ivan laptev [email protected] equipe-projet willow, ens/inria/cnrs umr 8548 laboratoire...

52
Ivan Laptev [email protected] Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human Actions Motion and Human Actions Object recognition and computer vision 2009/2010 Lecture 11, December 15

Upload: august-harrell

Post on 26-Dec-2015

217 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Ivan [email protected]

Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548Laboratoire d’Informatique, Ecole Normale Supérieure, Paris

Motion and Human ActionsMotion and Human Actions

Object recognition and computer vision 2009/2010

Lecture 11, December 15

Page 2: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human
Page 3: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

glass

candle

person

drinking

indoors

car

car

car

person

kidnappinghouse

street

outdoors

person

car

street

outdoors car enter

person

car

roadfield

countryside

car crash

Computer vision grand challenge: Computer vision grand challenge: Video understandingVideo understanding

exit through a doorbuilding

car

people

outdoorsObjects:

cars, glasses, people, etc…

Scene categories:

indoors, outdoors, street scene, etc…

Actions:

drinking, running, door exit, car enter, etc…

Geometry:

Street, wall, field, stair, etc…

constraints

Page 4: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Class overviewClass overview

MotivationHistoric review

Modern applications

Overview of methodsRole of image measurements, priorknowledge and data association

Silhouette methodsFG/BG separation; Motion history images, Human interfaces

Deformable modelsActive shape models, motion priors, particle filters, gesture recognition

Optical Flowgeneral OF, parametric dense OF models, articulated models

Space-time methodsST-OF models, ST correlation, ST self-similarity, irregular behavior

Methods I Methods II Methods III

Discriminative modelsBoosted ST feature models, realistic action detection in movies

Local featuresDetectors, descriptors, matching, Bag of Features represen-tations, recognition

Page 5: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Motivation I: Artistic RepresentationMotivation I: Artistic Representation

Leonardo da Vinci (1452–1519): A man going upstairs, or up a ladder.

Early studies were motivated by human representations in Arts

Da Vinci: “it is indispensable for a painter, to become totally familiar with the anatomy of nerves, bones, muscles, and sinews, such that he understands for their various motions and stresses, which sinews or which muscle causes a particular motion”

“I ask for the weight [pressure] of this man for every segment of motion when climbing those stairs, and for the weight he places on b and on c. Note the vertical line below the center of mass of this man.”

Page 6: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Giovanni Alfonso Borelli (1608–1679)

The emergence of biomechanics

Borelli applied to biology the analytical and geometrical methods, developed by Galileo Galilei

He was the first to understand that bones serve as levers and muscles function according to mathematical principles

His physiological studies included muscle analysis and a mathematical discussion of movements, such as running or jumping

Motivation II: BiomechanicsMotivation II: Biomechanics

Page 7: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Motivation III: Study of motionMotivation III: Study of motion

Etienne-Jules Marey: (1830–1904) made Chronophotographic experiments influential for the emerging field of cinematography

Eadweard Muybridge (1830–1904) invented a machine for displaying the recorded series of images. He pioneered motion pictures and applied his technique to movement studies

Page 8: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Gunnar Johansson [1973] pioneered studies on the use of image sequences for a programmed human motion analysis

Gunnar Johansson, Perception and Psychophysics, 1973

“Moving Light Displays” (LED) enable identification of familiar people and the gender and inspired many works in computer vision.

Motivation III: Study of motionMotivation III: Study of motion

Page 9: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Human actions: Historic reviewHuman actions: Historic review

19th centuryemergence of

cinematography1973 studies of human motion perception

Modern computer vision

17th centuryemergence of biomechanics

15th centurystudies of anatomy

Page 10: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Motion Synthesis from Annotations Okan Arikan, David A. Forsyth, James O'Brien, SIGGRAPH 2003

Modern applications: AnimationModern applications: Animation

Page 11: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Modern applications: AnimationModern applications: Animation

Motion Synthesis from Annotations Okan Arikan, David A. Forsyth, James O'Brien, SIGGRAPH 2003

Page 12: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Modern applications: Video editingModern applications: Video editing

Space-Time Video CompletionY. Wexler, E. Shechtman and M. Irani, CVPR 2004

Page 13: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Space-Time Video CompletionY. Wexler, E. Shechtman and M. Irani, CVPR 2004

Modern applications: Video editingModern applications: Video editing

Page 14: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Recognizing Action at a DistanceAlexei A. Efros, Alexander C. Berg, Greg Mori, Jitendra Malik, ICCV 2003

Modern applications: Video editingModern applications: Video editing

Page 15: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Recognizing Action at a DistanceAlexei A. Efros, Alexander C. Berg, Greg Mori, Jitendra Malik, ICCV 2003

Modern applications: Video editingModern applications: Video editing

Page 16: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Applications: Human-Machine InterfacesApplications: Human-Machine Interfaces

http://vismod.media.mit.edu/vismod/demos/kidsroom/kidsroom.html

Page 17: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Applications: Unusual Activity DetectionApplications: Unusual Activity Detection e.g. for surveillancee.g. for surveillance

Detecting Irregularities in Images and in Video

Boimana & Irani, ICCV 2005

Page 18: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Video search

Home videos: e.g.“My daughter climbing”

TV & Web: e.g.

“Fight in a parlament”Surveillance:suspicious behavior

Video mining

e.g. Discover age-smoking-gender correlations nowvs. 20 years ago

Useful for TV production, entertainment, social studies, security,

Auto-scripting (video2text) JANE I need a father who's a role model, not some horny geek-boy who's gonna spray his shorts whenever I bring a girlfriend home from school. (snorts) What a lame-o. Somebody really should put him out of his misery.

Her mind wanders for a beat.

RICKY (O.S.) Want me to kill him for you?

Applications: Search & IndexingApplications: Search & Indexing

Page 19: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Applications: Video AnnotationApplications: Video Annotationfor video search, indexing, etc…for video search, indexing, etc…

Learning realistic human actions from moviesLaptev, Marszalek, Schmid and Rozenfeld, CVPR 2008

Page 20: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

How to recognize actions?How to recognize actions?

Page 21: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Action understanding: Key componentsAction understanding: Key components

Foreground segmentation

Image gradient

Optical flow

Local space-time features

Image measurements

Association

Prior knowledge

Deformable contour models

2D/3D body models

Automatic=

result

(Semi-) Manual=

training annotation

Motion priorsBackground models

Space-time templatesSVM classifiers

Page 22: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Foreground regions segmentationForeground regions segmentationImage differencing: one of the simplest ways to measure motion/change

- > C

Better Background (BG) / Foreground (FG) separation methods are available:

Modeling of color variation at each pixel with Gaussian Mixture Models (GMMs).

Dominant motion estimation and compensation for sequences with moving camera

Motion layer separation for scenes with non-static backgrounds

Page 23: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Foreground regions segmentationForeground regions segmentation

+ Simple and fast

+ Gives acceptable results under restricted conditions

Pros:

- Often unreliable due to shadows, low image contrast, etc.

- Requires background model => not well suited for scenes with dynamic BG and/or motion parallax

Cons:

Page 24: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Temporal Templates of Bobick & DavisTemporal Templates of Bobick & Davis

The Recognition of Human Movement Using Temporal Templates Aaron F. Bobick and James W. Davis, PAMI 2001

Idea: summarize motion in video in a Motion History Image (MHI):

Page 25: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Temporal Templates of Bobick & DavisTemporal Templates of Bobick & Davis

Compute MHI for each action sequence

Describe each sequence with the translation and scale invariant vector of 7 Hu moments

Nearest Neighbor action classification with Mahalanobis distance between training and test descriptors d.

Page 26: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Aerobics Dataset

Page 27: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Temporal Templates: SummaryTemporal Templates: Summary

+ Simple

+ Fast

Pros:

- Assumes static camera, static background

- Sensitive to segmentation errors

- Silhouettes do not capture interior motion/shape

Cons:

Possible improvements:

Not all shapes are valid Restrict the space of admissible shapes to overcome segmentation errors

Page 28: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Active Shape Models of Cootes et al.Active Shape Models of Cootes et al.Point Distribution Model

Represent the shape of samples by a set of corresponding points or landmarks

Assume each shape can be represented by the linear combination of basis shapes

such that

for mean shape

and some parameters

Page 29: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Active Shape Models of Cootes et al.Active Shape Models of Cootes et al.

Basis shapes can be found as the main modes of variation of in the training data.

Principle Component Analysis (PCA):

Covariance matrix

Eigenvectors eigenvalues

2D Example: (each point can be thought as a shape in N-Dim space)

Page 30: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Active Shape Models of Cootes et al.Active Shape Models of Cootes et al.

Back-project from shape-space to image space

Three main modes of lips-shape variation:

Distribution of eigenvalues:

A small fraction of basis shapes (eigenvecors) accounts for the most of shape variation (=> landmarks are redundant)

Page 31: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Active Shape Models of Cootes et al.Active Shape Models of Cootes et al.

is orthonormal basis, therefore

Given estimate of we can recover shape parameters

Projection onto the shape-space serves as a regularization

Page 32: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Given initial guess of model points estimate new positions using local image search, e.g. locate the closest edge point

How to use Active Shape Models for shape estimation?

Active Shape Models of Cootes et al.Active Shape Models of Cootes et al.

Re-estimate shape parameters

Page 33: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

To handle translation, scale and rotation, it is useful to normalize prior to shape estimation:

Active Shape Models of Cootes et al.Active Shape Models of Cootes et al.

using similarity transformation

A simple way to estimate is to assign and to the mean position and the standard deviation of points in respectively and set . For more sophisticated normalization techniques see:

Note: model parameters have to be computed using normalized image point coordinates

http://www.isbe.man.ac.uk/~bim/Models/app_model.ps.gz

Page 34: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Active Shape Models: Their Training and ApplicationT.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham, CVIU 1995

Active Shape Models of Cootes et al.Active Shape Models of Cootes et al.

Example: face alignment Illustration of face shape space

Iterative ASM alignment algorithm

1. Initialize with the reasonable guess of and 2. Estimate from image measurements3. Re-estimate4. Unless converged, repeat from step 2

Page 35: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Active Shape Model trackingActive Shape Model tracking

Aim: to track ASM of time-varying shapes, e.g. human silhouettes

Impose time-continuity constraint on model parameters. For example, for shape parameters :

Update model parameters at each time frame using e.g. Kalman filter

For similarity transformation

More complex dynamical models possible

Gaussian noise

Page 36: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Person TrackingPerson Tracking

Learning flexible models from image sequencesA. Baumberg and D. Hogg, ECCV 1994

Page 37: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Person TrackingPerson Tracking

Learning flexible models from image sequencesA. Baumberg and D. Hogg, ECCV 1994

Page 38: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Active Shape Models: SummaryActive Shape Models: Summary

+ Shape prior helps overcoming segmentation errors

+ Fast optimization

+ Can handle interior/exterior dynamics

Pros:

- Optimization gets trapped in local minima

- Re-initialization is problematic

Cons:

Possible improvements:

Learn and apply specific motion priors for different actions

Page 39: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Motion priorsMotion priors

Accurate motion models can be used both to:

Goal: formulate motion models for different types of actions and use such models for action recognition

Help accurate trackingRecognize actions

Example:

line drawing

scribbling

idle

From M. Isard and A. Blake, ICCV 1998

Drawing with 3 action modes

Page 40: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Incorporating motion priorsIncorporating motion priors

Foreground segmentation

Image gradient

Image measurements Data Association Prior knowledge

Learning motion models for

different actions

Particle filters

Optical Flow

Page 41: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Bayesian TrackingBayesian TrackingGeneral framework: recognition by synthesis;

generative models; finding best explanation of the data

Notation:

image data at timemodel parameters at time (e.g. shape and its dynamics)prior density for

likelihood of data for the given model configuration

We search posterior defined by the Bayes’ rule

For tracking the Markov assumption gives the prior

Temporal update rule:

Page 42: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Kalman FilteringKalman FilteringIf all probability densities are uni-modal, specifically Gussians, the posterior can be evaluated in the closed form

Page 43: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Particle FilteringParticle FilteringIn reality probability densities are almost always multi-modal

Page 44: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Particle FilteringParticle FilteringIn reality probability densities are almost always multi-modal

Approximate distributions with weighted particles

Page 45: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Particle FilteringParticle Filtering

Tracking examples:

describes leave shape describes head shape

CONDENSATION - conditional density propagation for visual tracking A. Blake and M. Isard IJCV 1998

Page 46: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Learning dynamic priorLearning dynamic priorDynamic model: 2nd order Auto-Regressive Process

State

Update rule:

Model parameters:

Learning scheme:

Page 47: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Learning dynamic priorLearning dynamic prior

Statistical models of visual shape and motion A. Blake, B. Bascle, M. Isard and J. MacCormick, Phil.Trans.R.Soc. 1998

Learning point sequenceRandom simulation of the learned dynamical model

Page 48: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Learning dynamic priorLearning dynamic prior

Random simulation of the learned gate dynamics

Page 49: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Dynamics with discrete statesDynamics with discrete states

Introduce “mixed” state Continuous state space (as before)

Discrete variable identifying dynamical model

Transition probability matrix

or more generally

Incorporation of the mixed-state model into a particle filter is straightforward, simply use instead of and the corresponding update rules

Page 50: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Dynamics with discrete statesDynamics with discrete states

Example: Drawingline idle

lineidlescribbling

line drawing

scribbling

idle

scribbling

Transition probability matrix

Result: simultaneously improved tracking and gesture recognition

A mixed-state Condensation tracker with automatic model-switchingM. Isard and A. Blake, ICCV 1998

Page 51: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

Dynamics with discrete statesDynamics with discrete states

A probabilistic framework for matching temporal trajectories: CONDENSATION-based recognition of gestures and expressions

M.J. Black and A.D. Jepson, ECCV 1998

Similar illustrated on gesture recognition in the context of a visual black-board interface

Page 52: Ivan Laptev ivan.laptev@ens.fr Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d’Informatique, Ecole Normale Supérieure, Paris Motion and Human

So far…So far…

Foreground segmentation

Image edges

Image measurements Data Association Prior knowledge

Deformable shape models

Motion priors

Temporal templates

Background models

Particle filters

Hu moments and Fourier descriptors

NN classifiers