jacksonville harbor deepening: a never ending saga

14
Jacksonville Harbor Deepening: A Never Ending Saga Quinton White, Jr., Ph.D. Professor of Biology and Marine Science Executive Director, Marine Science Research Institute Jacksonville University

Upload: shlomo

Post on 24-Feb-2016

33 views

Category:

Documents


0 download

DESCRIPTION

Jacksonville Harbor Deepening: A Never Ending Saga. Quinton White , Jr ., Ph.D. Professor of Biology and Marine Science Executive Director, Marine Science Research Institute Jacksonville University. St. Johns River – Mouth to Jacksonville - 1791. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Jacksonville Harbor Deepening:  A Never Ending Saga

Jacksonville Harbor Deepening: A Never Ending Saga

Quinton White, Jr., Ph.D.

Professor of Biology and Marine Science

Executive Director,

Marine Science Research Institute

Jacksonville University

Page 2: Jacksonville Harbor Deepening:  A Never Ending Saga

St. Johns River – Mouth to Jacksonville - 1791

Jacksonville University
Jacksonville University
Jacksonville University
Page 3: Jacksonville Harbor Deepening:  A Never Ending Saga

Jacksonville Harbor Channel Improvements – First Dredging

• Dredging of the 6 mile long channel commenced in June 1892 and took exactly two years.

• The 15 foot deep channel permitted ships drawing 20 feet to dock in Jacksonville.

• Prior to project completion, discussion about additional deepening commenced.

Page 4: Jacksonville Harbor Deepening:  A Never Ending Saga

Jacksonville Harbor Channel Improvements – Deepening

• After 6 years of deliberation (1902)Congress made an initial appropriation of $350,000 to start the dredging of a channel 24 feet deep and 300 feet wide, from Jacksonville to the sea.

• By 1906 the work was completed and the 24-foot channel became a reality.

• Ten years later, in 1916, another dredging project was started that resulted in a 30-foot channel from Jacksonville to the sea.

• By 1924 ships weighted to 30 feet could dock at the municipal docks in Jacksonville at low tide.

• Total cost of dredging and jetties: $7 million

Page 5: Jacksonville Harbor Deepening:  A Never Ending Saga

Port of Jacksonville Project and Channel Improvements

• 1880 – June; Jetties at entrance (maintenance only)• 1890 –Two jetties on Volusia Bar and 6’ deep channel• 1892- Secure 15’ deep navigational channel Dames Pt (RM 11) to Mile Point (RM

5) - Completed 1894• 1896 – 24’ Jacksonville to Ocean & extend jetties - completed 1906• 1910 – 30’ Jacksonville to Ocean – completed in 1916• 1925 – The distance from the mouth to the FEC RR Bridge is 28.1 miles• 1930 - Widen bend at Dames Point to 900’• 1935 - Widen Trout, Six Mile and Drummond creeks• 1945 – The river channel deepened to 34’ and the Dames Pt. Fulton Cut made –

Federal Project 26.8 miles long. • 1965 – 38’ deepening completed in 1978• 1998-2004 – RM 15 to mouth of the SJR deepened to 40’ • 2010 – Drummond Pt. to Tallyrand (5.3 mi) from 38 to 40’

Page 6: Jacksonville Harbor Deepening:  A Never Ending Saga

St. Johns River Dredging at Dames Point

Page 7: Jacksonville Harbor Deepening:  A Never Ending Saga
Page 8: Jacksonville Harbor Deepening:  A Never Ending Saga

1918

Page 9: Jacksonville Harbor Deepening:  A Never Ending Saga
Page 10: Jacksonville Harbor Deepening:  A Never Ending Saga

St. Johns River Dredging Impacts:• Impact to benthic (bottom dwelling)

organisms

• Impact to salinity zones

• Impact to marine mammals

• Impact to flushing rates ( positive and negative)

• Impacts to tributaries (positive and negative)

Page 11: Jacksonville Harbor Deepening:  A Never Ending Saga

Table 33: Summary of Direct and Indirect Impacts ALTERNATIVE ENVIRONMENTAL FACTOR

44-ft Deep Channel

45-ft Deep Channel

46-ft Deep Channel

47-ft Deep Channel

50-ft Deep Channel

No Action Status Quo

GENERAL CONSEQUENCES

Larger ships and increased

Larger ships and increased

Larger ships and increased

Larger ships and increased

Larger ships and increased

An even greater increase in

(refer to Section 7.1.1) ship transits are predicted. Deepening would result in predicted or anticipated increases in salinity, tidal amplitude, stress levels on aquatic plants, risk to threatened and endangered species, air pollution, and water residence time.

ship transits are predicted. Deepening would result in predicted or anticipated increases in salinity, tidal amplitude, stress levels on aquatic plants, risk to threatened and endangered species, air pollution, and water residence time.

ship transits are predicted. Deepening would result in predicted or anticipated increases in salinity, tidal amplitude, stress levels on aquatic plants, risk to threatened and endangered species, air pollution, and water residence time.

ship transits are predicted. Deepening would result in predicted or anticipated increases in salinity, tidal amplitude, stress levels on aquatic plants, risk to threatened and endangered species, air pollution, and water residence time.

ship transits are predicted. Deepening would result in predicted or anticipated increases in salinity, tidal amplitude, stress levels on aquatic plants, risk to threatened and endangered species, air pollution, and water residence time.

ship transits is predicted. This may result in increased risk to threatened and endangered species and air pollution. Other factors (i.e. sea level rise, variable rainfall levels) would affect salinity, tidal amplitude and stress levels on aquatic plants.

GENERAL ENVIRONMENTAL CONSEQUENCES (refer to Section 7.3.1)

Generally slight changes in physical and water quality conditions. However, changes may be greater in specific areas. Salinity change may modify biological communities (i.e. wetlands, submerged aquatic vegetation, and fauna). Phytoplankton dynamics may slightly change.

Generally slight changes in physical and water quality conditions. However, changes may be greater in specific areas. Salinity change may modify biological communities (i.e. wetlands, submerged aquatic vegetation, and fauna). Phytoplankton dynamics may slightly change.

Generally slight changes in physical and water quality conditions. However, changes may be greater in specific areas. Salinity change may modify biological communities (i.e. wetlands, submerged aquatic vegetation, and fauna). Phytoplankton dynamics may slightly change.

Generally slight changes in physical and water quality conditions. However, changes may be greater in specific areas. Salinity change may modify biological communities (i.e. wetlands, submerged aquatic vegetation, and fauna). Phytoplankton dynamics may slightly change.

Generally slight changes in physical and water quality conditions. However, changes may be greater in specific areas. Salinity change may modify biological communities (i.e. wetlands, submerged aquatic vegetation, and fauna). Phytoplankton dynamics may slightly change.

No effect. (Other factors such as sea level rise and variable rainfall would affect salinity levels and may also modify biological communities.)

Page 12: Jacksonville Harbor Deepening:  A Never Ending Saga

WATER QUALITY-SALINITY (refer to Section 7.2.6.1 and Appendices A and D)

Increases in depth averaged salinity (≤ 0.7 ppt) are predicted in certain areas (refer to Table 46).

No data available. Increases in depth averaged salinity (≤ 0.8 ppt) are predicted in certain areas (refer to Table 46).

No data available. Increases in depth averaged salinity (≤ 0.9 ppt) are predicted in certain areas (refer to Table 46).

No effect. (However, other factors such as sea level rise and rainfall variability would affect salinity).

WETLANDS (refer to Section 7.3.9 and Appendices D, E, F, G)

Dredging operations would not directly affect wetlands. Predicted indirect effects due to salinity change would impact an estimated 448.95 acres of wetlands. Mitigation and monitoring would be performed.

Dredging operations would not directly affect wetlands. Predicted indirect effects due to salinity change would impact an estimated 448.95 acres of wetlands. Mitigation and monitoring would be performed.

Dredging operations would not directly affect wetlands. Predicted indirect effects due to salinity change would impact an estimated 448.95 acres of wetlands. Mitigation and monitoring would be performed.

Dredging operations would not directly affect wetlands. Predicted indirect effects due to salinity change would impact an estimated 448.95 acres of wetlands. Mitigation and monitoring would be performed.

Dredging operations would not directly affect wetlands. Predicted indirect effects due to salinity change would impact an estimated 448.95 acres of wetlands. Mitigation and monitoring would be performed.

No effect. (However, other factors such as sea level rise and variable rainfall would affect salinity levels and may also modify wetland communities.)

SUBMERGED AQUATIC VEGETATION (SAV) (refer to Section 7.3.10 and Appendices D, E, F, G)

Dredging operations would not directly affect SAV. Predicted indirect effects due to salinity change would impact an estimated 296.60 acres of SAV. Mitigation and monitoring would be performed.

Dredging operations would not directly affect SAV. Predicted indirect effects due to salinity change would impact an estimated 296.60 acres of SAV. Mitigation and monitoring would be performed.

Dredging operations would not directly affect SAV. Predicted indirect effects due to salinity change would impact an estimated 296.60 acres of SAV. Mitigation and monitoring would be performed.

Dredging operations would not directly affect SAV. Predicted indirect effects due to salinity change would impact an estimated 296.60 acres of SAV. Mitigation and monitoring would be performed.

Dredging operations would not directly affect SAV. Predicted indirect effects due to salinity change would impact an estimated 296.60 acres of SAV. Mitigation and monitoring would be performed.

No effect. (However, other factors such as sea level rise and variable rainfall would affect salinity levels and may also modify SAV communities.

Page 13: Jacksonville Harbor Deepening:  A Never Ending Saga

Mitigation• Very Difficult to Mitigate Salinity Changes

• Corps had proposed to increase monitoring– The proposed monitoring has no mechanism to react if damage is

discovered.– Monitoring is not Mitigation

• Purchase of Credits from Wetland Mitigation Banks

• Funding Nutrient Reductions that are already existing regulatory requirements

• Restoration of the Ocklawaha River (removal/breaching of the Rodman Dam) has been withdrawn as an option

Page 14: Jacksonville Harbor Deepening:  A Never Ending Saga

The Billion Dollar Question:

Is it worth it economically for the environmental damage that will occur?

And is there a better way to achieve the same end result?