j. zawała , m. krzan, k. małysa

19
J. Zawała , M. Krzan, K. Małysa Institute of Catalysis and Surface Chemistry Polish Academy of Sciences ul. Niezapominajek 8, 30-239 Cracow, Poland Influence of Surfactant on Influence of Surfactant on Initial Accelerations, Shape and Initial Accelerations, Shape and Velocity Variations of the Velocity Variations of the Detaching Bubbles Detaching Bubbles Cluster A Meeting, 22 September 2005, Poznań

Upload: maina

Post on 11-Jan-2016

26 views

Category:

Documents


1 download

DESCRIPTION

Institute of Catalysis and Surface Chemistry Polish Academy of Sciences. ul. Niezapominajek 8, 30-239 Cracow, Poland. Cluster A Meeting , 22 September 2005, Poznań. Influence of Surfactant on Initial Accelerations, Shape and Velocity Variations of the Detaching Bubbles. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: J. Zawała , M. Krzan, K. Małysa

J. Zawała, M. Krzan, K. Małysa

Institute of Catalysis and Surface Chemistry Polish Academy of Sciences

ul. Niezapominajek 8, 30-239 Cracow, Poland

Influence of Surfactant on Initial Influence of Surfactant on Initial Accelerations, Shape and Velocity Variations Accelerations, Shape and Velocity Variations

of the Detaching Bubblesof the Detaching Bubbles

Cluster A Meeting, 22 September 2005, Poznań

Page 2: J. Zawała , M. Krzan, K. Małysa

Bubble MotionBubble Motion

INDUSTRY

flotation

foam fractionation techniques

biotechnology

waste water treatment

EVERYDAY LIFE

washing (detergents)

champagne

beer

Page 3: J. Zawała , M. Krzan, K. Małysa

QuestionsQuestions

What determine the bubble velocities?

How important is the type and concentration of the surfactant for:

accelerations of the bubble?

local velocities of the bubble?

terminal velocities of the bubble?

minimum adsorption coverages needed to full immobilization of

bubble interface?

Is there any relation between velocity variations and deformation of

the bubble?

Page 4: J. Zawała , M. Krzan, K. Małysa

What affects bubble motion?

viscosity of the continous phase

density

surface tension

properties of gas\liquid interface

Velocity of the rising bubble is very sensitive for presence of surface active substance

>10 % adsorption coverage can diminish bubble velocity 2 x

Bubble motion in surfactant solutionsBubble motion in surfactant solutions

Page 5: J. Zawała , M. Krzan, K. Małysa

Uniform coverage

eq

eq

35 cm

eqtop

u

Motion leads to disequilibrationof adsorption coverage

Motion leads to disequilibrationof adsorption coverage

terminal velocity

Page 6: J. Zawała , M. Krzan, K. Małysa

in = 0.075 mm

lamp = 100 Hz i 200 Hz

hsolution 35 cm

Experimental SET-UPExperimental SET-UP

PC

CCD camerasvideo

TV square glass column

stroboscopic lamp

syringe pump

Page 7: J. Zawała , M. Krzan, K. Małysa

Captured moviesCaptured movies

Detachment of the bubble in :

distilled water

stroboscop illumination frequency – 100 Hz

Page 8: J. Zawała , M. Krzan, K. Małysa

Captured moviesCaptured movies

Detachment of the bubble in :

1.5 M pentanol solution

stroboscop illumination frequency – 100 Hz

Page 9: J. Zawała , M. Krzan, K. Małysa

Measurements

L – distance from the capillary

x – distance between two subsequent positions of the bubble

Velocity = t

x

t = 0.01 s or 0.005 s

L

x

dv dh dh,dv – horizontal and vertical diameter

Page 10: J. Zawała , M. Krzan, K. Małysa

Shape deformationsShape deformations

dh

dv

quantitative parameter characterizing the deformation degree of the bubble

Deformation ratio =

v

h

d

d

Page 11: J. Zawała , M. Krzan, K. Małysa

AccelerationsAccelerations

Stroboscop illumination frequency - 200 Hz

Initial acceleration

time [s]

0.00 0.01 0.02 0.03 0.04 0.05ve

loci

ty [

cm/s

]0

5

10

15

20

25

30

water pentanol 2*10-3 M

pentanol 5*10-3 M

c [M] a [cm/s2] sd

0 (water) 925 64

2*10-3 640 48

5*10-3 500 110

Page 12: J. Zawała , M. Krzan, K. Małysa

n-pentanol

distance from the capillary [ mm]0 50 100 150 200 250 300 350

velo

city

[cm

/s]

0

10

20

30

40

water1*10-4

5*10-4

1*10-3

1.5*10-3

3*10-3

5*10-3

VelocitiesVelocities

Low pentanol concentrations: 3 stages of the bubble motion

acceleration, deceleration and terminal velocity

Page 13: J. Zawała , M. Krzan, K. Małysa

n-pentanol

distance from the capillary [mm]

0 50 100 150 200 250 300 350

dh

/dv

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7n-pentanol

distance from the capillary [mm]

0 50 100 150 200 250 300 350

velo

city

[cm

/s]

0

10

20

30

40

distilled water

1*10-3 M

1.5*10-3 M

2*10-3 M

3*10-3 M

Shape pulsations vs. local velocitiesShape pulsations vs. local velocities

for low concentrations: CORRELATION

Page 14: J. Zawała , M. Krzan, K. Małysa

VelocitiesVelocities

n-octyltrimethylammonium bromide

distance from the capillary [mm]

0 50 100 150 200 250 300

velo

city

[cm

/s]

0

10

20

30

40

water5*10-4

1*10-3

5*10-3

1*10-2

2*10-2

4*10-2

Page 15: J. Zawała , M. Krzan, K. Małysa

n-pentanol

concentration [mol/dm3]

0.000 0.002 0.004 0.006 0.008 0.010 0.012

term

inal

vel

oci

ty [

cm/s

]

0

10

20

30

40

full immobilization of bubble surface

Adsorption coverageAdsorption coverage

Page 16: J. Zawała , M. Krzan, K. Małysa

VelocitiesVelocities

adsorption degree

0.0 0.2 0.4 0.6 0.8

term

inal

vel

oci

ty [

cm/s

]

0

10

20

30

40

n-pentanoln-octanoln-octyltrimethylammonium bromide

Page 17: J. Zawała , M. Krzan, K. Małysa

Effect of concentration on shape pulsationsEffect of concentration on shape pulsations

acceleration U max deceleration U terminal

1.10 - 1.22 1.29 1.25 - 1.14 1.06:vh dd

:vh dd 1.06

61 mm16 mmcapillary 2.5 mm 34 mm 84 mm 100 mm 157 mm 216 mm 322 mm7 mm

1). n-pentanol 1.5*10-3

1).

capillary 3.5 mm 7.5 mm 15 mm 33 mm 61 mm 84 mm 102 mm 162 mm 216 mm 325 mm

2). n-pentanol 5*10-3

2).

Page 18: J. Zawała , M. Krzan, K. Małysa

CONCLUSIONS

Initial acceleration and terminal velocity of the bubble decreases with increasing concentation of surface active substances

Presence of maximum at the bubble velocity profiles is an indication that dynamic structure of adsorption layer was not yet established there

Shape variations - „Indicators” of establishment of dynamic structure of the adsorption layer (steady state non-equilibrium distribution of the surfactant adsorbed)

Lower adsorption coverages needed in the case of nonionic surface active substances for immobilization of the bubble interface

Page 19: J. Zawała , M. Krzan, K. Małysa

ACKNOWLEDGEMENTS

Partial financial support: (grant 3 T09A 164 27) from Ministry of Scientific Research and

Information Technology is gratefully acknowledged

Participation in Cluster C Meeting was made possible by EC grant INCO-CT-2003-003355