37Csdpm/g

A i37Csdpm/g

1 1.59T0.71 -2 0.420..54 -3 1.49±0.51 -4 0.92T0.56 0.22T0.185 1.16±0.56 0.48±0.106 1.28T0.56 -7 0.90±0.56 -8 0.67±0.56 0.50T0.109 0.70±0.57 -10 0.66T0.56 0.12T0.0812 - 0.60T0.1415 - 0.22T0.0918 - 0.46T0.0819 - 0.21T0.07

Table 3.7: ^ ’ Cs Activity measurement for BC-1 and BC-6A Cores.

The result of the ^^^Cs measurements for BC-1 and BC-6A cores are sum­marized in Table 3.4. Figure 3.8 shows the distribution of ^ ^Cs in the BC-1 and BC-6A cores. There are two maxima in the ^ ^Cs activity of BC-1 core.

Page 51: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

B C - 1 CORE

CHAPTER 3. RESULT AND DISCUSSION 37

0 . 0 10-0 2 0 .0 3 0 .0

Corrected depth, (cm )

4 0 .0

B C - 6 A CORE

Corrected depth (cm )

tigure 3.7: The comparison of Constant Rate of Supply and Constant Initial Concentration dating models for BC-1 and BC-6A Cores. The points corre­sponds the Constant Rate of Supply model and the line represents the Constant Initial Concentration model

Page 52: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION 38

The first peak located at a depth of about 0.60 cm is thought to be a marker of nuclear weapon and device testing which were restarted in 1963 and the second one at a depth of about 7.90 cm is a marker of the first high-yield thermonuclear tests which took place in 1954. According to the position of peaks in the ^^^Cs activity of the BC-1 core, the sedimentation rate was com­puted as 0.8095 cm.y“ or 0.132 g.cm“^.y~^. The sedimentation rate obtained from ^^^Cs profile is in a excellent agreement with value obtained from ^^°Pb method in the BC-1 core. As a result of sedimentation the peak of 1963 should be apparent at deeper section of sediment column, whereas it was observed at top levels. The reason of such a observation may be explained by the loss of sediment material from the upper part of the core during sampling. The other explanation that could be considered is the migration of ^^^Cs from the deeper section to the upper ones.

As it is visualized from Figure 3.8 the ^ ^Cs profile did not reveal a clear distribution pattern that could lead to an useful dating for BC-6A core. This behavior of ' ^Cs distribution in BC-6A core may also be a result of the phys­ical and biological mixing processes. Although the sampling time of the both cores coincide with the Chernobyl accident, no high activity was measured in the top section of the sediment column and the reason of that is because there is a time lag, which was computed as 6-12 months [54] between the time of atmospheric deposition of ^ ^Cs and the time of deposition of ^^'Cs in sediment profile.

By assuming that the fallout inventory of ^^ Cs was computed as 33 dpm.cm“ [55], the percentage inventory of ^^^Cs for BC-1 and BC-6A cores were calcu­lated as 12.7% and 6.4% respectively. The reason of having low ^ ’ Cs inventory in BC-1 and BC-6A cores may be explained by considering the postdeposional mobility of ^^^Cs which cause a penetration of ^ ^Cs from the top core to the inner part of the sediment column. The diffusional movement of ^ ^Cs in the sediment profile may also cause the migration of the some part of the *^ Cs activity in to the deeper section of sediment column. The dilution of the ^^^Cs activity by the erosion process may be considered as another reason for having such a low inventory.

Page 53: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION

bX)aOhnd

!>o-aJ

2.0

1-5 -

1.0 -

0.5 -

0.00.0

B C - 1 CORE 39

5.0 10.0 15.0

Corrected depth (era )

20.0

B C - 6 A CORE

tiDaO hncl

• i —H>-t-Jo

0.80 -

0.60

0.40 -

0 .2 0 -

0.000.0 10.0 20.0

Corrected depth (cm )

30.0

Figure 3.8: Profiles of in BC-1 and BC-6A Cores. The first and the second peaks could be attributed to fallout from 1963 and 1954 when the nuclear weapon and device testings wei'e occurred

Page 54: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION 40

3.0.7 Cores From Southern Turkey:

The sediment cores were collected at three stations (Core-2 ,Core-3 and Core- 35) from the southern coast of Turkey (Figure 3.9). The result of the Grain size analysis and the amount of the Organic Carbon and Calcium Carbonate con­tents of the sediments from Core-2, Core-3 and Core-35 are listed in Appendix. The corrected depth, z and mass depth, m of each sediment section of core-2, core-3 and core-35 was calculated from corresponding porosity data and the result are summarized in Table 3.5. Fig 3.10 and Fig 3.11 show the behavior of porosity and mass depth in core-2,core-3 and core-35 respectively. In all of the cores the porosity decreases gradually and the fluctuations are thought to be from seasonal changes. The mass depth profiles in all of the cores increase linearly with increasing of depth. Figure 3.12 shows the distribution of ^ ®Ra in core-2, core-3 and core-35. The ^ ®Ra activity in all of the cores seems to be constant and do not change with increasing depth.

Figure 3.13 illustrates the total ^^°Pb activity profile in core-2, core-3 and core-35. Total'^ '^Pb activity reaches equilibrium under the depth of 5 cm in core-2 and core-35 whereas in core-3 it reaches equilibrium under the depth of 10 cm. In core-35 the total ^^°Pb distribution is much better than the others and the reason for this is because of the location of the core-35 which is farther from the shore comparing with core-2 and core-3. The nearness of these cores to the shore affects the ^^°Pb distribution in sediment column by means of physical mixing.

The sedimentation rates of core-2, core3 and core-35 were computed by applying weighted least square fit procedure to the unsupported ^^°Pb data and the result are summarized in Table 3.7. The atmospheric flux of ^^°Pb for core-2, core-3 and core-35 were calculated and they are also listed in Table 3.7. The obtained flux values are in the range of the value reported in literature [8].

Page 55: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION 41

, UrirluX ! yLV»-------^ /2 2 7 ,

CivTï^-T^.t o3czK ii· KA z jm h jn> fT~ ^

I'·.u %o T i j n e n t ^

> 3 U i n j v j j ; ' ^ ^ " - I

,.A, I I (I > ■ ■ * '’*T| ■ \ * * “ \o D ^ i r t e n t O E j i ^ „ \

/ i/,· 0Ululi.tJ*(,jj23<.li. J|°Ere^li. podntj. M ^ f i T T y ·

ï« y h a fT = 0 * fT ja m y « A ?ÎîçV-Çm:n.ii,.fi^ C in « t .p

¿c^rycKP K iliS s\. ^ O « a i a - - x o j .¿■'• S k 2 n d erU n gV *

. ^ ^ V XinkhJ.1 rI C '.M u Ji/n iy ·^

> -W’''""Al E iK yaurtoc.-i).^ y5Hift/r._3, *x. Sjrviotfaii^^Jx OAjtinoiû ) - ^ e p p oïayi»<aii2L

O o«<3

Figure 3.9: Coring locations of Core-2, Core-3 and Core-35 taken fioin southein coast of Turkey.

Page 56: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION 42

Depth CORE-2 CORE-3 CORE-35cm Porosity Corr. MclSS Porosity Corr. Mass Porosity Corr. Mass

depth depth depth depth depth depth

<t>U)/z m 4>{z) /z m ^(z) yz m

cm g.cm"" cm g.cm - 2 cm g.cm*“^1 0.80 1.00 0.52 0.80 1.00 0.52 0.80 1.00 0.522 0.79 2.03 1.05 0.78 2.19 1.09 0.78 2.22 1.103 0.77 3.29 1.64 0.75 3.67 1.73 0.79 3.37 1.654 0.78 4.46 2.21 0.74 5.27 2.41 0.78 4.53 2.215 0.79 5.60 2.77 0.69 7.38 3.22 0.76 5.90 2.826 0.77 7.00 3.38 0.74 8.89 3.87 0.79 7.00 3.367 0.78 8.15 3.95 0.77 10.20 4.47 0.77 8.33 3.978 0.78 9.36 4.53 0.74 11.81 5.15 0.78 9.55 4.559 0.79 10.39 5.06 0.73 13.55 5.86 0.78 10.76 5.1210 0.80 11.38 5.58 0.74 15.16 6.54 0.78 12.00 5.7011 0.78 12.59 6.15 0.70 17.11 7.31 0.81 12.84 6.1812 0.79 13.66 6.69 0.74 18.69 7.98 0.79 14.00 6.7213 0.79 14.72 7.23 0.69 20.77 8.78 0.78 15.14 7.3014 0.78 15.85 7.80 0.72 22.57 9.51 0.77 16.43 7.9015 0.78 17.03 8.35 0.74 24.12 10.17 0.78 17.64 8.4716 0.76 18.35 8.95 0.72 25.90 10.89 0.77 18.91 9.0617 0.78 19.55 9.52 0.71 27.79 11.64 0.78 20.16 9.6418 0.79 20.69 10.08 0.73 29.98 12.34 0.78 21.40 10.2219 0.79 21.80 10.63 0.75 31.43 12.98 0.75 22.87 10.8620 0.78 22.98 11.20 0.74 33.07 13.67 0.78 24.07 11.4321 0.79 24.11 11.75 0.78 34.24 14.23 0.78 25.29 12.0022 0.79 25.14 12.27 0.72 36.07 14.94 0.78 26.52 12.5823 0.79 26.15 12.79 0.75 37.59 15.60 0.77 27.87 13.1924 0.79 27.24 13.33 0.72 39.37 16..32 0.78 29.08 13.7625 0.78 28.39 13.89 0.74 40.95 17.00 0.79 .30.20 14.3126 0.78 29.57 14.46 0.78 42.12 17.56 0.80 31.15 14.8227 0.79 30.64 15.00 0.74 43.700 18.23 0.78 32.31 15.3828 0.78 31.83 15.56 0.75 45.15 18.87 0.79 33.38 15.9229 0.79 32.93 16.11 0.71 47.06 19.63 0.80 34.42 16.45

Table 3.5: Porosity, Corrected depth, z'^(cm) and Mass depth, m (g.cm“ ) of each section of sediment taken from southern Turkey.

Page 57: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION 44

The percentage of the inventory in core--2,core-3 and core-35 are com­puted from Equation 3.1. By assuming the annual atmospheric flux of 0.9 dpm.cm“^y“ [57] the inventory of the core-2,core-3 and core-35 were calcu­lated as 27.5%,23.3% and 34% respectively. The reason of having such a low

inventory may be explained from the existence of a atmospheric flux lower than 0.90 dpm.cm“^.y“ in this region.

CORE scm.yr~^

rg.cm~^.yr~^

PpCi.cm~‘

CORE-2 0.16T0.01 0.08T0.004 0.15±0.01CORE-3 0.31±0.05 0.13±0.021 0.12±0.03

CORE-35 0.08±0.01 0.04T0.003 0.19T0.02

Table 3.10; Result of sedimentation rate analysis for Core-2,Core-3 and Core- 35. The sedimentation rates and flux values were calculated from weighted least square fit procedure which was applied to the unsupp. ^ * Pb activity data

Depth CORE-2 CORE-3 CORE-35cm Date Date Date

yi'· yi·· yi··1 1984±2.62 1984T6.00 1984T2.802 1972±2.80 1970±6.90 1960±4.203 1961T3.20 - 1931±9..304 1959T3.40 1943T6.60 1926±8.605 1953±3.60 - 1901±13.406 1941T4.50 1916±8.20 -7 1940±4.30 - 1895T13.008 1920±6.20 - 1862±26.0010 1910±7.80 - -11 1872±8.34 -

Table 3.11: Age determination of each section of sediment cores taken from southern Turkey cores using Constant Rate of Supply model.

The Constant Rate of Supply model was used to determine the date of the each section of sediment column taken from core-2,core-3 and core-35 us­ing Equation 1.5. The result of the age determination using Constant Rate of Supply model for cores take from southern Turkey are summarized in Table 3.8.

Page 58: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION 45

Depth (cm )

Figure 3.10: Porosity profile of Core-2,Core-3 and Соге-35.П:Соге-2.Л:Соге- 3.@: Core-35.

Depth (cm )

Figure 3.11: Mass depth, m (g.cm“ ) of sediment taken from southern Tur key. □: Core- 2. A : Core- 3. ® : Cor e- 3 5.

Page 59: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

Tot

al A

ctiv

ity (

dpm

/g)

Supp

orte

d ac

tivity

(dp

m/g

)

[>(g •-

ia>

OI b

Oo b

OM b

Oo b

OM b

Op b

o S

CO

? CO

CO

O 0 l-j CD 1 CO Oi

C-f

- P o •-d cr P o o o 0 t—i CD 1 to o 0 l-i CD 1 CO P »—< i—' O 0 CD 1 CO □ o o l-J CD

O 0 Cl> O CD PI­ CT) N.

O 3

o N bP

crqH

S

d

CDi-

i

O

Po

^?

^ 3-

[> S

- b

O

o»-i CD

^

• P

b <

’O

C-t

-S O

. S

,c;

;,

CD w CD P CD O O CD C/D P CD O CO O P

o I M b

OI b

M Op b

o »-» bo N b

ia: Co c: tr-· H § to 0 1 Co O

Page 60: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION

10 1.0

bD

a

• fHP>• r H•+Ja

f iPL,pJcnPI

10 0.0

10 - 1.0

10 -s.o

47

0.0 5 .0 10 .0

Corrected depth, z'^(cm)

15 .0

Figure 3.14: Unsupported activity profile in Core-2,Core-3 and Core-35.The line in each figure represents the weighted least square fit to activity data.□:Core-2.A:Core-3.^:Core-35.

Page 61: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION 48

Figure 3.15 show the age-depth relation in core-2,core-3 and core-35 us­ing Constant Rate of Supply model and the line represents the result of the age determination of the sediment using Constant Initial Concentration model. In all of the cores the two dating models are in good agreement with each other.

Depthcm

CORE-2Amcsdpm/g

CORE-3A i 3 7 C s

dpm/g

CORE-35A i37Csdpm/g

1 0.009±0.0020.013±0.002 0.005±0.0010.013±0.001

0.207±0.0270.001± 0.001

0.001±0.0005 0.384±0.0340.002± 0.001 0.088±0.016

0.004±0.001

Table 3.12: Measured ^ ^Cs Activity for Core-2,Core-3 and Core-35.

The result of the ^^^Cs measurements for core-2,core-3 and core-35 are listed in Table 3.9. Figure 3.16 shows the distribution of ^^^Cs in core-2,core-3 and core-35. In the all of the distributions there are two maxima points in the ^^^Cs activity profile. The first one is thought to indicate 1963 and the second one indicates 1954. In the ^ ’ Cs distribution of core-2, if the first maximum activity is assumed to indicate 1963 which is located at a depth of about 3.30 cm, the sedimentation rate would be computed as 0.151 cm.y“ or 0.077 g.cm"^.y"h In the core-3 the second maximum in the ^^ Cs activity profile, located at a depth of about 8.79 cm is thought to indicate 1954 and from this assumption the sedimentation rate would be calculated as 0.292 cm.y“ or 0.128 g.cm“^.y~h In the core-35 the sedimentation rate was found to be 0.255 cm.y“ or 0.122 g.cm“^.y“ by assuming that the second peak in the ^^^Cs activity profile, lo­cated at a depth of about 7.70 cm indicates 1954.

Page 62: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION 49

For the core-2 and core-3 the sedimentation rate obtained from profile are in the excellent agreement with the result of method whereas in thecore-35 these two method do not match. The reason of such a observation may be because of any migrational movement of ^ ^Cs in terms of diffusion or other mixing processes (physical or biological mixing) that could change the horizon of the ^^^Cs in the sediment column.

The ^^^Cs inventory of core-2,core-3 and core-35 were found by assuming the atmospheric fallout inventory of 33 dpm.cm“ . The computed percentage of ^^ Cs inventory in the core-2,core-3 and core-35 are found to be around one percent. The very low inventory in these cores may be explained by the post depositional mobility of ^^^Cs. The postdepositional mobility of ^ ^Cs is known to be high in the high carbonate content sediments [14]. The sediment cores taken from southern Turkey are rich in carbonate content and the average per­centage of the carbonate in core-2,core-3 and core-35 are around 28%. Thus the postdepositional mobility of ^ ^Cs in these cores may be high enough to move the ^^^Cs activity in to the deeper part the sediment column.

Page 63: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSTON 50

0.0 2.0 4.0 6.0 3.0 10.0

Corrected depth (c m )

Figure 3.15; The comparison of the result of the age determination using Con­stant Rate of Supply and Constant Initial Concentration models.Point rep­resents the result of the Constant Rate of Supply model and straight line represents the result of the Constant Initial Concentration model.

Page 64: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

0.015

CHAPTER 3. RESULT AND DISCUSSION 51

'fco 0.010 -

6ex.•Td

^ 0.005 -

0.0000.0

0.0060

6P h

0.0030 -

0. 00

5.0 10.0 15.0

15.0

2.0 4.0 6.0 8.0

Corrected depth (c m )

10.0

Figure 3.16: activity profiles in Core-2, Core-3 and Core-35. The firstand the second peaks could be attributed to the fallout from the weapon and device nuclear testing in 1963 and 1954 respectively.

Page 65: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION 52

3.0.8 Cores taken from Cyprus:

The sediment samples were collected at two stations from the coast near Magosa which is in the north of Cyprus (Fig. 3.17). The corrected depth, z (cm), Mass depth, m (g.cm“ ) of each section of the sediment samples were computed from corresponding porosity data and the result are given in Table 3.11. The result of the activity measurements are summarized in Table 3.12. Fig 3.18 shows the change of the porosity and mass depth as a function of depth for KS-1 and KS-2 cores. In both cores the decrease of the porosity is observed. The mass depth profiles increase linearly as depth increases. The unit of activities are in disintegration per minute in ten grams of dried sample.

Figure 3.20 shows the change of the supported ^^°Pb activity as a function of depth in KS-1 and KS-2 cores. The amount of the supported ^^°Pb seems to be constant as the depth increases for KS-1 and KS-2 cores. Figure 3.19 shows the distribution of the totaP^°Pb in the KS-1 and KS-2 cores. The total ‘■ °Pb activity decreased up to the depth of 6.0 cm and after this point an increas­ing of the ^^°Pb activity is observed. The reason of such observation as was discussed for the BC-6A core may be due to the increasing of the surface area of the sediment that can increase their adsorption and ion-exchange capacities and consequently increase the ^^°Pb activity in this region. In KS-2 core, total '^^°Pb activity profile dose not have a clear decreasing pathway but it seems to reach the supported level below the depth of 10 cm. Figure 3.21 shows the profile of unsupported ^^°Pb activity for KS-1 and KS-2. The weighted least square fit method was applied to the unsupported ^ * Pb data and the sedimen­tation rate and input atmospheric flux of ^'°Pb for KS-1 and KS-2 ai'e listed in Table 3.10.

Core •210pb i37Css r P s r

cm.yr~^ g.cm~^yr~^ pCi.cm~‘ cm.yr~^ g.cm~^yr~^KS-1 0.28±0.01 0.22±0.01 0.44±0.02 0.30 0.23KS-2 0.16±0.04 0.13±0.03 0.17±0.04 0.21 0.17

Table 3.13: Result of the sedimentation rate analysis for KS-1 and KS-2 cores using ^^°Pb and ^^^Cs methods.

Page 66: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION 53

Figure 3.17: The general view of the coring locations of the KS-1 and KS-2 cores taken from the coast of Cyprus.

Page 67: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION 54

Depthcm

KS-l KS-2Porosity Corr. depth

zcm

Mass depth m

g.cm - 2

Porosity

<t>U)Corr.depth

zcm

Mass depth m

g.cm“^0.5 0.59 0.69 0.53 0.59 0.65 0.531.0 0.56 1.44 1.11 0.61 1.28 1.031.5 0.44 2.38 1.83 0.59 1.93 1.562.0 0.36 3.46 2.67 0.61 2.55 2.062.5 0.38 4.51 3.47 0.62 3.16 2.543.0 0.40 5.53 4.26 0.63 3.75 3.003.5 0.38 6.58 5.07 0.59 4.41 3.564.0 0.43 7.54 5.80 0.54 5.14 4.144.5 0.44 8.49 6.53 0.57 5.82 4.705.0 0.49 9.35 7.19 0.66 6.38 5.145.5 0.49 10.21 7.85 0.58 7.05 5.706.0 0.53 11.00 8.46 0.57 7.75 6.206.5 0.53 11.79 9.08 0.56 8.45 6.807.0 0.52 12.61 9.70 0.55 9.18 7.407.5 0.49 13.46 10.36 0.52 9.95 8.018.0 0.47 14.36 11.05 0.52 10.71 8.608.5 0.45 15.29 11.77 0.52 11.480 9.259.0 0.47 16.19 12.46 0.55 12.20 9.839.5 0.47 17.09 13.14 0.52 12.98 10.510.0 0.46 18.00 13.85 0.52 13.76 11.0810.5 0.46 18.91 14.55 0.56 14.46 11.7011.0 0.46 19.82 15.25 0.72 14.90 12.0011.5 0.51 20.74 17.25 0.47 15.76 12.7012.0 0.50 21.56 16.61 0.51 16.56 13.3012.5 0.51 22.32 17.25 - - -

13.0 0.53 23.21 17.86 - - -

13.5 0.53 24.00 18.47 - - -

14.0 0.55 24.76 19.05 - - -

Table 3.14: Porosity, Corrected depth, z (cm) and Mass depth, m (g.cm data for KS-1 and KS-2 Cores.

Page 68: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION 55

Depth KS-1 KS-2cm ^^iopbrot. ^210P6to..

dpm/lOg dpm/lOg dpm/lOg dpm/lOg dpm/lOg dpm/lOg0.5 46.85T2.66 5.66±0.63 41.19±2.73 24.19il.70 13.73i0.79 10.46il.881.0 6.37Ü.61 5.9Ü0.53 0.46Ü.70 12.39±2.98 ll.42i0 .65 0.98±3.051.5 6.79T1.08 2.24±0.29 4.55±1.11 41.86±3.50 7.92Ü.35 33.93±3.762.0 3.95T0.86 6.66±0.52 - 8.86±2.33 12.18i0.97 -2.5 9.16±1.43 7.93±0.51 1.23Ü.52 22.68±2.71 8.63±0.98 14.05±2.883.0 6.49±1.04 3.93±0.56 2.56Ü.18 18.42il.43 15.44i0.58 2.97Ü.543.5 7.89T1.21 6.95±0.50 0.94Ü.72 8.97±1.81 12.15i0.67 -4.0 11.45±1.00 ll.46i0 .64 - 16.05±2.34 23.46il.02 -4.5 15.00T1.72 4.6Ü0.45 10.39il.77 15.37±2.76 8.93±1.16 6.43±2.995.0 20.84±1.41 7.43±0.44 13.41il.48 3.22±1.33 13.43i0.56 -5.5 20.62i2.40 7.48±0.78 13.14±2.52 - 17.68±1.21 -6.0 25.26i3.05 10.88±0.10 14.38±3.05 - 13.67i0.69 -6.5 26.55±3.27 9.76±0.96 16.79±3.41 9.17Ü.94 10.77i0.92 -7.0 28.78±3.62 10.78±1.20 18.00±3.81 16.08il.59 13.66i0.49 2.42Ü.667.5 25.63±2.77 10.39i0.87 15.24±2.90 - 13.53±1.07 -8.0 16.33±3.06 8.68±0.84 7.65±3.18 14.95±2.17 ll.39i0 .95 3.56±2.378.5 15.69±2.98 9.35±0.89 6.34±3.11 9.77±2.70 8.62±0.79 1.15±2.819.0 3.95±2.42 14.87i0.72 - - - -9.5 ±3.71 12.75±1.09 - - - -13.5 8.28Ü.00 2.9Ü0.49 5.37±1.11 - - -14.0 5.31Ü.43 0.73±0.35 4.58Ü.47 - - ■

Table 3.15: Result of Activity measurements of Total,Supported and Unsup­ported for KS-1 and KS-2 Cores. The unit of activities are in disin­tegration per minute for ten grams of dried samples.The weighted average of supported ^^°Pb activity for KS-1 and KS-2 were computed as 7.68±0.15 and 12.74±0.22 dpm/lOg respectively

The computed atmospheric flux of ^^°Pb for the KS-1 and KS-2 are in the range of the value reported by Turekian in 1983. By assuming the annual flux of 0.9 dpm.cm'^.y“ , the percentage inventory of the ^^°Pb in KS-1 and KS- 2 cores were calculated as 58% and 32% respectively. The observation of low inventory in this area may be also explained from the existence of a atmospheric flux of ^^°Pb lower than 0.9 dpm.cm“^.y“h The low ^^°Pb inventory in the KS-1 and KS-2 cores could be also explained by remobilization of ^^°Pb [38] in which the chemical remobilization of '■ °Pb at the sediment-water interface can be happened. In this process, ^^°Pb, which was initially deposited under

oxidizing condition, is comparatively soluble in sediment pore water and can diffuses either out word in to overlying water, or in to deeper , more reducing regions of sediments where it is reprecipitated.

Page 69: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION 56

Figure 3.18: The porosity, and Mass depth, m (g.cm^) profiles for KS-1 and KS-2 cores. □:KS-1 core, A:KS-2 core.

Page 70: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION 57

Table 3.13 summarizes the result of the ^ ^Cs activity measurements for KS-1 and KS-2 cores. Figure 3.22 shows the distribution of the ^^^Cs in KS-1 and KS-2. The very high ^^^Cs activity in the top sections of the both cores can be attributed to fallout from Chernobyl accident in May 1986. The origin of the ^^^Cs is confirmed by the associated presence of the short lived ^^^Cs isotope. The activity of the ^ ’ Cs and ^^^Cs at the top section of the sediment cores are corrected for May 1986 and the ratio of ^ ’’Cs to the activity of ^ '‘Cs for KS-1 and KS-2 cores was computed as 3.13 and 2.68 respectively. These ratios are in a good agreement with the ratios which were reported by “Türkiye Atom Energisi Kurumu“ on March 1986 for the various soil and water samples [62]. The next maximum points, located at a depth of about 8.90cm and 5.80 cm in the activity profile of ^^^Cs in the KS-1 and KS-2 cores corresponds to the year 1963 respectively. The sedimentation rate computed for KS-1 and KS-2 using ^^^Cs activity profile are given in Table 3.10.

Depthcm

KS-1 KS-2A i37Cs

dpm/lOgA i34Cs

dpm/lOgA i s r c s

dpm/lOgA i 3 C s

dpm/lOg0.5 45.30i0.74 2.98İ0.33 1.93İ0.26 1.00İ0.151.0 14.03i0.44 - 13.04i0.35 2.07İ0.231.5 6.23İ0.23 - 10.66i0.81 -2.0 2.88İ0.21 - 12.63i0.46 -2.5 1.77İ0.16 - 10.29i0.55 -3.0 1.77İ0.32 - 5.23İ0.23 -3.5 0.97İ0.11 - 3.11İ0.21 -4.0 6.15İ0.30 - 1.21İ0.25 -4.5 ll.27i0 .31 - 3.13İ0.31 -5.0 8.28İ0.27 - 2.79İ0.91 -5.5 9.05İ0.39 - - -6.0 6.18İ0.47 - 1.57İ0.23 -6.5 6.1İİ0.38 - 1.47İ0.30 -7.0 3.25İ0.52 - 1.19İ0.17 -7.5 2.89İ0.30 - 1.86İ0.24 -8.0 2.59İ0.31 - 3.56İ2.37 -8.5 1.39İ0.28 - - -9.0 1.19İ0.17 - - -10.0 0.97İ0.21 - - -

Table 3.16: Result of the ^^^Cs and ^^^Cs Activity measurements for KS-1 and KS-2 Cores.

Page 71: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION 58

10^·° r

bj)О

Рцnj

• rHP>

оcd

*134--'C·E-·

10'

югЛ*^

AAA A A

A A A A

A

, □ □ ° □10* : a ° □

10 '

0.0 10.0 20.0 30.0

Corrected depth, z^(cm)

Figure 3.19: Total activity profiles for KS-1 and KS-2 cores. Theunit of the activities are in disintegration per minute foi ten g. ams of iiec sample.□:KS-1 core,A:KS-2 core.

10 2.0

P-.

о

РчР ч0со

■ о о

10 0.0

10 - 2.0

А ^А А А А

° ^ л ° П „

0.0 5.0 10.0 15.0

Corrected depth, z’ (cm )

20.0

Figure 3.20: Supported activity profiles for KS-1 and KS-2 cores. Theunit of the activities are in disintegration per minute for ten grams of dried sample.n:KS-l core,A:KS-2 core.

Page 72: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION

K S - 1 CORE

59

0.0 10.0 20.0

C o r r e c t e d d e p t h , z' ( c m )

30.0

K S - 2 CORE

C o r r e c t e d d e p t h , z' ( c m )

Figure 3.21: Unsupported activity profiles for KS-1 and KS-2 cores. The straight line is the result of the weighted least square fit procedure which is applied to the unsupported activity data.

Page 73: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION 60

The inventory of the KS-1 and KS-2 cores were computed by con­sidering the ^ ’ Cs inventory of 33 dpm.cm“ . The percentage ^^^Cs inventory for the KS-1 and KS-2 cores were found as 29% and 11.2% respectively. The main reason of having low inventory of ^^^Cs is the postdepositional mobility of ‘ ^Cs in these cores. Diffusional movement of ^^^Cs in the sediment column can be considered as an another eifect which redistribute the ^^^Cs profile. The dilution of ^^^Cs activity by means of erosion process may be a possible reason for having such a behavior.

The Constant Rate of Supply model was used to determine the date of the each section of sediment column taken from KS-1 and KS-2 cores using Equa­tion 1.5. The result of the age determination using Constant Rate of Supply model for cores take from Cyprus are given in Table 3.14.

Depth KS-1 KS-2cm Date Date

yr· yr·0.5 1991±2.6 1991T5.31.0 1990.9T2.6 1990.5±5.11.5 1990±2.6 1966±7.52.5 1989.5±2.6 1949T11.13.0 1989±2.6 1943T12.63.5 1989±2.6 -4.5 1986T2.7 1925±18.25.0 1977±3.2 -5.5 1972±3.5 -6.0 1967±3.8 -6.5 1959±4.2 -7.0 1947±5.0 1912T25.07.5 1931±7.0 1866T798.0 1918±7.8 -8.5 1900±6.15 -

Table 3.17; Age determination of sediments taken from the KS-1 and KS-2 cores using Constant Rate of Supply model.

Page 74: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

K S - 1 CORE

CHAPTER 3. RESULT AND DISCUSSION 61

Corrected depth (cm )

K S - 2 CORE

Corrcted depth (cm )

Figure 3.22: The distribution of the in KS-1 and KS-2 cores. The first and the second peaks could be attributed to the 1986 and 1963 respectively.

Page 75: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

K S - i CORE

CHAPTER 3. RESULT AND DISCUSSION 62

Corrected depth (cm )

K S - 2 CORE

Corrected depth (cm )

Figure 3.23: The comparison of the result of the age determination using Con­stant Rate of Supply and Constant Initial Concentration models, points rep­resent the result of the Constant Rate of Supply model and the straight line represents the result of the Constant Initial Concentration model.

Page 76: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 3. RESULT AND DISCUSSION 63

Fig.3.23 shows the result of the age determination using Constant Rate of Supply and Constant Initial Concentration models for KS-1 and KS-2 cores. In this figure points represent the the result of the Constant Rate of Supply model and The straight line represents the result of the Constant Initial Concentration model. In the KS-2 core the result of the two models are in a good agreement with each other. Whereas in the KS-1 core such a behavior is not observed. It is possible to separate the result of the Constant Rate of Supply model into two region as it has been done for BC-6A. A region with a higher sedimentation rate of 2.40±2.03 cm.yr~^ (1.78±1.24 g.cm~‘yr~^) and a region with a lower sedimentation rate of 0.090±0.006 cm.yr~^ (0.07±0.0045f.cm“^j/r~^).

Page 77: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

Chapter 4

Conclusion

Table 3.15 summarizes the result of sedimentation rate analysis for the sedi­ments taken from the coast of Spain,Turkey and Cyprus using and ^ ’’Csmethods. The sedimentation rate of the cores taken from the Mediteranian Sea are higher than the value reported for the Marmara Sea as 0.11 cm.y“ (0.087 g.cm“^.y^) [5]. The high sedimentation rate of the BC-1 and BC-6A cores are in the range of the sedimentation rate of the rivers (0.037-4.00 g.cm“^.y~^)[48].

Core 210pbs r P s r

cm.yr~^ g.cm~^y7'~^ pCi.cm~^ cm.yr~^ g.cm~‘yr~^BC-1 0.84T0.07 0.21T0.02 0.74T0.01 0.81 0.13

*BC-6A 1.39T0.12 0.50T0.04 - - -

and and - - -

0.23T0.20 0.12T0.012 0.16T0.01 0.08±0.01 0.15T0.01 0.15 0.083 0.31T0.05 0.13T0.02 0.12T0.03 0.29 0.13

35 0.08±0.01 0.04±0.003 0.14T0.02 0.26 0.12KS-1 0.28T0.010 0.22T0.010 0.44T0.020 0.30 0.23KS-2 0.16T0.04 0.13T0.0.30 0.17±0.04 0.21 0.17

Table 4.18: Result of the sedimentation rate analysis for sediments taken from the coasts of Spain,Turkey and Cyprus using ^^°Pb and ^^^Cs methods. * indicates the result of the Constant Rate of Supply dating model

64

Page 78: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTER 4. CONCLUSION 65

Every radioactive nuclide present in the sediments may, in principal, serve

as the basis for a particular method of age determination. The sole knowledge

of the concentration of radionuclide in sediment does not suffice, and further

inforination is, in fact, necessary. In the case of deep-sediments ^°Be, 230Th, 23ip^ 230-ph. 232-pi 23ip^.230Th models [23],[24] are the models which

have been used in chronology of sediments.

The ^^°Pb and ^ ^Cs methods can also be considered as useful methods in

the chronology of the sea sediments where the average depth of the region is

in the order of that of lakes. The distribution of ^^°Pb and ^ ’ Cs radioisotopes

in the inshore regions may be affected by the physical mixing or by erosion

process. Whereas in the out-shore regions the ^^°Pb and ^ Cs profiles show

more clear and useful pattern for computing sedimentation rate.

The sedimentation rate of sea should be lower than that of lake since the ratio of the amount of the water to the number of particles in the lake is more than that in the sea. The computed sedimentation rate for all of the cores except for core-35 are in the order of the sedimentation rate of the lakes and the reason for this may be from the position of the sediment cores which are in the inshore regions.

Page 79: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

Chapter 5

APPENDIX

COLUMN ‘ to NT CU AG ZN CD PB PCOUNTROW

1

3¿► 3¿► 3A 3A 3A 3A 3A

^01 · 3 0 . 5 0 0 ¿;6.2 500 2 . 0 0 0 0 2 0 0 , 0 0 1 . 7 5 0 0 0 1 1 5 . 0 0 0 1 1 0 8 , 0 02 ? Q . 500 ¿»8.0000 - 9 9 , 0 0 0 0 1 A 7 . 5 0 1 . 5 0 0 0 0 9 5 , 0 0 0 1 0 2 0 . 0 03 ^ 0 3 . 7 9 . 0 0 0 ¿.¿1 . 5 0 0 0 - 9 9 , 0 0 0 0 1 3 1 . 5 0 1 . 5 0 0 0 0 8 7 . 5 0 0 9 6 A . 0 0

2 9 . 5 0 0 ¿*7 ,0000 1 . 0 0 0 0 1 3 A . 0 0 1 . 2 5 0 0 0 9 2 . 5 0 0 90A.OO5 ^ 0 5 . 7 7 . 0 0 0 A 7 . 5 0 0 0 - 9 9 , 0 0 0 0 1 2 2 . 5 0 1 . 2 5 0 0 0 9 2 . 5 0 0 9 5 6 . 0 06 ¿►06. 3 0 . 0 0 0 A 6 . 5 0 3 0 l .OOOO 1 3 1 . 5 0 1 . 7 5 0 0 0 8 5 . 0 0 0 1 0 6 8 . 0 07 7 9 . 5 0 0 Al . 7 5 0 0 - 9 9 , 0 0 0 0 1 2 1 . 0 0 1 . 5 0 0 0 0 7 5 . 0 0 0 1 0 9 0 , 0 08 3 1 . 0 0 0 Al . 0 0 0 0 1 . 0 0 0 0 1 2 0 . 5 0 1 . 5 0 0 0 0 7 5 . 0 0 0 1 1 1 8 . 0 09 6 0C. 3 1 . 0 0 0 3 9 . 7 5 0 0 - 9 9 , 0 0 0 0 1 2 1 , 0 0 1 . 5 0 0 0 0 7 0 . 0 0 0 9 7 6 . 0 0

10 ¿►in. 3 6 . 0 0 0 3 1 . 2 5 0 0 1 , 0 0 0 0 1 0 9 , 0 0 1 . 5 0 0 0 0 8 7 . 5 0 0 9 A 8 . 0 011 ¿. n . 5 1 . 0 0 0 2 6 . 2 5 0 0 - 9 9 , 0 0 0 0 9 6 . 5 0 1 . 5 0 0 0 0 A 7. 5 0 0 9AO.OO12 ¿»12. 7 6 . .600 2 6 . 7 5 0 0 1 . 0 0 0 0 1 0 1 . 5 0 1 . 7 5 0 0 0 8 0 . 0 0 0 9 9 6 . 0 013 ¿►13. 6 0 . 0 0 0 2 5 . 2 5 D 3 l .OOOO 9 7 , 5 0 1 . 5 0 0 0 0 5 5 . 0 0 0 9 5 6 . 0 01^ ¿►u. 3 0 . 0 0 0 2 A . 2 5 0 0 - 9 9 , 0 0 0 0 9 6 , 0 0 1 . 0 0 0 0 0 A 7 . 5 0 0 9 5 2 . 0 015 ¿►15. 3 0 . 5 0 0 2 A . 2 5 0 0 - 9 9 , 0 0 0 0 9 2 . 5 0 1 . 0 0 0 0 0 A 5. 0 0 0 8 9 2 . 0 016 ¿►16. 3 7 , 0 0 0 2 3 . 7 5 0 0 - 9 9 . 0 0 0 0 9 1 . 5 0 1 . 2 5 0 0 0 ¿ A5 . 000 9 2 0 . 0 017 ¿►17. 3 6 . 0 0 0 2 3 . 5 0 0 0 - 9 9 , 3 0 0 0 9 0 , 0 0 1 . 2 5 0 0 0 A 5 . 0 0 0 3 9 0 , 0 018 ¿►l i. 6 3 . 0 0 0 2 A . 0 0 0 0 1 . 0 0 0 0 9 3 , 5 0 1 . 2 5 0 0 0 5 5 . 0 0 0 9 0 8 . 0 019 ¿►IQ. n 6 . 5 0 0 2A . 75 00 1 . 5 0 0 0 9 A , 5 0 1 . 2 5 0 0 0 5 2 . 5 0 0 9 1 A . 0 020 ¿► .7 0 . 3 7 3 . 0 0 0 2 5 . 5 0 0 0 1 , 0 0 0 0 9 1 . 0 0 1 . 2 5 0 0 0 5 2 . 5 0 0 9 0 6 . 0 021 ¿»21 . 2 5 7 . 5 0 0 2 6 . 2 5 0 0 - 9 9 , 0 0 0 0 8 3 . 5 0 1 . 2 5 0 0 0 A 7 . 5 0 0 9 0 2 , 0 022 ¿►22. 7¿».000 2 6 . 2 5 0 0 1 . 0 0 0 0 . 8 3 . 5 0 1 , 2 5 0 0 0 A 5 . 0 00 9 3 6 . 0 023 ¿t23 . 3 0 . 5 0 0 2 3 . 7 5 0 0 1 , 0 0 0 0 8 5 . 5 0 1 . 2 5 0 G 0 8 5 . 0 0 0 9 3 8 . 0 02^ ¿rг¿·. 3 6 . 6 0 0 2 5 . 7 5 0 0 1 . 5 0 0 0 9 5 . 0 0 1 . 5 0 0 0 0 6 0 . 0 0 0 9 0 8 . 0 025 ¿►25. 3 6 . 5 0 0 2 3 . 0 0 0 0 - 9 9 . 0 0 0 0 3 5 . 0 0 1 . 0 0 0 0 0 A 2 . 5 0 0 8 9 6 . 0 026 ¿►26. 1 0 1 . 0 0 0 2 0 . 2 5 0 0 1 . 5 0 0 0 3 2 5 6 . 0 0 3 . 2 5 0 0 0 A 7 . 5 0 0 8 5 8 . 0 027 ¿►27. 1 3 3 . 5 0 0 2 2 . 5 0 3 0 1 . 5 0 0 0 8 9 . 5 0 1 . 2 5 0 0 0 A 7. 5 0 0 9 1 A . 0028 ¿►2« . 6¿►.000 2 2 . 7 5 0 0 2 . 0 0 0 0 9 A . 0 0 1 . 5 0 0 0 0 5 5 . 0 0 0 9 1 2 . 0 029 ¿»2°. 7 7 . 0 0 0 2 1 . 0 0 0 0 1 . 5 0 0 0 9 7 , 5 0 1 . 0 0 0 0 0 6 0 . 0 0 0 80A.OO30 ¿►30. 2 6 . 5 0 0 2 0 . 0 0 0 0 1 . 0 0 0 0 8 6 . 0 0 1 . 0 0 0 0 0 3 7 , 5 0 0 9 3 2 . 0 031 ¿►31 . 2 6 . 5 0 0 1 9 . 7 5 0 0 1 . 0 0 0 0 9 5 , 0 0 1 . 0 0 0 0 0 A 7. 5 0 0 9 3 A , 0032 ¿►32. 3 2 . 0 0 0 2 3 . 2 5 0 0 1 . 5 0 0 0 1 0 A , 0 0 1 . 5 0 0 0 0 A 5 . 0 0 0 1 1 5 6 , 0 033 ¿►33. 2 7 . 5 0 0 2 0 . 0 0 0 0 1 . 0 0 0 0 3 7 . 0 0 1 . 0 0 0 0 0 A 5 . 0 0 0 9 0 A . 0 03<r ¿»3¿*. 7 7 . 5 0 0 2 0 . 2 5 0 0 - 9 9 . 0 0 0 0 8 7 , 0 0 1 , 0 0 0 0 0 5 2 . 5 0 0 9 9 2 . 0 0

Table 4.1: vertical distribution of Ni, Cu, Ag, Zn, Cd, Pb, P, Al, La, Tl, V, Cr, Mo, Mn, Fe, Co, Li, Va, K, Rb, Be, Mg, Ca, Sr and Ba (the concentration expressed in ppm.) in BC-1 core.The chemical analysis was done using In­ductively Coupled Plasma Atomic Emission Spectroscopy (ICP/AES) by Prof. G.Evans at the Geological Department of Imperial Collage, London.

66

Page 80: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

7000 IU) Ы W U> Ы INJ го го го ГЧ) гм l\> го го ГЧ)»-· h-· Ь-· M »-*►-* ООО I4^U»fVI-*0’Oa)->İOVJi-r'U)roMOOOD*>JO‘Wr ^^ЫГОМ О sO CDLU ГОН- ЯГСГГ*

гот? —< DC х> 2^ Z

Л" t'X'л·' OJoJoJU>u>rO:\jNi.\>f\) \J4í:O Ni Of-·—*—··—‘"Э D D О О О D О О ^\jjr0»-*0 OUJ vjcrui X' \J f-Ό О -D '>ί.^Ό1Χ'·-0·4)—OX)JO-vJ_r _Л X' jJ Or-·jj—·—·

x Z7 0

.vJ'O»Jl.\jf\ji\ir\j;v)«\)*\>iNJ -!VJi-*i\Jr-*i\i.4j/vj rj \J.\Jо*-**-·

-щиіЧЛ'>ІОХ'и)и-іООЫ-дОЗ)ГЧ)Г0Л)00»-*Х'О'>ІЫ\ЛО OO'-'UJ ЭО·-* οοοοοοοοοοοοοοοοοοοοοοοοοοοοοοοαοο ооооооооооооооооэооооооооооооосэооо

f\)r\Jf\>i\)f43r\ir4jr4)rv»f\>t-Ur\jr\)l\iJJoJr4>r\í‘\>l\ít4)'N)l\Jf\J-VJbJU)U>UJr4ivjJf\».'\jr4J OOOh-*OxJD33J3 -OD Λ000»-·Χ—00"» oofJO>xгooof}ca·чJp-·xα'CoαDor>í·f'·Jэoo<'JOu)-·CDrí-^·>í -gO«0'£)r-*0)i\)OaJO»-'4/'uJO-Nji\*00->JXX'XJOuJ-x>r-*->JoJC>iNJ c->oooDOOooooooooooooooi->oo::>oooo3z>cíOO ·«······«··········»··············

CJOODOOOOOOVJOOOOOOOOOO o 300000 ООЭЭОЭ Χ*Ϊ>·

uí u> Ы (\) го .4» íM »NJ i\J ;\J го · ѵлч) ,-sj .\j f\) го ;nj го ,·\) Nj ,-\j i\j r\) ro го .чі .■%> i\j :\J 43 Λί гоOOXO^JDO-UOOJ -ОХХ-О-О-^ХХОЭХОЭЗ^ХДСЭО xuo ^·ΧΧ X 3D 0'ГОСГГ0ѵЛИ-г-*|-"\) '*-·XOCD'»wL00ЛJ'-·O->4α>3)OlOO-чЛ-.0 иЗО'-*Х'и)г-*Х'?\)иЗСГЗ>сГ^^.ч»ѵХЫ(ХОХ^і--'ЗСО-Г'СГОіОчЛ^чЛѵХ<М—'О 0000000003000000000000000000000300 • •••••••••••••••«••••»•••••••••••а oJ0 00000 00 0 0 00 0 000000 0 0000 30 00 000300 Х' 3«;

|\3 Njrarorarororjro»—'•'VJ·-·.Ѵ--|\ІГ\)І-·\ЗГОг-‘.-\>.\)Ліг-*,'\>#-і.ЧЗі-*г-»<\> OroO-'MMUJroOCDl-Of-OOOsOaïOOsOOOb-iOH-OH-isOOOO-OOrsï ОООООООООООСОСОООООООООООООООООООО Ы DOa······*#·······»··············«·· 03

cσ'->Jσ‘Cccσ'OCOLлooчлLлvxuvJou1Lлc>wЛLлccvлcxO'LлvJnσ-VJlCDC:U1OWX'UM\)O'X*-OOCD-viOVJ*.rsíCD->jr0H-OOÍ4ír0O»-‘«Xr0CDOUJ VXOœOOWOO'XOCDCDLUObJOOO'XCDüJLrOCDVXCDUJUJO'JlCDtJ^OCDU»OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooocooooooocoooooooooocooooooocooo

■< b>< H-·-« H- ^ H-»-· M «-· »-· H-I-«00^>000»—ΟΟΗ-Γ4ί»-·»--Η-·*-·ΓΝ)ί\>Μ>—Η-·Γ-*Η-*ΜΗ-·3-·»-*Η-*»-»Η-·0·-*»-·Η-*3-» LT ΧΌ LU X'ГѴ» fVJ O LO O >-* H-* OJ го CD го O CH->J VX LD ѴЛ-vJ X--J υΐ CD σ> -Nİ L»j Ы LU )-‘XOLn»-40OLnX'CHUJLOCDUJL0OOrJX'»-*CDC0Or0>-*CDL0CHCH-vJf\»L0-0-«O OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.....................................................................................................................................a LOirOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO XCD

X'»-*L0OX'-rO'ÛL0X'r0Lni-'LnCDOOO'OOO»-‘*OOCD-00D->JOC7**>J-0a*->4 H-*0DX'X'l0MX'OLnH-‘O0'OOH-»OOOLnH-'X'OX'~Xr0WOX^ O0^^-·X' O CO Н-*ООЭО'ГОХ'ѴХОО»-*СНХ'ѴХН-«Х'Н-*ОГОХ'0-ѵіО'ОООГОГО-ООСО«0»—•»-•Х'ГОХ'oooooooooooooooooooo ooooooooooooopÜOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOLOOX'X*

Ы t-· LO O го roh-··-· ГО joro θ3.-·ΓΟ <-**-» »-·ΐ-·ί-*^-·Γ^»-·Γ-· Ol-· H-· го*-* O O Oh-· O*-· UJ»-*LOr3DÜBO*-*Ov>0'-noJCHLH*X'X*rOI-»LnJOrOUiÜBaOXO*X'CDO'XrOO»LOXroaoX*LOLXOLOLOOCDroCDOCHLOX'CHOCHCH-XVJlXb-*t-*rOLnrOLOUJ>-*-v<->4 OO 0003000 000 OO OO OOOO ООО OOOOOOOOOOO LOCO ООО OOOOOOOOOOO OOOOOOOOOOOOOOOOOOOO X' DO

rou) üJUJ LO Ы ΓΟΓΟΓΟ UJrjrxroro ГОГОГОГОГО ГОГОГО ΓΟΓΟΓΟΓΟΓΟ ГЧ)ГОГОГЧ»ГОГОГ\»H-· О О О H-· Ln 00 О О LU CH VX-vJ H-· Uí ГО X'^ LX ЧЛ-g X»-X LX Ut ѴЛ О Lü-g Οΐ-J ѴЛ

COO-*4bJrOMCDCDX'rOL»J->ÍLUOGDUJa'X*OOrOOU3LXOL>*-sJLnLb>LUCaaD ΓΟΟ

LU Гч> К-· Χ l*i О Ln >û O'»-·-nJ ГО О ѴХ CD LO ГО CH Η-* ГО rvj OD LX )-Ό Го LU Ы χ^ ГО-J ΜOOOOOOOOOOOOOOOOOOOOOOOOOOOCOOOOOO lUCD OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOCOO *·>·

19xiaMSddv '9 ddXdVHO

Page 81: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTERS. APPENDIX 68

0-4- O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O Oo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o oOOiTkOOinotr>mOOinOir»tr»'u »r>«i »r»Otr*irMr»kr»0 0 0 \riOOOinOO

m c\j m rj m fo m m »j-m sT m m m CO -j-'i-m ro m m CO }-rn m m m m fo

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o (M u-\ rw m f-< m r-o fvjO' 00 CO r-i CO to c* O' m »fN o CO (V m rv CO 00 o cvj

»oa0»f>*noO'00»rO'<icM'.i-cDa3O‘OO0'Or-<<N;OrsJOiH0'f\jir»>r0' ir> in fvf m m r'~ «o ir> %0 »4· tr> vmr> <5 «c m r»i t\j o m O'>i- r-i fvj rj f'* cvj mcornrorornrnrnmrornroc->rnrnn fnrnr»''rnrnfnmrnrnrno'COfOfr>fnr*'mrnrrt

0000 00 00000 00000000000000000000000x o o o o o o o o o o o o o o o o o o o o c c o c o o o o o o o o o o o

CDtnOomcOinCCininfninOOOCCOCOinrninrOinrnOOOCCOrncOOrninin rsj O rH r-< r* >r «r »r CVJ OJ CO CO m CM O CO o* O CNJ 00 vO rH >4-*4-«H ro CsJ »i-»4-1-( in rn rn rn rH rn sT nO >r »r (\J rn CNi rj CM rg (NJ O ro O rn'T rn rn O to rn m O ro fSJ *0 Csi'4' CM CM CM fM CM CM CM CM CM CM CM CM IMtM CM <M CM CM CM CM CM CM CM CM CM CO (M CM CM (M CM (M CM CM

0-4- O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O Xco O O O O O O O O O O O O O O O O O O O O O O O O O O O O O C O O O O

O O O O O O O O O O O O O O O O O O O O O O C O O O O O O O O O O O inoininooooinininoooootnooooominoinoininmoomoinmin»j'0 '(Mtncomocnn-incninM'>o·—ı -c -c »ocooooc cм -гocn■4■fмor -i I—< F—< CM f~< CM »~l r—4 T—C N J—I r—l »-H *—11—♦ t—< 1—I f—1 rH Q*

oTM· o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o ocn o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o mmOininin»ninOOOOininOinOOininvnOOininmOOOintnoOinOM'r-iminf<>r-imO<7'inint-<OM'rMOcnoct-ioOO'coao>Or-iO'OCOh-sOf'-m in»nininNr vninmmM'M’ininminminvnininM'M· M-mM· coinM-M'M'M'inM-M-

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O o o o o o o o o o o o o O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O Cmrocmcf .inCerocinr'Of inirOmr‘L''pnCc«'Omr cnmCcccccon-mcN. ^mor-Cccir'-oc C'crco'-M-'ro'cv'cvcmr'- r'lr' M'cvtro'Cs.'Ccr'- tr acrc'occ traooccrO’atrccacrO'OO’caer o-troctrcccrn-n-0'n>r''

O O C C O O C O O C O O C C O O C C C O C C C C O O O O O C O C O O0000000000000000000000000000000000CrCCMM'C-Or-'OvTi—*n· » 'r-ir-iintrinOOCO Nrr'-int\.-mr-<ini-fC>»nn*C rMrOCrcr«OrrCMi-'0'C\tincrOr M'!r-«MM'inCOn-C»·. CrinNvr4'inC0M-r\'f-l

>4 CS.'M· *-un M'mnM-m»f»tnNrinMl'£'M'''nM'inOO-in>4'rO,riMlN4sninnl»r>'ri r''mcncnfnfnrnn".cnrr.rnrncncn ft'rncnmrrmn'»f cnr'rncr>rt'»rnr"mc«':Mc<'.cc:

n o o o o o o o o o o o o o o o o c o o o c , ooc^ oocooooooOOOOOOOcnCOOOOOr;OOOiriOOr:OC-ir'!OOOOCOr'00O C C O O O C O C C C O C O O C O O O O O C O C O O O C O O O C C OmmCOooOmOino<nomu-«mmcOOinu'MnoinooOininOOOOr tMinf\.OM'M'r Nr>rf\. >4r-<CMOC7C‘f\J'- fn>rr'“f ,'rr, (Vininn>minM'r-»vCr'- r'гπгoft'cπmcπfnгnmcπгnгπmr'rмrмr'cπгπгπr''mгocπcncnгncnгπгo frncn

o o c c c c c o o c o c o c o c o o o c c o c o o o o o o o o o o oo o o c o o o o o o o c c o c c c c o o c o c o o o o o o o c o c o

-tr n r>* tr Os»C C\*f\-lT'Ci-n-f' mCPf-iOrr infr (r nor'r rrxTCr tr rrM-tTcnir MCTM'n r» OCTriC'TMlM'N» r-mr'Nr M-O'f»'.—'xt *ror'r'tr4-r‘ r'Crc''crtrcrr r'n KM*C'‘rrr'frr r· h inC-'C:4 »rcr.

r- i f \ r r><rin^na C7-C:r-f\r^s4ir*Cr~tr OO·—C 'r'> ın·C ·0L'C■C·.-^Cs'гr,м■ C O C C C C O C O ^ r - r - r - r - * i —I~r-*C\ r ;{\C 'C\.CV.'CM(M<\ CMCnrrr»'mrn srvrM'x4vr>4>4»rM-M'N4»rM-vrM.rM-*r.ro-M'>r*rsr r>rsrM'M-M-M’ 4>J'M'

z• -H Z 'O-Xh-txz)z_J3Dt i-HCMrOM-OsOrCO 0 0»-<CMcnv4· jn%Of OO(7' O»-HCMcOM'inOn-a0C‘ OrHCMCOM' I o a a r-ir-»rHr-«.-(r-lr-»rHr-if-tCMCMiV|iMrMCMCMCM<MCMrncncncncnI oocx

Page 82: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

cm •i

M'j

cnii'

rQG

*J 1 2 3 5 6 7 fl q 10 11 1? 13 1^ 15 1^ 17 18 1*3

20

21

2? 23 2 25 2i> P7 23 20 30 31 32 33

10 3 3

Mi.

M2.

^ V

3 ·

0 s.

0 1;. ,

^07.

6 j t

.

L C

. 6i

l.

M3.

M<».

61^.

' I

t. M7.

^lü

.

^ c

u .

.^21

. 62

2.

^c

3.

6 2 ñ

,

¿6.

6 27

. 626 .

2V.

*' ZV

·6 31

. 6 3 2.

6 3 5.

N1 33

27.50

0u31.5000

31 .50

00

33.SU

Ü0

31 . 500

0 30.CÜÜÜ

3C.C000

2.0

000

29.(000

29.5C0()

26.5000

2b.COUU

31.00ÜÜ

28.0000

30.5o

u0

31 . OUJO

29.LC00

31 .CO

oC

32.0

000

3C.5OÜ0

29.5600

2^ . 50

001.

5C.Ü0

29.GOOD

31.0000

27.0000

2Ü.00

0026.0000

26.5000

27.5000

27.5000

25.5Ü0G

28.5CÚO

CU 33

.OC

OC

^7.2

5C

09

9.0

00

09

3.7

50

09

9.0

00

03

8.7

50

03

0.7

50

03

5.2

50

03

3.7

50

03

2.0

00

03

0.0

00

0

2<3.0

000

28

.75

00

27

.50

00

2

6.7

5C

0

26.5

CU

0 2

5.5

C0

0

25

.50

0G

25

.75

00

2

9.7

5C

02

5.2

50

022

.0(0

01

1.2

50

0

22

.5C

0C2

9.2

50

02

1.2

50

02

1.7

50

02

0.7

50

02

0.2

50

0

19

.750

C

20

.50C

O1

9.2

50

0

20

.OCO

O

A G 33

1.Ü

0ÜU

1.5UÜÜ

1.50

0C

l.OCCO

1.5000

1.0U

1.5C

1.0000

l.CCOU

1.0000

■99.0000

-99.OL

ÜÜ

1.5 0 o 0

•99.OC

OC1.5000

1·5u

00

1.0ÚÜG

1.UUÜ

O 1.UO

OO

1 · 0 0 C u

l.COOO

1.CO

JO

-99.LO

OC1.5000

1.5C00

l.OCCG

1.000(.

1.0000

1.5000

1.CC

ÜO2.0000

•99.GOG0

1.500G

ZN 33

197.500

196.000

133.OCO

126.500

121.

000

116.5G0

117.OCO

111 .

000

111.500

1C9.50G

ICC.000

1U1.50C

105.5C0

100.500

103.000

113.500

98.000

96.5

00

99.0

00

<3.5

CC91.000

60.000

62.0

00

95.OCO

100.OC

O

92.0LÜ

66.0

00

be.O

CO.

91.000

67.500

86.0C

C 61.COO

91.0CC

r n 33

1.25nn

1.2*

001.00

00

.7*^00

.7'^no

1..

0000

.790

01.0000

1-c

nco

l.con

o.5

000

.7*00

1.2900

.50

00

1.on

nn1

.00

00

-99.0000

. 75

00

l.cono

. 75

00

-99.co

on

.7*00

-99.0000

• 75

001.0

000

.7*^00

.50C

n.7

500

.790

n . 50

00

.750

0 -09.00

00

l.C

OO

O

PP

117.*

00

n.9

.00

01

07

.50

08

7.5

00

07

.50

0

00.0

00

82.*

^00

72

.50

07

9.0

00

70

.00

05

7.5

00

57

.50

06

7.5

00

57

.50

0

¿69

.00

07

7.5

00

59

.00

05

5.0

00

60

.00

05

7.9

00

97

.90

0

9?.

90

0-0

9.0

00

55

.00

05

2.5

00

50

.00

03

5.0

00

90

.00

09

0.0

00

92

.50

09

5.0

00

32

.50

09

2.5

00

D

10

30

.00

10

09

.00

10

62

.00

1202

.00

10

92

.00

96

0.0

09

92

.00

96

9.0

09

79

.00

93

9.0

09

96

.00

93

9.0

09

98

.00

96

0.0

0

9P2.

00

9P

9.0

00

96

.00

90

6.0

09

50

.00

96

0.0

01

06

0.0

0020.00

57

8.0

09

19

.00

10

98

.00

90

9.0

09

26

.00

99

9.0

01

06

0.0

00

96

.00

90

9.0

09

39

.00

10

26

.00

tq g8

Tab

le 5

.20:

ver

tical

dis

trib

utio

n of

Ni,

Cu,

Ag,

Zn,

Cd,

Pb,

P,

Al,

La,

Tl,

V

Cr,

Mo,

Mn,

Fe,

Co,

Li,

Va,

K,

Rb,

Be,

Mg,

Ca,

Sr

and

Ba

(the

con

cent

ratio

n ex

pres

sed

in p

pm.)

in B

C-6

A c

ore.

The

che

mic

al a

naly

sis

was

don

e us

ing

In­

duct

ivel

y C

oupl

ed P

lasm

a A

tom

ic E

mis

sion

Spe

ctro

scop

y (I

CP/

AE

S) b

y Pr

of.

G.E

vans

at

the

Geo

logi

cal

Dep

artm

ent

of I

mpe

rial

Col

lage

, Lo

ndon

.C

O

Page 83: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

OJ ^ ы oJ r\i I\j r\> гм/\> ÍNJ гоθ'» •JO'V-n —О OOD'J'vn 'jJrO·

.ОООοζ)α -•о о JO г>»иП .iMAirJr-· cc:*^

-l JCz.

> j'-j' > > >> >'>(>«> ■ U.- U^UİU rjrsrvr» ГѴ»ГчГЧІѴ/Г\Г i-r- КИ'*—C C.C CCC CCCU'fs.H-r u-r <> 0^0-ocr u-j· oar-Nja -r і*- гч »— O**-

■>i->j ^a. Ol σ u* o П. > -χ·χ a o :ı лмі x х· o. ос oo cr. a o. O oü ас aLjrro fi c ОООП·—•-»-'ГГ О»

Д>и»гхшО‘ѵг>Сіг*чл4··»—~OCJ■0'XU-LΓulO.ЛCOu\iнΌЫO■OV· OOOOCOCOCíOOOCOOr, OOOCCOOCOOCOOCOO оососос c?r:c.CC*'C οοοοοογόοογγογ γόοοοοοо с. с CJOOOC. ос с оссс :jc_ с с ос*ос ce ос сгсооос·

0 4-М.Г'и>ЫОХ‘ГОЫиЧлЛЫсОЫЫЫЫЫЫЫ Х'Ы ül.jJJ'UJUJLJUİ ríOЫ£)»-’OJC-·ΓOΓouJ*g.í'>vUOЭCЧЛЛ-WO‘σ'COCcr'·0->J:·NJ(XO'.ro'knU'. ΓJvnUΌvnCO·nOOı*ovJOV.nOCU»UıOOOOUΌ-яOO Г'С'ПОСОГ'ОГ'ГГОООС'ОООСОСХОСЭОССС'Г'ОООСОО OOCCOCOOCOOCOCOOOOCOOr-íOOOOOCOOOOO OCCCOOCCJCOC^CrrCC-OriOCOOOOCrOOOCOOOOO

Ы U1Ы Ы U> Ы ы Ы LO Ы г J го ω U ' Ul UUO Ы Ы unu Ы Ы о J Ы Ы Ы Ui U t ы ы ы ы CLΛLЛ»OírlЛ.T^-s;V'r‘*':»VJ.σOV.\.J'_LΓ'X'U'UЫUJЫJOО-иС»и'Г0р'С»СОГоО\.Г.г-Г00'Г0»—-ѵіО-ѵКХЛО-іѴЛѴЛО 'JO-O-UO оr0|.·CLΓCЛ·LU.‘U■VnV'CT"N)Ь-U·O.r>LUCг-U-UOUJ.U)CrUJЫ'>соооссооосссоссоссосссоссоосососооос-соооосссссоососоооооссоооооссо

-j-grrcroooiOfOoovji-CE'TiOocana.'Crrsac'OBCDCDODnDConDo.occoo -U-OCXOÍ-'ÜIJ'.Í'—ЧГ“0ГО-0"0»—OOnoiTLr C»->jroUJO'C7'-OL7i»—ыІЯ ОоѵпС іоѵл с Ы'о* U» ‘ en Ul о uio ίο а«ѵяѵя огсипооэаюэкгсоииисэ ОООССООООССССОООССОСОООССОООСООСГОocrcoocoococcccoccOccor-ccc-occcoocrc:ОООССООООССОООСОООССООССООООССОСС

vnuiroOvj-vjx^ui-^LOOUiC θΓο>-·αο-*»—' oi-Oo^nrOLugd-j·*···«·····ρ·»··········»»····»··OV ti coin ЧЯОѴГО О О ».Г‘Я »rC'OLn·^ O’. ѴЛОѴП· ne что ѴЛѴЯЛПООѴЯѴЛ lUOOOOODO D'JOiOOOOO ÚO-DOOOOCO эоооо э OOODODOOODO'JO'DC'OOOOOOO'J^OOOOOOOO'D OOOOOOOODO-ЭО Э ЭОО D00 0 30 ЭО-ЭОООООООІЭ

Ul о •лі о

■· —* —‘І-І о» С' Л -Я о о .л о J0-

CN Ó—» /-*—I*—·.-«·—*.—*'» Ό0»-·-4·Λ'>-Γ'.λ->4Ο·»0>·Ν)

иііПООО'.ПООічЛЯООяО Л ЭОЭОООО ПОООчЛОО л ЛЭЯ ОО'ОЭСЭООООЭЭОЭОООООООООО'^ОЭЭОООЭ'Э OOOOODO зоо 300000003о 30000 эооэоо эо ООООО ООООООО ООО000о ООО000 30000000ы г .UO

ГЧМ\)ГЧ>ГОГОГЧ)ГѴО-АІГО го»—· ГМ/М/М'Ч1го'Ми)ГЧ1іМГѴ»'Ч)/МГЧ1Г\)г\1 >-Яиг>ОІМГ\ПЧ>Гч* ijJLU^ ъиі Я· Х-'ОІ'Я f'*>OU) M*4JLU Л >4Си/мги Ur\l · U· U'U >· U1 .Τ''U М VU ¡M LU 3· -·0 -О 00«u 0*UT>.X^.í''UX) ONIIUI-Ol »»-·νη)-·>··^—

^иіЧПОЫОООчпаэОіО Λ ЭОЫОѵЛЗаСООООСпавСПО »ЧП О ui о чп ООООООООООООООООООООООООООО ОООООО LUI ООООООООООООООООООООООООООООООООО LUX

U»UluJulUiulU)'UUlU)ror\JUi'UiUUi'UU)U)uiUJUlLUu)LULUUl'UUlU>UlUlUl rU*-‘M.MU>LUU'r-*OiUf* ООЧЛ^ 'ѴІСЯЧЯЧП > J»í>^UOl-rOI>->4nLn3-f4lι-·ο лчл-uo оы «'чляч-'ѵлг>а)ал-‘ѵигѵі*-*/‘>**ч4-ЛоОсо»-»гми»►-'О >‘UJ»-»»-iO-f' >і-*0 >‘1>ГОО'Л^ГОО-Я-иО'>'МОиіі-·О ОО ОООООО ОО ооОООоОООООО ОО ОООООООО

ОООООООООООООО000ОоООО000ооооооооЫ“ПLUai

LUrOLULUUMıJıU ^'-ЯЫЧЯ^-'иіиІ >> LU LU Ы LU Ul LU U> íM LU LU LU Ы LULU LU Ul LU ГМ

O4n0OLn000Ln4n4n04n«J»04n4HU»4nOLn04nO0 0LÄO4J»LAOVJlLÄ. ООООООΟОООООООО000ОООО000ОООООО30 00000000-3 о ООО 000 30 0 00 00 000000000 0 000000000000000000000000000000003tun OJO

02,хіамзсыѵ 'яшхзѵно

Page 84: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

x>oo I ла I

J .vi»-· с Hi"-¿wl о-IZO

. > >7* >'>> >>>>·> 7·'> > > U-u»UiUT\,f4.*r4.is-f\*r-r' r Гѵ.Гч.г- »—e· »—b r—K-h-C 0<- C C’C c C'Cojfvh-c JT CL-'JCMT Д· J· f- onn^a vj >u гч >—c -ccr-oa vj-x u»rw«»-'n ür.—H ЫОС·

« O ΓΟ N) fVl üJ* U Ш fVI rv> CX;»-'f4» rjrj rorv ГОГО Г\» ГЧ« U) Г0 Г JU'lü‘jJ <\í UJüJ Ы UJ»—·ív->i'j*orvr\;uiOf4»*ooDCvj· 3>-jddcd o·—-vj

t-'-oaí-síH-'nrvj C'vt-coioj'inorovrz'OCOOCCOUCOOOOOOCCOOCOC'OCOCC ooccoo C.OCOCCCOOOOCCOOOO COCOOOOCOC. CCQOOC

rvjror4Jí\)f4»t\J^f\írOfvj>-‘f\)U)f4jrof4ííü rorüOJrv) ГОГОГОГММГѴ)ГОГОГЧ)ГО rol'j lüZ'·í'-f'n·nU'UU»JOчJC ¿)vO OO00-OO'O-O-4->J->íCr“>J0'---CJUO ЮГОГѴ» ЮГЧІ-Р' ^roZODO VJ'»-· OOvJiOvj^aOrJrü'jiO»—-ΰ»-·-^σ·^^^»-*0ОѴЛчГГч'О -^O O ^ÍN»»—«'JI norj-^ ~'J—· -^νΛ00Γπα>ί-Όν^->4\-η»-·αΐΓ4)·**40oooooncoooooncoccoooocoocoocOocooООООС'ОООООООООООСГС'ОСОООССООС.ООООСtu:c U)>

ЫЫи'ЫЫЫЫ U»U*UJroroU)rjrvJliJU.' UJU>U»UnuU>U'UJU*U«r4)OJU)IULUr\> f—X'^r\CO OOOC'—Í—OOCO ooc ce -Jo -í'-í' Or\JU)uJ o»—*CC О-ОООѵлОіС ОГЧ/ГѴОО'ОО'О'ГѴОО' -ΓΌer CD h-*rv>Ca*vrVJ*0''OUJ J'fvnjJVJ'~vjur-Jr4-0->J-gO'-r'vnJO7“Cru* OC roocc OOCC CC OCOC'C.OC c оооосос осооо «a················*······*·*····# U)conccooooc cor с e· г· с» с *C с с. сс er СС ос ос ос U·:*;

OIİJrv.ü>ΓJJr^J I •-*ГЧіГчіГм)МГОГОГЧіГч)Гч)ГиМГчіМГЧ)ГОГ\)Гч)ГЧ)Г\)ГОJ*ıfчíUío.■\:rovn>ocD—'С о с·—* rvJ/NJí—’UJ Η-Ό

ос. ООО о roo с·-г Coo с· ecre· о ООСОООО о ООО г. о

-vl0'í>O0*OO0‘->JO-f'trVJ‘O0OOCT'Or>rrOO0O-vJ'>OOOJ>CTVJiс ЫЫ“>І.Ь CMiJ»—Ь-· СЭО » о ГѴІЬ-· он-· 4 ωο >0 0 orvjv»' ѴЛ ѴГ, о CD ѴГ CD CD о ir.íruí го ѴЯ о “vJ Ы .TD с LU с ѴП СЬЫ ЫЫ OOD ѴЛЫ V ппз о ftJ ωω о ѵлооооэоаооочлеооооеоооэооооээооо эо э ОООООЭООООО оооооооооэоооо эооо еооо ОаОЭ^ОО^ООО^ООЭЭООООЭОЭОГ)-ЭОО-ЭОООО

о -о ÛOOOO 0(-·0-·0*-·»-·“*)-“-Η-*»-»Η-·»-·»-·0 0 0 о 0 0)J-«UJ νΛ ->J>-*LU00*U4 r-VJlTO-JCD ÛO'ï>»VJ*-O-t-r'VJIOOJO—‘илим-лгули ΙΌ » 0-»0 33 aJ>LUuJ«UO'\Jr\> ^JO'^DÛfvJU»о ОО ОО ОООООООООЭ 7003000ооооооооооо ОООООООООООО о 00000 300 0.00000000000

U X uJ 7>

•-•—•»-»‘-•-•»-•‘-•ГО ►-·»—· !>>-·»-· »-·»-· —4 »—·>—< >—· ►-·»—*»-*ЛІ'-им-ио ni' О'ЛГОГЛ аОООТ'-'ІЗО ûl'·-· ОООО ÛOOOM

ѴЛ Ζ''Μ-UOO OlUTOrOLU ПТ» ОО»-‘#'-Г'Л>*->4Оі-*>00‘ЛЫОh-· аэооы—•az'0'>:jO> лол>ы •>і,\зоол>‘.і'3'0>иіоо-і'л 003030000000003000000000000000000 • ••••••»•••••••»•»«•••••••••»•••а LUOООО ОООООООООООО ОООО о ООО ОООО о о03 00 LU ►

-*<—· ил—* t-«»-*U) го roturo »-»N) л .i-fyj OD O'U ОI-* >-· .4» H-*»-· ГОЛО МЫ ryj/NJ .M ГО r\| ГМ μ-Ц-· rOf\Jіиоого'лаз»п-ѵдотэо<-*гоЗ->1 омызэг>’лсо »“>ίο-·νΑ>·'Μ- оо>-J'LU^fO-vICD-virOODrorOLUO -ОГО гоѵл ѴЛ О гоѵл Г> О иіѵл О ^ ГОО O' ооОООООООООООО ОООООООООООООО ОООООО 000030000000000000000000000000000

ыгмыиниыыгмыыг-*ЫГМГЧ)ГМГМЫ ГОГМГОГМГОГО ыгоыыгоышго ыы гм ODM о о OUI-4 го мен-* со ѴЛ->4 0ОО-4 3ОазОи43Ы>*ОІЫМС04Мл» СН LU о-Ô о-4-ь ■4'го о 03 о -U ·>! LU->4 03 »-·->4 о-о о ОО 0·Λ го гоIU«0«UO о CDOCH о іиѵлы û'UOOLUlUfO-n'U-vi-T'TOO'O О Ы*-» Ol О000000000000000030000000000000000 ООООООООООООООО ЗОООООООЗООООО ОООО

иxiamddv vddddVHO

Page 85: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

CHAPTERS. APPENDIX 72

Depth (cm) BC-1 BC-6APH PH

0 7.48 ■ - 7.71 1810 7.49 - 7.57 1720 7.37 - 7.47 1730 7.48 - 7.37 16.540 7.48 - 7.45 18

Table 5.21: PH and Temperature profiles of BC-1 and BC-6A cores

Sample depth (cm)

Gravel(%)

Sand(%)

Slit(%)

Clay(%)

CaCOs in bulk (%)

Organic carbon (%)

0-3.5 1.4 8.5 46.8 43.3 28.8 1.193.5-7 0.5 10.3 26.3 32.9 28.2 -10-13 0.2 1.5 58.2 40.1 24.8 -20-23 0 2.2 58.1 39.7 24.2 -30-33 0 12.4 53.0 34.6 30.0 -37-40 2.7 20.5 48.4 28.4 34.2 -49-52 2.3 6.8 50.9 40.0 28.8 -

Table 5.22: Grain size analysis, the percentage of the CaCOa and the percent­age of the Organic Carbon in Core-2

Sample Gravel Sand Slit Clay CaCOs Organicdepth (cm) (%) (%) (%) (%) in bulk (%) carbon (%)

0-3 1.0 8.2 40.4 50.4 30.5 1.3210-13 0 4.1 53.3 42.6 28.4 -

20-23 0.1 1.2 52.5 46.2 27.4 -

30-33 0.2 1.5 56.2 42.1 25.7 -

40-43 0.2 3.3 52.9 43.6 26.2 -

Table 5.23: Grain size analysis, the percentage of the CaCOa and the percent­age of the Organic Carbon in Core-3

Sample depth (cm)

Gravel(%)

Sand(%)

Slit(%)

Clay(%)

CaCOain bulk (%)

Organic Carbon (%)

0-3 0 0.5 47.2 52.3 26.0 -10-13 0 0.7 53.0 46.3 27.1 -20-23 0 4.4 53.7 41.9 28.7 -30-33 0 1.0 50.6 48.4 27.1 -40-43 0 1.1 52.1 46.8 27.1 -48-51 0 0.6 64.1 35.3 27.1 -

Table 5.24: Grain size analysis, the percentage of the CaCOa and the percent­age of the Organic Carbon in Core-35

Page 86: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

References

[1] Goldberg, E.D (1963) Geochronology with InrRadioactive Dating,I.A.E.A.,Vienna.pp. 121-131.

[2] Krishnaswami, S., D. Lai, J.M. Martin and M. Meybeck (1971) Geochronology of lake sediments. Earth Planet. Sci. Lett. 11, 407-414

[3] Rangarajan, C., S. Gopalakrishnan and D.C. Eapen (1976) Gobal vari­ation of ^^°Pb in surface air and precipitation. IN: E.P. Llardy (ed.), Health and safety Laboratory Environmental Quarterly. Sept. 1-Dec. 1, 1975. U.S.E.R.D.A., New York. HASL-298. pp.163-182.

[4] Benninger, L.K., Lewis, D.M. and Turekian, K.K., 1975. The use of natural ^^°Pb as a heavy metal tracer in the river-estuarine system. In Marine Chemistry in the Coastal Environment, ed. T.M. Church, Symp. Ser.Am. chem. Soc. 18:202-210

[5] Evans, G., Erten, H., Alavi, S.N., Van Gunten, H.R., Egin, M. Superficial Marmara Basin. Geomarine Letters. (1989) 9:27-36.

[6] Robbins, .I.A., Krezoski, .I.R. and Mozley, S.C. Pos-depositional redistri­bution by deposit-feeding organisims.Great Lakes Research Division.

[7] Bruland, K.W., M. Koide and E.D. Goldberg (1974a) The comparative marine geochemistries of ^^°Pb and ^ ®Ra. J. Geophys. Res. 79, 3083-

3086.

[8] Turekian, K.K., Benninger, L.K., Dion, E.P.: .1. geophys. Res.88(C9),5411 (1983)

[9] Hammond, D.E., Simpson, E.J. and Mathieu, G., 1975. Methane and ■ • Rn as a tracer for mechanisms of exchange across the sediment-water

interface in the Hodson River Estuary. Mar. Chem. 7:119-232

[10] Robbins, J.A. and D.N. Edington (1976) Depositional processes and the determination of recent sedimentation rates in Lake Mishigan. Proc. 2nd

73

Page 87: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

REFERENCES 74

Great Lakes Conf. Interagency Comm. Marine Sci. and Engin., Argonne Nat. Lab., Argonne, III. March 25-27. pp. 287-607.

[11] Krishnaswami, S., and Lai, D., 1978. Radionuclide limnochronology. In Lakes, Chemistry, Geology and Physics, ed. A. Lerman, 153-230 (New York)

[12] .Jaworowski, Z. (1969) Radioactive lead in the environment and in the human body. Atom. Energy Rev. 7, 3-45.

[1.3] Karamanos, R.E., .J.R. Bettany and D.A. Rennie (1975) ^^°Pb assay in soil and plant material using Cerenkov radiation. Can. .1. Soil Sci. 55, 407-413.

[14] Davis, R.B., Hess, C.T., Norton, S.A., Hanson, D.W., Hoogland, K.D. and Anderson, D.S. (1984) ^^^Cs and ^^°Pb dating of sediment from soft- water lakes in New-England (USA) and Scandavia, a failure of ^^^Cs dating. Chem. Geology 44, 151-185.

[15] Flynn, W.W. (1968) The determination of low levels of ^^°Po in environ­mental samples. Anal. Chem. Acta 43, 221-227.

[16] Mattson, R. (1975) Measurements of ^ ‘ Pb, ^ * Bi and ^^°Po in the urban and rural air in Finland Finnish Meteorol. Inst. Contrib. No. 80, Helsinki, Finland, 82 pp.

[17] Benninger, L.K. (1974) The distribution of ^^^U,^^^U,^^®Ra,^^°Pb and ■ °Po in water and plankton of Long Island Sound. InrTurekian, K.K.,

Trace Elements in Natural Waters, Ann. Prog. Rep., AEG COO-3573- 8.Yale University, New Haven, Conn.

[18] McCall, P.L., Robbins, .J.A., Matisoff, G. (1984) and 2^°Pb trans­port and geochronologies in urbanized reserviors with rapidly increasing

sedimentation rates.

[19] Bacon, M.P., (1976) Application of ^ °Pb/'■ ^®Ra and ^^°Po/^^°Pb disequi- libria in the study of marine Geochemical processes. Ph.D Diss. Woods

Hole Oceanog. Inst. Tech. Rep. WHOI-76-8.

[20] Gaggeler, H., Von Gunten, H.R. and Nyffeler, U. (1976) Determination of ^^°Pb in lake sediments and air samóles by direct Gamma-Ray mea­

surement. Earth and Plan. Sci. Lett., 33, 119-121.

[21] Cutshal, N.H., Larsen, I.L. and Olsen, C.R., Nucl. Instr. and Meth. 206

(1983) 309.

Page 88: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

REFERENCES 75

[22] Joshi, S.R. and Mudroch, A., Direct Determination of Geochronologically useful Radionuclides in Sediments by Low-Energy Photon Analysis. Nucl. Instr. and Method in Physics Research A263 (1988) 529-536.

[23] Osmand, J.K., (1979) Accumulation models of ^^°Th and ^^^Pa in deep sea sediments. Earth-Sci. Rev.,15:95-150

[24] Picciotto, E.E., (1961). Geochemistry of radioactive elements in the ocean and the chronology of the deep-sea sediments, reprinted from oceangraphy American Association for the Advancement of the Science Copyright 1961.

[25] Appleby, P.G., Nolan, P..J., Gifford, D.W., Godfrey, M..J., Oldfield, F., Anderson, N.J. and Battarbee, R.W. ^^°Pb dating by low background gamma counting. Hydrobiologia 143: 21-27, (1986)

[26] Appleby, P.G., Nolan. ^'°Pb Dating Of Lake Sediments And Om- brotrophic Peats By Gamma Assay. The Science of the Total Envioron- ment, 69(1988) 157-177.

[27] Appleby, P.G., Richardson, N., P.G. Nolan, P.J., Oldfield, F. Radiometric dating of the UNited Kingdom SWAP sites. Phil Trans. R. Soc. Lond. B 327, 233-238 (1990).

[28] Whitaker, M.D, W. Bjorksted and A.C.G. Mitchell (1934) Preliminary report on a quik method of depositing Polonium on silver. Phys. Rev. 46,

629-630.

[29] Bouissieres, G. and C. Ferradini (1950) Emploi de la ditnizone pour sép­arer et purifier le radium D, le radium E and le polonium. Anal. Chem.

Acta 4, 610-614.

[30] Ishimori, T. (1955) Separation of RaD, RaE and RaF by ion exchange.

Bull. Chem. Soc. .Japon. 28, 432-435.

[31] Black, R. (1961) Low-level polonium and radiolead analysis. Health Phys.

7, 87-91.

[32] Oldfield, F. P.G. Appleby and R.W. Battarbee (1978) Alternative ^lopb dating: result from the New Guinea Highlands and Lough Erne. Nature

271, 334-342.

[33] Rama and M. Honda (1961) Natural radioactivity in the atmosphere. J.

Geophys. Res. 66, 3227-3231.

Page 89: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

REFERENCES 76

[34] Jaworowski, Z. (1963a) The determination of lead-210 and bismuth-210 in biological material. Nukleonika 8, 333-340.

[35] Seitz, K. (1963) Altersbestimmung nach der RaD method mit gasförmi­gen Bleiverbindungen. Z. Geophys. 29, 149-168.

[36] Millard, H.T. (1963) Quantitative radiochemical procedure for analysis of polonium-210 and lead-212 in minerals. Anal. Chem. 35, 1017-1023.

[37] Gojkovic, G.D., G. Deleon and Z. Cervenjak (1963) Dating of some uraninites from Yugoslav localities by the ^°®Pb/^^°Pb method . In: Ra­dioactive Dating, I.A.E.A., Vianna. pp. 121-131.

[38] Erten, H.N., Von Gunten, H.R., Rossler, E. and Sturm, M. ; Schweiz,z.Hydrol, 47,5 (1985)

[39] Ci'ozaz, G., E. Piccioto and W. DeBreuck (1964) Antarctic snow chornol- ogy with ^^°Pb. J. Geophys. Res. 69, 2594-2604.

[40] Sill, C. and P. Willis (1965) Radiochemical determination of ^^°Pb in mill products and biological materials. Anal. Chem. 37, 1661-1671.

[41] Nezami, M. (1966) Separation du polonium-210 pour la mesure fine, par spectrometrie alpha, du taux d‘accumulation de la neige polaire. J. Chim. Phys. 63, 603-666.

[42] Assaf, G. and J.R. Gat (1967) Direct determination of short-lived radon daugther products on air filters by liquid scintillation counting using a delayed-coincidence technique. Nucl. Instr. Meth. 49, 29-37.

[43] Gat, J.R. G. Assaf (1968) Atmospheric ^^^Bi: measurements and some geophysical application. Science 159, 977-979.

[44] Longford, J. (1969a) Procedure for the determination of ^^°Pb and total Pb in biological samples. Anal. Chem. 41, 1716.

[45] Holtzman, R.B. (1970) Isotopic composition as a natural tracer of Pb in

the environment. Environ. Sei. Technol. 4, 314-317.

[46] Shannon, L.V. and M.J. Orren (1970) A rapid method for the determi­nation ^^°Po and ^^°Pb in sea water. Anal. Chim. Acta. 52, 166-169.

[47] Krishnaswami, S. D. Lai, B.L.K. Somayujulu, F.S. Dixon, S.A. Stoneci- pher and H. Craig (1972) Silicon, radium, thorium and lead in sea water: In-situ extraction by synthetic fiber. Earth Planet. Sei. Lett. 16, 84-90.

Page 90: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

REFERENCES 77

[48] Cahill, R.A., Autrey, A.D. (1987) Measurement of organiccarbon and trace elements in sediments of the Illinois and Mississippi Rivers. .J. of Radioanalytical and Nuclear Chemistry, Articles, Vol. 110,No. 1, 197-205

[49] Nozaki, Y. and S. Tsunogai (1973a) ^^°Pb in the North Pacific and the transport of terrestrial material through the atomsphere. Earth Planet. Sci. Lett. 20, 88-92.

[50] Nozaki, Y. and S. Tsunogai (1973b) A simultaneous determination of ^^°Pb and ^^°Po in sea water. Anal. Chem. Acta 64, 209-216.

[51] Schell W.R. (1974) Sedimentation rates and mean residence times of stable Pb and ^^°Pb in lake Washington, Puget Sound estauries and a coastal region. Univ. of Washington, Collage of Fisheries, Radiat. ecol. Lab., Seattle, Washington, USAEC, Rep. RLO-2225-T14-6.

[52] Turekian, K.K., D.P. Kharkar and .J. Thomson (1973b) Uranium and Thorium decay series nuclide abundances in marine plankton. Final Re­port, Andvanced Res. Proj. Agency, Order No. 1793, Contract N 00014- 67-A-0097-0022, Yale University, New Haven, Conn.

[53] Kharkar, D.P., .J. Thomson, K.K. Turekian and R.S. MacCaffrey (1974b) The distribution of Uranium and its decay series nuclides and trace met­als in a Hubbard Brook, New Hampshire soil profile. In: K.K. Turekian, Trace Elements in Natural Waters. Annual Progress Report, AEC COO- 3573-8, Yale University, New Haven, Conn.

[54] Ritchie, J.C. and McHenery J.R. (1973a). Vertical distribution of fallout ^^^Cs in cultirated soils. Radiation data and Reports 14: 727-728.

[55] Santschi, P.H. (1988) The relative mobility of radioactive trace elements across the sediment-water interface of thee MERL model ecosystems of Narragansett Bay..J. Mar. Res. 45:1007-1048.

[56] Koide, M. and K.W. Bruland (1975) The electrodeposition and deter­mination of radium by isotopic dilution in sea water and in sediments

simultaneously with other natural radionuclides Anal. Chem. Acta 75,

1-19.

[57] Turekian, K.K., Benninger, L.K., Dion, E.P. (1983):J. geophys. Res. 88(C9),5411

Page 91: jnsÂ:Ç4?‘' гі-г/'і^іггПг/й'ЛііЖі'Тзг»:?? · sediment örneklerinde Sabit Başlangıç Yoğunluğu ve Sabit Birikme Hızı mod ellerinin sonuçları birbiriyle

REFERENCES 78

[58] Shapiro, M.H. and J.L. Forbes-Resha (1975) ratios in air ata height of 20 m. J. Geophys. Res. 80, 1605-1613.

[59] Matsumoto, E. (1975) ^^°Pb geochornology of sediments from Lake Sinji. Geochem. J. 9, 167-172.

[60] Megumi, K. (1978) A problem in ^^°Pb geochronology of sediments. Macmillan .Journals, Vol. 274,885-887

[61] Matsumoto, E. (1980) Sedimentation rates in Lakes Greifensee and Al- panch measured by ^ ‘ Pb. Geological Survey of Japan, Yatabe, Tsukuba, Ibaraki 305. Japan.

[62] TAEK.(Nisan 1988 ) Türkiye’de Çernobil sonrasi radyason ve radyoak­tivite ölçümleri.