jianying zhao : tianjin university yogesh ramadass: texas instruments

19
MICROELECTRONIC TECHNIQUES FOR FREQUENCY TUNING OF PIEZO-ELECTRIC (PZ) ENERGY HARVESTING DEVICES (EHDs) Interim Report Jianying Zhao: Tianjin University Yogesh Ramadass: Texas Instruments Dennis Buss: Texas Instruments and MIT Prof Jianguo Ma: Tianjin University

Upload: carrington

Post on 10-Feb-2016

76 views

Category:

Documents


1 download

DESCRIPTION

MICROELECTRONIC TECHNIQUES FOR FREQUENCY TUNING OF PIEZO-ELECTRIC (PZ) ENERGY HARVESTING DEVICES (EHDs) Interim Report. Jianying Zhao : Tianjin University Yogesh Ramadass: Texas Instruments Dennis Buss: Texas Instruments and MIT Prof Jianguo Ma: Tianjin University. Summary. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Jianying  Zhao :  Tianjin University Yogesh Ramadass:  Texas Instruments

MICROELECTRONIC TECHNIQUES FOR FREQUENCY TUNING OF PIEZO-ELECTRIC (PZ) ENERGY HARVESTING

DEVICES (EHDs)Interim Report

Jianying Zhao: Tianjin UniversityYogesh Ramadass: Texas Instruments

Dennis Buss: Texas Instruments and MITProf Jianguo Ma: Tianjin University

Page 2: Jianying  Zhao :  Tianjin University Yogesh Ramadass:  Texas Instruments

Summary• Piezo-electric (PZ) Energy Harvesting Devices

(EHDs): Background

• Four key elements of frequency tuning1. High load resistance => high E-field in the PZ material

=> enables PZ coupling2. Inductor in output => Coupled oscillators => Pole

Splitting 3. Variable inductor => Frequency tuning4. Bias Flip to approximate large variable inductor

• Simulation results

• Conclusions

Page 3: Jianying  Zhao :  Tianjin University Yogesh Ramadass:  Texas Instruments

External Circuits for Extracting Power from EHDs

Energy Management

CircuitD3

D4

D1

D2

CRECTEHD

Rectification Circuit for DC Energy Storage

RL

+

-

V

is

Linear Circuit for Extracting AC Power

EHD L

cond.circuit

Page 4: Jianying  Zhao :  Tianjin University Yogesh Ramadass:  Texas Instruments

The focus of this talk will be this

conditioning circuit

Energy Management

CircuitD3

D4

D1

D2

CRECTEHD

Rectification Circuit for DC Energy Storage

RL

+

-

V

is

Liner Circuit for Extracting AC Power

EHD L

cond.circuit

External Circuits for Extracting Power from EHDs

Page 5: Jianying  Zhao :  Tianjin University Yogesh Ramadass:  Texas Instruments

PZ EHDs: Background

Strain

Strain

+– Voltage

Mass

IP RPCP

Current Source Model

F

+

-

V

t

X

E, Dδ, σ

dEY

dED

maFext

sidt

dQ

NOTE: In the open circuit case, D=0, and the effective Young’s modulus is

12 )1( YYeff Y

d 22 2

22

1

moc

2

222

oc

moc

Voltage

Page 6: Jianying  Zhao :  Tianjin University Yogesh Ramadass:  Texas Instruments

Definition of Key ParametersMechanical spring constant

Mechanical resonance frequency

Open circuit (Q=0) spring constant

Open circuit resonance frequency

Electrical capacitance

Mechanically constrained capacitance

t

AYkm

22 11

1

m

oc

k

t

AYk

m

kmm 2

t

ACe

)1(1

22

22

mmoc

oc m

k

)1(1 22 emc C

t

AC

Normalized parameters mcNLm wYQ

/ 1

2mc mmcmc

mcmcm

LNLm

mcm

inNin w

LCC

YYQ

C

YY

2

2

22

1

Y

d

Page 7: Jianying  Zhao :  Tianjin University Yogesh Ramadass:  Texas Instruments

0.90 0.95 1.00 1.05 1.10 1.15 1.20-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

095.11/

mococw

Voltage is normalized to the open circuit voltage at mechanical resonance

Log 10

(Nor

mal

ized

Vol

tage

Mag

nitu

de)

𝒘=𝝎 /𝝎𝒎

=0

=0.1

=1

=10

=50

10)/( 0 50 2.0

mmmcinNin

mcm

QCYYwQ

dZVoc /

Electrical Frequency TuningOutput Voltage in the Case of No Inductor

Page 8: Jianying  Zhao :  Tianjin University Yogesh Ramadass:  Texas Instruments

0.7 0.8 0.9 1.0 1.1 1.2 1.3-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

Power is normalized to the max power with matched load atmechanical resonance

Log 10

(Nor

mal

ized

Ave

rage

Pow

er)

𝒘=𝝎 /𝝎𝒎

=0.1

=1

=10

=50

10)/(0 50 2.0

mmmcinNin

mcm

QCYYwQ

inav Y

d

ZP

2

max 8

1

Electrical Frequency TuningOutput Power in the Case of No Inductor

Wpeak=1.095

Page 9: Jianying  Zhao :  Tianjin University Yogesh Ramadass:  Texas Instruments

0.70 0.80 0.90 1.00 1.10 1.20 1.30-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Log 10

(Nor

mal

ized

Vol

tage

Mag

nitu

de)

𝒘=𝝎 /𝝎𝒎

=0

=0.1

=1

=10

=50

12 )( mcmCL

10)/( 1 50 2.0

mmmcin

Nin

mcm

QCYYwQ

Pole SplittingOutput voltage in the case of an impedance matchinginductor of value

Wpeak=1.247Wpeak=0.805

Page 10: Jianying  Zhao :  Tianjin University Yogesh Ramadass:  Texas Instruments

0.70 0.80 0.90 1.00 1.10 1.20 1.30-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Log 10

(Nor

mal

ized

Vol

tage

Mag

nitu

de)

𝒘=𝝎 /𝝎𝒎

=0

=0.1

=1

=10

=50

12 )( mcmCL

10)/( 1 50 2.0

mmmcin

Nin

mcm

QCYYwQ

Pole SplittingOutput voltage in the case of an impedance matchinginductor of value

Pole

Fre

quen

cies

𝒘𝒎𝒄

ρ = 0.2

0.2

0.6

1.0

1.4

1.8

1.41.00.60.2

Wpeak=0.805Wpeak=1.247

𝑤𝑚𝑐=1

𝜔𝑚√𝐿𝐶𝑚𝑐

Page 11: Jianying  Zhao :  Tianjin University Yogesh Ramadass:  Texas Instruments

0.7 0.8 0.9 1.0 1.1 1.2 1.3-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

w=ω/ωm

=0.1

=1

=10

=50

Normalized Power in the Case of an Impedance Matching Inductor of Value 12 )( mcmCL

10)/( 1 50 2.0

mmmcin

Nin

mcm

QCYYwQ

Log 10

(Nor

mal

ized

Ave

rage

Pow

er)

Page 12: Jianying  Zhao :  Tianjin University Yogesh Ramadass:  Texas Instruments

0.7 0.8 0.9 1.0 1.1 1.2 1.3-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

Log 10

(Nor

mal

ized

Ave

rage

Pow

er)

𝒘=𝝎 /𝝎𝒎

=0.1

=1

=10

=50

2222

22222

)1(

)1(

wQw

Qwwww

m

mmc

10)/( optimized 50 2.0

mmmcinNin

mcm

QCYYwQ

Inductor value is optimized at each frequency to maximize power delivered to the load

Output Power in the Case ofOptimized, Tunable Inductor

Page 13: Jianying  Zhao :  Tianjin University Yogesh Ramadass:  Texas Instruments

0.7005 0.7941 0.8877 0.9813 1.0749 1.1685 1.2621-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

Log 10

(Nor

mal

ized

Ave

rage

Pow

er)

𝒘=𝝎 /𝝎𝒎

𝑇𝑢𝑛𝑎𝑏𝑙𝑒 𝐼𝑛𝑑𝑢𝑐𝑡𝑜𝑟

10)/(1.0 50 2.0

mmmcin

Nin

NLm

QCYYYQ

Output Power for the case YLN = 0.1

Optimized tunable inductor compared to no inductor

𝑁𝑜 𝐼𝑛𝑑𝑢𝑐𝑡𝑜𝑟

Page 14: Jianying  Zhao :  Tianjin University Yogesh Ramadass:  Texas Instruments

0.7005 0.7941 0.8877 0.9813 1.0749 1.1685 1.2621-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

Log 10

(Nor

mal

ized

Ave

rage

Pow

er)

𝒘=𝝎 /𝝎𝒎

𝑇𝑢𝑛𝑎𝑏𝑙𝑒 𝐼𝑛𝑑𝑢𝑐𝑡𝑜𝑟

𝑁𝑜 𝐼𝑛𝑑𝑢𝑐𝑡𝑜𝑟𝐵𝑖𝑎𝑠 𝐹𝑙𝑖𝑝

Output Power for the Case YLN = 0.1

10)/( 0.1 50 2.0

mmmcin

Nin

NLm

QCYYYQ

Page 15: Jianying  Zhao :  Tianjin University Yogesh Ramadass:  Texas Instruments

L RLIP

RinCmc

+

-

V(t)

iP(t)

v(t)

Close Switch

Open Switch

½ Period

v(t)

Operation of the Bias Flip Technique

Page 16: Jianying  Zhao :  Tianjin University Yogesh Ramadass:  Texas Instruments

Volta

ge

t

Volta

ge

t

DC Rectification and Storage

ton toff

IP RinCmc Energy

Manage Circuit

D3

D4

D1

D2 CRECT

VRECT

BiasFlip

Circuitυ (t )

Volta

ge

t

Cmc = 0

Large Cmc

No BF

Large Cmc

With BFNegBias

Biasflip

VRECT

VRECT

ton toff

VRECT

ton toff

Page 17: Jianying  Zhao :  Tianjin University Yogesh Ramadass:  Texas Instruments

Log 10

(Nor

mal

ized

Pow

er)

Rectified DC Power as a Function of Cmc

Log10(Capacitance )

-8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

No Bias Flip

Using Bias Flip

kYR

Hz

inin

m

10

1002

1

8% gap

Page 18: Jianying  Zhao :  Tianjin University Yogesh Ramadass:  Texas Instruments

Conclusions1. Frequency tuning of a PZ EHD can be achieved when the

Electric field in the PZ material is high, and PZ coupling is strong.

2. When an inductor is added to the output circuit, we have two coupled resonant circuits. When the coupling between them is high, pole-splitting determines the frequencies of max output power.

3. By varying the inductor value, the device can be “tuned” for max output power at frequencies different from the mechanical resonant frequency.

4. The Bias Flip technique has been proposed to approximate the effect of a large, tunable inductor.

Using a physical model for the PZ EHD, a generalization of the impedance matching concept has been shown to obtain high output power over an extended frequency range.

Page 19: Jianying  Zhao :  Tianjin University Yogesh Ramadass:  Texas Instruments

THANK-YOU