jaula de faraday

22
Jaula de Faraday Una Jaula de Faraday en el Deutsches Museum. El efecto jaula de Faraday provoca que el campo electromagnético en el interior de un conductor en equilibrio sea nulo, anulando el efecto de los campos externos. Esto se debe a que, cuando el conductor está sujeto a un campo electromagnético externo, se polariza, de manera que queda cargado positivamente en la dirección en que va el campo electromagnético, y cargado negativamente en el sentido contrario. Puesto que el conductor se ha polarizado, este genera un campo eléctrico igual en magnitud pero opuesto en sentido al campo electromagnético, luego la suma de ambos campos dentro del conductor será igual a 0. Entrada a una habitación de Faraday

Upload: mauri1992

Post on 16-Jun-2015

4.134 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Jaula de Faraday

Jaula de Faraday

Una Jaula de Faraday en el Deutsches Museum.

El efecto jaula de Faraday provoca que el campo electromagnético en el interior de un conductor en equilibrio sea nulo, anulando el efecto de los campos externos. Esto se debe a que, cuando el conductor está sujeto a un campo electromagnético externo, se polariza, de manera que queda cargado positivamente en la dirección en que va el campo electromagnético, y cargado negativamente en el sentido contrario. Puesto que el conductor se ha polarizado, este genera un campo eléctrico igual en magnitud pero opuesto en sentido al campo electromagnético, luego la suma de ambos campos dentro del conductor será igual a 0.

Entrada a una habitación de Faraday

Se pone de manifiesto en numerosas situaciones cotidianas, por ejemplo, el mal funcionamiento de los teléfonos móviles en el interior de ascensores o edificios con estructura de rejilla de acero.

Page 2: Jaula de Faraday

Una manera de comprobarlo es con una radio sintonizada en una emisora de Onda Media. Al rodearla con un periódico, el sonido se escucha correctamente. Sin embargo, si se sustituye el periódico con un papel de aluminio la radio deja de emitir sonidos: el aluminio es un conductor eléctrico y provoca el efecto jaula de Faraday.

Este fenómeno, descubierto por Michael Faraday, tiene una aplicación importante en aviones o en la protección de equipos electrónicos delicados, tales como repetidores de radio, discos duros y televisión situados en cumbres de montañas y expuestos a las perturbaciones electromagnéticas causadas por las tormentas

Metodo Casero para Crear una Jaula de Faraday [editar]

Metodo: Utilizar un mosquitero de alambre y elaborar un estilo de caja con ella. Luego colocar dentro de ella el objeto que hace interferencia.

Page 3: Jaula de Faraday

APLICACIONES DE LA JAULA de Faraday

Evitar el ruido molesto de las interferencias entre el teléfono móvil y su altavoz.

Dejar sin señal: (Celulares, Modems, Etc)

Evitar interferencias entre altavoces y una frecuencia de radio.

Otra aplicación importante de la jaula de Faraday es la protección de equipos electrónicos delicados, tales como repetidores de radio y televisión situados en cumbres de montañas, contra las perturbaciones electromagnéticas causadas por las tormentas

Page 4: Jaula de Faraday

¿Qué es la conductividad?

La conductividad eléctrica es la capacidad de un cuerpo de permitir el paso de la corriente eléctrica a través de sí. También es definida como la propiedad natural característica de cada cuerpo que representa la facilidad con la que los electrones (y huecos en el caso de los semiconductores) pueden pasar por él. Varía con la temperatura. Es una de las características más importantes de los materiales.La conductividad es la inversa de la

resistividad, por tanto , y su unidad es el S/m (siemens por metro).

No confundir con la conductancia (G), que es la facilidad de un objeto o circuito para conducir corriente eléctrica entre dos puntos. Se define como la inversa de la resistencia:

.

Conductividad en medios líquidos [editar]

Page 5: Jaula de Faraday

La conductividad en medios líquidos (Disolución) está relacionada con la presencia de sales en solución, cuya disociación genera iones positivos y negativos capaces de transportar la energía eléctrica si se somete el líquido a un campo eléctrico. Estos conductores iónicos se denominan electrolitos o conductores electrolíticos....

Las determinaciones de la conductividad reciben el nombre de determinaciones conductométricas y tienen muchas aplicaciones como, por ejemplo:

En la electrólisis, ya que el consumo de energía eléctrica en este proceso depende en gran medida de ella.

En los estudios de laboratorio para determinar el contenido de sal de varias soluciones durante la evaporación del agua (por ejemplo en el agua de calderas o en la producción de leche condensada).

En el estudio de las basicidades de los ácidos, puesto que pueden ser determinadas por mediciones de la conductividad.

Para determinar las solubilidades de electrólitos escasamente solubles y para hallar concentraciones de electrólitos en soluciones por titulación.

La base de las determinaciones de la solubilidad es que las soluciones saturadas de electrólitos escasamente solubles pueden ser consideradas como infinitamente diluidas. Midiendo la conductividad específica de semejante solución y calculando la conductividad equivalente según ella, se halla la concentración del electrólito, es decir, su solubilidad.

Un método práctico sumamente importante es el de la titulación conductométrica, o sea la determinación de la concentración de un electrólito en solución por la medición de su conductividad durante la titulación. Este método resulta especialmente valioso para las soluciones turbias o fuertemente coloreadas que con frecuencia no pueden ser tituladas con el empleo de indicadores.

Page 6: Jaula de Faraday

La conductividad eléctrica se utiliza para determinar la salinidad (contenido de sales) de suelos y substratos de cultivo, ya que se disuelven éstos en agua y se mide la conductividad del medio líquido resultante. Suele estar referenciada a 25 °C y el valor obtenido debe corregirse en función de la temperatura. Coexisten muchas unidades de expresión de la conductividad para este fin, aunque las más utilizadas son dS/m (deciSiemens por metro), mmhos/cm (milimhos por centímetro) y según los organismos de normalización europeos mS/m (miliSiemens por metro). El contenido de sales de un suelo o substrato también se puede expresar por la resistividad (se solía expresar así en Francia antes de la aplicación de las normas INEN). en la conductiviada electrica existen buenos y malos conductores que se explicaran ahora....

Conductividad en medios sólidos [editar]

Según la teoría de bandas de energía en sólidos cristalinos (véase semiconductor), son materiales conductores aquellos en los que las bandas de valencia y conducción se superponen, formándose una nube de electrones libres causante de la corriente al someter al material a un campo eléctrico. Estos medios conductores se denominan conductores eléctricos.

La Comisión Electrotécnica Internacional definió como patrón de la conductividad eléctrica:

Un hilo de cobre de 1 metro de longitud y un gramo de masa, que da una resistencia de 0,15388 Ω a 20 °C al que asignó una conductividad eléctrica de 100% IACS (International Annealed Cooper Standard, Estándar Internacional de Cobre no Aleado). A toda aleación de cobre con una conductividad mayor que 100% IACS se le denomina de alta conductividad (H.C. por sus siglas inglesas).

Algunas conductividades eléctricas [editar]

Conductivida

Temperatura(°

C)

Apuntes

Page 7: Jaula de Faraday

d Eléctri

ca

(S·m-1)

Plata63,01 × 106 20

La conductividad eléctrica más alta de cualquier metal

Cobre59,6 × 106 20

Cobre Templado

58,0 × 106 20

Se refiere a 100% IACS (Standard Internacional de Templado de Cobre, de sus siglas en inglés: International Annealed Copper Standard).

Oro45,5 × 106 20-25

Aluminio

37,8 × 106 20

Agua de mar

5 23

Ver http://www.kayelaby.npl.co.uk/general_physics/2_7/2_7_9.html para más detalles sobre las distintas clases del agua marina. 5(S·m-1) para una salinidad promedio de 35 g/kg alrededor de 23(°C) Los derechos de autor del material enlazado se pueden consultar en http://www.kayelaby.npl.co.uk/copyright/

Agua potable

0,0005 a 0,05

Este rango de valores es típico del agua potable de alta calidad mas no es un indicador de la calidad del agua.

Agua desionizada

5,5 × 10-6

1,2 × 10-4 en agua sin gas; ver J. Phys. Chem. B 2005, 109, 1231-1238

Page 8: Jaula de Faraday

¿CUALES METALES SON BUENOS CONDUCTORES?

Metal se denomina a los elementos químicos caracterizados por ser buenos conductores del calor y la electricidad, poseen alta densidad, y son sólidos en temperaturas normales (excepto el mercurio); sus sales forman iones electropositivos (cationes) en disolución.

Page 9: Jaula de Faraday

La ciencia de materiales define un metal como un material en el que existe un solape entre la banda de valencia y la banda de conducción en su estructura electrónica (enlace metálico). Esto le da la capacidad de conducir fácilmente calor y electricidad, y generalmente la capacidad de reflejar la luz, lo que le da su peculiar brillo.

Forja metálica en la marquesina del actual Ayuntamiento de Madrid, antiguo Palacio de Comunicaciones.

El concepto de metal refiere tanto a elementos puros, así como aleaciones con características metálicas, como el acero y el bronce. Los metales comprenden la mayor parte de la tabla periódica de los elementos y se separan de los no metales por una línea diagonal entre el boro y el polonio. En comparación con los no metales tienen baja electronegatividad y baja energía de ionización, por lo que es más fácil que los metales cedan electrones y más difícil que los ganen.

En astrofísica se llama metal a todo elemento más pesado que el helio.

Historia

Metales como el oro, la plata y el cobre, fueron utilizados desde la prehistoria. Aunque al principio sólo se usaban si se encontraban fácilmente en estado metálico puro (en forma de elementos nativos), paulatinamente se fue

Page 10: Jaula de Faraday

desarrollando la tecnología necesaria para obtener nuevos metales a partir de sus minerales, calentándolos en un horno mediante carbón de madera.

El primer gran avance se produjo con el descubrimiento del bronce, fruto de la utilización de mineral de cobre con incursiones de estaño, entre 3500 a. C. y 2000 a. C., en diferentes regiones del planeta, surgiendo la denominada Edad de Bronce, que sucede a la Edad de Piedra.

Otro hecho importante en la historia fue el descubrimiento del hierro, hacia 1400 a. C. Los hititas fueron uno de los primeros pueblos en utilizarlo para elaborar armas, tales como espadas, y las civilizaciones que todavía estaban en la Edad de Bronce, como los egipcios o los aqueos, pagaron caro su atraso tecnológico.

No obstante, en la antigüedad no se sabía alcanzar la temperatura necesaria para fundir el hierro, por lo que se obtenía un metal impuro que había de ser moldeado a martillazos. Hacia el año 1400 d.C. se empezaron a utilizar los hornos provistos de fuelle, que permiten alcanzar la temperatura de fusión del hierro, unos 1.535 ºC.

Henry Bessemer descubrió un modo de producir acero en grandes cantidades con un coste razonable. Tras numerosos intentos fallidos, dio con un nuevo diseño de horno (el convertidor Thomas-Bessemer) y, a partir de entonces, mejoró la construcción de estructuras en edificios y puentes, pasando el hierro a un segundo plano.

Poco después se utilizó el aluminio y el magnesio, que permitieron desarrollar aleaciones mucho más ligeras y resistentes, muy utilizadas en aviación, transporte terrestre y herramientas portátiles. El titanio, que es el último de los metales abundantes y estables con los que se está trabajando, y se espera que, en poco tiempo, el uso de la tecnología del titanio se generalice.

Propiedades

Page 11: Jaula de Faraday

Los metales poseen ciertas propiedades físicas características, entre ellas son conductores de la electricidad. La mayoría de ellos son de color grisáceo, pero algunos presentan colores distintos; el bismuto (Bi) es rosáceo, el cobre (Cu) rojizo y el oro (Au) amarillo. En otros metales aparece más de un color; este fenómeno se denomina policromismo. Otras propiedades serían:

Maleabilidad: capacidad de los metales de hacerse láminas al ser sometidos a esfuerzos de compresión.

Ductilidad: propiedad de los metales de moldearse en alambre e hilos al ser sometidos a esfuerzos de tracción.

Tenacidad: resistencia que presentan los metales a romperse al recibir fuerzas bruscas (golpes, etc...)

Resistencia mecanica:capacidad para resistir esfuerzo de tracción, comprensión, torsión y flexión sin deformarse ni romperse.

Suelen ser opacos o de brillo metálico, tienen alta densidad, son dúctiles y maleables, tienen un punto de fusión alto, son duros, y son buenos conductores (calor y electricidad).

Estas propiedades se deben al hecho de que los electrones exteriores están ligados sólo ligeramente a los átomos, formando una especie de mar (también conocido como mar de Drude) que los baña a todos, que se conoce como enlace metálico (véase semiconductor).

Está relacionado con las propiedades físicas de los metales, por lo que comenzaremos hablando un poco sobre estos mismos para así poder comprender mejor lo que es el mar de Drude.

La ciencia de materiales define un metal como un material en el que existe un traslape entre la banda de valencia y la banda de conducción en su estructura electrónica (enlace metálico). Esto le da la capacidad de conducir fácilmente calor y electricidad, y generalmente la capacidad de reflejar la luz, lo cual le da su peculiar brillo.

Page 12: Jaula de Faraday

Los metales tienen ciertas propiedades físicas características: a excepción del mercurio son sólidos a condiciones ambientales normales, suelen ser opacos y brillantes, tener alta densidad, ser dúctiles y maleables, tener un punto de fusión alto, ser duros, y ser buenos conductores del calor y electricidad. Estas propiedades se deben al hecho de que los electrones exteriores están ligados sólo ligeramente a los átomos, formando una especie de mar (también conocido como mar de Drude), que se conoce como Enlace metálico.

Mediante la teoría del mar de Drude podemos explicar por que los metales son tan buenos conductores del calor y la electricidad, es necesario comprender la naturaleza del enlace entre sus átomos.

Un primer intento para explicar el enlace metálico consistió en considerar un modelo en el cual los electrones de valencia de cada metal se podían mover libremente en la red cristalina (teoría de Drude-Lorentz); de esta forma, el retículo metálico se considera constituido por un conjunto de iones positivos (los núcleos rodeados por su capa de electrones) y electrones (los de valencia), en lugar de estar formados por átomos neutros.

En definitiva un elemento metálico se considera que esta constituido por cationes metálicos distribuidos regularmente e inmersos en un “mar de electrones” de valencia deslocalizados, actuando como un aglutinante electrostática que mantiene unidos a los cationes metálicos.

El modelo de mar de electrones permite una explicación cualitativa sencilla de la conductividad eléctrica y térmica de los metales. Dado que los electrones son móviles, se puede trasladar desde el electrodo negativo al positivo cuando el metal se somete al efecto de un potencial eléctrico. Los electrones móviles también pueden conducir el calor transportando la energía cinética de una parte a otra del cristal. El carácter dúctil y maleable de los metales está permitido por el hecho de que el enlace deslocalizado

Page 13: Jaula de Faraday

se extiende en todas las direcciones; es decir, no está limitado a una orientación determinada, como sucede en el caso de los sólidos de redes covalentes.

Cuando un cristal metálico se deforma, no se rompen enlaces localizados; en su lugar, el mar de electrones simplemente se adapta a la nueva distribución de los cationes, siendo la energía de la estructura deformada similar a la original. La energía necesaria para deformar un metal como el Litio es relativamente baja, siendo, como es lógico, mucho mayor la que se necesita para deformar un metal de transición, por que este ultimo posee muchos más electrones de valencia que son el aglutinante electrostático de los cationes.

Mediante la teoría del mar de electrones se pueden justificar de forma satisfactoria muchas propiedades de los metales, pero no es adecuada para explicar otros aspectos, como la descripción detallada de la variación de la conductividad entre los elementos metálicos.

Los metales pueden formar aleaciones entre sí y se clasifican en:

Ultraligeros: Densidad en g/cm³ inferior a 2. Los más comunes de este tipo son el magnesio y el berilio.

Ligeros: Densidad en g/cm³ inferior a 4,5. Los más comunes de este tipo son el aluminio y el titanio.

Pesados: Densidad en g/cm³ superior a 4,5. Son la mayoría de los metales.

Obtención

Page 14: Jaula de Faraday

Un fragmento de oro nativo.

Algunos metales se encuentran en forma de elementos nativos, como el oro, la plata y el cobre, aunque no es el estado más usual.

Muchos metales se encuentran en forma de óxidos. El oxígeno, al estar presente en grandes cantidades en la atmósfera, se combina muy fácilmente con los metales, que son elementos reductores, formando compuestos como la bauxita (Al2O3) y la limonita (Fe2O3).

Los sulfuros constituyen el tipo de mena metálica más frecuente. En este grupo destacan el sulfuro de cobre (I), Cu2S, el sulfuro de mercurio (II), HgS, el sulfuro de plomo, PbS y el sulfuro de bismuto (III), Bi2S3.

Los metales alcalinos, además del berilio y el magnesio, se suelen extraer a partir de los cloruros depositados debido a la evaporación de mares y lagos, aunque también se extrae del agua del mar. El ejemplo más característico es el cloruro sódico o sal común, NaCl.

Algunos metales alcalino-térreos, el calcio, el estroncio y el bario, se obtienen a partir de los carbonatos insolubles en los que están insertos.

Por último, los lantánidos y actínidos se suelen obtener a partir de los fosfatos, que son unas sales en las que pueden estar incluidos.

[editar] Usos en la industria

Metales que están destinados a un uso especial, son el antimonio, el cadmio o el litio.

Page 15: Jaula de Faraday

Los pigmentos amarillos y anaranjados del cadmio son muy buscados por su gran estabilidad, como protección contra la corrosión, para las soldaduras y las aleaciones correspondientes y en la fabricación de baterías de níquel y cadmio, consideradas excelentes por la seguridad de su funcionamiento. También se le utiliza como estabilizador en los materiales plásticos (PVC) y como aleación para mejorar las características mecánicas del alambre de cobre. Su producción se lleva a cabo en el momento de la refinación de zinc, con el que esta ligado, se trata de un contaminante peligroso.

El litio, metal ligero, se emplea principalmente en la cerámica y en los cristales, como catalizador de polimerización y como lubricante, así como para la obtención del aluminio mediante electrolisis. También se emplea para soldar, en las pilas y en las baterías para relojes, en medicina (tratamiento para los maníaco-depresivos) y en química.

El níquel, a causa de su elevada resistencia a la corrosión, sirve para niquelar los objetos metálicos, con el fin de protegerlos de la oxidación y de darles un brillo inalterable en la intemperie.

El denominado "hierro blanco" es, en realidad, una lamina de acero dulce que recibe un baño de cloruro de zinc fundido, y a la que se da después un revestimiento especial de estaño.

[editar] Dilatación de los metales

Los metales son materiales que tienen una elevada dilatación, en parte debido a su conductibilidad. Las dilataciones son perceptibles a veces aún con los cambios de temperatura ambiental. Se miden linealmente y se fija la unidad de longitud para la variación de 1° C de temperatura. Maleabilidad. Es la propiedad de los metales de poder ser modificados en su forma y aun ser reducidos a láminas de poco espesor a temperatura ambiente, por presión continua, martillado o estirado. Produciendo las modificaciones en el metal, se llega a un momento en que el límite de elasticidad es excedido, tornándose el metal

Page 16: Jaula de Faraday

duro y quebradizo; es decir, sufre deformaciones cristalinas que lo hacen frágil. La maleabilidad puede ser recuperada mediante el recocido, que consiste en calentar el metal a una alta temperatura luego de laminado o estirado, y dejarlo enfriar lentamente. La maleabilidad se aprecia por la sutileza del laminado. Tomando el oro como base, se suele hacer la siguiente clasificación:

1 Oro. 6 Platino. 2 Plata. 7 Plomo. 3 Cobre. 8 Zinc. 4 Aluminio. 9 Hierro. 5 Estaño. 10 Níquel.

¿Cuáles METALES SON MALOS CONDUCTORES?

No metal

De Wikipedia, la enciclopedia libre

Saltar a navegación, búsqueda

No metales se denomina a los elementos químicos que no son metales. Los no metales, excepto el hidrógeno, están situados en la tabla periódica de los elementos en el bloque p. Los elementos de este bloque son no-metales, excepto los metaloides (B, Si, Ge, As, Sb, Te), todos los gases nobles (He, Ne, Ar, Kr, Xe, Rn), y algunos metales (Al, Ga,In, Tl, Sn, Pb).

Page 17: Jaula de Faraday

Los no-metales aparecen en color verde, a la derecha de la tabla periódica.

En orden de número atómico:

Hidrógeno (H) Carbono (C)

Nitrógeno (N)

Oxígeno (O)

Flúor (F)

Fósforo (P)

Azufre (S)

Cloro (Cl)

Selenio (Se)

Bromo (Br)

Yodo (I)

Astato (At)

El hidrógeno normalmente se sitúa encima de los metales alcalinos, pero normalmente se comporta como un no metal. Un no metal suele ser aislante o semiconductor de la electricidad. Los no metales suelen formar enlaces iónicos con los metales, ganando electrones, o enlaces covalentes con otros no metales, compartiendo electrones. Sus óxidos son ácidos.

Page 18: Jaula de Faraday

Los no metales forman la mayor parte de la tierra, especialmente las capas más externas, y los organismos están compuestos en su mayor parte por no metales. Algunos no metales, en condiciones normales, son diatómicos en el estado elemental: hidrógeno (H2), nitrógeno (N2), oxígeno (O2), flúor (F2), cloro (Cl2), bromo (Br2) y yodo (I2).

Algunas propiedades de los no metales [editar]

No tienen lustre; diversos colores. Los sólidos suelen ser quebradizos; algunos duros y

otros blandos.

Malos conductores del calor y la electricidad al compararlos con los metales.

La mayor parte de los óxidos no metálicos son sustancias moleculares que forman soluciones ácidas

Tienden a formar aniones (iones negativos) u oxoaniones en solución acuosa.

Usualmente son menos densos que los metales.

Por lo general, y por su distribuicion en la tabla periodica, estos tienen mayor tamaño atomico que algunos metales, los enlaces que estos forman son enlaces covalentes un ejemplo seria HCl- Acido Clorhidico que es entre el Hidrogeno y El Cloro, 2 no metales