jmn2008.17 physics of rf heating j.-m. noterdaeme with the support of m. brambilla, r. bilato, d....

114
jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe, R. Wilhelm Max Planck Institute for Plasmaphysics, Garching Avanced Course for the European Fusion Doctorate October 2008

Upload: cordelia-preston

Post on 13-Jan-2016

219 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17

Physics of RF Heating

J.-M. Noterdaeme

with the support ofM. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe, R. Wilhelm

Max Planck Institute for Plasmaphysics, Garching

Avanced Course for the European Fusion Doctorate

October 2008

Page 2: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.2

Neutral Beam Injection

Ion source

Neutral

beam

Electricity -> other form(kinetic energy of particles)

Transport to plasma (outside part)

Neutraliser

Magnetic

filter

Beam duct

(inside part)

Accellerator

Ionisation Thermalisation

Page 3: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.3

Wave heating

Electricity -> other form(electromagnetic oscillations)

Transport to plasma (outside part)transmission linesantenna

(inside part)waves

Thermalisation

Antenna

Wave to particles

Resonance zone

R

ω =Ωc

Ωc =Z eB

m

ω

Page 4: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.4

Wave propagation and absorption sets the frequency range that can be used.

Wave heating: very tight combination of physics and technology

Physics Technology

Electromagnetic energy

Transmission lines

Antenna

Coupling

Waves

Waves -> Particles

Transfer to bulk

Page 5: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.5

What will be addressed here?

• plasma– (coupling)– waves– absorption

how, why those frequencies, mechanisms, practical applications

• with side glances at– technology, to show that we can do it– experiments, to show that it works

• emphasize– concepts– physical understanding

• goal– working knowledge for experiments

Page 6: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.6

Waves

• waves in neutral gas– pressure waves

– EM waves in vaccuum

• waves in medium with free charged particles, magnetised

successive approximations/simplifications

– electrons, several ion species, arbitrary distribution function

plasma kinetic theory

– electrons, ions (one or more types), fluid equations

cold plasma -> two fluid -> CMA diagram

– one electrically conducting fluid

MHD

Page 7: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.7

In general: approximations in plasmas

Kinetic equation (full distribution function)

how importantare collisions?

not important important

induced fields wrtapplied fields?

how dominantare collisions?

not important important

partice orbit theory

cold plasma wave theory

not dominant ω > dominant ω <

warm plasma wave theory

MHD theory

Page 8: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.8

Approximations

• coupling

– cold plasma

• propagation

– cold plasma

– (warm plasma)

• power absorption

– warm plasma

elctrons + (multiple) ionscold -> “fluid” equations, no temperature effectwarm -> finite larmor radius plays a role

EC

(IC)

EC IC

(EC)

IC

Page 9: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.9

Power Absorption

• energy in the wave can be affected by energy transferbetween wave

and particles (wave-particle resonance)

or other wave (wave resonance)

• absorption mechanismalways particles

• note :– wave-particle resonance : only few particles fulfill resonance conditions

– wave resonance :collective effect : all particles fulfill conditions

Page 10: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.10

Interaction between Absorption and Waves

• wave fields

• absorption

• change in

distribution function

Absorption affected by change in

distribution function

Wave fields affected by change in

distribution function

Page 11: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.11

Transport of energy in plasma: waves

Electricity -> other form(electromagnetic oscillations)

Transport to plasma (outside part)transmission linesantenna

(inside part)waves Thermalisation

Antenna

Wave to particles

Resonance zone

R

ω =Ωc

Ωc =Z eB

m

ω

Page 12: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.12

Wave Equation

generalized Ohm‘s law

j = j(E,B)

jω ,k = σ ω,k( ) ⋅Eω,k

tensortyconductivi : σ

∇×E = −∂B

∂t

∇×B = μ0ε0

∂E

∂t+ μ0 j

Maxwell‘s Equations

∇⋅E = ρ ε0

∇⋅B = 0

∇×

Page 13: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.13

Dispersion relation

• set of homogenous, linear equations for Ex, Ey, and Ez,

• has non trivial (different from 0) solutions

provided the determinant vanishes

• det = 0 is known as the dispersion relation

Page 14: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.14

Plane waves

velocityphase : k

v ph

ω=€

˜ E (r, t) = ˜ E ω ,k eik r−iωt

ω, k

k : wave vector

ω : angular frequencyPlane waves

k

External magnetic field B0k||

k

fronts of constant phase

index refractive : ω⋅

==ck

c

vN ph

ω fixed by „generator“k response of plasma

equivalent k=k(ω) dispersion relation D(ω,k)=0

Page 15: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.15

Wave Equation

generalized Ohm‘s law

j = j(E,B)

jω,k

= σ ω,k( ) ⋅Eω ,k

tensortyconductivi : σ

Plane waves

∇×E = −∂B

∂t

∇×B = μ0ε0

∂E

∂t+ μ0 j

Maxwell‘s Equations

∇⋅E = ρ ε0

∇⋅B = 0

˜ E (r, t) = ˜ E ω ,k eik r−iωt

ω, k

∇× → ik ×

∂∂t

→ − iω

Page 16: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.16

Wave Equation

generalized Ohm‘s law

j = j(E,B)

tensortyconductivi : σ

k × k × Eω ,k( ) +ω2

c 2K ⋅Eω ,k = 0

K : dielectric tensor

K =1+σ

iωε0

Plane waves

∇×E = −∂B

∂t

∇×B = μ0ε0

∂E

∂t+ μ0 jMaxwell‘s Equations

∇⋅E = ρ ε0

∇⋅B = 0

˜ E (r, t) = ˜ E ω ,k eik r−iωt

ω, k

∇× → ik ×

∂∂t

→ − iω

∇×

jω,k

= σ ω,k( ) ⋅Eω ,k

Page 17: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.17

Wave Equation

Dispersion relation

det N × N ×1( ) + K(ω,N)[ ] = 0€

k × k × Eω ,k( ) +ω2

c 2K ⋅Eω ,k = 0

K : dielectric tensor

K =1+σ

iωε0

N =c

vph

=c ⋅kω

N : refractive index

•the equation is exact

•will become approximate only in terms of the model used for

k × k × Eω ,k( ) +ω2

c 2K ⋅Eω ,k = 0

K : dielectric tensor

Page 18: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.18

Propagation in cold unmagnetized Plasmasimply depends on ωp

(current carried only by electrons)

envj −=

−iω v =−e ⋅E

me

j =−i ⋅e2ne

meωE

2

2

02

2

0

111ωω

εωωεσ p

e

e

minie

iK −=

−+=+=

k ⋅E( ) k − k 2 E +ω2

c 21−

ωp2

ω2

⎝ ⎜

⎠ ⎟E = 0 €

ω p,e2 =

e2ne

ε0me

Plasma frequency:

Langmuir oscillations pωω =

:Ek ⊥ EM waves 2

2

2

222 1

ωω

ωpkc

N −==

ω

k

:E||k

j = σ E

(equ. of motion of electrons)

k × k × Eω ,k( ) +ω2

c 2K ⋅Eω ,k = 0

dv

dt=

qs

ms

⋅(E + v × B)

Page 19: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.19

Wave cutoff and resonance

1. N 0 „cutoff“reflexiontunnellingvph>c!

2. N „resonance“ vph -> 0wave „gets stuck“wave energy dissipation

N =c

vph

=c ⋅kω

N : refractive index

N → ∞ ; vph → 0 ; λ → 0 ; k → ∞

N → 0 ; vph → ∞ ; λ → ∞ ; k → 0

det N × N ×1( ) + K(ω,N)[ ] = 0

Page 20: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.20

Wave resonance thermal effects become important

• wave resonance– Energy density ~ A2

– Energy flux vA2 =>

– when v -> 0 then A must increase -> damping mechanisms amplified

– v -> 0 also means -> 0 <

• simple example

x

k2perp

k2inf

Page 21: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.21

Ohm‘s law

Goal: determine j=j(E) Small perturbation

v = v 0 + v1

E = E 0 + E1

B = B0 + B1

0

j1

= qsnsv1,s

s

∑€

−iωv1 =qs

ms

⋅ E1 + v1 × B0( )

dv

dt=

qs

ms

⋅(E + v × B)cold plasmaequation of motionof particles

v th <<ω

k

jω ,k = σ ω,k( ) ⋅Eω,k

K =1+σ

iωε0

det N × N ×1( ) + K(ω,N)[ ] = 0

currentcoldsolve for v1 as function of E1

Page 22: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.22

Generalisation

warm plasma

linearized Vlasov equation

∂∂t

f1 + v ⋅∂

∂rf1 +

q

mv × B0[ ]

∂vf1 = −

q

mE1 + v × B0( )

∂vf0

f1 = ...

j1 = qs

s

∑ v∫ ⋅ f v( ) d3v

∂∂t

f + v ⋅∂

∂rf +

q

mE + v × B[ ]

∂vf =

∂tf

⎝ ⎜ ⎜

⎠ ⎟ ⎟coll

Fokker - Planck

Vlasov

∂∂t

f + v ⋅∂

∂rf +

q

mE + v × B[ ]

∂vf = 0

6 waves:-2 cold-pressure driven-electron and ion Bernstein-accoustic branch

Page 23: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.23

Continuing the cold plasma case

det N × N ×1( ) + K(ω,N)[ ] = 0

K =1+σ

iωε0

K =

S − iD 0

iD S 0

0 0 P

⎜ ⎜ ⎜

⎟ ⎟ ⎟€

S =1

2(R + L ) ; D =

1

2(R − L )

R = 1 −(ωpe /ω )2

1 − ωce /ω−

(ωpi /ω )2

1 +ωci /ωi

L = 1 −(ωpe /ω )2

1 +ωce /ω−

(ωpi /ω )2

1 − ωci /ωi

P = 1 −ωpe

ω

⎝ ⎜

⎠ ⎟

2

−ωpi

ω

⎝ ⎜

⎠ ⎟

2

i

jω ,k = σ ω,k( ) ⋅Eω,k

Page 24: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.24

Characteristic frequencies

ωpe2 =

e2ne

ε 0me

ωpi2 =

(Zie)2 ni

ε 0mi

ωce =eB

me

ωci =ZieB

mi

Plasmafrequencies

Cyclotron frequencies

R = 1 −(ωpe /ω )2

1 − ωce /ω−

(ωpi /ω )2

1 +ωci /ωi

L = 1 −(ωpe /ω )2

1 +ωce /ω−

(ωpi /ω )2

1 − ωci /ωi

P = 1 −ωpe

ω

⎝ ⎜

⎠ ⎟

2

−ωpi

ω

⎝ ⎜

⎠ ⎟

2

i

ωuh2 = ωpe

2 + ωce2

ω lh2 =

1

ωpi2 + ωci

2+

1

ωciωce

⎣ ⎢

⎦ ⎥

−1

Upper Hybrid frequency

Lower Hybrid frequency

Page 25: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.25

Ordering in tokamaks

ω p j =n j Z je( )

2

m jε0

ωc j =Z jeB

m j

for the electrons

ω pe2

ωce2

=e − motion //B

e − motion ⊥B

=1.029 ×10−19 ne

B2= O(1)

further

ωc i =me

mi

ωc e

ω p i =me

mi

ωp e

ωc i << ωp i << ωc e ≈ ωp e

ωc i

2π=

15MHz

AB T[ ]

ωc e

2π= 28GHz ⋅B T[ ]

ω lh2 =

1

ωpi2 + ωci

2+

1

ωciωce

⎣ ⎢

⎦ ⎥

−1

≈1

ωpi2

+1

ωciωce

⎣ ⎢

⎦ ⎥

−1

ωk//

≈ v th e →ω

2π=

1.3 GHz Te keV[ ]λ // cm[ ]

Page 26: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.26

• ECRH– electron cyclotron resonance heating

• LH– lower hybrid frequency

• ICRF– Ion cyclotron range of frequencies

Transport from outside plasma to inside: wave propagation (wave cut-off and resonance)

Transfer of energy from wave to particles: resonance condition (wave-particle)

Wave propagation and absorption

-

E

~ B0

+

ion unmagnetized, oscillate with E1

electrons oscillate with E1 x B0 drift

ωc i <<ω << ωc e

Page 27: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.27

Electron / Ion Cyclotron Range

• electron cyclotron– only electron dynamics (ions fixed background)

– v >> vthe

– relativistic effects

• ion cyclotron– ions (multiple) and electron dynamics

– characteristic propagation velocity is the Alfven speed

– comparison with the electron thermal velocity

vA =B

μ0 mi ni

= cωci

ωpi

vA2

v the2

=c 2

v the2

ωci2

ωpi2

=me

mi

β −1

vA > v the for β <me

mi

vA < v the for β >me

mi

Page 28: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.28

Approximations made

• plane wave: ignored initial conditions• Te= Ti = 0• infinite plasma: ignored boundary conditions• homogeneous in space: equilibrium values are constant• B = B0, uniform, static• no free streaming• no dissipative effects, no collisions, no forces quadratic in v• small amplitude B0 >> B1

Consequences• no finite temperature effects• no streaming effects such as

– sound waves– particle bunching– Landau damping– shock waves

Page 29: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.29

Dispersion relation, cold plasma case

A ⋅N 4 + B ⋅N 2 +C = 0

A = S ⋅sin2 Θ + P ⋅cos2 Θ

B = R ⋅L ⋅sin2 Θ + P ⋅S ⋅(1+ cos2 Θ)

C = P ⋅R ⋅L

tg2Θ = −(N 2 − R) ⋅(N 2 − L) ⋅P

(S ⋅N 2 − R ⋅L) ⋅(N 2 − P)

det N × N ×1( ) + K(ω,N)[ ] = 0

with

2 solutions for N2

form of solution depends on S, P, R, L,

N =c

vph

=c ⋅kω

S =1

2(R + L ) ; D =

1

2(R − L )

R = 1 −(ωpe /ω )2

1 − ωce /ω−

(ωpi /ω )2

1 +ωci /ωi

L = 1 −(ωpe /ω )2

1 +ωce /ω−

(ωpi /ω )2

1 − ωci /ωi

P = 1 −ωpe

ω

⎝ ⎜

⎠ ⎟

2

−ωpi

ω

⎝ ⎜

⎠ ⎟

2

i

Page 30: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.30

Resonance

• 2 solutions for (k/k0)2, function of – if > 0 -> propagating– if < 0 -> non-propagating

• propagating solution k/k0 = +/-– waves travelling in opposite directions

• if two propagating solutions– smaller v = ω /k -> slow wave– larger -> fast wave

• (k/k0)2 can change sign – by going through 0 -> cut-off

• reflection• evanescent wave

– by going through infinity -> resonance• absorption• reflection and transmission

• cut-off -> independent of angle• resonance -> depending on angle

x

k2perp

k2inf

Cut-off

N → 0 ; vph → ∞ ; λ → ∞ ; k → 0

N → ∞ ; vph → 0 ; λ → 0 ; k → ∞

Page 31: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.31

Classification of waves

• phase velocity– fast

– slow

• direction of propagation– k parallel to B0: according to polarisation

(with respect to B0, in other wrt propagation direction)

• right -> direction of rotation of electrons

• left -> direction of rotation of ions

– k perpendicular to B0

• ordinary: E1 // B0

• extraordinary: E1 perp to B0

Page 32: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.32

Electron-Cyclotron-Wave

ECR

ICR

Ion-Cyclotron-Wave

Whistler-Wave

Alfvèn-Wave

L-Wave

R-Wave

k

ω

ωce

ωci

c

0

k || B

cut-off Resonance

Parallel and perpendicular propagation

ωUH

ω

LHR

UHR

k

ωLH

Alfvèn-Wave

0

O-Mode

X-Mode

LH-Wave

UH-Wave

c

ωpe

ωci

ωce

ECRH

LH

ICRH

k B

3 Frequency rangesfor Plasmaheating

k //B → Θ = 0

N 2 = R → R - wave

N 2 = L → L - wave

P = 0

k⊥B → Θ = π2

N 2 = P → O - mode

N 2 =RL

S→ X − mode

tg2Θ = −(N 2 − R) ⋅(N 2 − L) ⋅P

(S ⋅N 2 − R ⋅L) ⋅(N 2 − P)

Page 33: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.33

A ⋅N 4 + B ⋅N 2 +C = 0

A = S ⋅sin2 Θ + P ⋅cos2 Θ

B = R ⋅L ⋅sin2 Θ + P ⋅S ⋅(1+ cos2 Θ)

C = P ⋅R ⋅L

Electron-Cyclotron-Wave

ECR

ICRIon-Cyclotron-Wave

Whistler-Wave

Alfvèn-Wave

L-Wave

R-Wave

k

ω

ωce

ωci

c

0

k || B

ωce

ωUH

ω

LHR

UHR

k

ωLH

Alfvèn-Wave

0

O-Mode

X-Mode

LH-Wave

UH-Wave

c

ωpe

ωci

k B

Page 34: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.34

• 2 solutions for (k/k0)2, function of , n, B– if > 0 -> propagating– if < 0 -> non-propagating

• propagating solution k/k0 = +/-– waves travelling in opposite directions

• if two propagating solutions– smaller v = ω /k -> slow wave– larger -> fast wave

• (k/k0)2 can change sign – by going through 0 -> cut-off

• reflection• evanescent wave

– by going through infinity -> resonance• absorption• reflection and transmission

• cut-off -> independent of angle• resonance -> depending on angle

R

L

B O X

L

R

B X

Page 35: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.35

CMA diagram

ωp2

ω2=> Plasma density

ωce2

ω2=>Magnetic field ωci

2

ω2

1

1

cut-off

Resonanz

P=0

L=

S=0

R=

• 2 solutions for (k/k0)2, function of , n, B– if > 0 -> propagating– if < 0 -> non-propagating

• propagating solution k/k0 = +/-– waves travelling in opposite directions

• if two propagating solutions– smaller v = ω /k -> slow wave– larger -> fast wave

• (k/k0)2 can change sign – by going through 0 -> cut-off

• reflection• evanescent wave

– by going through infinity -> resonance• absorption• reflection and transmission

• cut-off -> independent of angle• resonance -> depending on angle

Page 36: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.36

Easier to show with mi / me = 2.5

Page 37: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.37

CMA detail

Page 38: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.38

Use of the CMA diagram

1 20

1

0

O-Modecut-off

„ECR“

O-/X-Mode with kB

ωceω Magnetic field

(=Density)

X- cut off

upper Hybrid -Resonanz

High field-

Low field-coupling

path through the Plasma!

B (R)

Wave

N 2 − P = 0

= "ordinary wave" (O-Mode) mit E || B

= “extra-ordinary wave”(X-Mode) mit E B

(S ⋅N 2 − RL) = 0

ω pe2 ω2

ωceω Magnetic field

Page 39: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.39

ECR

R

B(R)

ne

“HF-cut-off“

UH-Resonanz

EC-“Resonance“X1-ModeEC-“Resonance“

R

B(R)

ne

B

O-Mode

O-Mode cut-off ..if ne >ncrit

B (R)

Wave

1 20

1

0

O-Modecut-off

„ECR“

O-/X-Mode with kB

ωceω Magnetic field

ωpe /ω22 (=Density)

X- cut off

upper Hybrid -Resonanz

High field-

Low field-coupling

path through the Plasma!

E || BE B

B

Page 40: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.40

Wave heating

Electricity -> other form(electromagnetic oscillations)

Transport to plasma (outside part)transmission linesantenna

(inside part)waves Thermalisation

Antenna

Wave to particles

Resonance zone

R

ω =Ωc

Ωc =Z eB

m

ω

Page 41: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.41

• Wave propagation– approximations– wave equations– dispersion relation– characteristic frequencies– classification of waves– parallel and perpendicular propagation– cut-off and resonances– CMA diagram– application to ECRH

• Absorption– interaction between wave and particles

Page 42: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.42

Approximations

• coupling

– cold plasma

• propagation

– cold plasma

– (warm plasma)

• power absorption

– warm plasma

elctrons + (multiple) ionscold -> “fluid” equations, no temperature effectwarm -> finite larmor radius plays a role

EC

(IC)

EC IC

(EC)

IC

Page 43: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.43

Force on an electron

md

r v

dt= e ⋅(

r E +

r v ×

r B ) ⋅exp(i(ωt −

r k

r x )) ≈ e ⋅

r E ⋅exp(i(ωt −

r k

r x ))

Integration along an unperturbed orbit gives for the momentum increase

mΔr v = e

r E dt exp iωt − ik⊥ρ sin(ωct + ϕ 0) − ik||v||0t[ ]

−∞

+∞

= er E exp(inϕ 0)Jn (k⊥ρ)δ(ω − nωc − k||v||0)

−∞

+∞

Energy transfer only if

ω −nωc = k||v|| is satisfied

Interaction between a wave and a charged particle

With relativistic effects we have

ωc = ωc0 1− v 2 /c 2

=> Interaction only with resonant particles in velocity space

The same is valid for ions.

Page 44: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.44

Collisionless Damping

ω −nωc = k||v||

vf(v)

Resonance condition:

∂f (v)

∂v< 0

Condition for damping

Landau damping: Increase of parallel momentum

The deformation of the distribution function increases the energy of the electron system.

Energy transfer only if

E

V|| =Vph −δ V|| =Vph +δ

k

n = 0

ω −k||v|| = 0

Page 45: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.45

Cyclotron Damping (Doppler shifted)

ω −nωc = k||v||

Resonance condition:

Energy transfer only if

n =1

ω −k||v|| = ωc

B0E

Cyclotron Damping: increase of perpendicular momentum

Page 46: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.46

Force on an electron

md

r v

dt= e ⋅(

r E +

r v ×

r B ) ⋅exp(i(ωt −

r k

r x )) ≈ e ⋅

r E ⋅exp(i(ωt −

r k

r x ))

Integration along an unperturbed orbit gives for the momentum increase

mΔr v = e

r E dt exp iωt − ik⊥ρ sin(ωct + ϕ 0) − ik||v||0t[ ]

−∞

+∞

= er E exp(inϕ 0)Jn (k⊥ρ)δ(ω − nωc − k||v||0)

−∞

+∞

Energy transfer only if

ω −nωc = k||v|| is satisfied

Interaction between a wave and a charged particle

With relativistic effects we have

ωc = ωc0 1− v 2 /c 2

=> Interaction only with resonant particles in velocity space

The same is valid for ions.

Page 47: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.47

mΔr v = e

r E dt exp iωt − ik⊥ρ sin(ωct + ϕ 0) − ik||v||0t[ ]

−∞

+∞

= er E exp(inϕ 0)Jn (k⊥ρ)δ(ω − nωc − k||v||0)

−∞

+∞

Page 48: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.48

Wave propagation and absorption

UH

R

O-wave

X1-wave

1r/a

ne

B0

EC-resonance

Upper hybrid resonance

X-mode Cutoff

X1-wave

X2-wave

ωωUH

ω

k

ωL

Alfvèn-Wave

0

O-Mode

X-Mode

Lower Hybrid Wave

Upper Hybrid Wave

ω=c

k

ωpe

ωR

ωωLHωci

ECRHLHICRH

3 frequency regionsfor plasma heating:

ωce

Page 49: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.49

Mode Conversion OXB-Heating

O-mode

X-mode

Mode conversion processunder certain launch anglesand for minimum density.

O mode converts into X modeat O-mode cutoff.

X-mode converts into electrostatic electron (Bernstein) wave.

Bernstein wave absorbed by electron cyclotron damping.

No upper density limit.X-mode cutoff

O-mode cutoff

B-mode

UH-resonanceEC-resonance

Page 50: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.50

ECRH: Operation Scenarios for W7-XPlasma density range

(m-3)

EkB

. . . . . .

k

Ev,j

B

ωc =eB

mCyclotronfrequency:

ωp2 =

e2ne

ε 0 me

Plasmafrequency:

Determines the microwave frequency:

(2.5 T, n=2, 140 GHz for W7-X)

Determines the density range

ω −nωc /γ − k||V|| = 0 γ =1/ 1 −v2

c2

1019 1020 1021

X2-Mode

O2-Mode

O-X-B-Mode

Plasma density

⊥BkkE | |

k ⊥ B , E ⊥ B

k ⊥ B , E || B

Page 51: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.51

ECRH System

Collector

Resonator

Electron-beam

typ. 30A, 80kV

mm-Wave

quasi-optical

orwaveguide transmission

EC-Resonance

Gyrotronbis 1MW

80····170GHz

SuperconductingMagnet

Window

Page 52: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.52

ECRH - Gyrotrons

superconductingcoils

diamondwindow

annularelectron beam

resonator

conversionto Gaussianbeam

collector

Presently development of 1 MW cw gyrotrons

Page 53: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.53

Needs:-Local current drive-Synchronized injection-Fast detection of NTM by ECE-Extremely fast mirror control and power modulation

NTM Stabilisation

EC-resonance NTM-island

ECRH-Beam

Page 54: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.54

Removal of the magnetic Island by ECCD

Current drive (PECRH / Ptotal = 10-20 %) results in removal

method has the potential for reactor applications

Page 55: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.55

Lower Hybrid system

Klystron500-750kW

2,53,7 GHz

“Grill”

00 900 1800 ...

= “phased array”-Antenna

Stack of102-103

Waveguides

Wave

0,5 vacuum

N|| 2

Front view:

N||

NN

= conserved -quantity!

E~

0 90 1800 ....

evaneschent layer

ne increases

“Grill-Antenna“

Page 56: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.56

2 solutions of dispersion relation: slow wave (exhibits lower hybrid res.)fast wave

ne > 1017m-3 at antenna, to enter plasmak|| > kc to reach center.

ωci << ωLH <<ωce

|| ≈ 2 −10cm, λ⊥ ≤1cm

Lower Hybrid Heating

k|| too low, power stays near plasma edge

sw

fw

k

radiusk|| sufficiently high, slow wave travels into plasma,absorption at LH or before

k

LowerHybridresonance

radius

Page 57: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.57

LH - Wave Propagation

Depends onne and B.

Antenna structure

Page 58: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.58

Klystron and Grill

Beam dump

cathode

anode

-wave input

-waveoutput

3.7 GHz500 kW3 sec

klystron waveguide grill

Page 59: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.59

LH - Wave Excitation

Fast wave

kB0

Ehf

Bhf

Slow wave

kB0

Ehf

BhfMultiplewaveguides

Ewg

ASDEX

Page 60: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.60

Current drive on ASDEX

Example: Lower hybrid current drive, 1.3 GHz / 2.4 MW / 3 secLeuterer F., Eckhardt D., Soeldner F.X., et al., Phys. Rev. Lett. 55 (1985) 75

The plasma current can be ramped up or the OH-transformer can be recharged

with loop voltage = 0 with loop voltage < 0

Page 61: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.61

Ion cyclotron system

Tube-amplifier

typ. 2 MW30-100 MHz

50 ΩKoax-Ltg

Matching-Tuner50 Ω 1··3 Ω

Plasma:Re(N) >>1

Dipole-antenne

Preamplifier

Page 62: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.62

Wave propagation and absorption

ωωUH

ω

k

ωL

Alfvèn-Wave

0

O-Mode

X-Mode

Lower Hybrid Wave

Upper Hybrid Waveω

=ck

ωpe

ωR

ωωLHωci

ECRHLHICRH

3 frequency regionsfor plasma heating:

ωce

Page 63: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.63

Absorption

wave - particleions : cyclotron resonance

fundamental need correct polarisation E+ minority heating

harmonic need gradient in E+ preferentially fast particles wave other wave particle mode conversion

ω -k// v//i =(n+1)ωci

Page 64: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.64

fundamental need correct polarisation E+ minority heating

harmonic need gradient in E+ preferentially fast particles wave other wave particle mode conversion

Page 65: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.65

Larmor radius

= m vperp / Z e B

Cyclotron frequency

ω = Z e B / m = Z/A * e/mH * B

Cyclotron motion

vperp

B

15 MHz per Tesla * Z/A

Page 66: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.66

Ion Cyclotron Resonance Heating

Page 67: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.67

• particles are equally– accelerated and

– decelerated by the wave

• when – more particles at low velocity

• then– net transfer from wave to particles

Diffusion in velocity space

f(v)

v

Page 68: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.68

0

0.2

0.4

0.6

0.8

1

-40 -20 0 20 40

30 MHz, 2T, nphi

= 6, nH/ n

e = 100 %

p2

m2

z2

a

H to absorb but no correct polarisation

for pure H

at ω = ωcH

the left hand polarization is = 0

nH/ne = 100 %

Page 69: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.69

0

0.2

0.4

0.6

0.8

1

-40 -20 0 20 40

30 MHz, 2T, nphi

= 6, nH/ n

e = 0%

a

Correct polarisation but no H to absorb

nH/ne = 0 %

in pure D

at ω = ωcH

the left hand polarization exists but there is „no“ resonance

Page 70: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.70

0

0.2

0.4

0.6

0.8

1

-40 -20 0 20 40

30 MHz, 2T, nphi

= 6, nH/ n

e = 0%

a

What happens if we add a bit of H

nH/ne = 0 %

in plasmas with dominant D and a bit of H

the left hand polarization is set by the dominant D

but now we have the H to absorb!

0

0.2

0.4

0.6

0.8

1

-40 -20 0 20 40

30 MHz, 2T, nphi

= 6, nH/ n

e = 0.1 %

p2

m2

z2

a

nH/ne = 0.1 %

Page 71: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.71

How much is a bit before it starts to affect the polarisation

0

0.2

0.4

0.6

0.8

1

-40 -20 0 20 40

30 MHz, 2T, nphi

= 6, nH/ n

e = 2 %

a

0

0.2

0.4

0.6

0.8

1

-40 -20 0 20 40

30 MHz, 2T, nphi

= 6, nH/ n

e = 15 %

p2

m2

z2

a

dependence on concentration

at ω = Ωci the left hand polarization decreases

with increasing H concentration

nH/ne = 2 % nH/ne = 15 %

Page 72: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.72

Need the correct polarization AND the species to absorb

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3

30 MHz, 2T, nphi

=6

p2

m2

z2

nh/n

e

amplitude with correct polarisation 0 !!nH/ne 10 %

Page 73: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.73

0 100

2 103

4 103

6 103

8 103

1 104

-40 -20 0 20 40

30 MHz, 2T, nphi

= 6, nH/ n

e = 0.1 %

Re2

Im2

n2perp

a

Need to check the propagation of the wave

Page 74: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.74

Propagation of the wave

0 100

2 103

4 103

6 103

8 103

1 104

-40 -20 0 20 40

30 MHz, 2T, nphi

= 6, nH/ n

e = 3 %

Re2

Im2

n2perp

a

Page 75: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.75

At even higher nH concentration: cut-off

-1 104

-5 103

0 100

5 103

1 104

-40 -20 0 20 40

30 MHz, 2T, nphi

= 6, nH/ n

e = 10 %

Re2

Im2

n2perp

a

Page 76: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.76

fundamental need correct polarisation E+ minority heating

harmonic need gradient in E+ preferentially fast particles wave other wave particle mode conversion

Page 77: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.77

Resonance/ Cut-off, Tunnelling, Mode conversion

x

k2perp

k2inf

-1 104

-5 103

0 100

5 103

1 104

-40 -20 0 20 40

30 MHz, 2T, nphi

= 6, nH/ n

e = 10 %

Re2

Im2

n2perp

a

Resonance

Cut-off€

N → ∞ ; vph → 0 ; λ → 0 ; k → ∞

N → 0 ; vph → ∞ ; λ → ∞ ; k → 0

Page 78: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.78

In the vicinity of the ion-ion hybrid layer, mode conversion to shorter wavelength waves occurs.

IBW : Ion Berstein WavePropagates towards the high field side

ICW : Ion Cyclotron WavePropagates towards the low field side

F.W. Perkins, Nucl. Fusion 17, 1197 (1977)

ICRF Heating in DIII-D: Mode conversion

M. Brambilla, Plasma. Phys. Cont. Fusion 41, 1 (1999)

Mode conversion to ion Bernstein wave, electrostatic ion cyclotron wave

Page 79: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.79

Ion-ion cut-off and resonances

• from low field side, sequence is always cut-off, then ion-ion resonance

• lies between cyclotron resonances of both ions

• lies closest to the cyclotron resonance with the lower concentration

• location of the cyclotron resonance wrt to pair thus varies

ω =Z eB

M

HFS

LFS-1 104

-5 103

0 100

5 103

1 104

-40 -20 0 20 40

30 MHz, 2T, nphi

= 6, nH/ n

e = 10 %

Re2

Im2

n2perp

a R

ω =ΩcH

ω =ΩcD

B

B1

B2

low H concentration

low D concentration

Page 80: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.80

Multiple ions

• cut-off /resonance pair between each of ion cyclotron resonances

• location depends on the relative concentrations

ω =Z eB

M

HFS

LFS

R

ω =ΩcH

ω =ΩcD

B

B1

B2

ω =ΩcHe3

Page 81: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.81

fundamental need correct polorisation E+ minority heating

harmonic need gradient in E+ preferentially fast particles wave other wave particle mode conversion

Page 82: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.82

“Second” harmonic

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

60 MHz, 2T, nphi

=12

p2

m2

z2

nh/n

e

2 ωcH, also in H plasma -> amplitude with correct polarisation 0

Page 83: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.83

Cyclotron motion

B

vperp

B

vperp

B

vperp

B

Page 84: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.84

Second Harmonic Heating

m d (vperp2 ) / 2 dt = Z E vperpcos

Ev. 7Ev 0 -.7Ev - Ev - .7Ev 0 .7 Ev

netto Ev- Ev = (E - E) v -> gradient in electric field

Page 85: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.85

Second Harmonic Heating

Page 86: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.86

• particles are equally– accelerated and

– decelerated by the wave

• when – more particles at low velocity

• then– net transfer from wave to particles

Diffusion in velocity space

f(v)

v

Page 87: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.87

2nd and higher Harmonics damped if wave-field non-uniform on length-scale of Larmor radius

t=0 t=T/2 t=T

B B B

v

v

v

ω =2 ⋅ωcs

E

gradient of electric field

∂ l( )E

∂r l( )≠ 0

T = period of the wave

Page 88: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.88

E+

How do we get this variation of E along the orbit ?

v ⊥

E+

E+

E+

E+

⊥ €

E+

E constant1

2

13

maximum effect 2= /2

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2

E+

E+

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2

4

zero effect again

Page 89: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.89

mΔr v = e

r E dt exp iωt − ik⊥ρ sin(ωct + ϕ 0) − ik||v||0t[ ]

−∞

+∞

= er E exp(inϕ 0)Jn (k⊥ρ)δ(ω − nωc − k||v||0)

−∞

+∞

maximum effect 2= /2 k= /2

Page 90: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.90

At the second harmonic, the net acceleration depends on L/

Acceleration and deceleration by the wave along the ion orbit.

Net effect only if E+ is not constant, ie if L/ Lk is finite.

Effect becomes weak for L/ Lk near 1

Page 91: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.91

H

sHStix n

tpT ∝

FLR effects play a key role in determining the fast ion distribution function, in agreement with theory

no more acceleration

Wave-particle interaction becomes weak for L/ Lk near 1 with k = F(n)

Page 92: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.92

ICRF-acceleration of 4He beam ions for simulating fusion ’s

ITER: fusion-born 3.5-MeV alpha particles (4He ions)

JET simulation: ω3ω(4He) in 4He plasma.

For n = 3, damping on thermal ions

is small boost with high-energy 4He beams with finite L.

Strongest 4He tails with ICRF-

acceleration of highest energy (120

keV) 4He beams.

(Mantsinen, PRL 2002)

JET

Page 93: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.93

Possible absorption scenarios

fundamental need correct polorisation E+ minority heating

harmonic need gradient in E+ preferentially fast particles wave other wave particle mode conversion

in the ion cyclotron range of frequencies

Page 94: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.94

Wide range of possibilities, beyond heating

Power • to ions• to electrons

• to thermal particles • to fast particles (tails)

• to particles going one way• or another

• on axis• off-axis

Page 95: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.95

One of the first fast-ion effects: Sawteeth stabilisation

Sawteeth = periodic relaxations of plasma core temperature.

Central ICRH Strong sawtooth stabilisation due to ICRH-heated ions with ωDrift >ωmode.

Relevance for ITER: sawtooth stabilisation by fusion ’s.

Later: sawtooth destabilisation by ICRF.

(Campbell, PRL 1988; Phillips, Phys. Fluids 1992; Porcelli, PPCF 1991)

JET

Page 96: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.96

Power deposition with ω = nωc depends on the finite orbit widths of fast ICRF-accelerated ions.

Fast ions orbits, and thus the power deposition, can be modified using toroidally directed waves.

Absorption of wave toroidal angular momentum ICRF-induced pinch of fast ions.

Turning points of trapped fast ion orbits are driven either outwards or inwards, depending on the direction of wave propagation.

Wave Ip Wave Ip Inward pinch Outward pinch

(Hellsten, PRL, 1995)

Eventually co-passing orbits residing on the low-field side of Rres

Control : ICRF-induced pinch modifies fast ion orbits

Page 97: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.97

Experimental evidence for ICRF-induced pinch

(Kiptily, Nucl. Fusion, 2002; Mantsinen, PRL, 2002)

3He cyclotron resonance

Page 98: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.98

Basics of ICRF power deposition localisation

The most narrow ICRF power deposition profiles can be obtained with ICRF mode conversion (MC).

Most common: MC in the vicinity of the ion-ion hybrid resonance of two ion species with comparable concentrations.

Real-time control of ion species mixture in routine use on JET to keep MC power deposition fixed in time.

(Mantsinen, Nucl. Fusion 2004)

Plasma Centre

Page 99: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.99

Toroidally directed waves couple

asymmetrically to ions and electrons in the

v||-space due to their average finite k||.

This gives rise to

–ion cyclotron current drive (ICCD)

–fast wave electron current drive

(FWCD)

–ICRF mode conversion current drive

Current drive with ICRF waves

Page 100: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.100

Ion cyclotron current drive (ICCD)

Ion cyclotron current with passing ions is dipolar, i.e. its sign reverses when crossing ω = nωci (Fisch, Nucl. Fusion 1981).

Flattening or peaking of the current profile depending on

- location of Rres versus R0

- toroidal direction of the wave.

While net current is small, local effect can be rather strong.

Page 101: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.101

Sawtooth control with ICCD

ICCD at q = 1 on JET is used modify the current profile and thereby to stabilise or destabilise sawtooth activity.

Recent JET experiments:

ω = ωcH (Mayoral, Phys. Plasmas 2004;

Eriksson, Nucl. Fusion 2006)

ω = 2ωcH (Mantsinen, PPCF 2002)

Expanded capabilities and heavy use.

JET

(Start, EPS1992; Bhatnagar, Nucl. Fusion 1994)

Page 102: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.102

Coupling with antennas

Electricity -> other form(electromagnetic oscillations)

Transport to plasma (outside part)transmission linesantenna

(inside part)waves Thermalisation

Resonance zoneAntenna

Wave to particles

Page 103: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.103

Waves

wave excitation, propagation, absorption

– absorption in plasma

– wave excited in plasma and propagates

– in density layer in front of antennafields decay (evanescence)

– antenna creates E and B fields

Page 104: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.104

Fast wave evanescent at the edge

0 100

2 103

4 103

6 103

8 103

1 104

-60 -40 -20 0 20 40 60

30 MHz, 2T, nphi

= 6, nH/ n

e = 100 %

Re2

Im2

n2perp

a -5 101

0 100

5 101

1 102

50 52 54 56 58 60a

Page 105: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.105

Absorption... Coupling

z

Absorption

Wave

Coupling

Cut-off

excited by Antenna

boundary condition for Antenna

Evanescent WaveEco = f(k//) Eplasma/vacuum

Eplasma/vacuum ~ Bz (relation in plasma)

Ey/ Bz

x

z

y

Page 106: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.106

Depth of the evanescent layer depends on k//

in the tenuous plasma, below the cut-off densitythe fast wave (k vector mostly perpendicular) is evanescent

B = B1 e i k r−iω t[ ]

with

k02 = k//

2 + k⊥2

we obtain

k02 small and k⊥

2 < 0

k⊥2 = k0

2 − k//2

ik⊥ ≈ k//

e i k r[ ] =e i k⊥x[ ] =e −k//x[ ]

thus relation between coupling and antenna spectrum due to the cut-off

Page 107: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.107

-40 -20 0 20 400.0

0.2

0.4

0.6

0.8

1.0

2 , 90straps

2 , 180straps

4 , 90straps

4 , 180straps

nφ =Rk// =2πRλ

Page 108: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.108

Antennas

strap 1strap 2

strap

1

stra

p 2

strap 1 strap 2

stra

p 1

stra

p 2

Bt

Ip

Page 109: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.109

ICRF Antennas on JET

ICRF antennalaunches wave ω, k||

Page 110: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.110

Dynamic matching or load isolation necessary

50 Ohm

matching

1 ms

D

R

0

08

8

2-10 +R Ohm + j X + X

Antenna

• timescales of variations

– particle/energy confinement time ms to s

– MHD events 100s

Page 111: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.111

H

Power to antenna

Reflectedpower

Reflectedpower at generator

5 kW

100 kW

1 MW

3 dB couplers for ELM resilience3 dB couplers for ELM resilience

Page 112: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.112

Overview

• steps: generation, transport, absorption, thermalization

• ICRF: minority, mode conversion, harmonic

• not just heating

• 3 dB couplers

Electricity -> other form(electromagnetic oscillations)

Transport to plasma (outside part)transmission linesantenna

(inside part)waves Thermalisation

Wave to particles

Page 113: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.113

Summary

• for power to be absorbed into the plasma it must first get there

• wave propagation: range of frequencies– Electron cyclotron

– Lower Hybrid

– Ion cyclotron

• absorption in plasma: wave - particle interaction– cyclotron damping, also at harmonics

– Landau damping

• different types of approximations– cold plasma: typically two waves

– CMA diagram, parallel, perpendicular propagation

• very large number of possibilities, not just heating– current drive

– control of instabilities

– …

Page 114: Jmn2008.17 Physics of RF Heating J.-M. Noterdaeme with the support of M. Brambilla, R. Bilato, D. Hartmann, H. Laqua, F. Leuterer, M. Mantsinen, F. Volpe,

jmn2008.17.114

Literature

M. Brambilla

Kinetic Theory of Plasma Waves,

R. Koch

Physics and Implementation of ICRF of Fusion Reactors, Lab. Rep. 108, 1997, Brussels

Stix, Thomas H.

Waves in Plasmas, New york, American Institute of Physics, 1992

Wesson, John

Tokamaks, Oxford, Clarendon Press 1997, 2nd Ed.

The Oxford Engineering Science Series, Vol. 48

Swanson, D.G.

Plasma Waves, Boston,MA, Academic Press 1989

Cairns, R.A.

Radiofrequency Heating of Plasmas, Bristol, Hilger 1991