jacquin laurent turbulence @ master mec654

24
@ Master MEC654 @ Master MEC654 - - Turbulence Turbulence - - Laurent Laurent Jacquin Jacquin - - 2014 2014 - - Polytechnique Polytechnique MEC 654 Polytechnique-UPMC-Caltech Year 2014-2015 Turbulence @ Master MEC654 @ Master MEC654 - - Turbulence Turbulence - - Laurent Laurent Jacquin Jacquin - - 2014 2014 - - Polytechnique Polytechnique chapter chapter 13 13 statistics in physical space statistics in physical space 13.1 13.1 statistics statistics in in physical physical space space 13.2 Reynolds 13.2 Reynolds’ decomposition decomposition 13.3 13.3 kinetic kinetic energy energy budget budget 13.4 temporal 13.4 temporal decay decay of of homogeneous homogeneous turbulence turbulence 13.5 spatial 13.5 spatial decay decay of of homogeneous homogeneous turbulence turbulence 13.6 13.6 homogeneous homogeneous turbulence turbulence shear shear flow flow

Upload: others

Post on 15-May-2022

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Jacquin Laurent Turbulence @ Master MEC654

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jacq

uin

Jacq

uin

--2

014

2

014

--P

oly

tech

niq

ue

Po

lyte

chn

iqu

e

MEC 654Polytechnique-UPMC-Caltech

Year 2014-2015

Turbulence

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jac

qu

inJa

cqu

in--

20

14

20

14 --

Po

lyte

chn

iqu

eP

oly

tech

niq

ue

chapterchapter 1313

statistics in physical spacestatistics in physical space

13.1 13.1 statisticsstatistics in in physicalphysical spacespace

13.2 Reynolds13.2 Reynolds’’ decompositiondecomposition

13.3 13.3 kinetickinetic energyenergy budgetbudget

13.4 temporal 13.4 temporal decaydecay ofof homogeneoushomogeneous turbulenceturbulence

13.5 spatial 13.5 spatial decaydecay ofof homogeneoushomogeneous turbulenceturbulence

13.6 13.6 homogeneoushomogeneous turbulence turbulence shearshear flowflow

Page 2: Jacquin Laurent Turbulence @ Master MEC654

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jacq

uin

Jacq

uin

--2

014

2

014

--P

oly

tech

niq

ue

Po

lyte

chn

iqu

e

jet

in terms of ensembleensemble, it appears that the turbulent behavior becomes stablestable and steadysteady

= const.universal

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jacq

uin

Jacq

uin

--2

014

2

014

--P

oly

tech

niq

ue

Po

lyte

chn

iqu

e in terms of trajectoriestrajectories, turbulence is characterized by an unstableunstable and chaoticchaotic behavior offluid particles

13.1 13.1 statisticsstatistics in in physicalphysical spacespace

•• observationsobservations

irregular trajectories

statistical regularity

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jac

qu

inJa

cqu

in--

20

14

20

14 --

Po

lyte

chn

iqu

eP

oly

tech

niq

ue

dissipation ratedissipation rate

1 12 .

T

V VV T

d d dt dVV T

spatial average

time averageV

isis a a statisticalstatistical quantitiesquantitiesV

injectioninjection

0l

l

30 0 0~ u l 0dissipationdissipationtransfertransfer 0

energyenergy cascade cascade modelmodel

are are statisticalstatistical quantitiesquantities0 0 0, , , ,u l l

13.1 13.1 statisticsstatistics in in physicalphysical spacespace ((……))

Page 3: Jacquin Laurent Turbulence @ Master MEC654

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jacq

uin

Jacq

uin

--2

014

2

014

--P

oly

tech

niq

ue

Po

lyte

chn

iqu

e ,u u x t random variable

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jacq

uin

Jacq

uin

--2

014

2

014

--P

oly

tech

niq

ue

Po

lyte

chn

iqu

e

1

1 Nj

j

u uN

= average over N realisations

where probability density function p u u p u du u mathematical expectation

. commutes with all space or time derivatives and integrals

13.1 13.1 statisticsstatistics in in physicalphysical spacespace ((……))

•• ensemble ensemble averageaverage

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jac

qu

inJa

cqu

in--

20

14

20

14 --

Po

lyte

chn

iqu

eP

oly

tech

niq

ue

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jac

qu

inJa

cqu

in--

20

14

20

14 --

Po

lyte

chn

iqu

eP

oly

tech

niq

ue

mesurement of at xrepeating the experiment Ntimes

,u x t

ensemble average

t

texperiment n°2

(2) ,u x t

...

texpérience n°N texperiment n° N

( ) ,Nu x t

experiment n°1

t

(1) ,u x t

( )

1

1, ,

Nj

j

u x t u x tN

•• ensemble ensemble averageaverage ((……))

13.1 13.1 statisticsstatistics in in physicalphysical spacespace ((……))

1

1 Nj

j

u uN

= average over N realisations

Page 4: Jacquin Laurent Turbulence @ Master MEC654

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jacq

uin

Jacq

uin

--2

014

2

014

--P

oly

tech

niq

ue

Po

lyte

chn

iqu

e@

Ma

ste

r M

EC

654

@

Ma

ste

r M

EC

654

--T

urb

ule

nce

T

urb

ule

nce

--L

aure

nt

Lau

ren

t Ja

cqu

inJa

cqu

in--

20

14

20

14 --

Po

lyte

chn

iqu

eP

oly

tech

niq

ue

•• fluctuationfluctuation ' ,u x t u u

ensemble averageis idempotent

'u u u

•• Reynolds decompositionReynolds decomposition

'

'

,

,

' ' 0

u x t u u

p x t p p

u p

13.1 13.1 statisticsstatistics in in physicalphysical spacespace ((……))

0u u

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jac

qu

inJa

cqu

in--

20

14

20

14 --

Po

lyte

chn

iqu

eP

oly

tech

niq

ue

whenwhen thethe boundaryboundary conditions are conditions are stationarystationary, , wewe observe observe thatthat thethe turbulence turbulence isis statisticallystatisticallystationarystationary, , meaningmeaning thatthat ::

0

p u

t

= probabilityprobability densitydensity functionfunction ofof uu p u

•• statistical statistical stationaritystationarity

'1. lim .

t T

Tt

dtT

independant on t

in this case, the ensemble average becomes equivalent to a time average

fortunately for the experimenters ...

13.1 13.1 statisticsstatistics in in physicalphysical spacespace ((……))

a single flow realization (an experience) is enoughbecause the variable goes through all possiblestates over time

Page 5: Jacquin Laurent Turbulence @ Master MEC654

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jacq

uin

Jacq

uin

--2

014

2

014

--P

oly

tech

niq

ue

Po

lyte

chn

iqu

e

•• statistical homogeneitystatistical homogeneity

in this case, ensemble average become equivalent to spatial averages along each homogeneitydirection :

1. ' lim . '

x Li

Lxi

dxL

independantindependant on on xxi

fortunately for the numericists

13.1 13.1 statisticsstatistics in in physicalphysical spacespace ((……))

Note : was required for having statistical stationarity. We only need to have

for statistical homogeneity. This will be explained later. ' 0 ip u x 0 p u t

a single a single flowflow realizationrealization isis enoughenough because because thethe variable variable goesgoes throughthroughallall possible states possible states alongalong eacheach statisticalstatistical homogeneityhomogeneity directiondirection

ix some flows are also statistically homogeneous in one space direction in space, or more, meaning that :

'

0 i

p u u u

x

= probability density function of u’ p u'

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jac

qu

inJa

cqu

in--

20

14

20

14 --

Po

lyte

chn

iqu

eP

oly

tech

niq

ue

continuitycontinuity 0div u div u

13.3 Reynolds13.3 Reynolds’’ decompositiondecomposition

•• Reynolds equationReynolds equation

•• momentummomentum 1. 2u u u grad p div d

t

. ' . 'u u u u u u •• nonnon--linear termlinear term

' '. . .u u u u u u

thethe meanmean fieldfield andand thethe fluctuatingfluctuating fieldfield are are bothboth solenoidalsolenoidal

1. 2

uu u grad p div d

t

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jac

qu

inJa

cqu

in--

20

14

20

14 --

Po

lyte

chn

iqu

eP

oly

tech

niq

ue

case of the flow of a newtonianincompressible homogeneousfluid with no volumic force

. . 'u u u u 'u ' '. .u u u

. . ' '. '. 'u u u u u u u u

D u Dt

material derivative following the mean field

' ' '. . 'u u div u u u divu new term

' '1. 2

uu u grad p div d u u

t

turbulent stress =turbulent stress =

Reynolds stress Reynolds stress tensortensor

' 0 0 0divu div u u divu div u

Page 6: Jacquin Laurent Turbulence @ Master MEC654

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jacq

uin

Jacq

uin

--2

014

2

014

--P

oly

tech

niq

ue

Po

lyte

chn

iqu

e

•• Reynolds equation (Reynolds equation (……)) ' '12

D ugrad p div d u u

Dt

turbulent stress tensor =Reynolds stress tensor

' '

' '

,

,ij i j

R x t u u

R x t u u

•• Reynolds stress tensorReynolds stress tensor

•• a closure problem :a closure problem : to détermine from (1) , we must know ' 'u u u

additional diffusion due to turbulent stresses' 'u u

this is what we mean usually by « modelling turbulence »

we use « constitutive laws » of the kind ' 'u u f d

13.3 Reynolds13.3 Reynolds’’ decompositiondecomposition ((……))

in engineering softwares, this is usually that way the « turbulence problem » is closed

in turbulent regions' ' 2u u d

viscous stress tensor

(1)(1)

95% of the softwares used in industry

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jac

qu

inJa

cqu

in--

20

14

20

14 --

Po

lyte

chn

iqu

eP

oly

tech

niq

ue

13.3 13.3 kinetickinetic energyenergy budgetbudget

' '1 ji i ii j ji

j i j j i j

uu u upu u u u

t x x x x x x

•• equation of the mean kinetic energy equation of the mean kinetic energy 1 22

K u

1 i ij

j i i

DK Dt

p u uK Ku p

t x x x

2i ii

j j j

ji

i j

u uu

x x xu

ux x

' '' ' ii j ji i

j j

uu u u u u

x x

21 1 12 22 2 2

'ke u u u

kK

•• kinetickinetic energyenergy

' '1. 2

D uu grad p div d u u

Dt

contractcontract thethe vectorialvectorial equationequation ofof withwith vectorvectoru u

2' '' ' i ij i j ji i

j j j j

u uDK Kp u u u u u u

Dt x x x x

Kdiv

' '

:P u u u

21

K K u

Page 7: Jacquin Laurent Turbulence @ Master MEC654

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jacq

uin

Jacq

uin

--2

014

2

014

--P

oly

tech

niq

ue

Po

lyte

chn

iqu

e

compose an compose an equationequation forfor'i i iu u u

multiplymultiply itit byby'iu

K KDK

P divDt

' '

' '

21

:

1 .

2 0

K

K K

P u u u

pu u u grad K

u

- production

- flux

- dissipation pseudo - dissipation

•• equation of the mean kinetic energy (equation of the mean kinetic energy (……) ) 1 22

K u

k kDk

P divDt

' '

1' '2 ''2

2'1

:

1

2 0

k

k k

P u u u

p u u u grad k

u

- production

- flux

- dissipation (pseudo - dissipation )

findfind ::

•• equation of the mean turbulent kinetic energy (TKE) equation of the mean turbulent kinetic energy (TKE) 1 '22 ik u ((homeworkhomework))

13.3 13.3 kinetickinetic energyenergy budget (budget (……))

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jac

qu

inJa

cqu

in--

20

14

20

14 --

Po

lyte

chn

iqu

eP

oly

tech

niq

ue

21 1 12 22 2 2

'ke u u u

kK

•• kinetickinetic energyenergy

13.3 13.3 kinetickinetic energyenergy budget (budget (……))

Kdiv

K K

average power developed by the turbulent stresses for

extracting the mean flow energy

' ':P u u u

k

kdiv

•• balancebalance K KDK

div PDt

k kDk

div PDt

diffusion dissipation exchange ' ':P u u u

0 in most cases

cascade

meanmean fieldfield

1 22

K u

turbulenceturbulence1 22

k u'

•• dissipationdissipation2 2 2'

K k

u u u

((pseudopseudo--dissipationdissipation 11 )

<<

Page 8: Jacquin Laurent Turbulence @ Master MEC654

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jacq

uin

Jacq

uin

--2

014

2

014

--P

oly

tech

niq

ue

Po

lyte

chn

iqu

e

. kDk k

u grad k grad k PDt t

turbulence turbulence isis producedproduced by an by an agitatoragitator

wewe stop forcing stop forcing andand turbulence turbulence proceedsproceeds untiluntil completecomplete dissipationdissipation

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jacq

uin

Jacq

uin

--2

014

2

014

--P

oly

tech

niq

ue

Po

lyte

chn

iqu

e

13.4 temporal 13.4 temporal decaydecay ofof homogeneoushomogeneous turbulenceturbulence

•• an an experimentexperiment

H1 - no mean velocity

H2 H2 -- homogeneoushomogeneous turbulenceturbulence

H1 - no mean velocity•• hypotheseshypotheses

kk

tt

temporaltemporaldecaydecay

' ' :P u u u H1

«« turbulatorturbulator »»

temporaltemporaldecaydecay

H1 H2 H2

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jac

qu

inJa

cqu

in--

20

14

20

14 --

Po

lyte

chn

iqu

eP

oly

tech

niq

ue

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jac

qu

inJa

cqu

in--

20

14

20

14 --

Po

lyte

chn

iqu

eP

oly

tech

niq

ue

kk

tt

•• temporal temporal decaydecay

•• timetime scalesscales ??

dissipation : 30 00 ~k U l

time scale : 0 0~ 0 0 ~kk l U

energyenergy : : 200 ~k U

characteristiccharacteristic forcing forcing velocityvelocity : :

««turbulatorturbulator»» sizesize 0l

0U

•• numbersnumbers

20

0

~ ~ 10l

sU

to be compared to viscous time scale

23~ ~ 10

hs

calm sweatty warm coffee thanks to turbulence : increasing mixing, then rapid dissipation

1

0 1 .U m s

2

0 10l m 10h cm

6 2 110 m s

13.4 temporal 13.4 temporal decaydecay ofof homogeneoushomogeneous turbulence (turbulence (……))

h0U

0l

Page 9: Jacquin Laurent Turbulence @ Master MEC654

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jacq

uin

Jacq

uin

--2

014

2

014

--P

oly

tech

niq

ue

Po

lyte

chn

iqu

e

Van Dyke 1983

0U

gridgrid

•• gridgrid tubulencetubulence

H1 - uniform mean velocity

H2 H2 -- statisticallystatistically steadysteady turbulenceturbulence

•• hypotheseshypotheses

H3 H3 -- homogeneoushomogeneous turbulence in directions normal to turbulence in directions normal to thethe flowflow

0u U

13.5 spatial 13.5 spatial decaydecay ofof homogeneoushomogeneous turbulenceturbulence

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jac

qu

inJa

cqu

in--

20

14

20

14 --

Po

lyte

chn

iqu

eP

oly

tech

niq

ue

3 2

1 ' 2 '2 i

ku u O

x L

turbulent diffusion :

•• hypotheseshypotheses H1 - uniform mean velocity

H2 H2 -- statisticallystatistically steadysteady turbulenceturbulence

H3 H3 -- homogeneoushomogeneous turbulence in directions normal to turbulence in directions normal to thethe flowflow

0u U

. k kDk k

u grad k div PDt t

•• ordersorders ofof magnitudemagnitude

00

U kkU O

x L

convection :

3 2

0 0

~k k

U k U

diffusion

convection 0 kk

Ux

spatial spatial decaydecay

0 1 - k U if turbulence rate

homework : evaluate orders of magnitude of the other flux terms

13.5 spatial 13.5 spatial decaydecay ofof homogeneoushomogeneous turbulence (turbulence (……))

0 k k k kx y z

kU

x x y z

' ' 2 '1'2

1k p u u u grad k

with 1' ' ' 2 '

2

1k ix

kp u u u

x

H2' ' :P u u u H1

H3 H3

Page 10: Jacquin Laurent Turbulence @ Master MEC654

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jacq

uin

Jacq

uin

--2

014

2

014

--P

oly

tech

niq

ue

Po

lyte

chn

iqu

e

Van Dyke 1983

0U

gridgrid

0 kk

Ux

spatial decay

Note :turbulent scalesincreasedownstream (?)

13.5 spatial 13.5 spatial decaydecay ofof homogeneoushomogeneous turbulenceturbulence

temporel decaykk

t

0

xt

U

we will explain whyin few minutes

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jac

qu

inJa

cqu

in--

20

14

20

14 --

Po

lyte

chn

iqu

eP

oly

tech

niq

ue

13.6 13.6 homogeneoushomogeneous shearshear flowflow

a model flow for turbulent boundary and mixing layers

' ' d UP u v

d y

H1

k kDk k k

U div PDt t y

turbulence turbulence in in equilibriumequilibrium

kP

•• hypotheseshypotheses H1 – constant shear

H3 H3 -- statisticallystatistically homogeneoushomogeneous turbulenceturbulence

0 xu U y e

H2 H2 -- statisticallystatistically steadysteady flowflow

H2 H3 H3

•• homogeneoushomogeneous turbulenceturbulence 'u u

0u U y

,y v

,x u

Reynolds equation ' '12

D ugrad p div d div u u

Dt

turbulent stress tensor =Reynolds stress tensor

viscous stress tensor

H3

turbulence is produced by the mean flow gradients but there is no feedback on the mean field

Page 11: Jacquin Laurent Turbulence @ Master MEC654

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jacq

uin

Jacq

uin

--2

014

2

014

--P

oly

tech

niq

ue

Po

lyte

chn

iqu

e

chapterchapter 1414

statistics in Fourier space statistics in Fourier space –– introductionintroduction

14.1 exemple : a jet14.1 exemple : a jet

14.2 14.2 thethe Fourier Fourier transformtransform

14.3 14.3 thethe energyenergy spectrumspectrum

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jac

qu

inJa

cqu

in--

20

14

20

14 --

Po

lyte

chn

iqu

eP

oly

tech

niq

ue

1D cm

10 30U ms

t (s)

()

0 0 .0 05 0 .0 1 0 .0150

10

20

30

40

50

u(m

/s)

2

3

20u m s

'u

14.1 14.1 exampleexample : a jet: a jet

•• hot hot wirewire measurementsmeasurements

hot wire

Page 12: Jacquin Laurent Turbulence @ Master MEC654

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jacq

uin

Jacq

uin

--2

014

2

014

--P

oly

tech

niq

ue

Po

lyte

chn

iqu

e

its resistance varies (linearly) with temperature

a thin metal wire is crossed by an electric currentwhich heats it

when the wire is immersed in a flow, it is cooled by forced convection. Thus its resistance varies with the fluid velocity. If the current is kept constant : a voltage variation is measured

di

hot wire

prong

velocity u

electric courant

length 1mmdiameter 5 µm

•• hot hot wirewire : : principleprinciple

voltage variations due to wire resistance variation for a constant current supply are measured by a Wheastone bridge.

•• hot hot wirewire : constant : constant currentcurrent modemode

signal

output signal

constant current

generator

hot wire = variable resistance

conditioning(amplification,

filtering…)

14.1 14.1 exampleexample : a jet (: a jet (……))

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jac

qu

inJa

cqu

in--

20

14

20

14 --

Po

lyte

chn

iqu

eP

oly

tech

niq

ue

Dantec

3 wire probe

probe

calibrationset-up(jet)

hot-wire electronic set-up

3 anemometers

•• hot hot wirewire : 3 : 3 velocityvelocity componentscomponents

14.1 14.1 exampleexample : a jet (: a jet (……))

Page 13: Jacquin Laurent Turbulence @ Master MEC654

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jacq

uin

Jacq

uin

--2

014

2

014

--P

oly

tech

niq

ue

Po

lyte

chn

iqu

e

t (s)

u(m

/s)

0 0 .0 05 0 .01 0 .01 50

10

20

30

40

50

1D cm

10 30U ms

14.1 14.1 exampleexample : a jet (: a jet (……))

measure

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jac

qu

inJa

cqu

in--

20

14

20

14 --

Po

lyte

chn

iqu

eP

oly

tech

niq

ue

t (s)

()

0 0 .0 05 0 .0 1 0 .0150

10

20

30

40

50

u(m

/s)

2

3

'22 u

14.1 14.1 exampleexample : a jet (: a jet (……))

1D cm

10 30U ms

measure

20u m s

'u

Page 14: Jacquin Laurent Turbulence @ Master MEC654

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jacq

uin

Jacq

uin

--2

014

2

014

--P

oly

tech

niq

ue

Po

lyte

chn

iqu

e

measure(fixed point)

t (s)

()

0 0 .005 0 .01 0 .0150

10

20

30

40

50

14.1 14.1 exampleexample : a jet (: a jet (……))

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jac

qu

inJa

cqu

in--

20

14

20

14 --

Po

lyte

chn

iqu

eP

oly

tech

niq

ue

t (s)0 0 .0 0 5 0 .0 1 0 .0 1 5

0

1 0

2 0

3 0

4 0

5 0« big scale » l0

0 20 0.001 2l u t cm

14.1 14.1 exampleexample : a jet (: a jet (……))

~ D0.001t s

Page 15: Jacquin Laurent Turbulence @ Master MEC654

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jacq

uin

Jacq

uin

--2

014

2

014

--P

oly

tech

niq

ue

Po

lyte

chn

iqu

e

t (s)0 0 .0 0 5 0 .0 1 0 .0 1 5

0

1 0

2 0

3 0

4 0

5 0

2u t mm

« small scale »

are they the smallest ?

discretisation frequency :

max min1 10 f t kHz

14.1 14.1 exampleexample : a jet (: a jet (……))

min 0.0001 t s

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jac

qu

inJa

cqu

in--

20

14

20

14 --

Po

lyte

chn

iqu

eP

oly

tech

niq

ue

injection injection ofof energyenergy intointo thethe cascadecascade 0

0 0

~~

l Du U

Kolmogorov Kolmogorov scalescale 3 4 40

0Re ~ 610

l

•• thethe smallersmaller scalesscales

6 m

0 ~ 5 !!!f U MHz Kolmogorov Kolmogorov frequencyfrequency

14.1 14.1 exampleexample : a jet (: a jet (……))

1D cm

10 30U ms

hot wire

40 00Re ~ 210

U l

5 2 11.510 .m s

Page 16: Jacquin Laurent Turbulence @ Master MEC654

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jacq

uin

Jacq

uin

--2

014

2

014

--P

oly

tech

niq

ue

Po

lyte

chn

iqu

e

t (s)0 0 .0 0 5 0 .0 1 0 .0 1 5

0

1 0

2 0

3 0

4 0

5 0

turbulence scales may be characterized by means of Fourier analyses of its signals

14.2 14.2 thethe Fourier Fourier transformtransform

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jac

qu

inJa

cqu

in--

20

14

20

14 --

Po

lyte

chn

iqu

eP

oly

tech

niq

ue

nota :

• time dependence is implicit

• we forget the « primes »

. 33

3

2

i x

R

u TF u x u x e d x

Fourier mode

= = amplitude of the sinusoidal component of wave vector in u x ˆ u .i xe interpretation :

14.2 14.2 thethe Fourier Fourier transformtransform

1 . 3

3

ˆ ˆ i x

R

u x TF u u e d

inverse Fourier transform

ˆn

nin

i

u xTF i u

x

property : derivation

in Fourier space, space derivation becomes a simple algebraic product

( ) x wave vector wave vector

Page 17: Jacquin Laurent Turbulence @ Master MEC654

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jacq

uin

Jacq

uin

--2

014

2

014

--P

oly

tech

niq

ue

Po

lyte

chn

iqu

e

transverse wave

u

ˆ ˆ. 0ii i

i

uTF i u i u

x

continuity

. 3

3

ˆ i x

R

u x u e d turbulence is decomposed into transverse waves of wavelengths2

l

•• incompressible incompressible flowsflows

' ', ; , , ,R x x t t u x t u x t x

x

measurementmeasurementpointspoints

',u x t

,u x t

•• double double correlationcorrelation tensortensor

' ', ; , , ,ij i jR x x t t u x t u x t componentscomponents

statistically steady and fully homogeneous turbulence

', ; , ; 'ij ijR x x t t R l x x t t independant of t or x

14.2 14.2 thethe Fourier Fourier transformtransform ((……))

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jac

qu

inJa

cqu

in--

20

14

20

14 --

Po

lyte

chn

iqu

eP

oly

tech

niq

ue

1 . 332 3

i lij ij ij

R

TF R l R l e d l

1 . 33

i lij ij ijR

R l TF e d

homogeneous turbulence : spatial correlation at a given time

, ; , , ;ij i j ijR x x t u x t u x t R l x x t

•• thethe spectral spectral tensortensor ofof thethe double double correlationscorrelations

Fourier transform

*ˆ ˆi j iju u p p seesee annexannex one can show that

shorter : this is the shorter : this is the second order spectral tensorsecond order spectral tensor

itit evalutesevalutes thethe correlationcorrelation betweenbetween twotwo Fourier modesFourier modes

14.2 14.2 thethe Fourier Fourier transformtransform ((……))

isis thethe spectral spectral tensortensor ofof thethe double double correlationscorrelations ij

*iu = = complexcomplex conjugateconjugate ofof iu

the Fourier basis is orthogonal : the product of 2 Fourier modesthe Fourier basis is orthogonal : the product of 2 Fourier modes of different wave numbers is nilof different wave numbers is nil

Page 18: Jacquin Laurent Turbulence @ Master MEC654

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jacq

uin

Jacq

uin

--2

014

2

014

--P

oly

tech

niq

ue

Po

lyte

chn

iqu

e

annexannex –– second second orderorder spectral spectral tensortensor : : demonstrationdemonstration

*ˆ ˆij i jp u u p

1 . 3332

ˆ i x

Ru u x e d x

.1 3332

ˆ i p x

Ru p u x e d x

2 Fourier modes

6 6

. .1* 3 3

2ˆ ˆ

i x p xi j i jR

u u p u x u x e d x d x

correlation

ijR x x l homogeneous turbulence

ij k p

3 3

. .1* 3 362

ˆ ˆi p x i p l

i j ijR Ru u p R l e d x e d l

32 p Fourier = orthogonal basis

3

.1* 332

ˆ ˆ i p li j ijR

u u p R l e d l k p

ij p

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jac

qu

inJa

cqu

in--

20

14

20

14 --

Po

lyte

chn

iqu

eP

oly

tech

niq

ue •• kinetickinetic energyenergy

21 1

2 2ˆii u where

14.3 14.3 thethe energyenergy spectrumspectrum

. 33

i lij i j ijR

R l u x u x l e d

21

2u 0i j , l

kinetickinetic energyenergy = = sumsum overover allall wavewavevectorsvectors ofof thethe energyenergy ofof thethe waveswaves

21

20

u E d

•• energyenergy spectrumspectrum S

2

3

1

1

2 ii

S

E da

where

energy spectrum

energy spectrum = average on a spherical shell of radius of the wave energy E

1

20iiR 1 3

3 2 iiRd

E sums energy of the waves of wave number in all possible directions

Page 19: Jacquin Laurent Turbulence @ Master MEC654

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jacq

uin

Jacq

uin

--2

014

2

014

--P

oly

tech

niq

ue

Po

lyte

chn

iqu

e

inertialinertial regimeregime

energyenergy injectioninjection3

0 0 0~ u l

dissipationdissipation

0l

ll0

0

raterate

energyenergy transfertransfer 0

•• thethe «« -- 5/35/3 »» lawlaw (remainder)

independantindependant ofof

onlyonly dependsdepends on on andand0 0l

3 2

2 30

1

E L T

L T

L

dimensionaldimensional analysisanalysis 2 3 5 30~E

0 , E f

14.3 14.3 thethe energyenergy spectrumspectrum

21

20

u E d

~ k t

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jac

qu

inJa

cqu

in--

20

14

20

14 --

Po

lyte

chn

iqu

eP

oly

tech

niq

ue

•• thethe «« -- 5/35/3 »» lawlaw (remainder : lesson 2, chapter 5, § 5.5)

==

log

00

1~

l 1

~

thethe outsideoutsideworldworld

viscousviscousregimeregime

inertialinertial regimeregime

3 40 ~ Rel

-5

3

2 3 5 30

E

log E

14.3 14.3 thethe energyenergy spectrumspectrum

Page 20: Jacquin Laurent Turbulence @ Master MEC654

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jacq

uin

Jacq

uin

--2

014

2

014

--P

oly

tech

niq

ue

Po

lyte

chn

iqu

e

1D cm

•• remarksremarks

is a one-dimensionnal energy spectrum :

this notion will be explained later on

11 1E k

•• exampleexample : a jet: a jet

« -5/3 » law still valid (same dimensions)

thethe RichardsonRichardson--KolmogorovKolmogorov’’ss

phenomenological theoryphenomenological theory works remarkablyworks remarkablywell !

14.3 14.3 thethe energyenergy spectrumspectrum

x D

Leuchter (1988)

spectrashiftedby a

decade

111 2

U kE f

0 0~f U l

0 ~ 1f x

0 ~

l xnext lesson

5 3

hot wiremeasurements

1x

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jac

qu

inJa

cqu

in--

20

14

20

14 --

Po

lyte

chn

iqu

eP

oly

tech

niq

ue

chapterchapter 1515

statistics in Fourier space statistics in Fourier space –– extensiveextensive

15.1 15.1 thethe energyenergy spectrumspectrum ofof isotropicisotropic turbulenceturbulence

15.3 15.3 howhow doesdoes isotropicisotropic turbulence turbulence decaydecay ??

15.4 15.4 thethe dissipation dissipation spectrumspectrum

15.5 1D 15.5 1D spectraspectra

15.6 15.6 mesurementmesurement ofof 1D 1D spectraspectra

15.7 Taylor15.7 Taylor’’s s hypothesishypothesis

E 15.2 15.2 limitinglimiting shapesshapes ofof

15.8 an 15.8 an «« eddyeddy »» decompositiondecomposition

15.9 15.9 spectraspectra : : summarysummary

Page 21: Jacquin Laurent Turbulence @ Master MEC654

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jacq

uin

Jacq

uin

--2

014

2

014

--P

oly

tech

niq

ue

Po

lyte

chn

iqu

e

15.1 15.1 energyenergy spectrumspectrum ofof isotropicisotropic incompressible turbulenceincompressible turbulencemeans : invariance by rotation and mirror symetry•• isotropyisotropy

•• second second orderorder spectral spectral tensortensor : : isotropicisotropic formform

possible isotropic quantities are scalars built with arguments :

2 , , , ...i i i i i i j ja b a b , ,a b

ij ij ij i j isotropic

*ˆ ˆi ij i i jp u u p •• continuitycontinuity ::

2 0j

24

E

1 1 2

2 23 1 4iiS SE k dS dS we have

2

2

i jij ij

•• conclusionconclusion 2 24i j

ij ij

E

00

ij i j i i i i j ja b a b a b the seeked bilinear form can only be :

one seeks an expression that ensures isotropy of the bilinear foone seeks an expression that ensures isotropy of the bilinear formrm

. . , ,ij i ja b a b a b where and are two arbitrary vectorsba

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jac

qu

inJa

cqu

in--

20

14

20

14 --

Po

lyte

chn

iqu

eP

oly

tech

niq

ue

a

2 24i j

ij ij

E

•• remarkremark : : thethe incompressible subincompressible sub--spacespace

•• proofproof

2. i j

ij j ij j jiP a P a

then :

15.1 15.1 energyenergy spectrumspectrum ofof isotropicisotropic icompressibleicompressible turbulenceturbulence

•• isotropicisotropic second second orderorder spectral spectral tensortensor

2i j

ij ijP

= = projectorprojector onto onto thethe spacespacenormal to (incompressiblenormal to (incompressiblesubsub--spacespace))

wherewhere 24

ij ij

EP

we have :

2 2

0

0

i j j i j ji i

i

. 0

a

let :

Page 22: Jacquin Laurent Turbulence @ Master MEC654

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jacq

uin

Jacq

uin

--2

014

2

014

--P

oly

tech

niq

ue

Po

lyte

chn

iqu

e

E 15.2 15.2 limitinglimiting shapesshapes ofof

==

log

log E

00

1~

l 1

~

-5

3

•• lawslaws for for andand 0

outsideoutsideworldworld

?

viscousviscousregimeregime

?

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jac

qu

inJa

cqu

in--

20

14

20

14 --

Po

lyte

chn

iqu

eP

oly

tech

niq

ue

•• limitinglimiting shapeshape E

after the inertial regime (singular), the flow recovers infinite differentiability ( )C

• proof

n

nn

uu

x

ˆnn nu TF u i u

* *2 2ˆ ˆn n n nu u u u E

*2 2

0 0, ,n n n nu u u p d E d n

~E e 2, nn u is finite

E 15.2 15.2 limitinglimiting shapesshapes ofof ((……))

E() must decrease exponentially, that is faster than any power of

for the the n-order derivative of a scalar function, we have :

must must decreasedecrease fasterfaster thanthan 22nn

whateverwhatever nn E

Page 23: Jacquin Laurent Turbulence @ Master MEC654

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jacq

uin

Jacq

uin

--2

014

2

014

--P

oly

tech

niq

ue

Po

lyte

chn

iqu

e

E 15.2 15.2 limitinglimiting shapesshapes ofof

•• lawslaws for for andand 0

==

log

log E

00

1~

l 1

~

-5

3

viscousviscousregimeregime

outsideoutsideworldworld

?

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jac

qu

inJa

cqu

in--

20

14

20

14 --

Po

lyte

chn

iqu

eP

oly

tech

niq

ue

•• limitinglimiting shapeshape 0E

•• a a modelmodel (see Pope, 2000)

2 3 5 30. LE const f l f

010

-5

31

p

3 4Re

((loglog--loglog))

~ e

2

E

u

5 300 2

0

4 1 44exp

pL

L

lf l

l c

f c c

where

properties

005 3

0 00

0

lim 1

lim ~

lim ~

lim 1

l L

pl L

f l

f l

f e

f

numerical simulations of isotropic turbulence suggest 0 ~ , 2 4pE p numerical simulations of isotropic turbulence suggest

E 15.2 15.2 limitinglimiting shapesshapes ofof ((……))

Page 24: Jacquin Laurent Turbulence @ Master MEC654

@ M

as

ter

ME

C65

4

@ M

as

ter

ME

C65

4 --

Tu

rbu

len

ce

Tu

rbu

len

ce --

Lau

ren

t L

aure

nt

Jacq

uin

Jacq

uin

--2

014

2

014

--P

oly

tech

niq

ue

Po

lyte

chn

iqu

e

0U

gridgrid

15.3 15.3 howhow doesdoes isotropicisotropic turbulence turbulence decaydecay ??

0

E

0

how does the energy spectrum deforms ?

E

-531

p

((loglog--loglog))

0

0

0

1 430~

turbulent scalesincreasedownstream as energydecreases