jamming and glassy behavior in colloids

37
Jamming and glassy behavior in colloids Peter Schall University of Amsterdam JMBC Workshop

Upload: others

Post on 09-Feb-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Jamming and glassy behavior in colloids

Jamming and glassy behavior in colloidsPeter Schall

University of Amsterdam

JMBC Workshop

Page 2: Jamming and glassy behavior in colloids

Jamming and glassy behavior in colloids

1. Glasses: Some concepts

2. Flow of Glassy Materials

3. Insight from Colloidal Glasses

Page 3: Jamming and glassy behavior in colloids

Liquid or Solid?

Page 4: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Solid !

Liquid !

Liquid or Solid?

Example:Pitch

10-2 104 106 108 1010100 102 1012 1014 sec

1 day 1 year Menkind

Time scale

Page 5: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Fundamental Transition

Elastic solidReversible, MemoryElastic Modulus µ

Viscous LiquidIrreversible, randomdiffusive, Viscosity η

Symmetry change

Temporal symmetry

Elastic

FF(-t) = F(t)

Plastic

FF(-t) = - F(t)

Energy storage Energy loss

Page 6: Jamming and glassy behavior in colloids

Dynamic Arrest

Page 7: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Glass Formation

Cooling from Liquid

atomic vibrations+

structural changes

atomic vibrationsonly

Glass transition

Page 8: Jamming and glassy behavior in colloids

P. Schall, Harvard University

Macroscopic:Viscosity

temperature

viscosity / Pa⋅s

1010

1020

1030

1012 glass

liquid

10-2 104 106 108 1010100 102 1012 1014 sec

1 day 1 year Menkind

Glass transition

Time scale

1040

Viscosity and Diffusion

Page 9: Jamming and glassy behavior in colloids

P. Schall, Harvard University

Macroscopic:Viscosity

temperature

viscosity / Pa⋅s

1010

1020

1030

1012 glass

liquid

10-2 104 106 108 1010100 102 1012 1014 sec

1 day 1 year Menkind

Glass transition

Time scale

1040

Viscosity and Diffusion

Viscosity η~ 1/D (diff.coeff.)~ τ (relax.time)

Page 10: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

η ~ η0 e ( Eact/kBT)Viscosity

D ~ D0 e ( -Eact/kBT)Diffusion coefficient

Simple Liquids: Arrhenius

(1/T)

Log(viscosity)

(1/Tg)

strongglasses

fragileglasses

Eact

Viscosity and Diffusion

Page 11: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Strong and Fragile Glasses

“Angel plot“

Arrheniusη = η0 exp(E/kBT)

Vogel-Fulcher-Tamman

η = exp(A+ )BT-T0

Page 12: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Vogel-Fulcher-Tamman

Vogel-Fulcher-Tamman

Myth:Do cathedral glassesflow over centuries?

� = ��� � + ��

Page 13: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Vogel-Fulcher-Tamman

Vogel-Fulcher-Tamman

� = ��� � + ��

Page 14: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Vogel-Fulcher-Tamman

Vogel-Fulcher-Tamman

� = ��� � + ��

GeO2: A = -9.94, B = 17962, T0 = 0K

Your turn!

Relaxation time: 1032 years!>> age of the universe 1010 years

Page 15: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

BernalThe structure of liquids et al. 1960s

Free Volume Theory

Canonical Holes

Hard Spheres

Page 16: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Model systems: Hard spheres

Page 17: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Model systems: Hard spheres

Voronoi Volume

Page 18: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Model systems: Hard spheres

Voronoi VolumeDistribution

Page 19: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

ViV0

P(Vf) ~ exp(-Vf / <Vf>)Free Volume Theory:

Free Volume Theory

Free Volume Vf ~ (Vi – V0)

Page 20: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

ViV0

Free Volume Theory

Viscosity: η ~ P (Vf >δV0)-1

Rearrangements occur at Vf > δV0

~ exp(δV0/<Vf>)

Page 21: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

ViV0

Free Volume Theory

Free volume from thermal expansion

Vf = 0 at T = T0

Vf(T), η(T) ???

Your turn!

Page 22: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

ViV0

Free Volume Theory

� � ∝��

Free volume from thermal expansion

Vf = 0 at T = T0

Page 23: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

ViV0

Free Volume Theory

� � ∝��Free volume from thermal expansion

Big success of free volume theory!

� = ��� � + ��

Page 24: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

1 / (Temperature) Volume fraction φ

φmax

Free Volume Theory

Suspensions(Chaikin, PRE 2002)

Page 25: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

ViV0

Free Volume Theory

Free volume:���� �? ? ?� =? ? ?Viscosity:

Max. PackingFraction φm ~ 0.64

Your turn!

Page 26: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

ViV0

Free Volume Theory

Free volume:���� �

���

�����������

� = ����� ��������Viscosity:

Max. PackingFraction φm ~ 0.64

Page 27: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Free Volume Theory: Suspensions

φmax

� = ����� ��������

0,0 0,1 0,2 0,3 0,4 0,5 0,61

10

100

1000

10000

η / µ

φ

(Cheng, Chaikin, PRE 2002)

Page 28: Jamming and glassy behavior in colloids

Dynamic correlations

IncreasingcooperativityT � Tg

Adam & Gibbs (1965)

Analogy to 2nd order phase transitions?... but viscosity not singular

Page 29: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Dynamic correlations

2nd Order Phase Transitions

m(r)

Magnetization � =�� � ��Local Magnetic Moment � �

Order Parameter

H

Page 30: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Dynamic correlations

2nd Order Phase Transitions

m(r)H

�� =� � � ��

� Δ� = � � ∙ � � + Δ� #Correlation function

Susceptibility

∆∆∆∆r

Page 31: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Dynamic correlations

2nd Order Phase Transitions

m(r)B

�� ∝ $ − $& �'

� � ∝ ��(��� − � )⁄Critical Scaling close to Tc

∆∆∆∆r

) ∝ $ − $& �+Divergence of• Correlation length

• Susceptibility

Correlationlength

Page 32: Jamming and glassy behavior in colloids

Dynamic correlations

Granular fluidof ball bearings

Colloidalglass

Computer simulation2D repulsive discs

Glass transition ascritical phenomenon?

Page 33: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Dynamic correlation function

m(0,∆t)

m(r,∆t)

r

4-point correlation function

Dynamic correlations

Biroli, Dauchot, Berthier,PRL 2005, 2008, 2009

Glotzer et al. 1999

Page 34: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Dynamic correlation function

m(0,∆t)

m(r,∆t)

r

4-point correlation function

Dynamic susceptibility

�, =�-, �, Δ/ ��

-, �, Δ/ = � 0, Δ/ ∙ � �, Δ/

Dynamic correlations

Dynamical criticality?-, ∝ ��(��# 12⁄

Page 35: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Glass transition: critical phenomenon?

Berthier et al.PRL 2003

Dynamical criticality?-, ∝ ��(��# 12⁄

Page 36: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Glass transition: critical phenomenon?

Dynamical criticality?-, ∝ ��(��# 12⁄

No evidence of true divergence

Page 37: Jamming and glassy behavior in colloids

P. Schall, University of Amsterdam

Summary

Free Volume Theory� Success in deriving Vogel Fulcher relation

Dynamic heterogeneity� No true divergence of correlations

Amorphous materialsLiquid and Solid, depending on time scale

Empirical relations for viscosity: Vogel-Fulcher