Ítulo uso del google-talk y skype como...

45
ESCUELA DE INGENIERÍA Y ARQUITECTURA, EINA. DEPARTAMENTO DE INGENIERÍA ELÉCTRICA. UNIVERSIDAD DE ZARAGOZA. Autores: Jesús Sergio Artal Sevil 1 ([email protected] ). Juan Manuel Artacho 2 ([email protected] ). Santiago Cruz Llanas 2 ([email protected] ). José Antonio Domínguez Navarro 1 ([email protected] ). Ricardo Bandrés Lasheras 1 ([email protected] ). Javier Sanjuan Almería 2 ([email protected] ) (1) Departamento de Ingeniería Eléctrica. (2) Departamento de Ingeniería Electrónica y Comunicaciones. Escuela de Ingeniería y Arquitectura, EINA. María de Luna 3. Edificio Torres Quevedo. Campus Río Ebro. Universidad de Zaragoza. TÍTULO USO DEL GOOGLE-TALK Y SKYPE COMO HERRAMIENTA INTERACTIVA EN LA DOCENCIA SEMIPRESENCIAL. Breve Resumen del Proyecto. En el nuevo marco universitario pasamos de un aprendizaje basado en la enseñanza a otro basado en el aprendizaje, un aprendizaje que se basa en el estudiante, favoreciendo su implicación, actividad y protagonismo. Las ventajas que ofrecen las Tecnologías de la Información y Comunicación (TIC), es que facilitan cualitativamente la posibilidad de plantear el trabajo activo-colaborativo y la participación de los estudiantes de manera síncrona o asíncrona durante la estrategia didáctica de enseñanza-aprendizaje. En la sociedad actual en muchas ocasiones no hay tiempo para asistir personalmente a una tutoría, ni de reunirse todos los integrantes de un grupo en un mismo lugar para realizar un trabajo. De este modo un sistema de comunicación virtual y eficaz podría solventar esta serie de problemas. En el proyecto aquí presentado se han propuesto una serie de acciones y factores destinados a la mejora del proceso de enseñanza-aprendizaje en la docencia semipresencial. El proceso de convergencia dentro del marco del Espacio Europeo de Educación Superior (EEES) ha supuesto un cambio en el paradigma enseñanza/aprendizaje en el ámbito educativo. En ese sentido, la incorporación de metodologías activas, tales como:

Upload: lediep

Post on 25-Sep-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

ESCUELA DE INGENIERÍA Y ARQUITECTURA, EINA.

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA. UNIVERSIDAD DE ZARAGOZA.

Autores:

Jesús Sergio Artal Sevil 1 ([email protected]). Juan Manuel Artacho 2 ([email protected]). Santiago Cruz Llanas 2 ([email protected]). José Antonio Domínguez Navarro 1 ([email protected]). Ricardo Bandrés Lasheras 1 ([email protected]). Javier Sanjuan Almería 2 ([email protected])

(1) Departamento de Ingeniería Eléctrica. (2) Departamento de Ingeniería Electrónica y Comunicaciones.

Escuela de Ingeniería y Arquitectura, EINA. María de Luna 3. Edificio Torres Quevedo. Campus Río Ebro. Universidad de Zaragoza.

TÍTULO

USO DEL GOOGLE-TALK Y SKYPE COMO HERRAMIENTA INTERACTIVA EN LA

DOCENCIA SEMIPRESENCIAL. Breve Resumen del Proyecto. En el nuevo marco universitario pasamos de un aprendizaje basado en la enseñanza a otro basado en el aprendizaje, un aprendizaje que se basa en el estudiante, favoreciendo su implicación, actividad y protagonismo. Las ventajas que ofrecen las Tecnologías de la Información y Comunicación (TIC), es que facilitan cualitativamente la posibilidad de plantear el trabajo activo-colaborativo y la participación de los estudiantes de manera síncrona o asíncrona durante la estrategia didáctica de enseñanza-aprendizaje. En la sociedad actual en muchas ocasiones no hay tiempo para asistir personalmente a una tutoría, ni de reunirse todos los integrantes de un grupo en un mismo lugar para realizar un trabajo. De este modo un sistema de comunicación virtual y eficaz podría solventar esta serie de problemas. En el proyecto aquí presentado se han propuesto una serie de acciones y factores destinados a la mejora del proceso de enseñanza-aprendizaje en la docencia semipresencial. El proceso de convergencia dentro del marco del Espacio Europeo de Educación Superior (EEES) ha supuesto un cambio en el paradigma enseñanza/aprendizaje en el ámbito educativo. En ese sentido, la incorporación de metodologías activas, tales como:

el Aprendizaje basado en Problemas y/o Proyectos (PBL), el Port-folio Docente (Pf) o la Metodología del Caso (MdC) permiten que el estudiante alcance un aprendizaje mucho más significativo y desarrolle, al mismo tiempo, otro tipo de competencias. Al mismo tiempo, hay que considerar que este tipo de herramientas docentes requieren de un mayor incremento en el tiempo de consulta o tutoría, generalmente motivados por los trabajos desarrollados en grupo. Desarrollo del proyecto. Un elemento clave y dinamizador en el aprendizaje de los estudiantes es la utilización de una estrategia motivadora que sea capaz de crear la intención de aprender. Factores a considerar pueden ser la curiosidad, relevancia del problema y noción del desafío. El principal elemento de cambio que ha introducido Bolonia es la variación en las estrategias y metodologías docentes de enseñanza, donde ahora estas metodologías están más orientadas a evaluar el esfuerzo del estudiante. En el nuevo marco universitario pasamos de un aprendizaje basado en la enseñanza a otro basado en el aprendizaje, un aprendizaje que se basa en el estudiante, favoreciendo su implicación, actividad y protagonismo. De este modo, una de las ventajas de los dispositivos digitales actuales, generados por las Tecnologías de la Información y Comunicación (TIC), es que facilitan cualitativamente la posibilidad de plantear el trabajo activo-colaborativo y la participación de los estudiantes de manera síncrona o asíncrona durante la estrategia didáctica de enseñanza-aprendizaje. La experiencia de innovación docente activa-colaborativa presentada en este documento ha sido puesta en práctica durante el curso académico 2011/12 en varías asignaturas de Electrónica Industrial, aunque es extrapolable a otras materias, asignaturas y disciplinas de conocimiento; siendo continuación de la serie de actividades docentes y líneas de innovación docente emprendidas de forma oficiosa durante cursos previos. El objetivo fue mostrar al estudiante la relación entre los conceptos teóricos básicos mostrados en el aula con la realidad práctica que puede llegar a utilizar en el ejercicio de su profesión, aunque sea en una fase muy simplificada del proceso educativo. Tiene como precedentes ensayos y experiencias realizadas en cursos anteriores, como la introducción progresiva de problemas de aplicación real adaptados al nivel de la materia (tanto para la realización en la pizarra como propuestos para trabajo de los estudiantes en la preparación de la materia), con objeto de que el estudiante aprecie lo antes posible algunas aplicaciones y utilidades de la Electrónica Industrial aplicada a la ingeniería, aunque sea en una fase muy simplificada. El procedimiento activo-cooperativo implementado en anteriores experiencias cumple con los requerimientos del nuevo sistema de créditos del Espacio Europeo de Educación Superior (EEES). Para las actividades docentes se han utilizado diferentes técnicas como resolución de cuestionarios basados en preguntas tipo test; resolución de problemas o preguntas cortas paso a paso junto con actividades voluntarias. Además se ha hecho uso del Moodle a través del Anillo Digital Docente (ADD) como plataforma de autoaprendizaje e-learning y recursos de apoyo, -el procedimiento se apoya en abundantes recursos multimedia y explicaciones interactivas- empleado de forma sincronizada con el resto de actividades docentes. También se ofrecen a los estudiantes talleres voluntarios para la realización de problemas (empleando horas de tutorías de los profesores) y se incluyen demostraciones en el laboratorio de las partes más significativas de la teoría. A lo largo de este curso académico se ha podido apreciar la

necesidad del incremento de forma notable en el uso de las tutorías, principalmente derivadas de manera virtual. El objetivo del uso de herramientas interactivas TIC no ha sido otro que facilitar que las sesiones lectivas sean más interactivas, lo que ha incrementado el grado de motivación de los estudiantes permitiendo la interacción y construcción de conocimiento a través del aprendizaje activo-colaborativo. Así pues mediante esta serie de acciones se ha pretendido promover las experiencias educativas que optimizan la comunicación y la adaptación de la docencia, mejorando el paradigma enseñanza-aprendizaje, así como la utilización de recursos educativos para la innovación dentro y fuera del aula, fomentando al mismo tiempo la participación presencial de los estudiantes. Por otra parte el uso de estas herramientas docentes permite aumentar el factor de motivación del estudiante originado por el hecho de poder interactuar de forma física y real con conceptos abstractos impartidos de forma magistral en sesiones de teoría. Al mismo tiempo la implementación de este tipo de estrategias educativas permite mejorar las habilidades, destrezas y competencias adquiridas por el futuro ingeniero (le permite dirigir su experiencia de aprendizaje y permite, al mismo tiempo, la inclusión de competencias transversales como el trabajo en equipo, la capacidad de análisis y síntesis, el liderazgo, el autoaprendizaje, la planificación y gestión del tiempo,…). Los programas informáticos Google-Talk y Skype son muy populares entre los estudiantes ya que permiten efectuar llamadas telefónicas gratuitas a través de Internet (texto, voz, video), permitiendo también conversaciones escritas <Chat>, intercambio de archivos entre los interlocutores y vídeo-llamadas en tiempo real (se trata de una herramienta de aprendizaje síncrono). En algunas ocasiones como Google-Talk se trata de una aplicación descargable de Windows que permite que las comunicaciones en tiempo real sean simples e intuitivas. El uso de este tipo de herramientas de comunicación se ha expandido en el sector educativo dado que son programas de software gratuito y fácilmente accesible, pues permiten su descarga y utilización sin coste alguno, simplemente reuniendo una serie de requisitos técnicos. El manejo de estas aplicaciones es sencillo y amigable, principalmente para los jóvenes, quienes encuentran muchas similitudes con otra serie de programas que manejan cotidianamente como Facebook, Twenty, Youtube, Messenger,… Además, de igual manera, hay que indicar que cualquier equipo informático moderno, portátil o de sobremesa, supera holgadamente las especificaciones mínimas recomendables. Para la ejecución de este software son recomendables las siguientes especificaciones del sistema: PC con Windows XP; Procesador 1GHZ, 256MB RAM. 30MB espacio disco duro. Conexión a Internet por cable, ADSL o conexión de banda ancha. En este tipo de aplicaciones no sólo se permite la comunicación entre dos usuarios, sino también entre grupos, lo que posibilita el trabajo en equipo entre estudiantes y el diálogo con el profesor aunque se encuentren en lugares o continentes distintos. De la misma forma permiten el intercambio de materiales (documentos de notas, presentaciones, archivos,…) mientras el diálogo se encuentre activo o en curso. Cuando se produce la vídeo-llamada entre dos o más usuarios permite mantener una comunicación similar a la presencial (ver gestos, movimientos, rostros); lo que hace posible entrevistar o evaluar a un grupo de estudiantes sobre un tema de interés o incluso apreciar en detalle el funcionamiento de un prototipo en un lugar alejado de los usuarios, mientras el docente explica en tiempo real los detalles asociados a su funcionamiento. Este motivo ha permitido que este tipo de aplicaciones se estén

introduciendo rápidamente en la docencia en las modalidades semipresencial o virtual. Este hecho facilita la integración en el aula o la propia asistencia a tutorías de estudiantes que en momentos puntuales se encuentren con problemas de desplazamiento hasta el centro. Gracias a las nuevas tecnologías TIC y las plataformas ADD/Moodle los estudiantes acceden fácilmente a todos los recursos educativos, ya sean apuntes, trabajos o documentos de apoyo multimedia. A diferencia de la enseñanza presencial, en este tipo de formación es el estudiante el que tiene que gestionar y planificar su tiempo para determinar su ritmo de aprendizaje. Esta es una característica imprescindible en la educación semipresencial. La tutorización de los estudiantes es una peculiaridad imprescindible en la enseñanza no presencial, pues de no llevarse a la práctica se puede caer en un mal aprovechamiento de los recursos educativos. Hace unos años no hacia falta ser vidente para pronosticar que Internet y el software libre iban a producir una revolución sobre los aspectos tradicionales de la docencia universitaria. De esta manera, hoy en día ya podemos encontrar foros académicos en Facebook o Twenty, campus y docencia virtual, incorporación en el aula de simulaciones y videos explicativos, Plataformas de apoyo a la Docencia ADD/Moodle, Chat y tutorías electrónicas… Esta serie de herramientas informáticas mejoran la comunicación entre el estudiante y el profesor. También es más fluida la comunicación entre los propios estudiantes, facilitando de este modo la formación de grupos de trabajo, su interacción y la creación de los foros de discusión. En general el aprendizaje es más sencillo ya que en el “e-learning” se utilizan simuladores, vídeos y demás aplicaciones que mejoran el estudio de una disciplina de conocimiento. Actividades desarrolladas. La experiencia de Innovación Docente presentada en este documento se ha puesto en práctica durante el curso académico 2011/12 sobre varias asignaturas y concretamente sobre una materia que ya no posee docencia presencial al encontrarse dentro del plan de estudios en extinción de las antiguas ingenierías aunque es extrapolable a otras materias, asignaturas y disciplinas de conocimiento. Este contexto educativo nos ha proporcionado la oportunidad para introducir este tipo de estrategias educativas y herramientas docentes informáticas sobre los estudiantes, pudiendo comprobar estadísticamente si aportan un cambio sustancial en el paradigma enseñanza-aprendizaje. El uso de estas herramientas docentes ha permitido aumentar el factor de motivación del estudiante originado por el hecho de poder interactuar de forma física y real con otros conceptos abstractos estudiados en la teoría de la asignatura. Al mismo tiempo la implementación de este tipo de estrategias educativas permite mejorar habilidades, destrezas y competencias adquiridas por el futuro ingeniero (le permite dirigir su experiencia de aprendizaje y al mismo tiempo, le permite la adquisición de competencias transversales como el trabajo en equipo, el autoaprendizaje, la gestión y planificación del tiempo,…). Somos conscientes de que es imprescindible potenciar la comunicación entre estudiante/profesor y estudiante/estudiante. En la sociedad actual en muchas ocasiones no hay tiempo de asistir personalmente a una tutoría, ni de reunirse todos los integrantes de un grupo en un mismo lugar para realizar un trabajo, un sistema de comunicación virtual y eficaz podría solventar esta serie de problemas. Se dispone de una Plataforma

de Apoyo a la Docencia basada en el ADD/Moodle, pero para el tema de las tutorías funciona igual que el e-mail, no es un canal efectivo de comunicación ni tiene lugar en tiempo real. De esta forma se han planteado varias líneas de actuación, como pueden ser: las tutorías virtuales y el trabajo activo-colaborativo en grupo. Al mismo tiempo se han realizado pequeños ensayos sobre su utilización en el desarrollo de un experimento pseudo-real. Tutorías Virtuales. El objetivo principal de las tutorías on-line en este tipo de enseñanza semipresencial, ha sido que esta herramienta dejase de ser utilizada por el estudiante únicamente en fechas próximas al examen, como medida previa a la preparación de la prueba escrita evaluable y que fuera utilizada de manera habitual por la mayoría de los estudiantes, como una técnica más de todo el proceso educativo de enseñanza-aprendizaje. Del mismo modo ha servido para facilitar el trabajo en equipo entre los estudiantes. Con la inclusión de estas tecnologías cada miembro del grupo puede encontrarse en casa mientras que interactúa con el resto de los miembros preparando el mismo trabajo, documento, informe,… aunque no se encuentren reunidos físicamente. Se ha encontrado extremadamente útil en la dirección de PFCs -Proyectos Final de Carrera- resultando una herramienta muy potente, ya que permite una comunicación bidireccional e instantánea. Por lo general este tipo de estudiantes suelen tener dudas muy concretas y definidas o solamente desean comentar alguna cosa puntual relacionada con la evolución y desarrollo de su proyecto. Un pequeño proyecto es una herramienta de docencia universitaria en el ámbito de las ingenierías que permite la transmisión, adquisición, descubrimiento y evaluación de habilidades, destrezas y conocimientos de los estudiantes de forma objetiva y global. Así pues se trata de un procedimiento formador único que implica la coordinación de elementos humanos, técnicos y sociales hacia la consecución de un objetivo específico. Es tarea del profesor la evaluación continua de los logros académicos y procedimentales marcados a través de indicadores claros y consensuados desde la fase de planificación. Se ha constatado un mayor incremento en el uso de las tutorías on-line en aquellos alumnos que se encuentran de Erasmus así como los estudiantes que se encuentran simultaneando estudios y trabajo y que por este motivo no pueden asistir con regularidad a las clases o tutorías. Para poder llevar a cabo estas actuaciones los profesores se han fijado una serie de horas de tutorías on-line en las que se comprometían a estar conectados. De esta forma se ha podido valorar el uso de las tutorías por parte de los estudiantes así como su evolución y aprendizaje en el estudio de la materia de conocimiento. Trabajo Activo-Colaborativo en Grupo. Los estudiantes trabajan en pequeños grupos, donde pueden expresar y compartir sus ideas en un entorno de escaso riesgo para ellos. Es evidente, que el aprendizaje que proporciona este método a los participantes está relacionado con la capacidad de trabajar en grupo y dialogar. El procedimiento propuesto encaja mejor que el basado exclusivamente en clases magistrales según el sistema enmarcado por Bolonia, ya que además tiene en consideración el trabajo del estudiante y su proceso de aprendizaje. Indicar también que parece clara la preferencia de los estudiantes por procedimientos de enseñanza-aprendizaje mucho más flexibles, más participativos y con evaluación continua, a pesar de que su impresión generalizada es que les exige una mayor dedicación que el procedimiento convencional basado por las clases magistrales.

La mayor parte de los estudiantes conocen la existencia de este tipo de herramientas informáticas y aunque no los hayan utilizado de forma educativa si que les resulta interesante conocer su funcionamiento y manejo aunque sea fuera del contexto universitario. Esto evento está motivado por el hecho que muchas empresas poseen herramientas semejantes para desarrollar programas de asistencia remota por lo que los estudiantes consideran interesante una primera toma de contacto con este tipo de software de vídeo-llamada. Por otra parte, cuando se les pide a nuestros estudiantes que desarrollen un pequeño proyecto o trabajo en grupo, uno de los principales problemas que aparecen es la falta de tiempo para poder reunirse en un lugar determinado (aula, biblioteca, sala de estudio,…); este hecho se incrementa exponencialmente en aquellas asignaturas que se encuentran en un plan de estudios en extinción. Experimento Pseudo-real. Con objeto de la mejora no solo de la docencia semipresencial sino también la presencial se ha desarrollado una pequeña aplicación para el uso de está tecnología virtual en el aula; adaptándolo bien a posibles experimentos de cátedra como a trabajos de asignatura o práctica de laboratorio. La aplicación consiste en un programa de JavaMe para móviles, de forma que los estudiantes puedan cargarlo y ejecutarlo fácilmente bien desde el móvil o mediante simulación/emulación desde un terminal de ordenador. Mediante este software se transmiten cadenas de texto a un sistema electrónico implementado en el robot (ya desarrollado como proyecto Final de Carrera en cursos académicos anteriores), que las recibe de forma inalámbrica y ejecuta las tareas, navegación, desplazamientos y/o acciones encomendadas. Esto permite la realización del experimento de forma virtual o no presencial e independientemente de los horarios de asistencia al laboratorio. El desarrollo e implementación de pequeños prototipos se muestra como una ciencia multidisciplinar flexible que se acopla adecuadamente a los objetivos marcados; por un lado permite al profesorado aplicar diversas metodologías docentes innovadoras y por otra parte el estudiante se haya claramente motivado para desarrollar habilidades, destrezas y capacidades relacionadas con la materia de estudio. Como objetivo de la asignatura se ha considerado incrementar el grado de interés y motivación de los estudiantes en relación a los estudios que se encuentran desarrollando. Resultados y evaluación Parece clara la preferencia de los estudiantes por procedimientos de enseñanza/aprendizaje más flexibles, dinámicos, participativos y con evaluación continua, a pesar de que la impresión de los alumnos es que les exige un mayor esfuerzo y un incremento en su dedicación con respecto al procedimiento convencional. La metodología docente encaja mejor en el EEES que el basado únicamente en las clases magistrales, ya que considera todo el trabajo que debe hacer el estudiante y desarrolla otro tipo de competencias transversales como el trabajo en grupo, liderazgo, la asertividad, la presentación de ideas propias y la cooperación, la capacidad de tomar decisiones, la gestión del tiempo o el trabajo bajo presión. El uso de las tutorías virtuales por la mayor parte de los estudiantes les ha permitido agilizar los procedimientos, evitando esperas innecesarias. El proceso de convergencia dentro del marco del Espacio Europeo de Educación Superior (EEES) ha supuesto un cambio en el paradigma enseñanza/aprendizaje en el ámbito educativo. En ese sentido, la incorporación de metodologías activas y cooperativas permite que el estudiante alcance un aprendizaje mucho más significativo y desarrolle, al mismo tiempo, otro tipo de competencias.

De igual modo es importante transmitir a los estudiantes, desde el comienzo de la experiencia, la importancia de la disciplina en el trabajo en equipo y la responsabilidad con el grupo de trabajo. Se ha observado que la carencia de un compromiso con el resto de los compañeros y la aparición de indisciplina con las actividades, provoca un rechazo por parte de algunos de los estudiantes a participar en este tipo de metodologías activas y procedimientos cooperativos. Así en algunos grupos se detectaron personas que no estaban dispuestas a trabajar siendo penalizados por sus compañeros, en la mayoría de las ocasiones, en la evaluación interna del grupo. El grado de satisfacción global de los estudiantes con respecto a la asignatura es grande hasta el momento; opinando que el método activo-colaborativo seguido es mejor que el tradicional o magistral mantenido en otras asignaturas de la titulación. Se ha comprobado una mayor motivación de los estudiantes sobre el desarrollo de las actividades presentadas, así como se ha conseguido estimular el grado de motivación de los alumnos por sus estudios universitarios. De la misma manera se logra implicar a los estudiantes con objeto de incentivar la capacidad de identificación de puntos fuertes y débiles que les sirva en su propio aprendizaje. Desde el punto de vista del estudiante; poder disponer de un nuevo elemento tecnológico que permite aplicar de forma experimental nuevos conocimientos ha constituido todo un desafío. Aunque para ello el profesor debe estar muy atento y detectar cuando el estudiante entra en una dinámica negativa de preguntar por preguntar, sin reflexionar lo suficiente sobre los resultados obtenidos y cuestiones cruciales. Desde el punto de vista del docente; la incorporación de esta herramienta ha sido un elemento que ha incrementado de forma espectacular la motivación del estudiante, permitiendo que el profesor se convierta en un transmisor de conocimientos que el alumno, a su vez, intuye como necesarios. El profesor posee un mayor feedback sobre el proceso enseñanza-aprendizaje de los estudiantes, pudiendo corregir pequeños defectos de forma que van apareciendo durante el proceso educativo. Del mismo modo hay que indicar, que el tiempo de profesor necesario para el correcto desarrollo del curso académico aumenta considerablemente con respecto a los procedimientos convencionales. Sostenibilidad y conclusiones Nuestra experiencia como docentes nos indica que los cambios a introducir deben ser lentos y metódicos, dando tiempo suficiente a los alumnos para que se adapten a la nueva experiencia educativa y proporcionando nuevas alternativas para aquellos alumnos que no deseen participar. La experiencia de Innovación Docente presentada en este documento se ha puesto en práctica durante el curso académico 2011/12 en varias asignaturas y en particular sobre una materia que ya no posee docencia presencial al encontrarse dentro del plan de estudios en extinción de las antiguas ingenierías aunque es extrapolable a otras materias, asignaturas y disciplinas de conocimiento. Este contexto educativo nos ha proporcionado la oportunidad para introducir este tipo de estrategias educativas y herramientas docentes informáticas sobre los estudiantes, pudiendo comprobar estadísticamente si aportan un cambio sustancial en el paradigma enseñanza-aprendizaje. El uso de estas herramientas docentes ha permitido aumentar el factor de motivación del estudiante originado por el hecho de poder interactuar de forma física y real con otros

conceptos abstractos estudiados en la teoría de la asignatura. Al mismo tiempo la implementación de este tipo de estrategias educativas permite mejorar habilidades, destrezas y competencias adquiridas por el futuro ingeniero (le permite dirigir su experiencia de aprendizaje y al mismo tiempo, le permite la adquisición de competencias transversales como el trabajo en equipo, el autoaprendizaje, la gestión y planificación del tiempo,…). Por otra parte el uso de este tipo de herramientas como apoyo a la docencia en el aprendizaje basado en problemas y/o proyectos, permite a los estudiantes adquirir conocimientos y poner en práctica numerosas bases teóricas de una forma amena y divertida, lo que permite mostrar al estudiante que las clases teóricas clásicas resultan interesantes y útiles. El procedimiento propuesto encaja mejor que el basado exclusivamente en clases magistrales según el sistema enmarcado por el Espacio Europeo de Educación Superior, ya que no sólo tiene en consideración el trabajo que debe desarrollar el alumno y su evolución en el proceso de aprendizaje sino que permite proporcionar una evaluación global y objetiva del estudiante. Entre los objetivos enmarcados en el acuerdo educativo de Bolonia está el potenciar competencias y habilidades profesionales en los egresados que les permitan desenvolverse con éxito en una sociedad cambiante y deseablemente innovadora. Entre estas competencias se encuentran las habilidades de comunicación, de expresión oral y escrita, la capacidad de innovación y de trabajar en equipos multidisciplinares, liderazgo e iniciativa, creatividad, la adaptabilidad… Es tarea del profesor la evaluación continua de los logros académicos y procedimentales en este tipo de metodologías dinámicas, activas y colaborativas, marcados a través de indicadores claros y consensuados desde la fase de planificación. La metodología implementada pretende contribuir a mejorar el aprendizaje del alumnado, favoreciendo su aprendizaje autónomo y significativo. Proporcionando al estudiante una dinámica de trabajo que le permita adquirir las herramientas necesarias para seguir formándose a lo largo de su vida. Referencias Bibliográficas: [1]. J.S. Artal, J. Mur, J. Letosa y A. Usón. “Ensayo de Innovación Docente en un Curso Básico de Electrónica Industrial”. VIII Congreso de Tecnologías Aplicadas a la Enseñanza de la Electrónica. Proceeding del Congreso TAEE, Zaragoza (2008).

[2]. J.S. Artal, D. Aznar, J. Caraballo y J.I. Otín. “Desarrollo de MicroBots destinados a una Pequeña Aplicación Logística como Proyecto Final de Carrera”. VIII Congreso de Tecnologías Aplicadas a la Enseñanza de la Electrónica. Proceeding del Congreso TAEE, Zaragoza (2008).

[3]. J.S. Artal y J.M. Artacho. “La Robótica como herramienta PBL en la enseñanza de la Electrónica en Ingeniería”. I Congreso Internacional sobre Aprendizaje, Innovación y Competitividad (CINAIC 2011). Proceeding del Congreso. 26-28 septiembre, Madrid (2011).

[4]. J.S. Artal, J. Caraballo y R. Bandrés. “Incorporación de Teléfonos Móviles en Pequeñas Aplicaciones Robóticas como herramienta docente”. X Congreso Tecnologías Aplicadas a la Enseñanza de la Electrónica. Proceedings del Congreso TAEE 2012, pp 238 a 243. 13-15 Junio 2012. Vigo.

[5]. J.S. Artal, J. Caraballo y R. Bandrés. “Desarrollo de una Aplicación de Radio-Frecuencia de bajo coste destinada para la Docencia”. X Congreso Tecnologías Aplicadas a la Enseñanza de la Electrónica. Proceedings del Congreso TAEE 2012, pp 302 a 307. 13-15 Junio 2012. Vigo.

INCORPORATION OF MOBILE PHONES IN SMALL ROBOTS LIKE KNOWLEDGE INTEGRATION METHOD IN ENGINEERING. A

PROJECT BASED LEARNING APPLICATION.

J. Sergio Artal1, Juan M. Artacho2 and Santiago Cruz2 1 Department of Electrical Engineering.

2 Department of Electronic Engineering and Communications. Escuela de Ingeniería y Arquitectura, EINA. University of Zaragoza.

[email protected], [email protected], [email protected]

Abstract

The Project/Problem Based Learning (PBL), Challenge Problem (CP) or Case Method (CM) allows that the students should acquire a more significant learning, developing at the same time another series of competences and skills. The motivation of the student is fundamental in diverse areas of knowledge and especially the associated with the Electrical and Electronic Engineering. Factors to having in consideration in this series of educational performances can be the curiosity, notion of the challenge and/or current affairs of the proposed problem. The goals of Project/Problem Based Learning are to help the students to develop flexible knowledge, effective problem solving skills, self-directed learning, effective collaboration skills and intrinsic motivation. A dynamic element in the learning of the students is the utilization of a didactic motivating strategy that is capable of creating the intention of learning. Working in groups, students identify that they already know, what they need to know, and how and where to access new information that may lead to resolution of the problem. In PBL the students are encouraged to take responsibility for their group and organize directly the learning process with support from a tutor or instructor.

The subject matter wakes up the curiosity of the students and it stimulates them the challenge of designing an application destined for a mobile robot that realizes a simple task of form more or less efficient. On the other hand, the utilization of small electronic devices applied on autonomous mobile robots appears as a multidisciplinary dynamic and flexible science that one adapts adequately to the aims of the European Higher Education Area (EHEA). This motive facilitates the integration of knowledge associated with diverse disciplines in the Engineering and it promotes the motivation of the students as key element for the education/learning process. The document presents a simple application based on the incorporation of an old mobile phone Nokia 3310, Ericsson 750i or Siemens A55 to autonomous mobile robots, in order to transmit the instructions related to his navigation, orientation and displacement. The developed application constitutes a factor of extra-motivation on the students principally due to the curiosity and relevancy of the proposed problem. The students prefer procedures of education/learning more flexible, dynamic, participative, and with continuous evaluation; although his impression is that a major effort and an increase in his dedication is necessary with regard to the conventional procedure.

Keywords: PBL Project / Problem Based Learning; Collaborative and Problem Based Learning; Learning and Teaching Methodologies; e-Learning Projects and Experiences. Active and Collaborative Methodology. Educational Innovation. Design of Experimental Prototypes.

1 INTRODUCTION

At present, one of the educational paradigms associated with the university education related to the application of the PBL-Problem/Project Based Learning and/or CP-Challenge Problem it is to find a small application that includes a factor of motivation extra on the students, factors to having in consideration can be the curiosity and relevancy of the problem and/or project. The incorporation of active and collaborative methodologies allows that the student should reach a much more significant learning assuming, in turn, the responsibility of his own learning. At the same time this small project must constitute a challenge in the development of the training in the students, without leaving of the standards of knowledge where the subject is located. The convergence process in the frame of the European Higher Education Area (EHEA) has supposed a great revolution inside the university education, producing an important change in the paradigm education/learning in the area of the

educational society. In the mentioned context appears the need of a model of education-learning in which the classes are composed in a dialogue.

Since point of item has estimated that the magisterial classes of theory and problems indicate habitually a small motivation of the students, independently of the treated topic. So that the participation of the students in the classroom realizing questions, comments or exercises it is very low. Whereas on the contrary, in the laboratory classes the students being employed at group they show a much more dynamic and participative character, commenting with his companions on the task to realizing, and effecting you continue questions and comments to the teacher. For it, there arises the need to apply active methodologies of learning, [1].

In this respect, the design of robots and MicroBots has begun to introduce in diverse areas of the Engineering as element to promote the interest for the technology of a pleasant and entertaining form. All these actions have allowed to be favourable the integration of diverse disciplines of knowledge in the Engineering, from a point of view of the motivation of the student. As conclusion it is possible to affirm that the mobile robotics is developing in the last years not only as a technology destined to industrial applications but as a way of stimulating the learning of the students of Engineering, helping to put in practical capacities, competences, abilities and skills necessary for an engineer.

2 EXPERIENCE OF EDUCATIONAL INNOVATION

2.1 Context of the experience

The active-cooperative procedure proposed in this paper expires with the requirements demanded by the new system of credits of the European Higher Education Area (EHEA) inside the educational context of Bologna. In the activities of class different technologies are used as: the resolution of questionnaires of type test; resolution of problems or short questions step to step together with some voluntary activities of construction of prototypes (MicroBots). Software ADD/Moodle is used as educational platform of learning, supporting the procedure with abundant multimedia resources and interactive explanations of form synchronized with the activities realized in the classroom. Parallel form one offers the students the possibility of realizing voluntary workshops of problems (in schedule of tutorship of the teachers). In addition they are included significant and relevant demonstrations in the laboratory in relation by the theoretical contents seen before in the classroom.

Hereby, to consider and to propose problems with a background applied and adapted to the second course of engineering does not turn out to be an easy task, since the more the questions and problems approach the practical relevant applications the more his decisive difficulty is increased. The progressive introduction of application problems adapted at the level of knowledge, so much for his development in blackboard as proposed for work of the students in the preparation of the matter, has allowed giving to the above mentioned subject a much more practical approach. The aim is not other that the student estimates as soon as possible any applications and industrial developments of the Electronics, implemented on the Engineering, though it is in a version simplified of the educational process.

The lines of action carried out have been a continuation and evolution of the realized in previous academic courses [2], in order to bring near the theory to the experimental practice in engineering. For it there have developed experimental prototypes and practical applications of interest that allow to persuade the student of the relation between the theoretical basic concepts of the Industrial Electronics, seen in the classroom, with the practical reality of the future exercise of his profession.

In the groups of learning there were kept the same aims of learning knowledge, which are evaluated in a common exam. This written tests are constituted by questions type test for the evaluation of the theory and by a design problem (where there is evalued the capacity of analysis and synthesis acquired by the students during the academic course). Also it incorporates a chronogram with a forecast of hours of coherent study/work to the new system of credits ECTS. The material belonging to the activities developed by the student forms a part of the student educational portfolio.

The work here presented places in a project of educational innovation realized during the academic courses 2009-10 to 2011-12, being applied in the subject of Industrial Electronics belonging to the second course of the qualifications of Technical Industrial Engineering, being this subject a main and obligatory matter of annual character. The subject Industrial Electronics has 9 credits ECTS. The experience here developed is based on the application of the Project-Based Learning "PBL" on the development of robotic mobile structures of limited size and of low cost. The approached subject

matter it wakes up the curiosity of the students and they are stimulated by the challenge of elaborating a robotic mobile appliance that realizes a simple but concrete task and in a more or less efficient way.

2.2 Development of the experience

Some authors have proposed the utilization of small mobile robots (colloquial called MicroBots) as an educational tool [3], [4]. The design of small mobile robots on the part of the students and his participation in national and international competitions has begun to use in the international area, besides for transmitting technical knowledge associated with a specific matter, as way to promote the motivation of the students in his university studies [5]. Like example, Christian Eugène [6] presents an educational experience associated with the development and design of MBots constituted by the learning based on projects PBL, whereas Akita [7] comments a university study based on the construction and development of robots for the students that it has for object the participation in the international championship RoboCup.

In this sense, the incorporation in diverse areas of the engineering of active and collaborative methodologies as: the Learning based on Problems and/or Projects (PBL-Problem and Project Based Learning), Challenge Problem (CP) or the Case Method (MdC), they allow that the student should reach a much more significant learning assuming, in turn, the responsibility of his own learning.

To assume this change in the educational paradigm, it supposes that the teacher must appear the introduction of new methodologies in his educational task, which can cause modifications both in the organization of the learning and in the systems of evaluation. At the same time with the application of this type of educational methodologies the students develops another type of generic or transverse competences as: the teamwork, the search of information, analysis and synthesis capacity, the leadership, the planning and management of the time, the auto-learning, the presentation of own ideas and the cooperation, or the critical thought.

A key and revitalizing element in the learning of the students is the utilization of a motivating strategy that is capable of creating the intention of learning. Factors to considering can be the curiosity, relevancy of the problem and/or notion of the challenge. The offer here raised proposes the application of the Project-Based Learning "PBL" on the development of robotic mobile structures of size limited and low cost. This way the approached subject matter it aroused great interest and the curiosity of the students and they are stimulated by the challenge of elaborating an application for an autonomous mobile robotic appliance that realizes a simple task of form more or less efficient. The development of small devices or systems applied on the autonomous mobile robot MicroBots appears as a multidisciplinary flexible science that adjusts adequately to the proposed aims [5 - 8]; on the one hand it allows to the professors to apply diverse educational innovative methodologies and on the other hand the student is clearly motivated for developed skills, ability and capacities related to this matter; see figure 1.

Figure 1. Microbot’s during experimental tests of navigation, orientation and follow-up of paths.

From the educational point of view, the efforts used by the students during the development of the project must not be focused so much in conclusion of the prototype, since to the knowledge and skills acquired during the accomplishment of the same one. It is a task of the teacher the continuous assessment of the academic and procedural achievements in this type of dynamic, active and collaborative methodologies, marked across indicators clear and agreed from the phase of planning. Likewise, our experience like teachers indicates us that it is advisable have time the students in order

that they adapt to the new educational experience and to provide new alternatives for those students who do not want to take part in the same one.

It has appreciated that the presented benefits are not related directly to the technical knowledge specifics related to the robotics (algorithms, kinematics and dynamics of the robot, etc ...) but rather with more general and important skills in Engineering. Between the aims placed in the educational agreement of Bologna it is to promote competences and professional skills in the graduate that allow them to be unrolled successfully in a changeable and desirably innovative society. To indicate that between these competences they find the communication skills, oral and written expression, the innovation capacity and to be employed at multidisciplinary equipments, leadership and initiative, creativity, the adaptability …

3 APPLICATION OF THE NOKIA 3310 ON THE ROBOT

3.1 Mobile Phone Application in the MicroBots

In the latter years, a great height has produced to itself in the area of the Telecommunications that it has brought with him that most of the students changes successive, almost compulsive form, of mobile phone as consequence of the promotion campaigns offered by the telephony companies. This has provoked that a great number of devices or electronic terminals remain left without being completely obsolete, being able to manage to be a good favourable environment for the development of small applications destined for the remote control, on the part of the user, of different static equipments/systems or his incorporation in robotic mobile systems in order to effect a type of effective task of autonomous form [9].

The document here raised exposes the incorporation of a mobile phone type Nokia 3310, Erikson 750i or Siemens A55, though it can be any different, as communication element on a small autonomous mobile robot already developed as final project of career PFC in previous academic courses. The aim is not other that the sending of information and output data destined for the control, addressing, displacement and navigation of a mobile robot colloquial named MicroBot [10].

For the development of this application it has been used the asynchronous serial communication that incorporates the mobile terminal (in general in his interior part, under the supply battery). Hereby there has analyzed and developed an application constituted by the microprocessor PIC 16F876, which decodes and translates the information of bidirectional form between the MBot and the mobile terminal. This way so, by means of the use and sending of commands of easy implementation (AT Command) it is possible to transmit information between two terminals located in any part of the terrestrial globe, always and when they meet inside a zone telephonic coverage.

Figure 2. Development of the expansion card incorporated into the autonomous mobile robot.

At the moment of selecting a mobile phone for his recycling, they have been considered diverse factors among which it is possible to stand out: that the terminal is widely used, that could be connected physically to a microcontroller of flexible and simple way, that it is possible his external control for a PC and which has a communication protocol compatible with the microcontroller selected.

The mobile phone of the company Nokia 3310, launched onto the market in the year 2000, has been one of the terminals most sold in the history of the mobile telephony, with a total of 126 million units approximately. This is the principal reason for which this model it was of more acquaintances of the

market and that with major probability it is possible to obtain as consequence of a donation or approaching a mobiles shop. In addition, in second-hand store, it is frequent finds this model to the sale for a low price, as well as replacement pieces or element substitution.

The communications port of the Nokia 3310, it is available under the battery and it is constituted by 4 pads visible placed in control circuits. These pines make possible his interconnection to a minimal system of communication, already be by means of a small adapter or by means of the weld of a wired up bus in the terminals mentioned. With this simple interface, the communication of the Nokia 3310 with the microcontroller is possible, since the communication protocol has a standard of asynchronous serial port, easily controllable from the system. By means of this port, it is possible to send and to receive instructions from the mobile telephone CPU, being the system interface the keyboard and the screen of the device.

Due to his age, more than 10 years, Nokia's device only operates under the GSM network, more that sufficient to send and to receive calls or short messages of text, SMS. With dimensions of 113x48x22mm and 133g of weight, they make it useful for his adjustment to a portable application like it can be the integration on a mobile autonomous robot. As soon as the mobile phone and the expansion card developed for this application, are synchronized, it is possible the control of the basic functions of the telephone Nokia 3310 by means of the control card and the sending of a instructions sequence and specific parameters.

One of the functions most used in the application is the sending and reception of text messages, SMS; with this purpose it is used an information correlation in which several parameters will have to appear. In the structure of the above mentioned data correlation, codified information appears as: the telephone number to which it is going to send or it is going to receive the message, as well as the number of the service center for SMS of the company that offers the service GSM.

3.2 Other possibilities

When it is selected a mobile phone to provide a communication GSM to a small system constituted by microcontroller, several alternatives were raised to the Nokia 3310. First, it implements the control of a mobile telephone of Sony Ericsson Company, the model k750i made the year 2005. Across his plug wire USB for PC, it was possible his management and control by means of the utilization of the Hyperterminal of Windows, using the AT Commands (whose list of specific instructions and standard is provided by the manufacturer) [11], [12].

Between the controls tests realized to the system it was realized the transmission and reception of data, this way as the sending text messages SMS. Though it is a simple terminal with an external control, the device does not have an external serial port compatible with the microcontroller. This motive has determined initially the development of the application due to that the microprocessor of low range selected has not USB port.

Other mobile phone used for his external control was the telephone of Siemens Company; model A55, put in the market in March 2003. As the majority of the models Siemens of the epoch (models A56, C65 ...), it has in his external connector an adaptable serial port to the standard RS-232. Thus, the control of the telephone can be developed by means of commands AT, in the same way as the model of Sony Ericsson. To indicate also that this device to have external serial port accessible. The element can be controlled by means of the computer or by means of a microcontroller of low range that has an internal port USART, Universal Synchronous Asynchronous Receiver Transmitter, as for example the PIC 16F876 used in the application.

Inside the AT Commands available in telephony it can find the command "ATDXXXXXXXXX" to realize a call, "AT" to confirm communication with the device, "AT+CMGS" to send text short messages or "AT+CMRG" to read messages SMS received and stored in the memory of the SIM card, see in depth the reference [11], [12].

The minor availability of these last models on the market with respect to the famous Nokia 3310, has caused that the tests and definitively the application was realized on this mobile phone. Expansion card of the telephone Nokia 3310, it has been integrated to an autonomous mobile robot of small dimensions (colloquial named MicroBot). Hereby, the robot has the capacity of wireless communication with the user by means of the GSM network. The information derived from the diverse incidents of the robot can be received for the user. This way so, by means of simple messages of text SMS, the user has in real time, internal parameters diverse since it can be for example some variables obtained during the navigation or displacement of the robot. Of equal form the student is capable of

sending different commands and instructions in order that they could be executed by the MBot. The union between the controller card of the Nokia 3310 and MicroBot has been realized using the internal port that it has the robot, see figures 2 y 3.

4 CONSIDERATIONS

The design of applications destined to MicroBots is a very interesting and attractive activity though his mechanical design beginning of zero is a very complex task for an initiation course except that it is a question of a set of pieces that be necessary to assemble or an initial complex structure. In this case, the mechanical design of the robot is constituted by a structure realized in aluminium and methacrylate that provides the sufficient structural stiffness like to support all the components, sensors and transducers that form a part of the development of the electronic system, see figure 3.

The students have a major preference by the procedures of education/learning the most flexible, dynamic, and participative with continuous evaluation. Though the students think that it is need a major effort and that it is required a considerable increase in his dedication with respect to the conventional procedure [13]. Therefore the utilization and MicroBots's development has allowed to increase also the experimental degree in the students, improving the analysis and synthesis capacity.

The educational methodology fits better into the EHEA that based only on the magisterial classes, since it considers all the work that the student must do in class and it allows developing another type of transverse competences.

Figure 3. MicroBots's examples developed by the students. Autonomous mobile robot "Teseo" together

with the Nokia 3310 expansion system implemented.

The construction of a small prototype has been an element that has increased of spectacular form the motivation of the student, allowing that the teaching should turn into a transmitter of knowledge that the student, in turn, considers to be like necessary. The professor has a major feedback on the process education-learning of the students, which allows correcting small faults so that they are appearing during the educational process. In the same way it is necessary to indicate, that the time of teacher necessary for the correct development of the academic course, increases considerably with respect to the conventional procedures [14], [15].

Thus to have a new technological element that allows applying of experimental form new knowledge has constituted a great challenge. The motive to develop and to implement at once new electronic solutions has motivated the students, especially in the learning process based on test and mistake. Though for it the teacher must be very attentive and to detect when the student enters a negative dynamics of testing for testing, without thinking over the sufficient on the obtained results and crucial questions of functioning of the system.

As for the educational used tools, the student port-folio turns out to be completely adapted for the management of this type of active methodologies in the educational context, since it allows to the students to study in depth the comprehension of the problem, to demonstrate his progress of learning and is an excellent method of evaluation that solves always difficult task of evaluating the work developed by the group. In this type of educational experience the teacher acts as guide, indicating the steps to the student to continue for the correct development of the prototype.

The global satisfaction degree of the students in the development of these experiences has been high, thinking that the active-collaborative followed method turns out to be more suitable than the traditional

magisterial method followed in other subjects of the University qualifications. An increase has been verified in the motivation of the students on the development of the presented activities, stimulating the motivation degree of the students for his University studies. Likewise, they admit that it facilitates to them the comprehension of other matters and the integration of knowledge with other subjects and disciplines of Engineering.

5 CONCLUSIONS

A key and revitalizing element in the learning of the students is the utilization of a didactic motivating strategy that is capable of creating the intention of learning. Thus the motivation is considered like fundamental in the education of the knowledge disciplines in Electrical and Electronic Engineering. Factors to have in consideration in this series of educational performances can be the curiosity, notion of the challenge and relevancy or nowadays in the proposed problem. In the same way the accomplishment of a small project application of the Project Based Learning or the Hands-on Laboratory Experience like educational tool in the area or context of the engineering, allows the evaluation of skills, ability, knowledge and competences acquired by the students along the educational process. The implemented methodology tries to help to improve the learning of the students, improving his autonomous and significant learning. These technologies provide to the student a dynamics of work that allows him to acquire the necessary tools to continue being formed along his life.

On the other hand the learning based on Projects and/or Problem PBL together with Challenge Problem CP, it allows to the students to acquire knowledge and to put in practical numerous theoretical bases of an entertaining form, which allows showing to the student that the classic theoretical classes can be interesting and useful. The exposed procedure fits better than based exclusively on magisterial classes according to the system framed by the European Higher Education Area (EHEA), since not only it has in consideration the work that must develop the student and his evolution in the education-learning process but it allows providing a global and objective evaluation of the student. The incorporation of active and collaborative methodologies allows that the student should reach a much more significant learning assuming, in turn, the responsibility of his own learning.

This way so, MicroBots's utilization and in general the learning based on projects PBL, allows to the students to acquire knowledge and to put in practical numerous theoretical bases of a pleasant and entertaining form, which allows to demonstrate to the student that the theoretical classes also have his usefulness and interest. Therefore with the application of this type of educational methodologies the student develops another type of generic or transverse competences.

Thus the utilization of a small prototype of mobile robot (MicroBots) has showed to be an element key to integrate different disciplines of knowledge in Engineering and has turned out to be a fundamental tool to obtain the motivation of the student. The developed application constitutes a factor of extra-motivation on the students principally due to the curiosity and relevancy of the proposed problem. The students prefer procedures of education/learning more flexible, dynamic, participative, and with continuous evaluation; although his impression is that a major effort and an increase in his dedication is necessary with regard to the conventional procedure.

ACKNOWLEDGMENT

The authors are grateful for the financial help provided by the University of Zaragoza for the development of the present work, by means of the Educational Innovation Program, line 2: projects of implantation of innovative learning activities in the area of a matter or specific subject project PIIDUZ_11_2_419 and of the Education Program semi-attendance, line 5: utilization of tools TIC in new methodologies of education / learning project PESUZ_11_5_555.

REFERENCES

[1] Flemming K. F. (2002). Problem-Based Learning in Engineering Education: a catalyst for regional industrial development. World Transactions on Engineering and Technology Education. UNESCO International Centre for Engineering Education (1), 29-32.

[2] Artal J.S., Mur J, Letosa J., Usón A. (2008). Ensayo de Innovación Docente en un Curso Básico de Electrónica Industrial. Proceeding del Congreso de Tecnologías Aplicadas a la Enseñanza de la Electrónica. TAEE.

[3] Powell N.J, Renfrew A., Truscott W.S, Hicks P.J, Canavan B. (2007). Seeding Enquiry-Based Learning in Electrical and Electronic Engineering: Case Study 1 - Optoelectronics. International Conference on Engineering Education, ICEE.

[4] Powell N.J, Renfrew A., Truscott W.S, Hicks P.J, Canavan B. (2007). Seeding Enquiry-Based Learning in Electrical and Electronic Engineering: Case Study 2 - Robotics. International Conference on Engineering Education, ICEE.

[5] Pastor J. (2004), Competiciones de Micro-Robots como promoción de la Electrónica: ALCABOT-HISPABOT. Proceeding del VI Congreso de Tecnologías Aplicadas a la Enseñanza de la Electrónica. TAEE.

[6] Christian E. (2006). How to teach at the university level through an active learning approach?. Consequences for teaching basic electrical measurements. Elsevier Science Direct. Measurement (39), 936-946.

[7] Akita J., Kitano H. (1999). RoboCup for Science and Engineering Education: A Case of the Future University-Hakodate. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (6), 734-768.

[8] Yousuf M.A., Montúfar R., Cueva V. (2006). Robotic projects to enhance student participation, motivation and learning, International Conference on Multimedia, Information and Communication Technologies in Education (6), 1989-1994.

[9] Manikandan D., Pareek P. and Ramesh P. (2010). “Cell phone operated robot”. International Conference on Emerging Trends in Robotics and Communication Technologies (INTERACT), 2010. 3-5 Dec. Pp 183 to 184.

[10] Yun Chan C. and Jae Wook J. (2008). “Remote robot control system based on DTMF of mobile phone”. 6th IEEE International Conference on Industrial Informatics, 2008. INDIN 2008. 13-16 July 2008.

[11] Artal J.S., Caraballo J. y López D. (2011). “Control y Guiado de un Robot Móvil Autónomo mediante Tecnología GSM.” SAAEI, Seminario Anual de Automática, Electrónica Industrial e Instrumentación. Badajoz 2011.

[12] Artal J.S., López D. y Caraballo J. (2011). “Aplicación GSM destinada al control de un Robot Móvil Autónomo mediante Java ME” SAAEI, Seminario Anual de Automática, Electrónica Industrial e Instrumentación. Badajoz 2011.

[13] Mills J.E. (2003). Engineering Education. Is Problem-Based or Project-Based Learning the Answer. Australassian Journal of Engineering Education. AAEE-Australassian Association for Engineering Education ISSN: 1324-5821.

[14] Artal J.S. y Artacho J.M. (2011). “La Robótica como herramienta PBL en la enseñanza de la Electrónica en la Ingeniería”. Proceedings de la Conferencia Internacional sobre Aprendizaje, Innovación y Competitividad, Septiembre 2011, Madrid.

[15] Artal J.S., Aznar D., Caraballo J., Otín J.L. (2008). Desarrollo de MicroBots destinados a una Pequeña Aplicación Logística como PFC”. Proceeding del Congreso de Tecnologías Aplicadas a la Enseñanza de la Electrónica. TAEE.

APPLICATION OF SMALL MOBILE ROBOTS LIKE IMPROVEMENT OF THE MOTIVATION OF THE ENGINEERING STUDENTS.

J. Sergio Artal1, Juan M. Artacho2 and Santiago Cruz2 1 Department of Electrical Engineering.

2 Department Electronic Engineering and Communications. Escuela de Ingeniería y Arquitectura, EINA. University of Zaragoza.

[email protected], [email protected], [email protected]

Abstract

The convergence process inside the European Higher Education Area (EHEA) has supposed an important change in the paradigm education/learning in the educational area. A key and dynamic element in the learning of the students is the utilization of a didactic motivating strategy that is capable of creating the intention of learning. The motivation of the student is fundamental in the education of diverse areas of knowledge and especially the associated with the Electrical and Electronic Engineering. The subjects of the study plans manage different contents of vertical form, studying in depth the knowledge and technologies inside a specific area, but normally without establishing relations with the contents of other matters. All these reasons provide that the students have many partial visions of the technology, without having an integration global vision that in addition is necessary. This integration vision improves the motivation of the students and provides conscience about the utility of the learned. On the other hand, the utilization of small electronic devices applied on autonomous mobile robots appears as a multidisciplinary dynamic and flexible science that it adapts adequately to the aims of the EHEA. This motive facilitates the integration of knowledge associated with diverse disciplines in the Engineering and it promotes the motivation of the students as key element for the education/learning process.

The paper here exposed proposes the application of the Project / Problem Based Learning PBL on the development of small mobile robots of low cost. The subject matter wakes up the curiosity of the students and it stimulates them the challenge of designing an autonomous robot that realizes a simple task of form more or less efficient. This way the development of electronics systems applied on the robots -colloquial called MicroBots- appears as a multidisciplinary science that it adapts adequately to the marked aims; on the one hand it allows to the professor to apply diverse educational innovative methodologies and on the other hand the students are clearly motivated for developing abilities and competences related to this knowledge discipline. With the application of this type of educational methodologies the students develops another type of competences such as: the teamwork, the information search, the analysis and/or synthesis capacity, the leadership... As platform of educational support and e-learning is used ADD/Moodle; the procedure uses abundant resources multimedia and interactive explanations.

Keywords: PBL Project / Problem Based Learning. Active and Collaborative Methodology. Integration of Knowledge. Motivation. Procedure Education / Learning. Educational Innovation. Challenge Problem. Design of Experimental Prototypes.

1 INTRODUCTION

The convergence process in the frame of the European Higher Education Area (EHEA) has supposed a great revolution inside the university education, producing an important change in the paradigm education / learning in the area of the educational society. In the mentioned context appears the need of a model of education - learning in which the classes are composed in a dialogue; where the teacher acts of stimulator of the participation (raising varied activities and formulating you ask to the student) and the student adopts an active paper in the classroom, promoting the comprehensive learning, the application of knowledge and the capture of decisions; so that the communication in the binomial professor - student is bidirectional [1], [2].

In this new model of education / learning, the role of the teacher changes the mere transmission of knowledge to the students, to being the mediator in the construction of the own knowledge on these. This is a model where the external information is interpreted and reinterpreted by the mind of the students, which explanatory models are constructing progressively increasingly complex and deep in a

dynamic, reflexive and interactive process. It is a question of a vision of the education in which the student is the centre or attention area and where the teacher has, paradoxically, a decisive paper. To assume this change in the educational paradigm, it supposes that the teacher must appear the introduction of new methodologies in his educational task, which can cause modifications both in the organization of the learning and in the systems of evaluation.

Since point of item has estimated that the magisterial classes of theory and problems indicate habitually a small motivation of the students, independently of the treated topic. So that the participation of the students in the classroom realizing questions, comments or exercises it is very low. Whereas on the contrary, in the laboratory classes the students being employed at group they show a much more dynamic and participative character, commenting with his companions on the task to realizing, and effecting you continue questions and comments to the teacher. For it, there arises the need to apply active methodologies of learning [3].

The incorporation of active and collaborative methodologies such as: the Learning based on Problems and / or Projects PBL (Problem / Project Based Learning), Educational Portfolio or the Method of the case (MdC) allows that the student should reach a much more significant learning assuming, in turn, the responsibility of his own learning. With the application of this type of educational methodologies the student develops another type of generic or transverse competences as: the work in group, the search of information, the analysis and synthesis capacity, the leadership, the planning and management of the time, the auto-learning or the critical thought [4], [5], [6], [7].

In this respect, the design of robots and MicroBots has begun to introduce in diverse areas of the Engineering as element to promote the interest for the technology of a pleasant and entertaining form. All these actions have allowed to be favourable the integration of diverse disciplines of knowledge of the Engineering, from a point of view of the motivation of the student. As conclusion it is possible to affirm that the mobile robotics is developing in the last years not only as a technology destined to industrial applications but as a way of stimulating the learning of the students of Engineering, helping to put in practical capacities, competences, abilities and skills necessary for an engineer.

2 MICROBOTS'S APPLICATION LIKE OF INTEGRATION ELEMENT OF KNOWLEDGE AND OF MOTIVATION

Diverse authors have proposed the utilization of small mobile robots (colloquial called MicroBots) as an educational tool [8], [9]. The design of small mobile robots on the part of the students and his participation in national and international competitions has begun to use in the international area, besides for transmitting technical knowledge associated with a specific matter, as way to promote the motivation of the students in his university studies [10], [11]. Like example, Akita et others [12] it presents a university study organized on the construction and development of robots for the participation in the international championship RoboCup together with all the disciplines of knowledge associated with his development and design, constituted by the learning based on projects, PBL.

The development of a mobile robot can be used as tool of learning based on problems and/or projects in the university teaching, and especially in the engineering area, facilitating the transmission, acquisition, discovery and evaluation of skills and knowledge of the students of global form [6], [13]. It is a process that it implies the coordination of human, technical and social elements towards the attainment of a specific aim.

2.1 Context of the experience

The active - cooperative procedure proposed in this paper expires with the requirements demanded by the new system of credits of the European Higher Education Area (EHEA) inside the educational context of Bologna. In the activities of class different technologies are used as: the resolution of questionnaires of type test; resolution of problems or short questions step to step together with some voluntary activities of construction of prototypes (MicroBots). ADD/Moodle is used as educational platform of learning, supporting the procedure with abundant multimedia resources and interactive explanations of form synchronized with the activities realized in the classroom. Parallel form one offers the students the possibility of realizing voluntary workshops of problems (in schedule of tutorship of the teachers). In addition they are included significant and relevant demonstrations in the laboratory in relation by the theoretical contents seen before in the classroom.

The work here presented places in a project of educational innovation realized during the academic courses 2009-10 to 2011-12, being applied in the subject of Industrial Electronics belonging to the

second course of the qualifications of Technical Industrial Engineering, being this subject a main and obligatory matter of annual character. The subject Industrial Electronics has 9 credits ECTS.

2.2 Development of the experience

The lines of action carried out have been a continuation and evolution of the realized in previous academic courses [14], in order to bring near the theory to the experimental practice in engineering. For it there have developed experimental prototypes and practical applications of interest that allow to persuade the student of the relation between the basic theoretical concepts of the Industrial Electronics, seen in the classroom, with the practical reality of the future exercise of his profession.

The progressive introduction of problems of realistic application adapted at the level of knowledge, so much for his development in blackboard as proposed for work of the students in the preparation of the matter, has allowed giving to the above mentioned subject a much more practical approach. The aim is not other that the student estimates as soon as possible any applications and industrial developments of the Electronics, implemented on the Engineering, though it is in a version simplified of the educational process. Hereby, to consider and to propose problems with a background applied and adapted to the second course of engineering does not turn out to be an easy task, since the more the questions and problems approach the practical relevant applications the more his decisive difficulty is increased.

A basic directive of the above mentioned educational actions is to involve the students in the development of the projects, considering his participation to be fundamental for his suitable formative process. Some of these prototypes or projects can be carried out by the students of the subject, but in other cases (of major complexity) it is necessary to appeal students of last courses, those who develop them as projects final of career, PFC´s. Both options have demonstrated his validity on the students and his efficiency has appeared in the public exhibition of the results [15].

The experience here developed is based on the application of the Project-Based Learning "PBL" on the development of robotic mobile structures of limited size and low cost. The approached subject matter it wakes up the curiosity of the students and they are stimulated by the challenge of elaborating a robotic mobile appliance that realizes a simple but concrete task and in a more or less efficient way. All this actions have as intention to increase the motivation of the student, as well as to improve the integration of the contents of diverse disciplines of knowledge in the Engineering.

2.3 Exposition of the process and evaluation

In the groups of learning there were kept the same aims of knowledge, which are evaluated in a common examination. This written tests are constituted by questions type test for the evaluation of the theory and by a design problem (where there is valued the analysis and synthesis capacity acquired by the students during the academic course). To the students who selected this new educational procedure a special “menu” of evaluation was offered them, where in addition are had in consideration the results of the educational activities of the PBL. So that the qualification corresponding to the theoretical exam has a minor weight in the final note of the subject. Also it incorporates a chronogram with a forecast of hours of coherent study / work to the new system of credits ECTS. The material belonging to the activities developed by the student forms a part of the student educational portfolio; who asks him to support updated. This folder can be inspected, of random form, by the teacher for his later evaluation, during the academic course.

The principal innovative element was the approach to the students of the accomplishment of a teamwork using MicroBots to motivate and to facilitate the integration of knowledge. The accomplishment of the work appeared from a beginning as a small project of engineering which purpose was the development and execution of the prototype and an oral presentation; encouraging the students whom in the first meetings they had to nominate a speaker with the teacher, to define the aims and the different tasks to realizing (planning his time), to divide the work between the members of the equipment, to fix meetings follow-ups, etc... In the oral presentation to every group they were given him 15 minutes followed of a maximum of 10 minutes of requests and questions.

Regarding the evaluation of the work, the individual work was evaluated of separated form inside the group and the result of the teamwork. In the valuation the teacher takes part with 40 % depending on the development and correct functioning of the prototype presented and of educational portfolio, leaving the rest of the qualification in hands of the personal auto-evaluation of the student and of the members of the group (for the individual valuation) and in other groups (for the evaluation of the work

in group). Hereby the students are involved in his evaluation and in the correspondent to his companions to stimulate the reasoning capacity and critical thought, which serves them with a view to his own auto-learning.

2.4 Other considerations

MicroBots's design is a very interesting and attractive activity though beginning his mechanical design from zero is a very complex task for an initiation course except that it splits of a set of pieces that be necessary to assemble or with an initial complex structure. In this case here exposed, the mechanical design of the robot is constituted by a structure realized in aluminium and methacrylate that it guarantees the sufficient structural inflexibility as to support all the components, sensors and transducers that they constitute the development of the electronic system, to see figure 1. Thus the students work aspects related to a scanner mobile robot capable of moving of autonomous form, following a marked path, and reacting to the possible collision with other objects by means of technologies of backward movement and change in the direction.

Figure 1. MicroBots's examples developed by the students. Experimental tests of navigation, orientation

and follow-up of paths

In addition, it is necessary to mention between other factors the auto-confidence that it generates in the student. When a student appears the problem challenge of constructing a prototype, part of a situation in which it possesses a basic knowledge to resolve the problem; but also it incorporates certain ignorance in the matter. It is for it that the student has to search for additional information in books, magazines, web, etc … and to ask companions and teachers. When it manages to construct a small prototype, more or less efficiently, successfully it increases his auto-confidence and motivation on having had resolved a complex problem still without to have a specific formation for it. As precaution, the time destined for the accomplishment of the small prototypes must be carefully planned by the teachers to avoid possible problems during his execution.

As for the educational used tools, the student portfolio turns out to be completely adapted for the management of this type of active methodologies in the educational context, since it allows to the students to study in depth the comprehension of the problem, to demonstrate his progress of learning and is an excellent method of evaluation that solves always difficult task of evaluating the work developed by the group.

In this type of educational experience the teacher acts first as guide, indicating the steps to the student to continue for the correct development of the prototype. Later it changes the role towards the practical side of every engineer, the implementation of skills and contribution of ideas that could remove to the practice. Later the teacher acts as client demand a quality product the student. And finally it is in the oral presentation of the realized work where the teacher evaluates the learning process, as well as the development and execution of the presented work following a few guidelines similar to those who follow in the final reading of projects final of career PFC´s.

3 RESULTS

The educational methodology fits better into the EHEA that based only on the magisterial classes, since he considers all the work that the student must do and to develop another type of transverse competences as the work in group, leadership, the presentation of own ideas and the cooperation, the aptitude to take decisions, the management of the time or the work under pressure. On the other

hand, there seems to be clear the preference of the students to more flexible, dynamic, participative procedures of education / learning and with continuous assessment, though the impression of the students is that it is required a major effort and an increase from them in his dedication with regard to the conventional procedure.

From the beginning of course, it is important to transmit the students, the importance of the discipline in the teamwork and the responsibility with the workgroup. It has been observed that the absence of a engagement with the rest of the companions and the appearance of indiscipline with the activities, some of the students provokes a rejection in this type of active methodologies and cooperative procedures. To indicate to anecdotal title that in some groups there detected to themselves persons who were not ready to work being penalized by his companions, in an internal evaluation of group.

The utilization and MicroBots's development has allowed to increase also the experimental degree of the students, improving the analysis and synthesis capacity, factor that it could have confirmed in the qualifications obtained by the students in the design problem and in the execution of the laboratory training. At the same time, the students have acquired major number of competences, abilities and skills that are valued positively for the business sector.

From the point of view of the student; to be able to have a new technological element that allows him to apply of experimental form new knowledge has constituted the whole challenge. The possibility of verify at once new electronic solutions has motivated them especially in the learning process based on test and mistake. In this sense the teacher must be very attentive and to detect when the student enters a negative dynamics of trying for trying, without to reflect on the sufficient in the obtained results and the functioning of the system.

From the point of view of the teacher; the construction of a small prototype has been an element that has increased of spectacular form the motivation of the student, allowing that the teacher should turn into a transmitter of knowledge that the student, in turn, feels like necessary. The teacher has a major feedback on the education - learning process of the students, being able to correct small faults so that they are appearing during the educational process. It is necessary to indicate also that the time of teacher necessary for the correct development of the academic course increases considerably with regard to the conventional procedures.

Figure 2. MicroBots's during experimental tests of navigation, orientation and follow-up of paths.

The degree of global satisfaction of the students in the development of these experiences has been high, thinking that the active - collaborative followed method turns out to be more suitable than the traditional magisterial method followed in other subjects of the University qualifications. An increase has been verified in the motivation of the students on the development of the presented activities, stimulating the degree of motivation of the students for his University studies. Likewise, they admit that it facilitates to them the comprehension of other matters and the integration of knowledge with other subjects and disciplines of Engineering, see figure 2.

4 CONCLUSIONS

The implemented methodology tries to help to improve the learning of the students, improving his autonomous and significant learning. These technologies provide to the student a dynamics of work that allows him to acquire the necessary tools to continue being formed along his life.

From the educational point of view, the efforts used by the students during the development of the project must not be focused so much in conclusion of the prototype, since to the knowledge and skills acquired during the accomplishment of the same one. It is a task of the teacher the continuous assessment of the academic and procedural achievements in this type of dynamic, active and collaborative methodologies, marked across indicators clear and agreed from the phase of planning. Likewise, our experience like teachers indicates us that it is advisable have time the students in order that they adapt to the new educational experience and to provide new alternatives for those students who do not want to take part in the same one.

It has appreciated that the presented benefits are not related directly to the technical knowledge specifics related to the robotics (algorithms, kinematics and dynamics of the robot, etc ...) but rather with more general and important skills in Engineering. Between the aims placed in the educational agreement of Bologna it is to promote competences and professional skills in the graduate that allow them to be unrolled successfully in a changeable and desirably innovative society. To indicate that between these competences they find the communication skills, oral and written expression, the innovation capacity and to be employed at multidisciplinary equipments, leadership and initiative, creativity, the adaptability …

The procedure here proposed adapts better to the frame of the European Higher Education Area (EHEA), since not only it has in consideration the work that must develop the student and his evolution in the learning process but it allows providing a global and objective evaluation of the student. This way so, MicroBots's utilization and in general the learning based on projects -PBL-, allows to the students to acquire knowledge and to put in practical numerous theoretical bases of a pleasant and entertaining form, which allows to demonstrate to the student that the theoretical classes also have his usefulness and interest.

Thus the utilization of a small prototype of mobile robot (MicroBots) has showed to be an element key to integrate different disciplines of knowledge in Engineering and has turned out to be a fundamental tool to obtain the motivation of the student.

ACKNOWLEDGMENT

The authors are grateful for the financial help provided by the University of Zaragoza for the development of the present work, by means of the Educational Innovation Program, line 2: projects of implantation of innovative learning activities in the area of a matter or specific subject project PIIDUZ_11_2_419 and of the Education Program semi-attendance, line 5: utilization of tools TIC in new methodologies of education / learning project PESUZ_11_5_555.

REFERENCES

[1] González J., Wagenaar R. (2003). Tuning Educational Structures in Europe. Informe final. Fase Uno. Bilbao. Universidad de Deusto.

[2] Arias Oliva M., (2003). El Espacio Europeo de Educación Superior: Una oportunidad de desarrollo multidisciplinar a través del aprendizaje y la tecnología. Encuentros Multidisciplinares (15).

[3] Flemming K. F. (2002). Problem-Based Learning in Engineering Education: a catalyst for regional industrial development. World Transactions on Engineering and Technology Education. UNESCO International Centre for Engineering Education (1), 29-32.

[4] Salinas J. (2004). Innovación docente y uso de las TIC en la enseñanza universitaria. Revista de Universidad y Sociedad del Conocimiento (1), 1-15.

[5] Vivas J.F., Allada V. (2006). Enhancing engineering education using thematic case-based learning, International Journal of Engineering Education (22), 236-246.

[6] Hsieh C., Knight L. (2008). Problem-Based Learning for Engineering Students: An Evidence-Based Comparative Study. The Journal of Academic Librarianship (34), 25-30.

[7] Yousuf M.A., Montúfar R., Cueva V. (2006). Robotic projects to enhance student participation, motivation and learning, International Conference on Multimedia, Information and Communication Technologies in Education (6),1989-1994.

[8] Powell N.J, Renfrew A., Truscott W.S, Hicks P.J, Canavan B. (2007). Seeding Enquiry-Based Learning in Electrical and Electronic Engineering: Case Study 1 - Optoelectronics. Internacional Conference on Engineering Education, ICEE.

[9] Powell N.J, Renfrew A., Truscott W.S, Hicks P.J, Canavan B. (2007). Seeding Enquiry-Based Learning in Electrical and Electronic Engineering: Case Study 2 - Robotics. Internacional Conference on Engineering Education, ICEE.

[10] Pastor J. (2004), Competiciones de Microrrobots como promoción de la Electrónica: ALCABOT-HISPABOT. Proceeding del VI Congreso de Tecnologías Aplicadas a la Enseñanza de la Electrónica. TAEE.

[11] Christian E. (2006). How to teach at the university level through an active learning approach?. Consequences for teaching basic electrical measurements. Elsevier Science Direct. Measurement (39), 936-946.

[12] Akita J., Kitano H. (1999). RoboCup for Science and Engineering Education: A Case of the Future University-Hakodate. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (6), 734-768.

[13] Mills J.E. (2003). Engineering Education. Is Problem-Based or Project-Based Learning the Answer. Australassian Journal of Engineering Education. AAEE-Australassian Association for Engineering Education ISSN: 1324-5821.

[14] Artal J.S., Mur J, Letosa J., Usón A. (2008). Ensayo de Innovación Docente en un Curso Básico de Electrónica Industrial. Proceeding del Congreso de Tecnologías Aplicadas a la Enseñanza de la Electrónica. TAEE.

[15] Artal J.S., Aznar D., Caraballo J., Otín J.L. (2008). Desarrollo de MicroBots destinados a una Pequeña Aplicación Logística como PFC”. Proceeding del Congreso de Tecnologías Aplicadas a la Enseñanza de la Electrónica. TAEE.

Motivación e Integración de Conocimientos en Ingeniería

Eléctrica y Electrónica mediante MicroBots

Motivation and Integration of Knowledge in Electrical and Electronic Engineering by means of MicroBots

J. Sergio Artal1, Juan M. Artacho2

1 Dpto Ingeniería Eléctrica / Escuela de Ingeniería y Arquitectura, EINA. Universidad de Zaragoza 2 Dpto Ingeniería Electrónica y Comunicaciones /Escuela de Ingeniería y Arquitectura. Universidad de Zaragoza

Resumen Un elemento clave y dinamizador en el aprendizaje de los estudiantes es la utilización de una estrategia didáctica motivadora que sea capaz de crear la intención de aprender. La motivación del estudiante resulta fundamental en la enseñanza de diversas áreas de conocimiento y en particular las asociadas a la Ingeniería Eléctrica y Electrónica. Las asignaturas de los planes de estudio suelen tratar diferentes contenidos de forma vertical, profundizando en conocimientos y técnicas dentro de un área concreta, pero normalmente sin establecer relaciones con los contenidos de otras asignaturas. Todo esto provoca que los alumnos tengan muchas visiones parciales de la tecnología, careciendo de una visión integradora global que, además de necesaria, favorece la motivación y proporciona consciencia al estudiante sobre la utilidad de lo aprendido. Por otra parte, la utilización de pequeños dispositivos electrónicos aplicados sobre robot móviles autónomos (MicroBots) se muestra como una ciencia multidisciplinar dinámica y flexible que se adapta adecuadamente a los objetivos del EEES. Facilitando la integración de conocimientos asociados a diversas disciplinas de la Ingeniería y fomentando la motivación del alumnado como elemento clave para el aprendizaje. Palabras clave Aprendizaje Basado en Problemas y Proyectos. Metodología Activa y Dinámica. Integración de conocimientos. Motivación. Procedimiento Enseñanza/Aprendizaje. Innovación Docente. Problema Reto. Diseño de Prototipos Experimentales. Abstract A key and dynamic element in the learning of the students is the utilization of a didactic motivating strategy that is capable of creating the intention of learning. The motivation of the student is fundamental in the education of diverse areas of knowledge and especially the associated with the Electrical and Electronic Engineering. The subjects of the plans of study manage different contents of vertical form, studying in depth the knowledge and technologies inside a specific area, but normally without establishing relations with the contents of other matters. All that causes that the students have many partial visions of the technology, without having an integration global vision that in addition is necessary. This integration vision improves the motivation of the students and provides conscience about the utility of

J. Sergio Artal, Juan M. Artacho

the learned. On the other hand, the utilization of small electronic devices applied on robot mobile autonomous (MicroBots) appears as a multidisciplinary dynamic and flexible science that one adapts adequately to the aims of the EEES. What facilitates the integration of knowledge associated with diverse disciplines in the Engineering and it promotes the motivation of the students as key element for the education/learning process. Keywords PBL Project/Problem Based Learning. Active and Collaborative Methodology. Integration of Knowledge. Motivation. Procedure Education / Learning. Educational Innovation. Challenge Problem. Design of Experimental Prototypes.

INTRODUCCIÓN

El proceso de convergencia en el marco del Espacio Europeo de Educación Superior (EEES) ha supuesto una gran revolución dentro de la educación universitaria, produciéndose un importante cambio en el paradigma enseñanza/aprendizaje en el ámbito de la sociedad educativa. En dicho contexto surge la necesidad de un modelo de enseñanza-aprendizaje en el que las clases sean dialogadas; donde el profesor actúe de estimulador de la participación (planteando actividades variadas y formulando preguntas al alumnado) y el estudiante adopte un papel activo en las clases, fomentando el aprendizaje comprensivo, la aplicación de conocimientos y la toma de decisiones; de forma que la comunicación en el binomio profesor-estudiante sea bidireccional [1], [2].

En este nuevo modelo de enseñanza/aprendizaje, el rol del profesor cambia de la mera transmisión de conocimientos a los estudiantes, a ser el mediador en la construcción del propio conocimiento por parte de estos. Este es un modelo constructivista donde la información externa es interpretada y reinterpretada por la mente de los estudiantes, que van construyendo progresivamente modelos explicativos cada vez más complejos y profundos en un proceso dinámico, reflexivo e interactivo. Se trata de una visión de la enseñanza en la que el alumno es el centro o foco de atención y donde el profesor juega, paradójicamente, un papel decisivo. Asumir este cambio en el paradigma educativo, supone que el profesor debe plantearse la introducción de nuevas metodologías en su tarea docente, que puede dar lugar a modificaciones tanto en la organización del aprendizaje como en los sistemas de evaluación.

Como punto de partida se ha apreciado que las clases magistrales de teoría y problemas indican habitualmente una escasa motivación del alumnado, independientemente del tema tratado. De modo que la participación en el aula en forma de preguntas, comentarios o ejercicios es baja. Mientras que por el contrario, en las clases de laboratorio los estudiantes trabajando en grupo muestran un carácter mucho más dinámico y participativo, comentando con sus compañeros la tarea a realizar, y realizando continúas preguntas y comentarios al profesor. Por ello, surge la necesidad de aplicar metodologías activas de aprendizaje [3].

Motivación e Integración de disciplinas en Ingeniería mediante MicroBots

La incorporación de metodologías activas y colaborativas tales como: el Aprendizaje basado en Problemas y/o Proyectos PBL (Problem/Proyect Based Learning), Port-folio Docente o el Método del caso (MdC) permiten que el estudiante alcance un aprendizaje mucho más significativo asumiendo, a su vez, la responsabilidad de su propio aprendizaje. Con la aplicación de este tipo de metodologías docentes el alumno desarrolla otro tipo de competencias genéricas o transversales como: el trabajo en grupo, la búsqueda de información, la capacidad de análisis y síntesis, el liderazgo, la planificación y gestión del tiempo, el autoaprendizaje o el pensamiento crítico [4], [5], [6], [7].

En este sentido, el diseño de robots y MicroBots se ha comenzado a introducir en diversas áreas de la Ingeniería como elemento para fomentar la afición por la tecnología de una forma amena y divertida. Todo ello, de cara a favorecer la motivación del estudiante, así como para favorecer la integración de diversas disciplinas de conocimiento de la Ingeniería. En conjunto, podemos afirmar que la robótica móvil está desarrollándose en los últimos años no sólo como una tecnología más en la que están apareciendo aplicaciones industriales sino como un medio de incentivar el aprendizaje de los estudiantes de Ingeniería, ayudando a poner en práctica competencias, capacidades, habilidades y destrezas necesarias para un ingeniero.

APLICACIÓN DE MICROBOTS COMO ELEMENTO INTEGRADOR DE CONOCIMIENTOS Y DE MOTIVACIÓN

Diversos autores han propuesto la utilización de pequeños robots móviles (denominados MicroBots) como una herramienta docente [8], [9]. El diseño de pequeños robots móviles por parte de los estudiantes y su participación en competiciones nacionales e internacionales se ha comenzado a utilizar en el ámbito internacional, además de para transmitir conocimientos técnicos asociados a una materia específica, como medio para fomentar la motivación de los alumnos en sus estudios universitarios [10], [11]. A modo de ejemplo, Akita et al. [12] presenta un estudio universitario organizado entorno a la realización de robots para la participación en el campeonato internacional RoboCup junto con todas las disciplinas de conocimiento relacionadas en el desarrollo y diseño, constituidas por el aprendizaje basado en problemas y/o proyectos.

El desarrollo de un robot móvil puede ser utilizado como herramienta de aprendizaje basado en proyectos en la docencia universitaria, y en particular en el ámbito de las ingenierías, facilitando la transmisión, adquisición, descubrimiento y evaluación de habilidades y conocimientos de los estudiantes de forma objetiva y global [6], [13]. Se trata pues de un proceso formador único que implica la coordinación de elementos humanos, técnicos y sociales hacia la consecución de un objetivo específico.

Contexto del trabajo

El procedimiento activo-cooperativo propuesto en este documento cumple con los requerimientos exigidos por el nuevo sistema de créditos del

J. Sergio Artal, Juan M. Artacho

Espacio Europeo de Educación Superior (EEES) dentro del marco educativo de Bolonia. En las actividades de clase se utilizan diferentes técnicas como la resolución de cuestionarios de tipo test; resolución de problemas o preguntas cortas paso a paso junto con algunas actividades voluntarias de construcción de prototipos (MicroBots). Se emplea Moodle como plataforma de apoyo y e-learning, apoyando el procedimiento con abundantes recursos multimedia y explicaciones interactivas de forma sincronizada con las actividades llevadas a cabo en el aula. Paralelamente, se ofrece a los estudiantes la posibilidad de realizar talleres voluntarios de problemas (en horario de tutorías de los profesores) y se incluyen demostraciones significativas y relevantes en el laboratorio en relación con los contenidos teóricos vistos previamente en el aula.

El trabajo aquí presentado se enmarca en un proyecto de innovación docente realizado durante los cursos académicos 2009-10 y 2010-11, aplicándose en la asignatura de Electrónica Industrial perteneciente al segundo curso de la titulación de Ingeniería Técnica Industrial, siendo esta asignatura una materia troncal y obligatoria de carácter anual.

Desarrollo de la experiencia

Las líneas de actuación llevadas a cabo han sido una continuación y evolución de las realizadas en anteriores cursos académicos [14], acercando la teoría a la práctica propia de la Ingeniería. Para ello se han desarrollado prototipos experimentales y aplicaciones prácticas de interés que permiten convencer al estudiante de la relación entre los conceptos teóricos básicos de la Electrónica Industrial, vistos en el aula, con la realidad práctica del futuro ejercicio de su profesión.

La introducción progresiva de problemas de aplicación real adaptados al nivel de conocimientos, tanto para su desarrollo en pizarra como propuestos para trabajo de los estudiantes en la preparación de la materia, ha permitido dar a dicha asignatura un enfoque mucho más práctico. El objetivo no es otro que el estudiante aprecie lo antes posible algunas aplicaciones y desarrollos industriales de la Electrónica, implementada sobre la Ingeniería, aunque sea en una versión simplificada del proceso educativo. De esta manera, plantear y proponer problemas con un trasfondo aplicado y adaptados a un segundo curso de ingeniería no resulta una tarea fácil, ya que cuanto más se acercan las cuestiones y problemas a las aplicaciones prácticas relevantes más se incrementa su dificultad resolutiva.

Una directriz básica de dichas actuaciones docentes es involucrar a los estudiantes en el desarrollo de los proyectos, considerando fundamental su participación para su adecuado proceso formativo. Algunos de estos prototipos o proyectos pueden llevarse a cabo con los alumnos de la asignatura, pero en otros casos (de mayor complejidad) es necesario recurrir a estudiantes de últimos cursos que los desarrollen en forma de proyectos fin de carrera. Ambas opciones han demostrado su validez sobre los estudiantes y su eficacia se ha mostrado en la exposición pública de los resultados [15].

Motivación e Integración de disciplinas en Ingeniería mediante MicroBots

El trabajo aquí desarrollado se centra en la aplicación del Project-Based Learning “PBL” sobre el desarrollo de estructuras robóticas móviles de tamaño reducido y de bajo coste. La temática abordada despierta la curiosidad de los estudiantes y les estimula el reto de elaborar un artefacto robótico móvil que realice una tarea sencilla pero concreta y de manera más o menos eficiente. Todo ello con la finalidad de promover la motivación del estudiante así como favorecer la integración de los contenidos de diversas disciplinas de conocimiento en la Ingeniería.

Planteamiento del proceso y evaluación

En los grupos de docencia se mantuvieron los mismos objetivos de aprendizaje de conocimientos, que se evalúan en un examen común. Esta prueba escrita está constituida por cuestiones tipo test para la evaluación de la teoría y por un problema de diseño (donde se valora la capacidad de análisis y síntesis adquirida por los alumnos durante el curso). Aunque a los estudiantes que se acogen a este nuevo procedimiento educativo se les ofreció un "menú" especial de evaluación, donde además se tienen en consideración los resultados de las actividades docentes del PBL, de forma que el examen común posee un menor peso en la nota final de la asignatura. También se introdujo un cronograma con una previsión de horas de estudio/trabajo coherente al nuevo sistema de créditos ECTS. El material perteneciente a las actividades desarrolladas por los alumnos forma parte del port-folio del estudiante, que se le pide que mantenga actualizado. Esta carpeta puede ser recogida, de forma aleatoria, por el profesor para su posterior evaluación, durante el transcurso del curso académico.

El principal elemento innovador fue el planteamiento a los estudiantes de la realización de un trabajo de grupo utilizando MicroBots para motivar a los alumnos y facilitar la integración de conocimientos. La realización del trabajo se planteó desde un principio como un pequeño proyecto de ingeniería cuyo fin era la realización y ejecución del prototipo y una presentación oral; animando a los estudiantes a que en las primeras reuniones debían nombrar un interlocutor con el profesor, definir los objetivos y las diferentes tareas a realizar (planificando su temporización), dividir el trabajo entre los miembros del equipo, fijar reuniones de seguimiento, etc... En la presentación oral se dio a cada grupo 15 minutos, seguidos de un máximo de 10 minutos de ruegos y preguntas.

En lo que respecta a la evaluación del trabajo, se evaluó de forma separada el trabajo individual dentro del grupo y el resultado del trabajo en equipo. En la valoración el profesor participa con un 40% en función del desarrollo y correcto funcionamiento del prototipo presentado y del port-folio del estudiante, dejando el resto de la calificación en manos de la autoevaluación personal del alumno y de los miembros del grupo (para la valoración individual) y en los otros grupos (para la evaluación del trabajo en grupo). De esta forma se implica a los alumnos en su evaluación y en la correspondiente a sus compañeros para incentivar la capacidad de razonamiento y pensamiento crítico, que les sirva de cara a su propio autoaprendizaje.

J. Sergio Artal, Juan M. Artacho

Otras consideraciones

El diseño de MicroBots es una actividad muy interesante y atractiva aunque su diseño mecánico comenzando desde cero es una tarea muy compleja para un curso de iniciación salvo que se parta de un conjunto de piezas que haya que ensamblar o de una estructura inicial compleja. En nuestro caso, el diseño mecánico del robot está constituido por una estructura realizada en aluminio y metacrilato que le confiere la suficiente rigidez estructural como para soportar todos los componentes, sensores y transductores que forman parte del desarrollo del sistema electrónico, ver figura. En concreto los alumnos trabajan aspectos relacionados con un robot móvil rastreador capaz de desplazarse de forma autónoma, siguiendo una trayectoria marcada, y reaccionando ante la posible colisión con otros objetos mediante técnicas de retroceso y cambio de dirección.

Figura. Ejemplos de MicroBots rastreadores desarrollados por los estudiantes. Pruebas de navegación, orientación y seguimiento de trayectorias.

Además, merece la pena citar entre otros factores la autoconfianza que genera en el estudiante. Cuando un alumno se plantea el problema reto de construir un prototipo, parte de una situación en la cual posee unos conocimientos básicos para afrontar en gran medida el problema, pero también incorpora ciertas lagunas al respecto. Es por ello que tiene que preocuparse por buscar información adicional en libros, revistas, web, etc… y preguntar a compañeros y profesores. Cuando consigue construir un pequeño prototipo, más o menos eficiente, con éxito incrementa su autoconfianza y motivación al haber conseguido llevar a la práctica un problema complejo aún sin partir de una formación específica para ello. Como precaución, el tiempo destinado a la realización de los pequeños prototipos debe estar cuidadosamente planificado por los docentes para evitar posibles problemas durante su ejecución.

En cuanto a las herramientas docentes utilizadas, el port-folio resulta del todo adecuada para la gestión de este tipo de metodologías activas en la sociedad educativa, ya que permite a los alumnos profundizar en la comprensión del problema, evidenciar su progreso de aprendizaje y es un excelente método de evaluación que soluciona la siempre difícil tarea de evaluar el trabajo desarrollado por el grupo.

Motivación e Integración de disciplinas en Ingeniería mediante MicroBots

En este tipo de experiencia educativa el profesor actúa en primer lugar como guía, indicando al estudiante los pasos a seguir para el correcto desarrollo del prototipo, para a continuación cambiar el rol hacia la vertiente práctica de todo ingeniero, la implementación de habilidades y aporte de ideas que puedan llevarse a la práctica. Posteriormente el profesor actúa como cliente demandando un producto de calidad al estudiante. Y por último es en la presentación oral del trabajo donde el profesor evalúa el proceso de aprendizaje, así como el desarrollo y ejecución del trabajo presentado siguiendo unas pautas similares a las que se siguen en los tribunales de lectura de proyectos final de carrera.

RESULTADOS

La metodología docente encaja mejor en el EEES que el basado únicamente en las clases magistrales, ya que considera todo el trabajo que debe hacer el estudiante y desarrolla otro tipo de competencias transversales como el trabajo en grupo, liderazgo, la asertividad, la presentación de ideas propias y la cooperación, la capacidad de tomar decisiones, la gestión del tiempo o el trabajo bajo presión. Por otro lado, parece clara la preferencia de los estudiantes por procedimientos de enseñanza/aprendizaje más flexibles, dinámicos, participativos y con evaluación continua, a pesar de que la impresión de los alumnos es que les exige un mayor esfuerzo y un incremento en su dedicación con respecto al procedimiento convencional.

Desde el principio de curso, es importante transmitir a los estudiantes, la importancia de la disciplina en el trabajo en equipo y la responsabilidad con el grupo de trabajo. Se ha observado que la carencia de un compromiso con el resto de los compañeros y la aparición de indisciplina con las actividades, provoca un rechazo por parte de algunos de los estudiantes a participar en este tipo de metodologías activas y procedimientos cooperativos. Señalar a título anecdótico que en algunos grupos se detectaron personas que no estaban dispuestas a trabajar siendo penalizados por sus compañeros, en una evaluación interna de grupo.

La utilización y desarrollo de MicroBots ha permitido también aumentar el grado de experimentalidad de los alumnos, mejorando la capacidad de análisis y síntesis, factor que se ha podido contrastar en las calificaciones obtenidas por los estudiantes en el problema de diseño y en la ejecución de las prácticas de laboratorio. Al mismo tiempo, los alumnos han adquirido mayor número de competencias, habilidades y destrezas que son valoradas positivamente en el mundo empresarial.

Desde el punto de vista del estudiante; poder disponer de un nuevo elemento tecnológico que le permita aplicar de forma experimental nuevos conocimientos ha constituido todo un desafío. El hecho de poder experimentar de inmediato nuevas soluciones electrónicas les ha motivado especialmente en el proceso de aprendizaje basado en prueba y error. En ese sentido el profesor debe estar muy atento y detectar cuando el estudiante entra en una dinámica negativa de probar por probar, sin

J. Sergio Artal, Juan M. Artacho

reflexionar lo suficiente sobre los resultados obtenidos y el funcionamiento del sistema.

Desde el punto de vista del docente; la construcción de un pequeño prototipo ha sido un elemento que ha incrementado de forma espectacular la motivación del estudiante, permitiendo que el profesor se convierta en un transmisor de conocimientos que el alumno, a su vez, intuye como necesarios. El profesor posee un mayor feedback sobre el proceso enseñanza-aprendizaje de los estudiantes, pudiendo corregir pequeños defectos de forma que van apareciendo durante el proceso educativo. Por contrapartida, es preciso indicar que el tiempo de profesor necesario para el correcto desarrollo del curso académico aumenta considerablemente con respecto a los procedimientos convencionales.

El grado de satisfacción global de los estudiantes en el desarrollo de estas experiencias ha resultado elevado, opinando que el método activo-colaborativo seguido resulta más adecuado que el método tradicional magistral seguido en otras asignaturas de la titulación. Se ha comprobado una mayor motivación de los estudiantes sobre el desarrollo de las actividades presentadas, estimulando el grado de motivación de los alumnos por sus estudios universitarios. Asimismo, admiten que les facilita la comprensión de otras materias y la integración de conocimientos con otras asignaturas y disciplinas de Ingeniería.

CONCLUSIONES

La metodología implementada pretende contribuir a mejorar el aprendizaje del alumnado, favoreciendo su aprendizaje autónomo y significativo. Proporcionando al estudiante una dinámica de trabajo que le permita adquirir las herramientas necesarias para seguir formándose a lo largo de su vida.

Desde el punto de vista educacional, los esfuerzos empleados por los estudiantes durante el desarrollo del proyecto no deben estar enfocados tanto a la finalización del prototipo, como al conocimiento y habilidades adquiridas durante la realización del mismo. Es tarea del profesor la evaluación continua de los logros académicos y procedimentales en este tipo de metodologías dinámicas, activas y colaborativas, marcados a través de indicadores claros y consensuados desde la fase de planificación. Asimismo, nuestra experiencia como docentes nos indica que es recomendable dar tiempo suficiente a los alumnos para que se adapten a la nueva experiencia educativa y proporcionar nuevas alternativas para aquellos alumnos que no deseen participar en la misma.

Se ha apreciado que los beneficios presentados no están relacionados directamente con los conocimientos técnicos específicos relacionados con la robótica (algoritmos, cinemática y dinámica del robot, etc...) sino más bien con habilidades más generales e importantes en Ingeniería. Entre los objetivos enmarcados en el acuerdo educativo de Bolonia está el potenciar competencias y habilidades profesionales en los egresados que les permitan desenvolverse con éxito en una sociedad cambiante y deseablemente

Motivación e Integración de disciplinas en Ingeniería mediante MicroBots

innovadora. Entre estas competencias se encuentran las habilidades de comunicación, de expresión oral y escrita, la capacidad de innovación y de trabajar en equipos multidisciplinares, liderazgo e iniciativa, creatividad, la adaptabilidad…

El procedimiento aquí propuesto se adapta mejor al marco del Espacio Europeo de Educación Superior, ya que no sólo tiene en consideración el trabajo que debe desarrollar el alumno y su evolución en el proceso de aprendizaje sino que permite proporcionar una evaluación global y objetiva del estudiante. A su vez, la utilización de MicroBots y en general el aprendizaje basado en proyectos, permite a los estudiantes adquirir conocimientos y poner en práctica numerosas bases teóricas de una forma amena y entretenida, lo que permite demostrar al estudiante que las clases teóricas también tienen su utilidad e interés.

En resumen, la utilización de un pequeño prototipo de robot móvil (MicroBot) ha mostrado ser un elemento clave para integrar diferentes disciplinas de conocimiento en Ingeniería y ha resultado una herramienta fundamental para conseguir la motivación del estudiante.

Agradecimientos

Este trabajo se ha llevado a cabo con el apoyo de la Adjuntía de Innovación Docente de la Universidad de Zaragoza. En el marco de ayudas de acciones de innovación docente 2010/11, línea de proyectos de implantación de actividades de aprendizaje innovadoras en el ámbito de la docencia de una materia o asignatura específica (Referencia del Proyecto: PIIDUZ_10_2_528).

Referencias bibliográficas

[1] González J., Wagenaar R. (2003). Tuning Educational Structures in Europe. Informe final. Fase Uno. Bilbao. Universidad de Deusto.

[2] Arias Oliva M., (2003). El Espacio Europeo de Educación Superior: Una oportunidad de desarrollo multidisciplinar a través del aprendizaje y la tecnología. Encuentros Multidisciplinares (15).

[3] Flemming K. F. (2002). Problem-Based Learning in Engineering Education: a catalyst for regional industrial development. World Transactions on Engineering and Technology Education. UNESCO International Centre for Engineering Education (1), 29-32.

[4] Salinas J. (2004). Innovación docente y uso de las TIC en la enseñanza universitaria. Revista de Universidad y Sociedad del Conocimiento (1), 1-15.

[5] Vivas J.F., Allada V. (2006). Enhancing engineering education using thematic case-based learning, International Journal of Engineering Education (22), 236-246.

J. Sergio Artal, Juan M. Artacho

[6] Hsieh C., Knight L. (2008). Problem-Based Learning for Engineering Students: An Evidence-Based Comparative Study. The Journal of Academic Librarianship (34), 25-30.

[7] Yousuf M.A., Montúfar R., Cueva V. (2006). Robotic projects to enhance student participation, motivation and learning, International Conference on Multimedia, Information and Communication Technologies in Education (6),1989-1994.

[8] Powell N.J, Renfrew A., Truscott W.S, Hicks P.J, Canavan B. (2007). Seeding Enquiry-Based Learning in Electrical and Electronic Engineering: Case Study 1 - Optoelectronics. Internacional Conference on Engineering Education, ICEE.

[9] Powell N.J, Renfrew A., Truscott W.S, Hicks P.J, Canavan B. (2007). Seeding Enquiry-Based Learning in Electrical and Electronic Engineering: Case Study 2 - Robotics. Internacional Conference on Engineering Education, ICEE.

[10] Pastor J. (2004), Competiciones de Microrrobots como promoción de la Electrónica: ALCABOT-HISPABOT. Proceeding del VI Congreso de Tecnologías Aplicadas a la Enseñanza de la Electrónica. TAEE.

[11] Christian E. (2006). How to teach at the university level through an active learning approach?. Consequences for teaching basic electrical measurements. Elsevier Science Direct. Measurement (39), 936-946.

[12] Akita J., Kitano H. (1999). RoboCup for Science and Engineering Education: A Case of the Future University-Hakodate. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (6), 734-768.

[13] Mills J.E. (2003). Engineering Education. Is Problem-Based or Project-Based Learning the Answer. Australassian Journal of Engineering Education. AAEE-Australassian Association for Engineering Education ISSN: 1324-5821.

[14] Artal J.S., Mur J, Letosa J., Usón A. (2008). Ensayo de Innovación Docente en un Curso Básico de Electrónica Industrial. Proceeding del Congreso de Tecnologías Aplicadas a la Enseñanza de la Electrónica. TAEE.

[15] Artal J.S., Aznar D., Caraballo J., Otín J.L. (2008). Desarrollo de MicroBots destinados a una Pequeña Aplicación Logística como PFC”. Proceeding del Congreso de Tecnologías Aplicadas a la Enseñanza de la Electrónica. TAEE.

Development of a RadioFrequency System of low cost applied in Education

Artal J.S., Caraballo J. y Bandrés R.

Department of Electrical Engineering. EINA, University College of Engineering and Architecture. University of Zaragoza. Campus Río Ebro. María de Luna nº 3.

Edificio Torres Quevedo, 50018. Zaragoza, Spain. E-mail: [email protected]. Phone: 976 762823. Fax 976 762226.

Abstract— The use of small experiments as a tool for university teaching increases the student motivation, being considered useful elements for the improvement of the teaching and in particular skills, abilities, capacities and competences of the future engineer. This motive allows students manage his experience in the teaching/learning process while allowing to acquire a range of transverse competences that it can reveal in the course of their profession. At the same time, the development of small electronic devices is shown as a flexible, multidisciplinary science that adapts adequately to the objectives marked; on the one hand allows professors to implement various innovative teaching methods (Problem-Project Based Learning PBL, Challenge Problem CP, Case Method MdC,…) and on the other hand the student is clearly motivated to develop skills and competences related to this matter. Based on it, has been implemented a small application circuit destined to control commercial Radio-Frequency transceiver FM-433RF-RXQ1 that manages an operating frequency of 433,92 MHz in order to show to the student a simple application example of Industrial Electronic.

Keywords-component; Classroom Experiments, Band Bases Codification, Radio-Frequency, Project/Problem Based Learning, Challenge Problem, Microprocessors.

I. INTRODUCTION The communication for radio frequency is one of most

used by his proven efficiency and simplicity, resulting from the electromagnetic theory of James C. Maxwell, known from ends of the 19th century. This type of communication provides the possibility of working in the range of free frequencies of license, in compliance with regulations which limit the transmitted power levels.

Table 1. ISM Bands (Industrial, Scientific and Medical) defined by the ITU-R in the points 5138 and 5280.

Bands Central Frequency 6765 – 6795kHz 6780kHz

433,05 – 434,79MHz 433,92MHz 61 – 61,5GHz 61,25GHz 122 – 123GHz 122,5GHz 244 – 246GHz 245GHz

Many industrial applications and current technology are

based on it (RFID Radio Frequency Identification) as a way of

control and identification of different materials in warehouses or logistics centers by means of labels, [1 - 5].

The International Telecommunication Union (ITU) is the specialized agency of the United Nations entrusted to regulate the telecommunications worldwide, among the different administrations and telephone companies.

The range of free frequencies destined to radio frequency depends on the regulation in every country and the international regulation. In Spain, the legislation to implement appears in the ORDEN ITC/3391/2007 from the Ministry of Industry, November 15, 2007.

Tables 1 and 2 show the different bands, range of frequencies and wavelengths proposed in the point 5.138 of the norm indicated.

Table 2. Name of the different bands belonging to the spectrum of frequencies.

The selected module for this application works with a

central frequency of 433,92MHz, integrated to the frequency spectrum between 433,05 to 434,79MHz. In the item from norm “UN-32 ICM Applications in 433 MHz”, is indicated that this band of frequencies is designated for industrial, scientific and medical applications. The uses of these frequencies for such applications are considered of common use (ISM applications - Industrial, Scientific and Medical). However, its use is forbidden for telecommunications applications.

It should be pointed that unlike other technologies, RF has omnidirectional character, giving it a greater robustness and allows communication between mobile devices in a simple, dynamic and flexible way. As example, communication among multiple autonomous mobile robots under a didactic environment can be mentioned.

Name Frequency Range

Wavelenght (λ)

HF. High Frequency 3 – 30MHz 100m – 10m VHF. Very High Freq. 30 – 300MHz 10m – 1m UHF. Ultra High Freq. 300 – 3000MHz 1m – 100mm SHF. Super High Freq. 3 – 30GHz 100mm – 10mm EHF. Extra High Freq. 30 – 300GHz 10mm – 1mm

II. APPLICATION CIRCUIT IN RADIO-FREQUENCY It has been implemented an application circuit to control

the commercial transceiver of Radio-Frequency FM-RXQ1-433RF distributed by Rfsolutions (RF module), which uses an operation frequency of 433,92MHz, see figure 1.

The circuit is constituted for the FM commercial transceiver, a small transmission-reception antenna (1/4 Wavelength Compressed Helical Antenna 433MHz) and a PIC 16F876 microcontroller (Microchip), which manages the RF module. In this case, to obtain the data exchange, it is not necessary to use any special internal peripheral from µP. On the other hand, the RF module operates in its input-output data terminals (RX/TX Data) with TTL levels of voltage, in the same way that the PIC microcontroller, making unnecessary an intermediate circuit of levels adaptation (e.g. MAX222). Therefore, it is possible to effect the connection between the serial ports of both modules directly, see figure 2.

Figure 1. Radio-Frequency module used for the development

of the application, FM-RXQ1-433RF The Radio Frequency module is controlled by the µP by

means of three output pins that are necessary to effect the configuration of the device in the communication. Thus, the choice of the channel -Channel Select pin- corresponding to the frequencies 433,92 or 434,33 MHz is connected to the RA0 terminal of PIC. Through its outputs RA1 and RA2 is made the choice of the RF module operating mode (transmitter, receiver, or stand-by) -terminals TX/RX Select-. While information packets received by the RF module -receiver mode- are sent to the µP through terminal RX Data (input pin RA4), the information emitted by RF module -transmitter mode- is sent from the PIC (output RA3) to the TX Data pin.

Thanks to the settings realized by the manufacturer, the Radio-Frequency module management is greatly simplified, not requiring any type of software pre-configuration, which allows incorporate easily as a classroom and laboratory experience or challenge problem for students. In this way, after to be supplied to +5V and completed its initialization routine, module is ready to run automatically in one of the three possible operating modes. The operating mode selection is performed with the terminals RX/TX Select according to the state of their logic levels.

With only TX Select in low state (TX Select = low → transmitter), is in transmitter mode. With only RX Select in low state (RX Select = low → Receiver) operates in receive mode, while if both terminals are in low level, (TX Select = RX Select = low → Stand-by) is in stand-by mode.

Figure 2. Simple wiring between FM-RXQ1-433RF Radio-

Frequency module and µP PIC 16F876. In the transmitter configuration, upon selection of the

emission frequency is not necessary any default protocol for sending packets. Basically, the module transmits (FM coded) the state of its terminal TX Data, which reduces the difficulty to effect a communication. Data packets sent in the wireless communication can use the codes from base band or to be encrypted using different codification techniques as: Manchester encoding, delay or Miller, Return to Zero, HDBn,... allowing the student to compare the advantages and disadvantages associated to the different techniques used in asynchronous communication or implementation complexity.

Figure 3. Example of the coding implemented in the µP to

communicate with the module.

For example, a simple case of implementation is the encoding followed by various domestic appliances manufacturers in their IrDA infrared modules, where the data packets sent through the communication channel are adapted to a package of 8 bits, according to the processing capacity of the µP used. All information packet begins with a start bit, consisting of a high state of 1500µs and a low state of 500µs, 8 data bits where the "logic 1" consists of a high state of 1000µs and a 500µs low state while the "logic 0" consists of a high and low state of 500µs respectively. Finally a bit of ending, formed only for 2000µs of high state that closes the data packet, see coding example shown in figure 3. In the proposed design, the µP is used for encoding or decoding, by its internal timer the different states corresponding to high and low logic states of the data signal.

As receiver, the RF module decodes and sends to the PIC the set of signals received at the selected frequency. In the application circuit shown in Figure 2 the µP is programmed to filter the signals, by checking the rising and falling as well as the time elapsed between them. Experimental tests realized have shown that it is a robust and reliable filtering system

initial bit + 8 data bit + final bit high state

low state

final

against disturbances caused. Also indicate that when a module is in transmitter mode always sends information (high or low state) occupying the communication channel created.

A. Coding example: Manchester. The interconnection between the user and the

communication network is realized through physical topologies, tree, point to point, star, etc ... These types of encoding they are considered very popular techniques for data signals transmitting and are commonly used as delivery signals for modulation systems in fiber-optic. For example, the Manchester coding is used relatively often in local area networks.

Manchester encoding, also called bi-phase L codification is a method of coding in binary signal where each bit time there is a transition between two voltage levels. Its main use is in Ethernet LANs. A disadvantage is that it consumes twice bandwidth that an asynchronous transmission, such as NRZ coding (Non Return to Zero).

Figure 4. Representative diagram in a Manchester

codification. The Manchester encoding type associates two voltage

levels to each logical value. The transition is effected at half the interval of each bit. When there are equal and consecutive bits a transition occurs early in the second bit, which is not taken into consideration by the receiver at the time of decoding, see figure 4. Only transitions equally spaced in time are considered by the receiver. Some transitions do not occur in the middle of bits. These transitions do not carry useful information, and only are used to put the signal in the next state where will take place the next transition. Thus the logical zero "0" is encoded as the transition +VCC/GND -falling edge- while a logical one "1" is encoded as transition or change of GND/+VCC -rising edge-, see figure 4. The task of analyzing different levels of tension in the communication network (detection of "1 and/or 0 logic") is the µP connected to the RF transmitter module in order to decode the digital information. This sampling operation is developed in the middle of the interval, which allows the detection the different rising or falling edges.

B. Coding example: RZ (Return to Zero). In single-pole RZ code, in order to characterize the "logic

1" a high value of the signal line is maintained during the first half of the bit interval, and low level on the other half, see figure 5. Whereas to "logic 0" assigns the null value to him during all the time of bit. Thus the narrower pulse interval always corresponds to T/2. The main characteristic of this

codification type is its simple implementation, while a disadvantage is a significant DC component and a high content of low frequencies. These types of signal format find application in the magnetic recording of data.

Figure 5. Representative diagram in a RZ codification

-Return to Zero-.

C. Coding example: Miller. This codification type has no more than one transition per

bit time, but has at least one for every two bit intervals, see example shown in figure 6. The codification criterion consists of providing a single transition at the center of the interval when it is "logic 1". In the same way no change occurs within the interval when it is "logic 0", unless it goes followed by other "logic 0". In this situation the transition is effected at the end of the interval. This method it has the disadvantage of increasing the complexity of implementation with respect to the previously shown encodings.

Figure 6. Representative diagram in a Miller codification.

III. IMPLEMENTACIÓN DE LA COMUNICACIÓN ASÍNCRONA Due to the chosen protocol for transmission of data packets

is not necessary to use special communication ports integrated into the PIC 16F876. It does not prevent the use of the same ones if an asynchronous serial transmission is considered necessary. In this case, communication of data from the radio-frequency device must be accomplished through internal module USART (Universal Synchronous Asynchronous Receiver Transmitter) integrated in µP. At the same time, this module USART is configured to perform an asynchronous serial communication. The terminals TX/RX of the PIC are the managers of the transmission and receiption of the serial data packets and must be connected to pins TX/RX Data from RF Module, see figure 7. In this case, the limitation in the USART configuration and therefore in transfer of information is indicated by the manufacturer as the maximum transfer speed of the radio-frequency module from equivalent value to 19,2kbps. To make the USART free in the communication with the module RF, it allows using this port in the integration of the circuit inside a system constituted by the

communication of several µPs whose communication can be realized across the asynchronous serial protocol.

Figure 7. Asynchronous serial communication between

Radio-Frequency module and µP PIC 16F876. For the possible integration of the module RF in a network

composed by several devices, a master-slave configuration has been used, where there appears a small bilateral dialog initiated always by the master. The communication is effected by means of the exchange of several data packets and changes in the operation modes of the different modules (transmitter ↔ receiver). For safety, these changes are made through the stand-by mode with an approximate duration of 15ms (manufacturer recommends tCHANGE ≥ 3ms). In order to avoid collisions or interferences in the exchange of the data packets, the modules RF slave remain in receive mode to the wait of the call of the module RF master to begin dialogue (master-slave communication network). In the least significant bits appears encoded the identification of the RF data packet receiver module. Thus the information can be easily rejected by the rest of the devices that form the communication network.

The RXQ1-FM-433RF Radio Frequency module used operates on the principle of modulation GFSK -Gaussian Frequency Shift Keying-, where the "logic 1" is represented by a positive deflection (∆ω>0) of the carrier signal frequency, whereas a "logic 0" is characterized by a negative deviation (∆ω<0) of the same. This system raised is a version improved of the modulation by phase shift FSK -Frequency Shift Keying-, allowing higher speed data transfer on the same communication channel, see figure 8.

Figure 8. GFSK digital modulation, where it is observed

the deviation ∆ω > 0 or ∆ω < 0 depending on the bit to be transmitted by the communication channel.

A possible improvement in the developed application

consists of the incorporation of a specific controller RF600T (RfSolutions) for transceiver of low power. This component

allows the control of the module RF by means of a synchronously or asynchronous serial protocol (the system converts into a connectable modem to a serial port in the PC) realizing in addition a Manchester codification of the information -data encryption-. Between the characteristics that the device contributes to the system it stands out the addressing capability, a buffer of 190 bytes and a CRC check bit (cyclic redundancy check). In the present report was rejected this option since there is claimed that the students are capable of implementing a simple algorithm for encoding data in the µP.

The radio-frequency device FM-RXQ1-433 used is a low cost module features small size (23x48mm), allowing optimal communication range d≤200m according to information provided by the manufacturer. To indicate in the same way that it has a transmission power of 5dBm (transmitter) with a reception sensitivity of -100dBm (receiver). The power consumption varies depending on the operating mode of the device: transmit mode = 26mA, receive mode = 12mA and stand-by mode = 8mA. This element has two selectable communication channels (433,92 and 434,33MHz) with a deviation ±15kHz. Data packets are transferred via an intermediate carrier signal invisible to the user in the range 65/85kHz. The frequency of this signal limits the maximum transmission speed of the device, so that the maximum baud rate allowed for a serial transmission standard is 19,2 kbps.

IV. APPLICATION OF THE RADIO-FREQUENCY MODULE LIKE EDUCATIONAL TOOL.

As a starting point, it is had in consideration that the teaching classes of theory and problems indicate a low motivation of the students. Independently of the theoretical, descriptive or applied topic, the participation of the students in the classroom realizing questions, comments or exercises it is small. Hence the need to apply the methodology of Project/Problem Based Learning in subjects initially thought of theory and problems. While in laboratory classes the students work in group, show a much more dynamic and participative character, commenting with his colleagues on the task to realizing, with continuous questions and comments to the professor.

Numerous authors have used and there use the development of small challenge problems [6] as an educational tool; being the common conclusion the great factor of motivation that represents for the student the motive of interacting of physical and real form with the abstract concepts transmitted in theoretical meetings given of teaching form.

Thus, a small project is a tool for university education in the field of engineering that allows the transmission, acquisition, discovery and evaluation of skills and knowledge in the students of objective and global form. This way so it is an unique training process that involves the coordination of human, technical and social elements towards a specific aim in a frame of predetermined time and with a certain quantity of resources [7, 8].

The utilization of this device has for object to teach to the students a technology of wireless communication of easy application. At present most of the people uses this technology

∆ω > 0 ∆ω > 0 ∆ω < 0

of one or another way. The daily uses of the GSM mobile telephony networks or the WiFi networks for connection to Internet are two examples of the use of this technology. The large majority of students have never had an initial contact with the devices that manage this type of wireless communication; therefore they are motivated opposite to the utilization of a communication device by Radio frequency.

Table 3. ASCII code. Binary characterization, weight of bits

b7...b5 b4...b1

As a means of introduction into the PBL -Problem Based

Learning-, control card described in the previous sections has been used. This card is able to transmit and receive signals to a base frequency of 433,92MHz, being the student who -by means of the programming of the µP- generates the carrier signal (value of variable frequency), depending on the bit to be transmitted, see figure 8. Likewise the student, through the encoding methods described above, developed an encryption algorithm in order to encode/decode the information to be transmitted by the Radio-Frequency modules.

As a learning objective, the student shall be able to send and receive information through the cards implemented. As an application example, are taken the following text message "HELLO" and/or "THINK" that are encoded using ASCII characters, see table 3. In this table are shown the 127 ASCII characters including some special; in this case the most significant bit of code "b8" is considered in a low state b8 = 0. Thus the information packet is integrated into the carrier signal. In hexadecimal, this small data packet consists of the following bytes:

HELLO → 0×48, 0×45, 0×4C, 0×4C, 0×4F. THINK → 0×54, 0×48, 0×49, 0×4E, 0×4B. The information contained in the text is constituted by a

sequence of alphanumeric characters, so when they are transmitted digitally first they are codified in a sequence called bit string, see figure 9. Thereby waveform coder uses two different signals to represent "1 and/or 0 binary". This example shows the relationship between "message", "character" and "bit".

Figure 9 shows an example of partition of a bit string. The message text displays the words "HELLO" and "THINK". Thus, using the 8bit ASCII code (see table 3) provides a 40bit string. The system considers the characters as a string of digits to be transmitted; only the final user interprets the meaning in the final sequence of bits received.

Figure 9. Example of ASCII coding. The difference among

messages, characters and symbols is observed. Due to that most students do not have specific training in

this microcontroller, the program to use is formed by a template, where students only have to add a number of basic functions such as loops, delays, etc ... typical operations of any structured programming language. In this case, the language used is the "assembly"; mainly due to that it does not need of any license of payment for his utilization. For example, in the communication protocol RS-232, the student should only make a small loop with the 5 bytes that make up the word "HELLO" and/or "THINK" to transmit. To avoid errors in communication, each data packet is sent 3 times in a consecutive form. The rest of the program, contains the most complex part of programming, such as the configuration of input-output ports, etc ... In this way the student can appreciate the advantages and disadvantages of asynchronous serial communication -where the bits that compose each character are transmitted in "n" cycles of 1 bit- together with the parallel communication -where "n" bits that comprise each byte or character are transmitted in a single clock cycle-.

Figure 10. Implementation of the Radio-Frequency

communication system in an autonomous mobile robot. During the development of the problem, the students use

several methods of communication: an asynchronous serial communication protocol for wired applications, a protocol destined to wireless applications (used by some manufacturers of domestic appliances in the infrared controls IrDA) and codified communication protocol (Manchester codification, RZ -return to Zero- or Miller).

The student by means of the digital oscilloscope can observe in any instant, the output signals of the microcontroller in order to estimate the correct functioning of RF's transceiver. This tool has a great interest due to the frequency of the carrying signals, so that some functions of the oscilloscope like "stop" or "trigger" allow obtaining a correct visualization of the signal in order to carry out its analysis and a correct comprehension of the operation system.

V. CONCLUSIONS The education inside the university area has been based

traditionally on the imparting of teaching classes on the part of the professors. This traditional model has been characterized by essentially expository classes; with the addition sometimes of academic experiments, where the teacher acts as transmitter of knowledge and where the student limits himself to taking notes of methodical form. This model favors a memory learning provoking, in turn, an unidirectional communication in professor-student binomial. So the student receives great quantity of information in a short time, which it must internalize through notes and texts thinking about its content under the direction and supervision of his professor.

Hence the need for an alternative model of teaching and learning where the classes are dialogued, the professor acts in stimulating participation (asking questions and making a variety of activities to students), and the students take an active role; classes where is promoted the comprehensive learning and the application of knowledge; resuming, where the communication in professor-student binomial is bidirectional.

Many authors coincide with that the utilization of small experiments like an educational university tool increases the motivation of the student, being considered to be useful elements in the improvement of the teaching and especially of the competences, capacities, abilities and skills of the future engineer. In this respect, the presented paper shows a application circuit of Radio-Frequency, where at the same time as there appears the beginning of functioning of the device it is possible to introduce the student in the implementation of

different protocols of signal codification, observing the advantages and disadvantages that its use presents.

ACKNOWLEDGMENT The authors are grateful for the financial help provided by

the University of Zaragoza for the development of the present work, by means of the Educational Innovation Program, line 2: projects of implantation of innovative learning activities in the area of a matter or specific subject project PIIDUZ_11_2_419 and of the Education Program semi-attendance, line 5: utilization of tools TIC in new methodologies of education / learning project PESUZ_11_5_555.

REFERENCES [1] B. Nath, F. Reynolds and R. Want. “RFID Technology and

Applications”. IEEE Pervasive Computing. Vol. 5, issue 1. Jan-March 2006, pp 22 to 24.

[2] W. Gueaieb and S. Miah. “An intelligent Mobile Robot Navigation Technique using RFID Technology”. IEEE Transaction on Instrumentation and measurement. Vol. 57, issue 9. September 2008. pp 1908 to 1917.

[3] C.M. Roberts. “Radio Frequency Identification (RFID)”. Elsevier Computer & Security. Vol. 25, issue 1, February 2006. pp 18 to 26.

[4] T. Sanpechuda and L. Kovavisaruch. “A review of RFID localization: Applications and Techniques”. 5th International Conference on ECTI-CON 2008. Electrical Engineering Electronics, Computer, Telecommunications and Information Technology 2008. Vol. 2, 14/17 May 2008. pp 769 to 772.

[5] Hickman Ian “Practical RF Handbook”. Third Edition (EDN Series for Design Engineers). ISBN: 978-0750653695.

[6] C. Hsieh, L. Knight, “Problem-Based Learning for Engineering Students: An Evidence-Based Comparative Study”. The Journal of Academic Librarianship, Vol. 34, pp. 25-30, (2008).

[7] N.J. Powell, A. Renfrew, W.S. Truscott, P.J. Hicks and B. Canavan. “Seeding Enquiry-Based Learning in Electrical and Electronic Engineering: Case Study 1 - Optoelectronics”. International Conference on Engineering Education, ICEE Coimbra, 2007.

[8] N.J. Powell, A. Renfrew, W.S. Truscott, P.J. Hicks and B. Canavan. “Seeding Enquiry-Based Learning in Electrical and Electronic Engineering: Case Study 2 - Robotics”. International Conference on Engineering Education, ICEE Coimbra, 2007.

Incorporation of Mobile Phones in Small Robotics Applications like Educational Tool.

Artal J.S., Caraballo J. y Bandrés R. Department of Electrical Engineering. EINA, University College of Engineering and Architecture.

University of Zaragoza. Campus Río Ebro. María de Luna nº 3. Edificio Torres Quevedo, 50018. Zaragoza, Spain.

E-mail: [email protected]. Phone: 976 762823. Fax 976 762226.

Abstract— The Learning based on Projects and/or Problem PBL-Problem/Project Based Learning, Case Method MdC or Challenge Problem CP allow that the students should acquire a more significant learning assuming, in turn, the responsibility of his own learning. At the same time the students develop another series of transverse competences related as: the teamwork, leadership capacity, critical thought, the search of information... Thus the utilization of a motivating didactic strategy that is capable of creating the intention of learning on the students is considered a key and revitalizing factor in the classroom. In this document it shows itself a simple application based on the incorporation of an old mobile phone Nokia 3310, Ericsson 750i or Siemens A55 to a small autonomous mobile robot in order transmit the instructions related to his orientation, navigation and displacement. The described application constitutes a factor of motivation extra on the students due principally to the curiosity and relevancy of the raised project.

Keywords-component; Mobile Robot, Microcontrollers, Cellular Phone, Telecontrol, Problem/Project Based Learning, Challenge Problem.

I. INTRODUCTION At present, one of the educational paradigms associated

with the university teaching related to the application of the PBL-Problem/Project Based Learning and/or CP-Challenge Problem it is to find a small application that includes a factor of motivation extra on the students, factors to having in consideration can be the curiosity and relevancy of the project and/or problem. At the same time this small project must constitute a challenge in the development of the training in the students, without leaving of the standards of knowledge where the subject is located.

In addition in the latter years, a great height has produced to itself in the area of the Telecommunications what it has brought with him that most of the students changes successive, almost compulsive form, of mobile phone as consequence of the promotion campaigns offered by the telephony companies. This has provoked that a great number of devices or electronic terminals remain left without being completely obsolete, being able to manage to be a good favourable environment for the development of small applications destined for the remote control, on the part of the user, of different static equipments/systems or his incorporation in robotic mobile

systems in order to effect a type of effective task of autonomous form [1].

The communication here raised exposes the incorporation of a mobile phone type Nokia 3310, Erikson 750i or Siemens A55, though it can be any different, as communication element on a small autonomous mobile robot already developed as final project of career PFC in previous academic courses. The aim is not other that the sending of information and output data destined for the control, addressing, displacement and navigation of a small autonomous mobile robot colloquial named MicroBot [2].

For the development of this application it has been used the asynchronous serial communication that incorporates the mobile terminal (in general in his interior, under the supply battery). Hereby there has analyzed and developed an application constituted by the microprocessor PIC 16F876, which decodes and translates the information of bidirectional form between the MBot and the mobile terminal. This way so, by means of the use and sending of commands of easy implementation (AT Command) it is possible to transmit information between two terminals located in any part of the terrestrial globe, always and when they meet inside a zone telephonic coverage.

II. DEVELOPMENT OF THE APPLICATION.

A. Nokia 3310 At the moment of selecting a mobile phone for his

recycling, they have been considered diverse factors among which it is possible to stand out: that the terminal is widely used, that could be connected physically to a microcontroller of flexible and simple way, that it is possible his external control for a PC and which has a communication protocol compatible with the microcontroller selected.

The mobile phone of the company Nokia 3310, launched onto the market in the year 2000, has been one of the terminals most sold in the history of the mobile telephony, with a total of 126 million units approximately [3]. This is the principal reason for which this model it was of more acquaintances of the market and that with major probability it is possible to obtain as consequence of a donation or approaching a shop of mobiles. In addition, in second-hand store, it is frequent finds

this model to the sale for a low price, as well as replacement pieces or element substitution.

The communications port of the Nokia 3310, it is available under the battery and it is constituted by 4 pads visible placed in control circuits. These pines make possible his interconnection to a minimal system of communication, already be by means of a small adapter or by means of the weld of a wired up bus in the terminals mentioned. With this simple interface, the communication of the Nokia 3310 with the microcontroller is possible, since the communication protocol has a standard of asynchronous serial port, easily controllable from the system. By means of this port, it is possible to send and to receive instructions from the mobile telephone CPU, being the system interface the keyboard and the screen of the device.

Due to his age, more than 10 years, Nokia's device only operates under the GSM network, more that sufficient to send and to receive calls or short messages of text, SMS. With dimensions of 113x48x22mm and 133g of weight, they make it useful for his adjustment to a portable application like it can be the integration on a mobile autonomous robot.

B. Control card of the mobile phone. To realize the control of the mobile phone it has been

developed an expansion card based on the microcontroller Microchip PIC 16F876. This µC has an asynchronous serial port (pin RC7/RX and pin RC6/TX) with a transfer speed of information compatible with the Nokia 3310. There exists a difference between the output voltages values that accept the devices; this way like the operation voltage µC, for the serial signal, is accepted by the mobile phone, the output signal of the Nokia 3310 is not accepted by the PIC. Hereby the use of an adapter is necessary for this logical level.

Figure 1. Connection between the mobile Nokia 3310 and the

developed system constituted for µP PIC 16F876. For the communication with the Nokia 3310, there exist

two possible communication buses, M-BUS and F-BUS. The first one is a line of bidirectional communication, whereas the second one is a small communication port formed by a pin of transmission and a second pin of information reception. This structure, compatible with a conventional asynchronous serial communication, it is used for the connection to communication card.

Due to the low capacity of storage of the PIC 16F876, a memory Microchip 24LC16 of 16kbits has been added to the card (formed by 8 blocks of 256 bytes). This memory is controlled for the µC by means of the I2C port, see figure 1.

To realize the first control tests of the mobile phone, the information data sent by the same was monitored across the computer [4]. Due to the differences of logical voltages between the serial port RS232 located in PC (-12V, +12V) and the serial port voltages of the Nokia 3310 (+3V, 0V) was necessary to add to the control card a device MAX222, see figure 2. This IC is constituted by two converters, the second of them it was used to adapt the voltages of the telephone to µC.

Figure 2. Interconnection of the Nokia 3310 to the computer

by means of the FTDI 232. The program Hercules of management of the serial port,

was used to realize the first tests with the mobile phone. The information sent from the same, it is stored in text files for his later analysis and study. At present the massive use of the USB (Universal Serial Bus) like standard protocol for the communication of the PC with diverse peripheral, it has supposed that the equipments manufacturers have stopped commercializing devices with serial ports COM -necessary for the activity with the program as Hyperterminal or Hercules-. This problematic it has been solved by means of the use of modules converters as the FT232R or UM245R distributed by FTDI, which connected to the port USB believes a virtual serial port in the computer PC.

C. Communications Protocol of the Nokia 3310. Though in telephony it exists the widespread use of the

commands AT, (set of simple instructions based on the code ASCII), the cellular Nokia 3310 use an own communication protocol, so called F-BUS, being used for the development of this small application.

The information transfer speed for this bus is of 115200bps (bits per second), being every information packet formed by 8 bits of information, a bit of stop and it does not has any bit of parity, see figure 3. (Therefore both communications port of the control card and the serial port of the computer must be configured under these parameters). Unlike the commands AT, the communication F-BUS is not constituted by characters ASCII legible in a text file.

Thus, the instructions and the different information packages are constituted by hexadecimal values. This carries to the need, at the moment of to visualize the information and to

send the data across the computer, a program of monitoring of the serial port different to the classic Hyperterminal of Windows. The program Hercules, version 3.2.4 of the company HW Group, was the used, since it allows the visualization on screen of the different bytes received in his hexadecimal format, as well as the sending of the same, see figure 4.

Figure 3. Information format 8-N-1 (bits - parity - stop sign) to transmit.

D. Beginning of the communication with the mobile phone. To initiate the communication with the mobile telephone,

first is necessary a synchronization of the device with the expansion card. This synchronization is effected across the sending repeated of a data packet.

Figura 4. Example of the sequence of code sent and received

for the Nokia 3310.

Serve as example of sending, the following plot of hexadecimal code: 1E 00 0C D1 00 07 00 01 00 03 00 01 60 00 72 D5 This sequence of the information code returns the hardware and software version of the device.

A possible response of the device would be the showed later: 1E 0C 00 7F 00 02 D1 00 CF 71 (Recognition of the code)

1E 0C 00 D2 00 26 01 00 00 03 56 20 30 34 2E 35 30 0A 31 32 2D 31 30 2D 30 31 0A 4E 48 4D 2D 36 0A 28 63 29 20 4E 4D 50 2E 00 01 47 3F A2 (Software and hardware version of the device).

As soon as the mobile phone and the expansion card are synchronized, it is possible the control of the basic functions of the telephone Nokia 3310 by means of the control card and the sending of a instructions sequence and specific parameters.

E. Compression of the text messages according to Standard GSM. One of the functions most used in the application is the

sending and reception of text messages, SMS; with this purpose it is used an information correlation in which several parameters will have to appear. In the structure of the above mentioned data correlation, codified information appears as: the telephone number to which it is going to send or it is going to receive the message, as well as the number of the service center for SMS of the company that offers the service GSM. According to the standard GSM, the sending of SMS is limited to 140 octets. This means that alone it is possible to send 140 characters ASCII of 8 bits. Nevertheless, Nokia's protocol uses codes ASCII of 7 bits, for what in 140 octets can to appear 160 characters. This is a factor to have in consideration at the moment of handling the SMS, since the data packet dedicated to the content of the messages must be "packed" in the process of sending and "unpacked" after the reception. All these processes are carried out by the microcontroller [5].

As example, the result of converting to hexadecimal the text "zzzzz1" constituted for code ASCII it is “7A 7A 7A 7A 7A 31”. Nevertheless, after the packing, the result is “7A BD 5E AF 8F 01”, that would be the package of octets to introducing in the data correlation of sending of SMS.

Due to the short length of the message, is not observed a decrease in the number of octets sent. Nevertheless, the text "Correct Reception" formed by 19 characters, turns into a package of 17 octets: “D2 F2 B8 0C 1F A7 DF 6E D0 F8 2D 97 97 C7 F4 B0 0B”. In this case is observed the benefit of operating with the model standard of "packing".

F. Ericsson 750i and Siemens A55. At the moment of selecting a mobile phone to provide a

communication GSM to a small system constituted by microcontroller, several alternatives were raised to the Nokia 3310. First, it implements the control of a mobile telephone of Sony Ericsson company, the model k750i made the year 2005. Across his plug wire USB for PC, it was possible his managing and control by means of the utilization of the Hyperterminal of Windows, using the AT Commands (whose list of specific instructions and standard is provided by the manufacturer) [6, 7].

Between the controls tests realized to the system it was realized the transmission and reception of data, this way as the sending text messages SMS. Though it is a simple terminal with an external control, the device does not have an external serial port compatible with the microcontroller. This motive has determined initially the development of the application due to that the microprocessor of low range selected has not USB port.

Other mobile phone used for his external control was the telephone of Siemens company, model A55, put in the market in March 2003. As the majority of the models Siemens of the epoch (models A56, C65 ...), it has in his external connector an adaptable serial port to the standard RS-232. Thus, the control of the telephone can be developed by means of commands AT, in the same way as the model of Sony Ericsson. To indicate

also that this device to have external serial port accessible. The element can be controlled by means of the computer or by means of a µC of low range that has an internal port USART -Universal Synchronous Asynchronous Receiver Transmitter-, as for example the PIC 16F876 used in the application.

Inside the AT Commands available in telephony it can find the command "ATDXXXXXXXXX" to realize a call, "AT" to confirm communication with the device, "AT+CMGS" to send text short messages or "AT+CMRG" to read messages SMS received and stored in the memory of the SIM card, see in depth the reference [6].

The minor availability of these last models on the market with respect to the famous Nokia 3310, has caused that the tests and definitively the application was realized on this mobile phone.

III. APPLICATION OF THE NOKIA 3310 ON THE ROBOT Expansion card of the telephone Nokia 3310, it has been

integrated to an autonomous mobile robot of small dimensions (colloquial named MicroBot). Hereby, the robot has the capacity of wireless communication with the user by means of the GSM network [8 - 10]. The information derived from the diverse incidents of the robot can be received for the user. This way so, by means of simple messages of text SMS, the user has in real time, internal parameters diverse since it can be for example some variables obtained during the navigation or displacement of the robot. Of equal form the student is capable of sending different commands and instructions in order that they could be executed by the MBot.

Figure 5. Development of the expansion card incorporated

into the autonomous mobile robot. The union between the controller card of the Nokia 3310

and MBot has been carried out by means of the expansion port of the internal microcontrollers that it has the robot together with the port B of µC that integrates the expansion card [11], see figures 5 and 6.

IV. DEVELOPMENT OF THE EXPERIENCE The process of convergence in the framework of the

European Higher Education Area (EHEA) has supposed a great revolution inside the university education, producing an important change in the paradigm education / learning in the area of the educational society. To assume this change in the

educational paradigm, it supposes that the professor must appear the introduction of new methodologies in his educational task, which were creating modifications both in the organization of the learning and in the systems of evaluation. In this sense, the incorporation in diverse areas of the engineering of active and collaborative methodologies as: the Learning based on Problems and / or Projects (PBL-Problem and Project Based Learning), Challenge Problem (CP) or the Case Method (MdC), they allow that the student should reach a much more significant learning assuming, in turn, the responsibility of his suitable learning. At the same time with the application of this type of educational methodologies the students develops another type of generic or transverse competences as: the teamwork, the search of information, analysis and synthesis capacity, the leadership, the planning and management of the time, the auto-learning, the presentation of suitable ideas and the cooperation, the critical thought or the brainwork.

A key and revitalizing element in the learning of the students is the utilization of a motivating strategy that is capable of creating the intention of learning. Factors to considering can be the curiosity, relevancy of the problem and / or notion of the challenge. The offer here raised proposes the application of the Project-Based Learning "PBL" on the development of robotic mobile structures of size limited and low cost. This way the approached subject matter it aroused great interest and the curiosity of the students and they are stimulated by the challenge of elaborating an application for an autonomous mobile robotic appliance that realizes a simple task of form more or less efficient. The development of small devices or systems applied on the autonomous mobile robot -MicroBots- appears as a multidisciplinary flexible science that adjusts adequately to the proposed aims [12]; on the one hand it allows to the professorship to apply diverse educational innovative methodologies and on the other hand the student is clearly motivated for developed skills, ability and capacities related to this matter.

The design of applications destined to microbots is a very interesting and attractive activity though his mechanical design beginning of zero is a very complex task for an initiation course except that it is a question of a set of pieces that be necessary to assemble or an initial complex structure. In this case, the mechanical design of the robot is constituted by a structure realized in aluminium and methacrylate that provides the sufficient structural stiffness like to support all the components, sensors and transducers that form a part of the development of the electronic system, see figure 5. Therefore the students work aspects related to a tracker mobile robot capable of moving of autonomous form, following a marked path, and reacting to the possible collision with other objects by means of technologies of setback and direction change.

The students have a major preference by the procedures of education / learning the most flexible, dynamic, and participative with continuous evaluation. Though the students think that it is need a major effort and that it is required a considerable increase in his dedication with respect to the conventional procedure [13, 15]. The educational methodology fits better into the EHEA that based only on the magisterial classes, since it considers all the work that the student must do

in class and it allows developing another type of transverse competences.

From the viewpoint of the student; to have a new technological element that allows applying of experimental form new knowledge has constituted a great challenge. The motive to develop and to implement at once new electronic solutions has motivated them especially in the learning process based on test and mistake. Though for it the teacher must be very attentive and to detect when the student enters a negative dynamics of testing for testing, without thinking over the sufficient on the obtained results and crucial questions of functioning of the system.

From the viewpoint of the professor; the construction of a small prototype has been an element that has increased of spectacular form the motivation of the student, allowing that the teaching should turn into a transmitter of knowledge that the student, in turn, considers to be like necessary. The professor has a major feedback on the process education - learning of the students, which allows correcting small faults so that they are appearing during the educational process. In the same way it is necessary to indicate, that the time of teacher necessary for the correct development of the academic course, increases considerably with respect to the conventional procedures.

Figure 6. Autonomous mobile robot "Teseo" together with the

Nokia 3310 expansion system implemented.

V. CONCLUSIONS A key and revitalizing element in the learning of the

students is the utilization of a didactic motivating strategy that is capable of creating the intention of learning. Thus the motivation is considered like fundamental in the education of the knowledge disciplines in Electrical and Electronic Engineering. Factors to have in consideration in this series of educational performances can be the curiosity, notion of the challenge and relevancy or nowadays in the proposed problem. In the same way the accomplishment of a small project application of the Project Based Learning or the Hands-on Laboratory Experience like educational tool in the area or context of the engineering, allows the evaluation of skills, ability, knowledge and competences acquired by the students along the educational process.

On the other hand the learning based on Projects and / or Problem PBL together with Challenge Problem CP, it allows to the students to acquire knowledge and to put in practical

numerous theoretical bases of an entertaining form, which allows showing to the student that the classic theoretical classes can be interesting and useful. The proposed procedure fits better than based exclusively on magisterial classes according to the system framed by the European Higher Education Area, since not only it has in consideration the work that must develop the student and his evolution in the education-learning process but it allows providing a global and objective evaluation of the student.

ACKNOWLEDGMENT The authors are grateful for the financial help provided by

the University of Zaragoza for the development of the present work, by means of the Educational Innovation Program, line 2: projects of implantation of innovative learning activities in the area of a matter or specific subject project PIIDUZ_11_2_419 and of the Education Program semi-attendance, line 5: utilization of tools TIC in new methodologies of education / learning project PESUZ_11_5_555.

REFERENCES [1] Manikandan D., Pareek P. and Ramesh P. “Cell phone operated

robot”. International Conference on Emerging Trends in Robotics and Communication Technologies (INTERACT), 2010. 3-5 Dec. 2010. Pp 183 to 184.

[2] Yun Chan C. and Jae Wook J. “Remote robot control system based on DTMF of mobile phone”. 6th IEEE International Conference on Industrial Informatics, 2008. INDIN 2008. 13-16 July 2008.

[3] http://press.nokia.com/2005/09/21/nokia-introduces-nokia-2652-fold-design-for-new-growth-markets-major-milestone-reached-one-billionth-nokia-mobile-phone-sold-this-summer/

[4] Haeil H., Jonghyun P., Yunchan C. and Jae J. “PC Application Remote Control via Mobile Phone”. International Conference on Control, Automation and Systems, 2010. Oct. 27-30, 2010 in KINTEX, Gyeonggi-do, Korea. Pp 2290 to 2294.

[5] “Digital cellular telecommunications system (Phase 2+); Alphabets and language-specific information (GSM 03.38 version 7.2.0 Release 1998).

[6] Artal J.S., Caraballo J. y López D. “Control y Guiado de un Robot Móvil Autónomo mediante Tecnología GSM.” SAAEI, Seminario Anual de Automática, Electrónica Industrial e Instrumentación. Badajoz 2011.

[7] Artal J.S., López D. y Caraballo J. “Aplicación GSM destinada al control de un Robot Móvil Autónomo mediante Java ME” SAAEI, Seminario Anual de Automática, Electrónica Industrial e Instrumentación. Badajoz 2011.

[8] López D. Vázquez J.I. Ruiz J. and Sainz D. “An Architecture for Sentient GPRS-enable MicroBots”. Proceedings 2005 IEEE Internacional Symposium on Computacional Intelligence in Robotics and Automation. June 27/30, 2005 Espoo (Finland). Pp 145 to 150.

[9] Sai K.V. and Sivaramakrishnan R. “Design and Fabrication of Holonomic Motion Robot Using DTMF Control Tones”. International Conference Control, Automation, Communication and Energy Conservation, INCACEC 2009.4/6 June 2009.

[10] Suvad S. and Raveendran P. “Comparative Analysis of Methods Used in the Design of DTMF Tone Detectors”. Proceedings of the 2007 IEEE International Conference on Telecommunications and Malaysia International Conference on Communications, 14-17 May 2007, Penang, Malaysia. Pp 335 to 339.

[11] J.S. Artal, D. Aznar, J. Caraballo y J.I. Otín. “Desarrollo de MicroBots destinados a una Pequeña Aplicación Logística como Proyecto Final de Carrera”. VIII Congreso de Tecnologías

Aplicadas a la Enseñanza de la Electrónica. Proceeding del Congreso TAEE, Zaragoza (2008).

[12] Artal J.S. y Artacho J.M. “La Robótica como herramienta PBL en la enseñanza de la Electrónica en la Ingeniería”. Proceedings de la Conferencia Internacional sobre Aprendizaje, Innovación y Competitividad, Septiembre 2011, Madrid.

[13] Christian Eugène. “How to teach at the university level through an active learning approach?. Consequences for teaching basic electrical measurements”. Elsevier Science Direct. Measurement, vol. 39, issue 10. December, pp 936 to 946, (2006).

[14] M. Ali Yousuf, R. Montúfar and V. Cueva, "Robotic projects to enhance student participation, motivation and learning", Fourth International Conference on Multimedia, Information and Communication Technologies in Education, vol. 6, nº 1; pp 1989 to 1994. (2006).

[15] C. Hsieh, L. Knight, “Problem-Based Learning for Engineering Students: An Evidence-Based Comparative Study”. The Journal of Academic Librarianship, Vol. 34, pp. 25-30, (2008).