it is made available under a cc-by-nc-nd 4.0 international license … · moore building,...

51
Graph theory as a tool to understand brain disorders 1 Graph theory approaches to functional network organization in brain disorders: A critique for a brave new small-world Michael N. Hallquist 1,2 and Frank G. Hillary 1,2,3 1 Department of Psychology, Pennsylvania State University, University Park, PA 2 Social Life and Engineering Sciences Imaging Center, University Park, PA 3 Department of Neurology, Hershey Medical Center, Hershey, PA Corresponding author: Frank G. Hillary, Department of Psychology, Penn State University, 140 Moore Building, University Park, PA 16802. Email: [email protected]. This research was supported by a grant from the National Institute of Mental Health to MNH (K01 MH097091). Acknowledgments. We thank Zach Ceneviva, Allen Csuk, Richard Garcia, and Riddhi Patel for their work collecting, organizing, and coding references for the literature review and manuscript. Keywords: graph theory, brain disorders, network neuroscience, proportional thresholding . CC-BY-NC-ND 4.0 International license is made available under a The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It . https://doi.org/10.1101/243741 doi: bioRxiv preprint

Upload: others

Post on 17-Apr-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

1

Graphtheoryapproachestofunctionalnetworkorganizationinbraindisorders:

Acritiqueforabravenewsmall-world

MichaelN.Hallquist1,2

and

FrankG.Hillary1,2,3

1DepartmentofPsychology,PennsylvaniaStateUniversity,UniversityPark,PA

2SocialLifeandEngineeringSciencesImagingCenter,UniversityPark,PA

3DepartmentofNeurology,HersheyMedicalCenter,Hershey,PA

Corresponding author: Frank G. Hillary, Department of Psychology, Penn State University, 140 Moore Building, University Park, PA 16802. Email: [email protected].

This research was supported by a grant from the National Institute of Mental Health to MNH (K01 MH097091).

Acknowledgments.WethankZachCeneviva,AllenCsuk,RichardGarcia,andRiddhiPatelfortheirworkcollecting,organizing,andcodingreferencesfortheliteraturereviewandmanuscript.Keywords:graphtheory,braindisorders,networkneuroscience,proportionalthresholding

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 2: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

2

Abstract

Overthepasttwodecades,resting-statefunctionalconnectivity(RSFC)methods

haveprovidednewinsightsintothenetworkorganizationofthehumanbrain.Studiesof

braindisorderssuchasAlzheimer’sdiseaseordepressionhaveincreasinglyadaptedtools

fromgraphtheorytocharacterizedifferencesbetweenhealthyandpatientpopulations.

Here,weconductedareviewofclinicalnetworkneuroscience,summarizing

methodologicaldetailsfrom106RSFCstudies.Althoughthisapproachisprevalentand

promising,ourreviewidentifiedfourkeychallenges.First,thecompositionofnetworks

variedremarkablyintermsofregionparcellationandedgedefinition,whichare

fundamentaltographanalyses.Second,manystudiesequatedthenumberofconnections

acrossgraphs,butthisisconceptuallyproblematicinclinicalpopulationsandmayinduce

spuriousgroupdifferences.Third,fewgraphmetricswerereportedincommonacross

studies,precludingmeta-analyses.Fourth,somestudiestestedhypothesesatonelevelof

thegraphwithoutaclearneurobiologicalrationaleorconsideringhowfindingsatonelevel

(e.g.,globaltopology)arecontextualizedbyanother(e.g.,modularstructure).Basedon

thesethemes,weconductednetworksimulationstodemonstratetheimpactofspecific

methodologicaldecisionsoncase-controlcomparisons.Finally,weoffersuggestionsfor

promotingconvergenceacrossclinicalstudiesinordertofacilitateprogressinthis

importantfield.

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 3: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

3

Introduction

Effortstocharacterizea“humanconnectome”havebroughtsweepingchangesto

functionalneuroimagingresearch,withmanyinvestigatorstransitioningfromindicesof

localbrainactivitytomeasuresofinter-regionalcommunication(Friston,2011).Thebroad

goalofthisconceptualrevolutionistounderstandthebrainasafunctionalnetworkwhose

coordinationisresponsibleforcomplexbehaviors(Biswaletal.,2010).Theprevailing

approachtostudyingfunctionalconnectomesinvolvesquantifyingcouplingoftheintrinsic

brainactivityamongregions.Inparticular,resting-statefunctionalconnectivity(RSFC)

methods(Biswal,Yetkin,Haughton,&Hyde,1995)focusoninter-regionalcorrespondence

inlow-frequencyoscillationsoftheBOLDsignal(approximately0.01-0.12Hz).

WorkoverthepasttwodecadeshasdemonstratedthevalueofRSFCapproachesfor

mappingfunctionalnetworkorganization,includingtheidentificationofseparablebrain

subnetworks(Biswaletal.,2010;Lairdetal.,2009;Poweretal.,2011;Smithetal.,2009;

vandenHeuvel&HulshoffPol,2010).BecauseRSFCmethodsdonotrequirethestudy-

specificdesignsandcognitiveburdenassociatedwithtask-basedfMRIstudies,RSFCdata

aresimpletoacquireandhavebeenusedinhundredsofstudiesofhumanbrainfunction.

Nevertheless,therearenumerousmethodologicalchallenges,includingconcernsaboutthe

qualityofRSFCdata(Poweretal.,2014)andtheeffectofdataprocessingonsubstantive

conclusions(Ciricetal.,2017;Hallquist,Hwang,&Luna,2013;Shirer,Jiang,Price,Ng,&

Greicius,2015).

RSFCstudiesofbraininjuryordiseasetypicallyexaminedifferencesinthe

functionalconnectomesofaclinicalgroup(e.g.,Parkinson’sdisease)comparedtoa

matchedcontrolgroup.Therearespecificmethodologicalandsubstantiveconsiderations

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 4: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

4

thatapplytoRSFCstudiesofbraindisorders.Forexample,differencesintheoveralllevel

offunctionalconnectivitybetweenpatientandcontrolgroupscouldleadtodifferencesin

thenumberofspuriousconnectionsinnetworkanalyses,potentiallyobscuringmeaningful

groupcomparisons(vandenHeuveletal.,2017).Likewise,thereisincreasingconcernin

theclinicalneurosciencesthatanunacceptablysmallpercentageoffindingsarereplicable

(Mülleretal.,2017).Suchconcernsechothegrowingemphasisonopen,reproducible

practicesinneuroimagingmoregenerally(Poldracketal.,2017).

Inthispaper,wereviewthecurrentstateofgraphtheoryapproachestoRSFCinthe

clinicalneurosciences.Basedonkeythemesinthisliterature,weconductedtwonetwork

simulationstodemonstratethepitfallsofspecificanalysisdecisionsthathaveparticular

relevancetocase-controlstudies.Finally,weproviderecommendationsforbestpractices

topromotecomparabilityacrossstudies.

Ourreviewdoesnotdirectlyaddressmanyimportantmethodologicalissuesthat

areactiveareasofinvestigation.Forexample,detectingandcorrectingmotion-related

artifactsremainsacentralchallengeinRSFCstudies(Ciricetal.,2017;Dosenbachetal.,

2017)thatisespeciallyproblematicinclinicalanddevelopmentalsamples(Greene,Black,

&Schlaggar,2016;VanDijk,Sabuncu,&Buckner,2012).Similarly,brainparcellation—

definingthenumberandformofbrainregions—isoneofthemostimportantinfluences

onthecompositionofRSFCnetworks.Therearenumerousparcellationapproaches,

includinganatomicalatlases,functionalboundarymapping,anddata-drivenalgorithms

(Goñietal.,2014;Honnoratetal.,2015).InordertofocusonRSFCgraphtheoryresearch

intheclinicalliterature,whererelevant,wereferreaderstomorefocusedtreatmentsof

importantissuesthatarebeyondthescopeofthispaper.

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 5: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

5

ALiteratureReviewofClinicalNetworkNeuroscienceStudies

Graphtheoryisabranchofdiscretemathematicsthathasbeenappliedinnumerous

studiesofbrainnetworks,bothstructuralandfunctional.Agraphisacollectionofobjects,

calledverticesornodes;thepairwiserelationshipsamongnodesarecallededgesorlinks

(Newman,2010).GraphscomposedofRSFCestimatesamongregionsprovideawindow

intotheintrinsicconnectivitypatternsinthehumanbrain.Figure1providesasimple

schematicofthemostcommongraphtheoryconstructsandmetricsreportedinRSFC

studies.Formorecomprehensivereviewsofgraphtheoryapplicationsinnetwork

neuroscience,seeBullmoreandSporns(2009,2012),orFornito,Zalesky,andBullmore

(2016).

Figure1.Atoygraphandrelatedgraphtheoryterminology.ReprintedwithpermissionfromHillary&Grafman,2017.

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 6: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

6

Thegoalofourliteraturesearchwastoobtainarepresentativecross-sectionof

graph-theoreticRSFCstudiesspanningneurologicalandmentaldisorders.Wefocusedon

functionalconnectivity(FC)asopposedtostructuralconnectivity,whereadistinctsetof

methodologicalcritiquesarelikelyrelevant.Also,wereviewedfMRIstudiesonly,

excludingelectroencephalography(EEG)andmagnetoencephalography(MEG).Although

thereareimportantadvantagesofEEG/MEGinsomerespects(Papanicolaouetal.,2017),

wefocusedonfMRIinpartbecausethevastmajorityofclinicalRSFCstudieshaveusedthis

modality.Inaddition,therearefMRI-specificconsiderationsfornetworkdefinitionand

spatialparcellationinRSFCstudies.WeconductedtworelatedsearchesofthePubMed

database(http://www.ncbi.nlm.nih.gov/pubmed)toidentifyarticlesfocusingongraph-

theoreticapproachestoRSFCinmentalandneurologicaldisorders(fordetailsonthe

queries,seeMethods).

ThesesearcheswereruninApril2016andresultedin626potentialpapersfor

review(281fromneurologicalquery,345frommentaldisorderquery).Studieswere

excludediftheywerereviews,casestudies,animalstudies,methodologicalpapers,used

electrophysiologicalmethods(e.g.,EEGorMEG),reportedonlystructuralimaging,ordid

notfocusonbraindisorders(e.g.,healthybrainfunctioning,normalaging).After

exclusions,thesetwosearchesyieldeddistinct106studiesincludedinthereview(see

Table1).AfulllistingofallstudiesreviewedisprovidedintheSupplementaryMaterials.

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 7: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

7

Table1.Clinicaldisordersrepresentedinthereviewof106clinicalnetworkneurosciencestudies

Note.ADHD:attentiondeficithyperactivitydisorder,MCI:mildcognitiveimpairment

Below,wesummarizeimportantgeneralthemesfromtheliteraturereview,

includingtheheterogeneityofdataanalyticapproachesacrossgraphtheoreticalstudies.

Wethenturnourfocustotwocriticalissueswithimportantimplicationsforinterpreting

networkanalysesincase-controlstudies:1)networkthresholdingand2)matchingthe

hypothesistothelevelofinquiryinthegraph.Foreachoftheseissues,weoffernetwork

simulationstoillustratetheimportanceoftheseissuesforcase-controlcomparisons.

CreatingComparableNetworksinClinicalSamples

Definingnodesinfunctionalbrainnetworks.GraphtheoryanalysesofRSFCdata

fundamentallydependonthedefinitionofnodes(i.e.,brainregions)andedges(i.e.,the

quantificationoffunctionalconnectivity).Fornetworkanalysestorevealnewinsightsinto

ClinicalPhenotype n(frequency)Alzheimer’sDisease/MCI 19(17.9%)Epilepsy/Seizuredisorder 13(12.3%)Depression/Affective 12(11.3%)Schizophrenia 11(10.4%)Alcohol/SubstanceAbuse 7(6.6%)Parkinson’sDisease/Subcortical 6(5.7%)TraumaticBrainInjury 6(5.7%)Anxietydisorders 5(4.7%)ADHD 5(4.7%)Stroke 4(2.8%)Cancer 3(2.8%)MultipleSclerosis 2(1.9%)AutismSpectrumDisorder 2(1.9%)Disordersofconsciousness 2(1.9%)Somatizationdisorder 2(1.9%)DualDiagnosis 2(1.9%)OtherNeurologicaldisorder 3(2.8%)OtherPsychiatricdisorder 2(1.9%)

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 8: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

8

clinicalphenomena,investigatorsmustchooseaparcellationschemethatrobustlysamples

theregionsandnetworksofinterest.Ourliteraturereviewrevealedthat76%ofstudies

definedgraphsbasedoncomprehensiveparcellations(i.e.,samplingmostorallofthe

brain),whereas24%analyzedconnectivityintargetedsub-networks(e.g.,motorregions

only;Table2a).Furthermore,wefoundsubstantialheterogeneityincomprehensive

parcellations,rangingfrom10to67632nodes(Mode=90;M=1129.2;SD=7035.9).In

fact,whereas25%ofstudieshad90nodes(mostoftheseusedtheAALatlas;Tzourio-

Mazoyeretal.,2002),thefrequencyofallotherparcellationsfellbelow5%,resultinginat

least50distinctparcellationsin106studies.

Table2.Networkconstructionandedgedefinition

a.Networkconstruction n(frequency)Comprehensiveregionsampling 80(75.5%)Targetedregionsampling 26(24.5%)

b.Edgedefinition n(frequency)Weightednetwork 48(45.3%)Binarynetwork 42(39.6%)Both 13(12.3%)Unknown/unclear 3(2.8%)

c.EdgeFCstatistic n(frequency)Correlation(typically,Pearson’sr) 82(77.3%)Partialcorrelation 11(10.4%)Waveletcorrelation 6(5.7%)Causalmodeling(e.g.,SEM) 3(2.8%)Other/unclear 4(3.7%)

d.TreatmentofNegativeedges n(frequency)Notreported/unclear 61(57.5%)Discardnegativevalues 23(21.7%)Absolutevalue 10(9.4%)Maintained/analyzed 9(8.5%)Othertransformation 3(2.8%)Note.FC=functionalconnectivity;SEM=structuralequationmodeling

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 9: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

9

Althoughitmayseemself-evident,itbearsmentioningthatseveralpopular

parcellationschemesprovideabroad,butnotcomplete,samplingoffunctionalbrain

regions.Forexample,recentparcellationsbasedonthecorticalsurfaceofthebrain(e.g.,

Glasseretal.,2016;Gordonetal.,2016)haveprovidedanewlevelofdetailonfunctional

boundariesinthecortex.Yetifaresearcherisinterestedcortical-subcorticalconnectivity,

itiscrucialthattheparcellationbeextendedtoincludeallrelevantregions.

Thereareadvantagesandchallengestoeveryparcellationapproach(e.g.,Honnorat

etal.,2015;Poweretal.,2011);here,wefocusontwospecificconcerns.First,agoalof

mostclinicalnetworkneurosciencestudiesistodescribegroupdifferencesinwhole-brain

connectivitypatternsthatarereasonablyrobusttothegraphdefinition.Thus,investigators

maywishtouseatleasttwoparcellationsinthesamedatasettodetermineifthefindings

areparcellation-dependent.Becauseofthefundamentaldifficultyincomparingunequal

networks(vanWijk,Stam,&Daffertshofer,2010),onewouldnotexpectidenticalfindings.

Inparticular,globaltopologicalfeaturessuchasefficiencyorcharacteristicpathlength

mayvarybyparcellation,butotherfeaturessuchasmodularityandhubarchitectureare

likelytobemorerobust.Applyingmultipleparcellationstothesamedatasetincreasesthe

numberofanalysesmultiplicatively,aswellastheneedtoreconcileinconsistentfindings.

Nevertheless,webelievethatthisdirectionholdspromiseforsupportingreproducible

findingsinclinicalRSFCstudies(Craddock,James,Holtzheimer,Hu,&Mayberg,2012;Roy

etal.,2017;Schaeferetal.,inpress).

Second,differencesinparcellationfundamentallylimittheabilitytocompare

studies,bothdescriptivelyandquantitatively.Asnotedabove,ourreviewrevealed

substantialheterogeneityinparcellationschemesacrossstudiesofbraindisorders.

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 10: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

10

Extendingourconcernaboutparcellationdependence,suchheterogeneitymakesit

impossibletoascertainwhetherdifferencesbetweentwostudiesofthesameclinical

populationareanartifactofthegraphdefinitionorameaningfulfinding.Moreover,

whereasmeta-analysesofstructuralMRIandtask-basedfMRIstudieshavebecome

increasinglypopular(e.g.,Goodkindetal.,2015;Mülleretal.,2017),suchanalysesarenot

currentlypossibleingraph-theoreticstudiesinpartbecauseofdifferencesinparcellation.

Toresolvethisissue,weencouragescientiststoreportresultsforafield-standard

parcellation,whilealsoallowingforadditionalparcellationsthatmayhighlightspecific

findings.

Definingedgesinfunctionalbrainnetworks.Parcellationdefinesthenodes

comprisingagraph,butanequallyimportantdecisionishowtodefinefunctional

connectionsamongnodes(i.e.,theedges).Thevastmajority(77%)ofthestudiesreviewed

usedbivariatecorrelation,especiallyPearsonorSpearman,asthemeasureofFC.InCritical

Issue1below,weconsiderhowFCestimatesarethresholdedinordertodefinesedgesas

presentorabsentinbinarygraphs.

ThestatisticalmeasureofFChasimportantimplicationsfornetworkdensityand

theinterpretationofrelationshipsamongbrainregions.Theprevailingapplicationof

bivariatecorrelationdoesnotseparatethe(statistically)directconnectivitybetweentwo

regionsfromindirecteffectsattributabletoadditionalregions.Bycontrast,partial

correlationmethodsrelyoninvertingthecovariancematrixamongallregions,thereby

removingcommonvarianceanddefiningedgesbasedonuniqueconnectivitybetween

regions(Smithetal.,2011).Theadvantagesoffullversuspartialcorrelationmetricsfor

definingFCisatopicofactiveinquirythatisbeyondthescopeofthisreview(e.g.,Cassidy,

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 11: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

11

Rae,&Solo,2015;Varoquaux&Craddock,2013).Nevertheless,wewishtohighlightthatas

theaveragefullcorrelationincreaseswithinanetwork,partialcorrelationvalues,on

average,mustdecrease.Incasesofneuropathologywhereonemightexpectdistinctgains

orlossesoffunctionalconnections,theuseofpartialcorrelationshouldbeinterpreted

basedupontherelativeedgedensityandmeanFC.Ofthestudiesreviewedhere,10%used

partialcorrelation,butvirtuallynostudyaccountedforpossibledifferencesinedgedensity

(seeTable2c).

Inaddition,fullcorrelationsofRSFCdatatypicallyyieldanFCdistributioninwhich

mostedgesarepositive,butanappreciablefractionarenegative.Thereremainslittle

consensusforhandlingorinterpretingnegativeedgeweightsinRSFCgraphanalyses(cf.

Murphy&Fox,2017).Inourreview,57%ofthestudiesreportedinsufficientorno

informationabouthownegativeedgeswerehandledingraphanalyses(Table2d).Twenty-

onepercentofstudiesdeletednegativeedgespriortoanalysis,and9%includedthe

negativeweightsaspositiveweights(i.e.,usingtheabsolutevalueofFC).Asdetailed

elsewhere,somegraphmetricsareeithernotdefinedorneedtobeadaptedwhennegative

edgesarepresent(Rubinov&Sporns,2011).

Importantly,themeanofthefullrankRSFCdistributiondependsonwhetherglobal

signalregression(GSR)isincludedinthepreprocessingpipeline(Murphy,Birn,

Handwerker,Jones,&Bandettini,2009).WhenGSRisincluded,thereisoftenabalance

betweenpositiveandnegativecorrelations.IfGSRisincludedasanuisanceregressor,a

largefractionofFCestimatesmaysimplybediscardedasirrelevanttocase-control

comparisons,whichisamajor,untestedassumption.ThemeaningofnegativeFC,however,

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 12: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

12

remainsunclear,withseveralinvestigatorsattributingnegativecorrelationstostatistical

artifactsandGSR(Murphyetal.,2009;Murphy&Fox,2017;Saadetal.,2012).

GiventhatnegativecorrelationsareobservableintheabsenceofGSR,however,

othershaveexaminedwhethernegativeweightscontributedifferentiallytoinformation

processingwithinthenetwork(Parenteetal.,2017).Negativecorrelationsmayalsoreflect

NMDAactionincorticalinhibition(Anticevicetal.,2012).Theseconnectionsbear

considerationgiventhatbrainnetworkscomposedofonlynegativeconnectionsdonot

retainasmall-worldtopology,butdohavepropertiesdistinctfromrandomnetworks

(Parenteetal.,2017;Schwarz&McGonigle,2011).Altogether,theomissionof

methodologicaldetailsaboutnegativeFCinempiricalreportsseverelyhampersthe

resolutionofthisimportantchoicepointindefininggraphs.

Degreedistributionasafundamentalgraphmetric.Afterresolvingthe

questionsofnodeandedgedefinition,wealsobelieveitiscrucialforstudiestoreport

informationaboutglobalnetworkmetricssuchascharacteristicpathlength,clustering

coefficient(akatransitivity),anddegreedistribution.AsnotedinTable3,localandglobal

efficiencywerecommonlyreported(71%and74%,respectively)andtypicallyacross

multipleFCthresholds.However,ourreviewrevealedthatonly27%ofstudiesprovided

cleardescriptivestatisticsformeandegree,and16%plottedthedegreedistribution.In

binarygraphs,thedegreedistributiondescribestherelativefrequencyofedgesforeach

nodeinthenetwork.Asimilarpropertycanbequantifiedbyexaminingthestrength(aka

cost)distributioninweightedgraphs.Wearguethatformalpresentationofthedegree

(strength)distributionisvitaltounderstandinganyRSFCnetworkforafewreasons.First,

itprovidesasanitycheckonthedata.Becausehumanneuralsystemshavebeenwiredto

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 13: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

13

maximizecommunicationwhileminimizingcost(Bassettetal.,2009;Betzeletal.,2017;

Chen,Wang,Hilgetag,&Zhou,2013;Tomasi,Wang,&Volkow,2013),themostcommon

degreedistributioninhealthyandclinicalfunctionalconnectomesispowerlaw(Achard,

Salvador,Whitcher,Suckling,&Bullmore,2006).Second,reportingdetailsofthedegree

distributionfacilitatescomparisonsofgraphtopologyacrossstudies,aswellastheimpact

ofanalyticdecisionssuchasFCthresholding.Finally,viewingthedegreedistributionmay

offerotherwiseunavailableinformationaboutthenetworktopologyinhealthyandclinical

samples.Forexample,inpriorwork,weexaminedthepowerlaw“tail”ofthedegree

distributiontounderstandtheimpactofthemosthighlyconnected,andrare,nodesonthe

network(Hillaryetal.,2014).

Table3.GraphmetricscommonlyreportedinclinicalRSFCstudies

Graphmetrics n(frequency)DegreeDistribution(plotted) 17(16.0%)MeanDegree(weightedorbinary) 29(27.4%)Clustering/Localefficiency 76(71.7%)PathLength/Globalefficiency 79(74.5%)Smallworldness 33(31.1%)Modularity(e.g.,Q-value) 21(19.8%)

Note.Totalfrequencyisgreaterthan100%becausesomestudiesreportedmorethanoneofthesemetrics.

CriticalIssue1:EdgeThresholdingandComparingUnequalNetworks

Wenowfocusonedgethresholding—thatis,howtotransformacontinuous

measureofFCintoanedgeinthegraph.Inourreview,39%ofstudiesbinarizedFCvalues

suchthatedgeswereeitherpresentorabsentinthegraph,whereas45%ofstudies

retainedFCasedgeweights(seeTable2b).Regardlessofwhetherinvestigatorsanalyze

binaryorweightednetworks,therearefundamentalchallengestocomparingnetworks

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 14: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

14

thatdiffereitherintermsofaveragedegree(k)orthenumberofnodes(N)(Fornitoetal.,

2016;vanWijketal.,2010).Inparticular,comparinggroupsongraphmetricssuchaspath

lengthandclusteringcoefficientcanbeambiguousbecausethesemetricshave

mathematicaldependenciesonbothkandN.

Mostbrainparcellationapproachesdefinegraphswithanequivalentnumberof

nodes(N)ineachgroup.Ontheotherhand,connectiondensityisoftenavariableof

interestinclinicalstudieswherethepathologymayalternotonlyconnectionstrength,but

alsothenumberofconnections.IfNisconstant,variationinkbetweengroupsconstrains

theboundariesoflocalandglobalefficiency.Iftwogroupsdiffersystematicallyinedge

density,thisalmostguaranteesbetween-groupdifferencesinmetricssuchasclustering

coefficientandpathlength.Determiningwheretointerveneinthiscircularproblemhas

greatimportanceinclinicalnetworkneuroscience,wherehypothesesoftenfocusonthe

numberandstrengthofnetworkconnections.

Toaddressthisissue,severalinvestigatorshaverecommendedproportional

thresholding(PT)inwhichtheedgedensityisequatedacrossnetworks(Achard&

Bullmore,2007;Bassettetal.,2009;Power,Fair,Schlaggar,&Petersen,2010).

Furthermore,toreducethepossibilitythatfindingsarenotspecifictothechosendensity

threshold,29%ofstudieshavetestedforgroupdifferencesacrossarange(e.g.,5-25%;

Table4).However,wearguethatdefiningedgesbasedonPTmaynotbeidealforclinical

studies,wherethereareoftenregionaldifferencesinfunctionalcouplingorpathology-

inducedalterationsinthenumberoffunctionalconnections(Hillary&Grafman,2017).For

example,indepression,thedorsomedialprefrontalcortexexhibitsenhancedconnectivity

withdefaultmode,cognitivecontrol,andaffectivenetworks(Sheline,Price,Yan,&Mintun,

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 15: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

15

2010).Asdemonstratedbelow,whenFCdiffersinselectedregionsbetweengroups,PTis

vulnerabletoidentifyingspuriousdifferencesinnodalstatistics(e.g.,degree).The

concernsexpressedhereextendfromvandenHeuvelandcolleagues(2017),who

demonstratedthatPTincreasesthelikelihoodofincludingspuriousconnectionsinthe

networkwhengroupsdifferinmeanFC.

Table4.Thresholdingmethodfordefiningedgesingraphs

Natureofthresholding n(frequency)Allconnectionsretained 6(5.7%)Singlebyvalue 25(23.6%)Multiplebyvalue 28(26.4%)Singlebydensity 5(4.7%)Multiplebydensity 31(29.2%)Bothbyvalueanddensity 7(6.6%)Other(connectionslost) 3(2.8%)Unknown/unclear 1(0.9%)

Note.Value:thresholdingdeterminedbyFCstrength;Single:analysesreportedatasinglethresholdvalue;Multiple:networkexaminedacrossmultiplethresholds

SimulationtodemonstrateaproblemwithPTingroupcomparisons:Whack-

a-node.Inthefirstsimulation—‘whack-a-node’—weexaminedtheconsequencesofPT

onregionalinferenceswhengroupsdifferinFCforselectedregions.Unlikeempirical

resting-statefMRIdata,wheretheunderlyingcausalprocessesremainrelativelyunknown,

simulationsallowonetotesttheeffectofbiologicallyplausiblealterations(e.g.,

hyperconnectivityofcertainnodes)onnetworkanalayses.Simulationscanalsoclarifythe

effectsofalternativeanalyticdecisionsonsubstantiveconclusionsinempiricalstudies.For

detailsonoursimulationapproach,seeMethods.Briefly,weusedanetworkbootstrapping

approachtosimulateresting-statenetworkdataforacase-controlstudywith50patients

and50controls.Werepeatedthissimulation100times,increasingconnectivityfor

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 16: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

16

patientsinthreerandomlytargetednodes(hereaftercalled‘Positive’)anddecreasing

connectivityslightly,butnonsignficantly,inthreerandomnodes(‘Negative’).Wecompared

changesinPositiveandNegativenodestothreeComparatornodesthatdidnotdiffer

betweengroups.

Resultsofwhack-a-nodesimulation.

Proportionalthresholding.Inamultilevelregressionofgroupdifferencet-statistics

(patient–control)ondensitythreshold,wefoundthatPTwassensitiveto

hyperconnectivityofPositivenodes,reliablydetectinggroupdifferences,averaget=12.4

(SD=1.15),averagep<.0001(Figure2a).Importantly,however,degreewassignificantly

lowerinpatientsthancontrolsforNegativenodes,averaget=-6.52(SD=1.15),averagep

<.001.WedidnotfindanysystematicdifferencebetweengroupsinComparatornodes,

averaget=-.22(SD=.65),averagep=.47.

Thesegroupdifferenceswerequalifiedbyasignificantdensityxnodetype

interaction(p<.0001)suchthatgroupdifferencesforPositivenodeswerelargerathigher

densities(Figure3,toppanel),B=11.32(95%CI=10.59–12.04),t=30.72,p<.0001.

Conversely,wefoundequal,butopposite,shiftsinNegativenodes(Figure3,middlepanel):

groupdifferencesbecameincreasinglynegativeathigherdensities,B=-11.93,(95%CI=-

12.65–-11.2),t=-32.74,p<.0001.However,wedidnotobserveanassociationbetween

densityandgroupdifferencesinComparatornodes,B=.31,p=.40(Figure3,bottom

panel).

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 17: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

17

Figure2.Theeffectofthresholdingmethodongroupdifferencesindegreecentrality.Thecentralbarofeachrectangledenotesthemediantstatistic(patient–control)across100replicationdatasets(patientn=50,controln=50),whereastheupperandlowerboundariesdenotethe90thand10thpercentiles,respectively.Thedarklineatt=0reflectsnomeandifferencebetweengroups,whereasthelightgraylinesatt=-1.99and1.99reflectgroupdifferencesthatwouldbesignificantatp=.05.a)Graphsbinarizedat5%,15%,and25%density.b)Graphsbinarizedatr={.2,.3,.4}.c)Graphsbinarizedatr={.2,.3,.4},withdensityincludedasabetween-subjectscovariate.d)Strengthcentrality(weightedgraphs).

−505

1015

0.05 0.15 0.25Density

Mea

n t

Density thresholda)

−505

1015

0.4 0.3 0.2Pearson r

FC Thresholdb)

−505

1015

0.4 0.3 0.2Pearson r

Mea

n t

FC threshold, covary densityc)

−505

1015

Node TypePositiveNegativeComparator

Weightedd)

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 18: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

18

Figure3.Theeffectofdensitythresholdongroupdifferencesindegreecentrality.Dotsdenotethemeantstatisticatagivendensity,whereasverticallinesdenotethe95%confidenceinterval.Allstatisticsreflectgroupdifferencesindegreecentralitycomputedongraphsbinarizedatdifferentdensities.

Functionalconnectivity(FC)thresholding.Ingraphsthresholdedatdifferinglevelsof

FC(rsrangingbetween.2and.5),wefoundreliableincreasesinPositivenodesinpatients,

averaget=6.37,averagep<.0001(Figure2b).Negativenodes,however,werenot

significantlydifferentbetweengroups,averaget=-1.75,averagep=.23.Neitherdid

Comparatornodesdifferbygroup,averaget=.05,p=.50.UnlikePT,forFC-thresholded

graphs,wedidnotfindasignificantthresholdxnodetypeinteraction,𝜒2(16)=13.38,p=

.65.

●●

●●

●●

●●

●●

● ●● ● ●

Comparator

Negative

Positive

0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

11

12

13

−7

−6

−5

−0.4

−0.2

Density threshold

Aver

age

grou

p di

ffere

nce t

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 19: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

19

Functionalconnectivitythresholdingwithdensityascovariate.Bydefinition,FC

thresholdingcannothandletheproblemofgroupdifferencesinmeanFC.Thus,theriskof

FCthresholdingaloneisthatnodalstatisticsmayreflectgroupdifferencesinmeanFCthat

affectinterpretationoftopologicalmetrics(e.g.,smallworldness).Tomitigatethisconcern,

onecouldthresholdatatargetFCvalue,thenincludegraphdensityforeachsubjectasa

covariate(assuggestedbyvandenHeuveletal.,2017).AsdepictedinFigure2c,however,

althoughthisstatisticallycontrolsfordensity,italsoreintroducestheconstraintthatthe

groupsmustbeequalinaveragedegree.Asaresult,thepatternofeffectsmirrorsthePT

graphs(Figures2a,3).Morespecifically,groupdifferencesinPositivenodeswerereliably

detected,averaget=12.39,averagep<.0001.Butpatientsappearedtobesignificantly

morehypoconnectedinNegativenodescomparedtocontrols,averaget=-6.59,averagep

<.001.

Weightedanalysis.Inanalysesofstrengthcentrality,weobservedsignificantly

greaterdegreeinPositivenodes,averaget=5.5,averagep=.0003(Figure2d).Asexpected

givenoursimulationdesign,NegativeandComparatornodeswerenotsignificantly

differentbetweengroups,averageps=.19and.49,respectively.

Discussionofwhack-a-nodesimulation.Inour‘whackanode’simulation,three

nodeswererobustlyhyperconnectedin‘patients’,whilethreenodeswereweakly

hypoconnected.Theprincipalfindingofthissimulationwasthatenforcingequalaverage

degreeusingPTcanspuriouslymagnifychangesingroupcomparisonsofnodalstatistics.

Whenthegroupswereotherwiseequal,hyperconnectivityinselectednodeswas

accuratelydetectedusingPTacrossdifferentgraphdensities.However,nodesthatwere

weaklyhypoconnectedtendedtobeidentifiedasstatisticallysignificant.Theinclusionof

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 20: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

20

lowmagnitude,spuriousconnectionsintothenetworkinheresfromthewayinwhichPT

handlesthetailsoftheFCdistribution.ByretainingonlyedgesatthehighendoftheFC

distribution,edgesthatareonthecuspofthatcriterionaremostvulnerabletobeing

removed.Forexample,atadensityof25%,smallvariationinFCstrengthnearthe75th

percentilecouldleadtoinclusionoromissionofanedge.Asaresult,ifFCforedges

incidenttoagivennodetendstobeweakerinonegroupthantheother,thenbinarygraphs

generatedusingPTwillmagnifythestatisticalsignificanceofdifferencesindegree

centrality.TotheextentthatnodaldifferencesinFCstrengthrepresentashiftinthe

centraltendencyofthedistribution,thisproblemisnotsolvedbyapplyingmultipledensity

thresholds(Figure3).WeobservedthesameproblemifthedirectionofFCchangeswas

flippedinthesimulation:underPT,groupcomparisonsweresignificantforweakly

hyperconnectednodesifsomenodeswererobustlyhypoconnected(detailsavailablefrom

thefirstauthoruponrequest).

WeexaminedFCthresholding(here,usingPearsonrasthemetric)andweighted

analysesascomparisonstoPT.Thesemethodsdonotsufferfromthespuriousdetectionof

nodaldifferencesevidentunderPT.Rather,FCthresholdingaccuratelydetected

hyperconnectednodesacrossdifferentthresholdswhilenotmagnifyingsignificanceofthe

weaklyhypoconnectednodes.However,asnotedelsewhere(vandenHeuveletal.,2017;

vanWijketal.,2010),iftwogroupsdifferinmeanFC,thresholdingatagivenlevel(e.g.,r=

.3)inbothgroupswillleadtodifferencesingraphdensity.Thiscouldmanifestas

widespreaddifferencesinnodalstatisticsduetoglobaldifferencesinthenumberofedges.

Weconsideredwhetherincludingper-subjectgraphdensityasacovariateingroup

differenceanalysescouldretainthedesirableaspectsofFCthresholdingwhileaccounting

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 21: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

21

forthepossibilityofglobaldifferencesinFC.Wefound,however,thatstatistically

covaryingfordensitywasqualitativelysimilarinitseffectstoPTbecauseitconstrainsthe

sumofdegreechangesacrossthenetworktobezerobetweengroups(i.e.,equalaverage

degree).

ThegoalofoursimulationwastoprovideaproofofconceptthatPTmaynegatively

affectnodalstatisticsincase-controlgraphstudiesbyenforcingequalaveragedegree.We

didnot,however,testarangeofparameterstoidentifytheconditionsunderwhichthis

concernholdstrue.Thesimulationfocusedspecificallyondegreecentralityinthebinary

caseandstrengthintheweightedcase.Whileuntested,weanticipatethattheseeffects

likelygeneralizetoothernodalmeasuressuchaseigenvectorcentrality.Importantly,the

problemswithPThighlightedaboveoccurregardlessofedgedensity(Figure3),sotheuse

ofmultipleedgedensitiesdoesnotadequatelyaddressthe“whack-a-node”issue.

CriticalIssue2:Matchingtheorytoscale:Telescopinglevelsofanalysisingraphs

Thesecondmajormethodologicalthemefromourliteraturereviewconcernsthe

alignmentbetweenneurobiologicalhypothesesandgraphanalyses.Werefertothisas

theory-to-scalematching.RSFCgraphsoffertelescopinglevelsofinformationabout

intrinsicconnectivitypatterns,fromglobalinformationsuchasaveragepathlengthto

detailssuchasconnectivitydifferencesinaspecificedge.Forexample,inmajordepression,

resting-statestudieshavefocusedanalysesonspecificsubnetworkscomposedofthe

dorsalmedialprefrontalcortex,anteriorcingulatecortex(ACC),amygdala,andmedial

thalamus(forareview,seeWang,Hermens,Hickie,&Lagopoulos,2012).

Weproposethatgraphanalysesshouldbeconceptualizedandreportedintermsof

telescopinglevelsofanalysisfromglobaltospecific:topology,modularstructure,nodal

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 22: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

22

effects,edgeeffects.Ourreviewoftheclinicalnetworkneuroscienceliteraturerevealed

thatthemajorityofstudies(69%;seeTable5)testedwhethergroupsdifferedonglobal

metricssuchassmall-worldness.Importantly,however,manystudiesprovidedlimited

theoreticaljustificationforwhythepathophysiologyofagivenbraindisordershouldalter

theglobaltopologyofthenetwork.Inthefollowing,weprovidemorespecificcommentson

pathlengthandsmall-worldness,andhowinvestigatorsmightideallymatchhypothesesto

levelsofanalysis.

Table5.Levelofgroupdifferencehypothesesingraphanalyses(i.e.,telescoping)

Hypothesislevel n(frequency)Global 73(68.9%)Module(subnetwork) 41(38.7%)Nodal(Region) 52(49.1%)Edge 1(0.9%)Note.Global:examiningwhole-graphnetworkfeatures(e.g.,small-worldness),Module:examiningsubnetworks/modules(e.g.,defaultmodenetwork).Totalfrequencyisgreaterthan100%becausesomestudiestestedhypothesesatmultiplelevels.

Theclinicalmeaningfulnessofsmall-worldness.Inadefiningstudyfornetwork

neuroscience,WattsandStrogatz(1998)demonstratedthattheorganizationofthecentral

nervoussysteminC.elegansreflecteda“small-world”topology(cf.Muldoon,Bridgeford,&

Bassett,2016).Theimpactofthisfindingcontinuestoresonateinthenetwork

neuroscienceliterature20yearslater(Hilgetag&Kaiser,2004;Sporns&Zwi,2004),with

manystudiesfocusingon“disconnection”andthelossofnetworkefficiencyasquantified

bysmall-worldness(31%ofthestudiesreviewedhere).Althoughsmall-worldtopologies

havebeenobservedinmoststudiesofbrainfunction(Bassett&Bullmore,2016),the

relevanceofthisorganizationforfacilitatinghumaninformationprocessingremains

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 23: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

23

unclear.Otherfeaturesofhumanneuralnetworks,suchasmodularity,mayhavemore

importantimplicationsfornetworkfunctioning(Hilgetag&Goulas,2015).Highernetwork

modularityreflectsagraphinwhichtheconnectionsamongnodestendtoformmore

denselyconnectedcommunities.Asoriginallyobservedinscale-freenetworks,graphswith

highermodularitytendtoberobusttorandomnetworkdisruption(Albert,Barabási,Carle,

&Dougherty,1998).

Itremainsuncertainthat,asageneralrule,brainpathologyshouldbereflectedina

measureofsmall-worldness.Forexample,asmall-worldtopologyispreservedevenin

experimentsthatdramaticallyreducesensoryprocessingviaanesthesiainprimates

(Vincentetal.,2007)andindisordersofconsciousnessinhumans(Croneetal.,2014).

Recognizingthatconventionalmeasuresofsmall-worldness(e.g.,Humphries&Gurney,

2008)dependondensityanddonothandlevariationinconnectionstrength,recent

researchhasrecastthisconceptanditsquantificationintermsofthe“smallworld

propensity”ofanetwork(Muldoonetal.,2016).

Althoughwedonotdisputethevalueofglobalgraphmetricssuchassmall-

worldness,bydefinition,theyprovideinformationatonlythemostmacroscopiclevel.

Groupdifferencesinglobalmetricsmaylargelyreflectmorespecificeffectsatfinerlevels

ofthegraph.Forexample,removingconnectionsinfunctionalhubregionsselectivelytends

toreduceglobalefficiencyandclustering(Hwang,Hallquist,&Luna,2013).Likewise,

failingtoidentifygroupdifferencesinglobalstructuredoesnotimplyequivalenceatother

levelsofthegraph(e.g.,nodesormodules).Todemonstratethepointthatsubstantial

groupdifferencesinfinerlevelsofthegraphmaynotbeevidentinglobalmetrics,we

conductedasimulationinwhichthegroupsdifferedsubstantiallyinmodularstructure.

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 24: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

24

Simulationtodemonstratetheimportanceofunderstandinggraphsat

multiplelevels:globalinsensitivitytomodulareffects.Extendingthebasicapproachof

ourwhack-a-nodesimulation,weuseda13-moduleparcellationofthe264-node

groundtruthgraphinasimulationof50‘controls’and50‘patients’(modularstructure

fromPoweretal.,2011).Morespecifically,weincreasedFCinthefronto-parietalnetwork

(FPN)anddorsalattentionnetwork(DAN)incontrols,andincreasedFCinthedefault

modenetwork(DMN)inpatients.Thesimulationprimarilyexaminedgroupdifferencesin

small-worldness(globalmetric)andwithin-andbetween-moduledegree(nodalmetrics).

AdditionaldetailsareprovidedintheMethods.

Resultsofglobalinsensitivitysimulation.Consistentwithcommonmethodsinthe

field,weappliedproportionalthresholding(PT)between7.5%and25%toeachgraph.We

computedsmall-worldness,𝜎,ateachthreshold(seeMethods),thentestedforgroup

differencesinthiscoefficient.AsdepictedinFigure4,wedidnotobserveanysignificant

groupdifferencesinsmall-worldnessatanyedgedensity,Mt=.36,ps>.3.

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 25: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

25

Figure4.Groupdifferencesinsmallworldness(𝜎)asafunctionofedgedensity.Thecentralbarofeachrectangledenotesthemedian𝜎statistic(patient–control),whereastheupperandlowerboundariesdenotethe90thand10thpercentiles,respectively.

However,consistentwiththestructureofoursimulations,wefoundlargegroup

differencesinwithin-andbetween-moduledegree(Figure5).Inamultilevelregressionof

within-networkdegreeongroup,density,andmodule,wefoundasignificantDMNincrease

inpatientsirrespectiveofdensity,B=1.37,t=33.25,p<.0001.Likewise,controlshad

significantlyhigherwithin-networkdegreeintheFPNandDAN,ts=21.67and13.52,

respectively,ps<.0001.Thesefindingsweremirroredingroupanalysesofbetween-

networkdegreeintheDMN,FPN,andDAN,ps<.0001(seeFigure5).

1.08

1.12

1.16

1.20

1.24

10 15 20 25Density (%)

Smal

l wor

ldne

ss (σ

)

Groupcontrolspatients

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 26: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

26

Figure5.Groupdifferencesinz-scoreddegreestatisticsat10and20%density.Degreedifferencesforconnectionsbetweenmodulesaredepictedinthetoprow,whereaswithin-moduledifferencesareinthebottomrow.Dotsdenotethemeanzstatisticacrossnodes,whereasthelinesrepresentthe95%confidenceintervalaroundthemean.NonsignificantgroupdifferencesintheVisualnetworkaredepictedforcomparison,whereasconnectivityintheDAN,FPN,andDMNwasfocallymanipulatedinthesimulation.DAN=DorsalAttentionNetwork;FPN=Fronto-ParietalNetwork;DMN=DefaultModeNetwork.

Discussionofglobalinsensitivitysimulation.Intheglobalinsensitivitysimulation,

weinducedlargegroupchangesinFCattheleveloffunctionalmodulesthatrepresent

canonicalresting-statenetworks(e.g.,theDMN).Thesimulationdifferentiallymodulated

FCwithinandbetweenregionsoftheDAN,FPN,andDMN.Ingroupanalysesofwithin-and

between-moduledegreecentrality,wedetectedtheselargeshiftsinFC.However,despite

robustdifferencesinnetworkstructure,thetwogroupswereverysimilarinthesmall-

worldpropertiesoftheirgraphs.

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

10% Density 20% Density

Between−Module

Within−M

odule

−0.5 0.0 0.5 −0.5 0.0 0.5

DMN

FPN

DAN

Visual

DMN

FPN

DAN

Visual

Degree (z)

Mod

ule Group

controlspatients

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 27: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

27

Aswiththewhack-a-nodesimulation,wedidnotseektotesttherangeofconditions

underwhichthesefindingswouldhold.Rather,theglobalinsensitivitysimulationprovides

aproofofconceptthatresearchersshouldbeawarethattheabsenceofgroupdifferences

atahigherlevelofthegraph(here,globaltopology)doesnotsuggestthatthenetworksare

otherwisesimilaratlowerlevels(here,modularstructure).Aswehavenotedabove,in

graphanalysesofcase-controlresting-statenetworks,weencourageresearcherstostate

theirstudygoalsintermsthatclearlymatchthehypothesestothescaleofthegraph.

Intheglobalinsensitivitysimulation,failingtodetectdifferencesinsmall-worldness

shouldnotbeseenasanomnibustestofmodularornodalstructure.Likewise,ifgroup

differencesaredetectedatthegloballevel,theremaybesubstantialvalueininterrogating

finerdifferencesinthenetworks,evenifthesewerenothypothesizedapriori.

GeneralSummaryandConclusions

Theoverarchinggoalofthisreviewwastopromotesharedstandardsforreporting

findingsinclinicalnetworkneuroscience.Oursurveyoftheresting-statefunctional

connectivityliteraturerevealedthepopularityandpromiseofgraphtheoryapproachesto

networkorganizationinbraindisorders.Thispotentialisevidentinlarge-scaleinitiatives

foracquiringandsharingresting-statedataindifferentpopulations(e.g.,theHuman

ConnectomeProject;Barchetal.,2013).Publiclyavailableresting-statedatacanalso

supportreproducibilityeffortsbyservingasreplicationdatasetstocorroboratespecific

findingsinanindependentsample(e.g.,Jalbrzikowskietal.,2017).Wesharethefield’s

enthusiasmforsuchworkandanticipatethatwithfurthermethodologicalrefinementand

standardization,thecouplingofnetworkscienceandbrainimagingcanprovidenovel

insightsintotheneurobiologicalbasisofbraindisorders.

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 28: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

28

Ourreview,however,suggestedthattheheterogeneityofmethodsispreventingthe

fieldfromrealizingitspotential.Graphanalysesacrossclinicalstudiesvariedsubstantially

intermsofbrainparcellation,FCquantification,andtheuseofthresholdingmethodsto

defineedgesingraphs.Thesedecisionsarefundamentaltographtheoryandprecede

analysesatspecificlevelssuchasglobaltopology.Inaddition,althoughitwasnotafocusof

ourreview,therewassubstantialvariationinwhatnetworkmetricswerereportedacross

studies.Thelackofstandardizationinmethodsatmultipledecisionpointshas

multiplicativeconsequences:thelikelihoodthatanytwostudiesusedthesameparcellation

scheme,FCdefinition,thresholdingstrategy,andnetworkmetricwasremarkablylow.

Thismakesformalmeta-analysesoftheclinicalnetworkneuroscienceliteraturevirtually

impossibleatthepresenttime,detractingfromeffortstodistinguishdistinct

pathophysiologicalmechanismsortoidentifytransdiagnosticcommonalities.Inaddition,

methodologicalheterogeneityingraphanalysesundercutsthevalueofdatasharingefforts

thathavemademassivedatasetsavailabletothenetworkneurosciencecommunity.For

theimmensepotentialofdatasharingtoberealized,standardizationmustoccurnotonly

indataacquisition,butalsoindataanalysis,withasharedframeworktoguidehypothesis-

to-scalematchingingraphs.

Tomoveforward,webelievethatthefieldshouldworktowardaprincipled,

commonapproachtographanalysesofRSFCdata.Thisisachallengingproposition

becauseoftherapidandexcitingdevelopmentsinfunctionalbrainparcellation(e.g.,

Schaeferetal.,inpress),FCdefinition(e.g.,Cassidyetal.,2015),edgethresholding(van

denHeuveletal.,2017),andnetworkmetrics(e.g.,Vargas&Wahl,2014).Such

developmentshighlightboththeenthusiasmfor,andrelativeinfancyof,network

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 29: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

29

neuroscienceasafield.Althoughwearesensitivetotheimportanceofcontinuingtorefine

functionalparcellationsofthebrain,wealsoseegreatvalueindevelopingfield-standard

parcellationstopromotecomparability.Indeed,manyaspectsofnetworkstructure(e.g.,

homogeneityoffunctionalconnectivitypatternswithinaregion)arelargelyconvergent

aboveacertainlevelofdetail(likely200-400nodes)inthefunctionalparcellation

(Craddocketal.,2012;Schaeferetal.,inpress).Likewise,theoptimalapproachfor

quantifyingfunctionalconnectivityisanopenquestion(Smithetal.,2011),yetinthe

absenceofmethodologicalconvergence,graphswereoftennotcomparableacrossstudies.

Arelateddilemmawasthatin57%ofstudies,littleornodetailwasprovidedabout

hownegativeFCvalueswereincorporatedintographanalyses.Thiswasespecially

troublinginsofarasglobalsignalregressiontendstoyieldanFCdistributioninwhich

approximatelyhalfofedgesarenegative(Murphyetal.,2009).Furthermore,FCestimates

atthelowendofthedistributionmayhavedifferenttopologicalpropertiessuchasreduced

modularity(Schwarz&McGonigle,2011).Evenamongthe21%ofstudiesinwhich

negativeedgeswereexplicitlydropped,itremainsunclearwhatconsequencesthis

decisionhasonsubstantiveconclusionsaboutgraphstructure.Inrecentyears,therehave

beenadvancesinquantifyingcommongraphmetricssuchasmodularityinweighted

networksthatincludenegativeedges(Rubinov&Sporns,2011),aswellasincreasingcalls

forweighted,notbinary,graphanalyses(Bassett&Bullmore,2016).Regardless,we

believethatgreaterclarityinreportingofnegativeFCwillpromotecomparisonsamong

clinicalstudies.

Methodologicalheterogeneityalsoresultedinveryfewgraphstatisticsthatwere

reportedincommonacrossstudies,anessentialingredientforexaminingthe

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 30: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

30

reproducibilityoffindings.Networksthatareresilienttothedeletionofspecificedges

oftenhaveahighlyskeweddegreedistribution(Callaway,Newman,Strogatz,&Watts,

2000)thatmayrelatetosmall-worldnetworkproperties(Achardetal.,2006).Wepropose

thatstudiesshouldroutinelydepictthisdistribution.Likewise,broadmetricssuchasedge

density,meanFC,transitivity,andcharacteristicpathlengthprovideimportant

informationaboutthebasicpropertiesofgraphsthatcontextualizemoredetailed

inferentialanalyses.Thechallengeofdevelopingreportingstandardsinclinicalnetwork

neuroscienceechoesthebroaderconversationinneuroimagingaboutreproducibility,

especiallytheimportanceofdetailandtransparencyintheanalyticapproach(Nicholset

al.,2017).

Inadditiontothegeneralissuesofstandardizinggraphanalysesandreporting

procedures,ourreviewexaminedtwocriticalissuesingreaterdetail.First,weconsidered

thepotentialbenefitsandrisksofusingproportionalthresholding(PT),acommon

procedureforequatingthenumberofedgesbetweengraphs.Second,wearticulatedthe

valueofconsideringthetelescopinglevelsofgraphstructuresinordertomatcha

hypothesistothecorrespondingscaleofthegraph.

RoughlyonethirdofthestudiesincludedinourreviewappliedPT,thresholding

graphsatsingleormultipleedgedensities.Althoughthisalignswithpreviousguidance

(Achard&Bullmore,2007;vandenHeuvel,Stam,Boersma,&HulshoffPol,2008),its

applicationinclinicalstudiesisoftenconceptuallyproblematic.Manybrainpathologies

appeartoaffecttargetedregionsornetworks,whileleavingtheconnectivityofother

regionslargelyundisturbed.Forexample,althoughfrontolimbiccircuitryisheavily

implicatedinmooddisorders(Price&Drevets,2010),visualnetworkslargelyappear

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 31: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

31

unaffected.Thereisgrowingevidencethatbraindisordersalterthestrengthoffunctional

couplingandpotentialthenumberoffunctionalconnections(Hillary&Grafman,2017).

Consequently,ifsomeregionsareaffectedbythepathology,butothersaresimilartoa

matchedcontrolpopulation,PTmayerroneouslyremoveoraddconnectionstographsin

onegroupinordertomaintainequalaveragedegreebetweengroups.Furthermore,ifa

brainpathologyaltersthedensityoffunctionalconnections—forexample,neurological

disruptionisassociatedwithhyperconnectivity(Hillaryetal.,2015)—PTwillpreclude

theinvestigatordetectingdensitydifferencesbetweengroups.If,intruth,thegroupsdiffer

inedgedensity,artificiallyequatingdensityalsodetractsfromtheinterpretabilityofgraph

analyses(cf.vandenHeuveletal.,2017).

Inadditiontotheseconceptualproblems,ourwhack-a-nodesimulation

demonstratedthatPTmayresultinthedetectionofspuriousgroupdifferences(Figure2a).

Altogether,applyingPTinclinicalstudiesmaybeamethodologicaldoublejeopardy,

characterizedbyreducedsensitivitytopathology-relateddifferencesinconnectiondensity

andtheriskofidentifyingnodaldifferencesbetweengroupsthatareastatisticalartifact.

TheserisksmakePTespeciallyunappealingwhenoneconsidersthatFC-based

thresholdingandweightedanalysesaccuratelydetectedgroupdifferences(Figure2b,d)

whilealsoallowingedgedensitytovary.

Wethereforehavetworecommendationsforedgethresholdingincase-control

comparisons.First,weightedanalysesorFCthresholdingshouldtypicallybepreferredto

PTifoneisinterestedinnodalstatistics.Second,toruleoutthepossibilitythatnodal

findingsreflectglobaldifferencesinmeanFC,onecouldincludemeanFCasacovariatein

weightedanalysesorper-subjectdensityinanalysesofFC-thresholdedbinarygraphs.

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 32: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

32

Crucially,weproposethatthesebetreatedassensitivityanalysesconductedonlyafter

establishinganodalgroupdifference.Thatis,ifoneidentifiesgroupdifferencesinFC-

thresholdedgraphs(e.g.,greaterdegreeinanteriorcingulatecortexamongpatients),does

includingedgedensityasacovariateabolishthisfinding?Ifso,itsuggeststhatdifferences

inglobaltopologymayaccountforthenodalfinding.However,oneshouldnotinclude

densityasacovariateinFC-thresholdedgraphsasafirststeptoidentifywhichnodesdiffer

betweengroups,asthiscouldfallpreytothe‘whackanode’problem(i.e.,spuriousnodal

effects).

Thesecondcriticalissuewasthatmanystudiesprovidedlimitedtheoretical

justificationforthealignmentbetweenagivenhypothesisandthecorrespondinggraph

analysis.Amajorityofstudies(69%)testedwhethergroupsdifferedinglobalmetricssuch

assmall-worldness,butmostpathologies(e.g.,braininjury,Alzheimer’sdisease)primarily

affectregionalhubswithinnetworks(Crossleyetal.,2014).Ourglobalinsensitivity

simulationfocusedontheimportanceofmatchinghypothesestographanalyses,or

telescoping.Wedemonstratedthatglobalgraphmetrics,specificallysmall-worldness,may

notbesensitivetogroupdifferencesinmoduleornodecentrality.Metricssuchas

modularityandnodalcentralityoffervitalinformationaboutregionalbrainorganization

thatcanbeinterpretedinthecontextofalterationsinaveragedegree.Thegeneralpointis

thatonecannotgeneralizefindingsfromonelevelofagraphtoanother,norshouldnull

effectsatonelevelbeviewedassuggestingthatthegroupsaresimilaratotherlevels.By

conceptualizingadataanalysisplanintermsofthetelescopingstructureofgraphs,

researcherscanclearlydelineateconfirmatoryfromexploratoryanalyses,whichis

consistentwiththespiritofreproduciblescienceinneuroimaging(Poldracketal.,2017).

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 33: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

33

Insummary,thereisaneedforacommonframeworktoinformgraphtheory

analysesofRSFCdataintheclinicalneurosciences.Anyrecommendationsshouldemerge

organicallyfromascientificcommunitywhoseinvestigatorsvoluntarilyadoptprocedures

thatmaximizesensitivitytohypothesizedeffectsandsimultaneouslypermitgraph

comparisonsamongstudies(cf.theCOBIDASeffortinneuroimagingmorebroadly;Nichols

etal.,2017).Weanticipatethatacommonmethodologicalframeworkwillpromote

hypothesis-drivenresearch,alignmentbetweentheoryandgraphanalysis,reproducibility,

datasharing,meta-analyses,andultimatelymorerapidprogressofclinicalnetwork

neuroscience.

Methods

PubmedSearchSyntax

Neurologicaldisordersquery:

(graphORgraphicalORgraph-theor*ORtopology)AND(brainORfMRIORconnectivity

ORintrinsic)AND(resting-stateORrestingORrest)AND(neurologicalORbraininjuryOR

multiplesclerosisORepilepsyORstrokeORCVAORaneurysmORParkinson'sORMCIor

Alzheimer'sORdementiaORHIVORSCIORspinalcordORautismORADHDOR

intellectualdisabilityORDownsyndromeORTourette)AND"humans"[MeSHTerms]

Mentaldisordersquery:

(graphORgraphicalORgraph-theor*ORtopology)AND(brainORfmriORconnectivityOR

intrinsic)AND(resting-stateORrestingORrest)AND(clinicalORpsychopathologyOR

mentaldisorderORpsychiatricORneuropsychiatricORdepressionORmoodORanxiety

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 34: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

34

ORaddictionORpsychosisORbipolarORborderlineORautism)AND"humans"[MeSH

Terms]

GeneralApproachtoNetworkSimulations

Toapproximatethestructureoffunctionalbrainnetworks,weidentifiedayoung

adultfemalesubjectwhocompleteda5-minuteresting-statescaninaSiemens3TTrio

Scanner(TR=1.5s,TE=29ms,3.1x3.1x4.0mmvoxels)withessentiallynohead

movement(meanframewisedisplacement[FD]=.08mm;maxFD=.17mm).We

preprocessedthedatausingaconventionalpipeline,including:1)motioncorrection(FSL

mcflirt);2)slicetimingcorrection(FSLslicetimer);3)nonlineardeformationtotheMNI

templateusingtheconcatenationoffunctional→structural(FSLflirt)andstructural→

MNI152(FSLflirt+fnirt)transformations;4)spatialsmoothingwitha6mmFWHMfilter

(FSLsusan);5)andvoxelwiseintensitynormalizationtoameanof100.Afterthesesteps,

wealsosimultaneouslyappliednuisanceregressionandbandpassfiltering,wherethe

regressorsweresixmotionparameters,averageCSF,averageWM,andthederivativesof

these(16totalregressors).Thespectralfilterretainedfluctuationsbetween.009and.08

Hz(AFNI3dBandpass).Wethenestimatedfunctionalconnectivity(FC)of264functional

ROIsfromthePowerandcolleaguesparcellation,whereeachregionwasdefinedbya5mm

radiusspherecenteredonaspecificcoordinate.Theactivityofaregionovertimewas

estimatedbythefirstprincipalcomponentofvoxelsineachROI,andthefunctional

connectivitymatrix(264x264)wasestimatedbythepairwisePearsoncorrelationsof

timeseries.

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 35: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

35

This264x264adjacencymatrix,W,servedasthegroundtruthforallsimulations,

withspecificwithin-person,between-person,andbetween-groupalterationsapplied

accordingtoamultilevelsimulationofvariationacrossindividuals(detailsofsimulation

parametersprovidedinTableS1).Morespecifically,toapproximatepopulation-level

variabilityinacase-controldesign,wesimulatedresting-stateadjacencymatricesfor50

‘patients’and50‘controls’byintroducingsystematicandunsystematicsourcesof

variabilityforeachsimulatedparticipant.Systematicsourceswereintendedtotest

substantivehypothesesaboutproportionalthresholding(whack-a-nodesimulation)and

insensitivitytoglobalversusmodulardifferences(globalinsensitivitysimulation),whereas

unsystematicsourcesreflectedwithin-andbetween-personvariationinedgestrength.

Inthismodel,thesimulatededgestrengthbetweentwonodes,iandj,foragiven

subject,s,is:

𝑟%&' = 𝑤%& + 𝑔%&' +𝛼%&' + 𝑒%&' (1)

where𝑤%& istheedgestrengthfromthegroundtruthadjacencymatrixW.Globalvariation

inmeanFCisrepresentedby𝑔%&',whichreflectscontributionsofbothbetween-and

within-personvariation:

𝑔%&' = 𝑏' + 𝑢%&' (2)

where𝑏'representsnormallydistributedbetween-personvariationinmeanFC:

𝒃~𝑁(0, 𝜎7) (3)

with𝜎7controllingthelevelofbetween-personvariationinthesample.Theterm𝑢%&'

representswithin-personvariationofthisedgearoundthepersonmeanFC,𝑏'.Within-

personvariationinFCacrossalledgesisassumedtobenormallydistributed:

𝒖..'~𝑁(0, 𝜎:) (4)

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 36: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

36

with𝜎: scalingthedegreeofwithin-personFCvariationacrossalledges.

Node-specificshiftsinFCarerepresentedby𝛼%&',whichincludesbothbetween-

personandwithin-nodecomponents.Morespecifically,themodulationofFCbetween

nodesiandjisgivenby:

𝛼%&' = 𝑎%' + 𝑣%&' (5)

wherebetween-personvariationinFCfornodeiis:

𝒂%.~𝑁(𝜇?@, 𝜎?@) (6)

with𝜇?% and𝜎?% capturingthemeanandstandarddeviationinFCshiftsfornodeiacross

subjects,respectively.EdgewiseFCvariationofanodeiacrossitsneighbors,j,isgivenby:

𝒗𝒊.𝒔~𝑁(0, 𝜎D%) (7)

where𝜎D@ representsthestandarddeviationofFCshiftsacrossneighborsofi.Whennodesi

andjwerebothmanipulated,theshiftswereappliedsequentiallysuchthatFCfortheedge

betweeniandjwasnotallowedtohavecompoundingchanges.Thatis,weset𝛼%&' = 0fori

>j.Finally,𝑒%&'representstherandomvariationinFCfortheedgebetweeniandjfor

subjects.Thisvariationwasassumedtobenormallydistributedacrossalledgesfora

subject:

𝒆..'~𝑁(0, 𝜎F) (8)

where𝜎F controlsthestandarddeviationofedgenoiseacrosssubjects.

Whack-a-NoteSimulationMethods

Asmentionedabove,proportionalthresholding(PT)isoftenappliedincase-control

studiestoruleoutthepossibilitythatnetworkdifferencesbetweengroupsreflect

differencesinthetotalnumberofedges.Importantly,ingraphsofequalorderN(i.e.,the

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 37: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

37

samenumberofnodes),proportionalthresholdingequatesboththedensity,D,and

averagedegree, 𝑘 betweensubjects:

𝐷 = IJK(KLM)

, 𝑘 = IJK 𝑘 = 𝐷(𝑁 − 1) (9)

AsnotedbyvandenHeuvelandcolleagues(2017),whenoneappliesPT,differences

inaverageconnectivitystrengthcanleadtotheinclusionofweakeredgesinmoresparsely

connectedgroups.Furthermore,weakedgesestimatedbycorrelationaremorelikelyto

reflectanunreliablerelationshipbetweennodes.Thus,ifonegrouphaslowermean

functionalconnectivity,PTcouldintroducespuriousconnections,potentiallyundermining

groupcomparisonsofnetworktopology.

Thatis,whengroupsareotherwiseequivalent,thesumofincreasesindegreein

hyperconnectednodesforagroupmustbeoffsetbyequal,butopposite,decreasesin

degreeforothernodesinthatgroup.Thisphenomenonholdsbecauseofthemathematical

relationshipbetweenaveragedegreeandgraphdensity(Eq.9).Forsimplicity,ourfirst

simulationrepresentsthescenariowheretherearemeaningfulFCincreasesinpatientsfor

selectednodesandunreliableFCdecreasesinothernodes.Thisunreliabilityisintendedto

representsamplingvariabilitythatcouldleadtoerroneousfalsepositives.

Structureofwhack-a-nodesimulation.Asdescribedabove,wesimulated50

patientsand50controlsbasedonagroundtruthFCmatrix.Weestimated100replication

sampleswithequallevelsofnoiseinbothgroups(seeTableS1).Ineachreplication

sample,weincreasedthemeanFCinthreenodes,selectedatrandom,byr=0.14.Wealso

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 38: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

38

appliedsmallerdecreasesofr=-.04tothreeotherrandomlytargetednodes1.Thislevelof

decreasewaschosensuchthatgroupdifferencesinanalysesofnodalstrength(i.e.,

computedonweightedgraphs)werenonsignificantonaverage(Mp=.19,SDp=.02).We

appliedPTtobinarizegraphsineachgroup,varyingdensitybetween5%and25%in1%

increments.Likewise,forFCthresholding,webinarizedgraphsatrthresholdbetweenr=

.2and.5in.02increments.Finally,weretainedweightedgraphsforallsimulatedsamples

toestimategroupdifferencesinnodalstrength.Toensurethateffectswerenotattributable

toparticularnodes,weaveragedgroupstatisticsacrossthe100replicationsamples,where

thetargetednodesvariedrandomlyacrosssamples.

Ineachreplicationsample,weestimateddegreecentralityforthePositive

(hyperconnected),Negative(weaklyhypoconnected),andComparatornodes.Comparators

werethreerandomlyselectednodesineachsamplethatwerenotspecificallymodulated

bythesimulation.Theseservedasabenchmarktoensurethatsimulationsdidnotinduce

groupdifferencesincentralityfornodesnotspecificallytargeted.Toquantifytheeffectof

PTversusFCthresholdinginbinarygraphs,weestimatedgroupdifferences(patient–

control)ondegreecentralityusingtwo-samplet-testsforeachPositive,Negative,and

Comparatornode.Forweightedanalyses,weestimatedgroupdifferencesinstrength

centrality.

GlobalInsensitivitySimulationMethods:Hypothesis-to-scalematching

1ResultsarequalitativelysimilarusingothervaluesforgroupshiftsinFC.

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 39: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

39

Wesimulatedadatasetof50‘controls’and50‘patients’inwhichthefronto-parietal

network(FPN)anddorsalattentionnetwork(DAN)weremodulatedincontrolscompared

tothegroundtruthmatrix,W.Inthissimulation,thepatientgrouphadincreasedFCinthe

defaultmodenetwork(DMN),acommonfindinginneurologicaldisorders(Hillaryetal.,

2015).Incontrols,weincreasedFCstrengthforedgesbetweenFPN/DANregionsandother

networks,Mr=0.2,SD=0.1.Per-modulevariationinbetween-networkFCchangeswas

assumedtobenormallydistributedwithineachsubject,SD=0.1.Wealsoincreased

controls’FConedgeswithintheFPNandDAN,Mr=0.1,between-subjectsSD=0.05,

within-subjectsSD=.05.Inpatients,between-networkFCforDMNnodeswasincreased,M

r=0.2,between-subjectsSD=0.1,within-subjectsSD=0.1.Likewise,within-networkFCin

theDMNwasincreased,Mr=0.1,between-subjectsSD=.05,within-subjectsSD=.05.That

is,weappliedsimilarlevelsofFCmodulationtotheFPN/DANincontrolsandtheDMNin

patients,althoughthesechangeslargelyaffecteddifferentedgesinthenetworksbetween

groups.

Wecomputedthesmall-worldnesscoefficient,𝜎,accordingtotheapproachof

HumphriesandGurney(2008):

𝜎 =𝐶Q/𝐶S?TU𝐿Q/𝐿S?TU

Here,𝐶Qrepresentsthetransitivityofthegraph,whereas𝐶S?TU denotesthe

transitivityofarandomgraphwithanequivalentdegreedistribution.Likewise,𝐿Qand

𝐿S?TU representthecharacteristicpathlengthofthetargetgraphandrandomlyrewired

graph,respectively.Valuesof𝜎above1.0correspondtoanetworkwithsmall-world

properties.Togeneratestatisticsforequivalentrandomgraphs,weappliedarewiring

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 40: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

40

algorithmthatretainedthedegreedistributionofthegraphwhilepermuting347,160

edges(10permutationsperedge,onaverage).Thisalgorithmwasappliedtothetarget

graph100timestogenerateasetofequivalentrandomnetworks.Transitivityand

characteristicpathlengthwerecalculatedforeachofthese,andtheiraverageswereused

incomputingthesmall-worldnesscoefficient,𝜎.Wealsoanalyzedwithin-andbetween-

networkdegreecentralityforeachnode,z-scoringvalueswithineachmoduleanddensity

toallowforcomparisons.

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 41: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

41

References

Achard,S.,&Bullmore,E.(2007).Efficiencyandcostofeconomicalbrainfunctional

networks.PLoSComputationalBiology,3(2),0174–0183.

https://doi.org/10.1371/journal.pcbi.0030017

Achard,S.,Salvador,R.,Whitcher,B.,Suckling,J.,&Bullmore,E.(2006).Aresilient,low-

frequency,small-worldhumanbrainfunctionalnetworkwithhighlyconnected

associationcorticalhubs.TheJournalofNeuroscience:TheOfficialJournalofthe

SocietyforNeuroscience,26(1),63–72.https://doi.org/10.1523/JNEUROSCI.3874-

05.2006

Albert,R.,Barabási,A.-L.,Carle,N.,&Dougherty,A.(1998).Driveninterfacesindisordered

media:determinationofuniversalityclassesfromexperimentaldata.Physical

ReviewLetters,81(14),2926–2926.

Anticevic,A.,Cole,M.W.,Murray,J.D.,Corlett,P.R.,Wang,X.-J.,&Krystal,J.H.(2012).The

roleofdefaultnetworkdeactivationincognitionanddisease.TrendsinCognitive

Sciences,16(12),584–592.

Barch,D.M.,Burgess,G.C.,Harms,M.P.,Petersen,S.E.,Schlaggar,B.L.,Corbetta,M.,…WU-

MinnHCPConsortium.(2013).Functioninthehumanconnectome:task-fMRIand

individualdifferencesinbehavior.NeuroImage,80,169–189.

https://doi.org/10.1016/j.neuroimage.2013.05.033

Bassett,D.S.,&Bullmore,E.T.(2016).Small-worldbrainnetworksrevisited.The

Neuroscientist,1073858416667720.

Bassett,D.S.,Bullmore,E.T.,Meyer-Lindenberg,A.,Apud,J.a,Weinberger,D.R.,&Coppola,

R.(2009).Cognitivefitnessofcost-efficientbrainfunctionalnetworks.Proceedings

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 42: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

42

oftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,106(28),11747–

52.https://doi.org/10.1073/pnas.0903641106

Betzel,R.F.,Medaglia,J.D.,Papadopoulos,L.,Baum,G.L.,Gur,R.,Gur,R.,…Bassett,D.S.

(2017).Themodularorganizationofhumananatomicalbrainnetworks:Accounting

forthecostofwiring.NetworkNeuroscience,1(1),42–68.

https://doi.org/10.1162/NETN_a_00002

Biswal,B.B.,Mennes,M.,Zuo,X.-N.,Gohel,S.,Kelly,C.,Smith,S.M.,…Colcombe,S.(2010).

Towarddiscoveryscienceofhumanbrainfunction.ProceedingsoftheNational

AcademyofSciences,107(10),4734–4739.

Biswal,B.B.,Yetkin,F.Z.,Haughton,V.M.,&Hyde,J.S.(1995).Functionalconnectivityin

themotorcortexofrestinghumanbrainusingecho-planarMRI.MagneticResonance

inMedicine,34(4),537–541.https://doi.org/10.1002/mrm.1910340409

Bullmore,E.,&Sporns,O.(2009).Complexbrainnetworks:graphtheoreticalanalysisof

structuralandfunctionalsystems.NatureReviewsNeuroscience,10(3),186–198.

https://doi.org/10.1038/nrn2575

Bullmore,E.,&Sporns,O.(2012).Theeconomyofbrainnetworkorganization.Nature

ReviewsNeuroscience,13(MAY),336–349.https://doi.org/10.1038/nrn3214

Callaway,D.S.,Newman,M.E.,Strogatz,S.H.,&Watts,D.J.(2000).Networkrobustnessand

fragility:percolationonrandomgraphs.PhysicalReviewLetters,85(25),5468–5471.

https://doi.org/10.1103/PhysRevLett.85.5468

Cassidy,B.,Rae,C.,&Solo,V.(2015).BrainActivity:Connectivity,Sparsity,andMutual

Information.IEEETransactionsonMedicalImaging,34(4),846–860.

https://doi.org/10.1109/TMI.2014.2358681

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 43: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

43

Chen,Y.,Wang,S.,Hilgetag,C.C.,&Zhou,C.(2013).Trade-offbetweenMultipleConstraints

EnablesSimultaneousFormationofModulesandHubsinNeuralSystems.PLOS

ComputationalBiology,9(3),e1002937.

https://doi.org/10.1371/journal.pcbi.1002937

Ciric,R.,Wolf,D.H.,Power,J.D.,Roalf,D.R.,Baum,G.L.,Ruparel,K.,…Satterthwaite,T.D.

(2017).Benchmarkingofparticipant-levelconfoundregressionstrategiesforthe

controlofmotionartifactinstudiesoffunctionalconnectivity.NeuroImage,

154(SupplementC),174–187.https://doi.org/10.1016/j.neuroimage.2017.03.020

Craddock,R.C.,James,G.A.,Holtzheimer,P.E.,Hu,X.P.,&Mayberg,H.S.(2012).Awhole

brainfMRIatlasgeneratedviaspatiallyconstrainedspectralclustering.Human

BrainMapping,33(8),1914–1928.https://doi.org/10.1002/hbm.21333

Crone,J.S.,Soddu,A.,Höller,Y.,Vanhaudenhuyse,A.,Schurz,M.,Bergmann,J.,…

Kronbichler,M.(2014).Alterednetworkpropertiesofthefronto-parietalnetwork

andthethalamusinimpairedconsciousness.NeuroImage.Clinical,4,240–248.

https://doi.org/10.1016/j.nicl.2013.12.005

Crossley,N.A.,Mechelli,A.,Scott,J.,Carletti,F.,Fox,P.T.,McGuire,P.,&Bullmore,E.T.

(2014).Thehubsofthehumanconnectomearegenerallyimplicatedintheanatomy

ofbraindisorders.Brain,137(8),2382–2395.

Dosenbach,N.U.F.,Koller,J.M.,Earl,E.A.,Miranda-Dominguez,O.,Klein,R.L.,Van,A.N.,…

Nguyen,A.L.(2017).Real-timemotionanalyticsduringbrainMRIimprovedata

qualityandreducecosts.NeuroImage,161,80–93.

Fornito,A.,Zalesky,A.,&Bullmore,E.(2016).Fundamentalsofbrainnetworkanalysis.

AcademicPress.

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 44: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

44

Friston,K.J.(2011).FunctionalandEffectiveConnectivity:AReview.BrainConnectivity,

1(1),13–36.https://doi.org/10.1089/brain.2011.0008

Glasser,M.F.,Coalson,T.S.,Robinson,E.C.,Hacker,C.D.,Harwell,J.,Yacoub,E.,…Van

Essen,D.C.(2016).Amulti-modalparcellationofhumancerebralcortex.Nature,

536(7615),171–178.https://doi.org/10.1038/nature18933

Goñi,J.,vandenHeuvel,M.P.,Avena-Koenigsberger,A.,deMendizabal,N.V.,Betzel,R.F.,

Griffa,A.,…Sporns,O.(2014).Resting-brainfunctionalconnectivitypredictedby

analyticmeasuresofnetworkcommunication.ProceedingsoftheNationalAcademy

ofSciences,111(2),833–838.

Goodkind,M.,Eickhoff,S.B.,Oathes,D.J.,Jiang,Y.,Chang,A.,Jones-Hagata,L.B.,…Etkin,A.

(2015).Identificationofacommonneurobiologicalsubstrateformentalillness.

JAMAPsychiatry,72(4),305–315.

https://doi.org/10.1001/jamapsychiatry.2014.2206

Gordon,E.M.,Laumann,T.O.,Adeyemo,B.,Huckins,J.F.,Kelley,W.M.,&Petersen,S.E.

(2016).GenerationandEvaluationofaCorticalAreaParcellationfromResting-State

Correlations.CerebralCortex,26(1),288–303.

https://doi.org/10.1093/cercor/bhu239

Greene,D.J.,Black,K.J.,&Schlaggar,B.L.(2016).ConsiderationsforMRIstudydesignand

implementationinpediatricandclinicalpopulations.DevelopmentalCognitive

Neuroscience,18,101–112.https://doi.org/10.1016/j.dcn.2015.12.005

Hallquist,M.N.,Hwang,K.,&Luna,B.(2013).Thenuisanceofnuisanceregression:spectral

misspecificationinacommonapproachtoresting-statefMRIpreprocessing

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 45: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

45

reintroducesnoiseandobscuresfunctionalconnectivity.NeuroImage,82,208–25.

https://doi.org/10.1016/j.neuroimage.2013.05.116

Hilgetag,C.C.,&Goulas,A.(2015).Isthebrainreallyasmall-worldnetwork?Brain

StructureandFunction,221(4),1–6.

Hilgetag,C.C.,&Kaiser,M.(2004).Clusteredorganizationofcorticalconnectivity.

Neuroinformatics,2(3),353–360.https://doi.org/10.1385/NI:2:3:353

Hillary,F.G.,&Grafman,J.H.(2017).InjuredBrainsandAdaptiveNetworks:TheBenefits

andCostsofHyperconnectivity.TrendsinCognitiveSciences.

Hillary,F.G.,Rajtmajer,S.M.,Roman,C.A.,Medaglia,J.D.,Slocomb-Dluzen,J.E.,Calhoun,V.

D.,…Wylie,G.R.(2014).TheRichGetRicher:BrainInjuryElicitsHyperconnectivity

inCoreSubnetworks.PLoSONE,9(8),e104021–e104021.

https://doi.org/10.1371/journal.pone.0104021

Hillary,F.G.,Roman,C.A.,Venkatesan,U.,Rajtmajer,S.M.,Bajo,R.,&Castellanos,N.D.

(2015).Hyperconnectivityisafundamentalresponsetoneurologicaldisruption.

Neuropsychology,29(1),59–75.https://doi.org/10.1037/neu0000110

Honnorat,N.,Eavani,H.,Satterthwaite,T.D.,Gur,R.E.,Gur,R.C.,&Davatzikos,C.(2015).

GraSP:geodesicgraph-basedsegmentationwithshapepriorsforthefunctional

parcellationofthecortex.NeuroImage,106,207–221.

Humphries,M.D.,&Gurney,K.(2008).Network‘Small-World-Ness’:AQuantitativeMethod

forDeterminingCanonicalNetworkEquivalence.PLoSONE,3(4),e0002051–

e0002051.https://doi.org/10.1371/journal.pone.0002051

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 46: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

46

Hwang,K.,Hallquist,M.N.,&Luna,B.(2013).Thedevelopmentofhubarchitectureinthe

humanfunctionalbrainnetwork.CerebralCortex,23(10),2380–2393.

https://doi.org/10.1093/cercor/bhs227

Jalbrzikowski,M.,Larsen,B.,Hallquist,M.N.,Foran,W.,Calabro,F.,&Luna,B.(2017).

DevelopmentofWhiteMatterMicrostructureandIntrinsicFunctionalConnectivity

BetweentheAmygdalaandVentromedialPrefrontalCortex:AssociationsWith

AnxietyandDepression.BiologicalPsychiatry,82(7),511–521.

https://doi.org/10.1016/j.biopsych.2017.01.008

Laird,A.R.,Eickhoff,S.B.,Li,K.,Robin,D.A.,Glahn,D.C.,&Fox,P.T.(2009).Investigating

thefunctionalheterogeneityofthedefaultmodenetworkusingcoordinate-based

meta-analyticmodeling.JournalofNeuroscience,29(46),14496–14505.

Muldoon,S.F.,Bridgeford,E.W.,&Bassett,D.S.(2016).Small-worldpropensityand

weightedbrainnetworks.ScientificReports,6,22057–22057.

Müller,V.I.,Cieslik,E.C.,Serbanescu,I.,Laird,A.R.,Fox,P.T.,&Eickhoff,S.B.(2017).

Alteredbrainactivityinunipolardepressionrevisited:Meta-analysesof

neuroimagingstudies.JAMAPsychiatry,74(1),47–55.

Murphy,K.,Birn,R.M.,Handwerker,D.a,Jones,T.B.,&Bandettini,P.a.(2009).Theimpact

ofglobalsignalregressiononrestingstatecorrelations:areanti-correlated

networksintroduced?NeuroImage,44(3),893–905.

https://doi.org/10.1016/j.neuroimage.2008.09.036

Murphy,K.,&Fox,M.D.(2017).Towardsaconsensusregardingglobalsignalregressionfor

restingstatefunctionalconnectivityMRI.NeuroImage,154(SupplementC),169–

173.https://doi.org/10.1016/j.neuroimage.2016.11.052

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 47: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

47

Newman,M.(2010).Networks:AnIntroduction(1sted.).OxfordUniversityPress,USA.

Nichols,T.E.,Das,S.,Eickhoff,S.B.,Evans,A.C.,Glatard,T.,Hanke,M.,…Yeo,B.T.T.(2017).

BestpracticesindataanalysisandsharinginneuroimagingusingMRI.Nature

Neuroscience,20(3),299–303.https://doi.org/10.1038/nn.4500

Papanicolaou,A.C.,Rezaie,R.,Narayana,S.,Choudhri,A.F.,Wheless,J.W.,Castillo,E.M.,…

Boop,F.A.(2017).ClinicalApplicationsofFunctionalNeuroimaging:Presurgical

FunctionalMapping.TheOxfordHandbookofFunctionalBrainImagingin

NeuropsychologyandCognitiveNeurosciences,371–371.

Parente,F.,Frascarelli,M.,Mirigliani,A.,DiFabio,F.,Biondi,M.,&Colosimo,A.(2017).

Negativefunctionalbrainnetworks.BrainImagingandBehavior.

https://doi.org/10.1007/s11682-017-9715-x

Poldrack,R.A.,Baker,C.I.,Durnez,J.,Gorgolewski,K.J.,Matthews,P.M.,Munafò,M.R.,…

Yarkoni,T.(2017).Scanningthehorizon:towardstransparentandreproducible

neuroimagingresearch.NatureReviewsNeuroscience,18(2),115–126.

https://doi.org/10.1038/nrn.2016.167

Power,J.D.,Cohen,A.L.,Nelson,S.M.,Wig,G.S.,Barnes,K.A.,Church,J.A.,…Petersen,S.E.

(2011).Functionalnetworkorganizationofthehumanbrain.Neuron,72(4),665–

78.https://doi.org/10.1016/j.neuron.2011.09.006

Power,J.D.,Fair,D.A.,Schlaggar,B.L.,&Petersen,S.E.(2010).Thedevelopmentofhuman

functionalbrainnetworks.Neuron,67(5),735–748.

https://doi.org/10.1016/j.neuron.2010.08.017

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 48: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

48

Power,J.D.,Mitra,A.,Laumann,T.O.,Snyder,A.Z.,Schlaggar,B.L.,&Petersen,S.E.(2014).

Methodstodetect,characterize,andremovemotionartifactinrestingstatefMRI.

NeuroImage,84,320–341.https://doi.org/10.1016/j.neuroimage.2013.08.048

Price,J.L.,&Drevets,W.C.(2010).Neurocircuitryofmooddisorders.

Neuropsychopharmacology,35(1),192–216.

Roy,A.,Bernier,R.A.,Wang,J.,Benson,M.,FrenchJr,J.J.,Good,D.C.,&Hillary,F.G.(2017).

Theevolutionofcost-efficiencyinneuralnetworksduringrecoveryfromtraumatic

braininjury.PloSOne,12(4),e0170541–e0170541.

Rubinov,M.,&Sporns,O.(2011).Weight-conservingcharacterizationofcomplexfunctional

brainnetworks.NeuroImage,56(4),2068–2079.

https://doi.org/10.1016/j.neuroimage.2011.03.069

Saad,Z.S.,Gotts,S.J.,Murphy,K.,Chen,G.,Jo,H.J.,Martin,A.,&Cox,R.W.(2012).Trouble

atRest:HowCorrelationPatternsandGroupDifferencesBecomeDistortedAfter

GlobalSignalRegression.BrainConnectivity,2(1),25–32.

https://doi.org/10.1089/brain.2012.0080

Schaefer,A.,Kong,R.,Gordon,E.M.,Laumann,T.O.,Zuo,X.-N.,Holmes,A.J.,…Yeo,B.T.T.

(inpress).Local-GlobalParcellationoftheHumanCerebralCortexfromIntrinsic

FunctionalConnectivityMRI.CerebralCortex.

https://doi.org/10.1093/cercor/bhx179

Schwarz,A.J.,&McGonigle,J.(2011).Negativeedgesandsoftthresholdingincomplex

networkanalysisofrestingstatefunctionalconnectivitydata.NeuroImage,55(3),

1132–1146.https://doi.org/10.1016/j.neuroimage.2010.12.047

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 49: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

49

Sheline,Y.I.,Price,J.L.,Yan,Z.,&Mintun,M.A.(2010).Resting-statefunctionalMRIin

depressionunmasksincreasedconnectivitybetweennetworksviathedorsalnexus.

ProceedingsoftheNationalAcademyofSciences,107(24),11020–11025.

Shirer,W.R.,Jiang,H.,Price,C.M.,Ng,B.,&Greicius,M.D.(2015).Optimizationofrs-fMRI

Pre-processingforEnhancedSignal-NoiseSeparation,Test-RetestReliability,and

GroupDiscrimination.NeuroImage,117,67–79.

https://doi.org/10.1016/j.neuroimage.2015.05.015

Smith,S.M.,Fox,P.T.,Miller,K.L.,Glahn,D.C.,Fox,P.M.,Mackay,C.E.,…Beckmann,C.F.

(2009).Correspondenceofthebrain’sfunctionalarchitectureduringactivationand

rest.ProceedingsoftheNationalAcademyofSciences,106(31),13040–13045.

https://doi.org/10.1073/pnas.0905267106

Smith,S.M.,Miller,K.L.,Salimi-Khorshidi,G.,Webster,M.,Beckmann,C.F.,Nichols,T.E.,…

Woolrich,M.W.(2011).NetworkmodellingmethodsforFMRI.NeuroImage,54(2),

875–891.https://doi.org/10.1016/j.neuroimage.2010.08.063

Sporns,O.,&Zwi,J.D.(2004).Thesmallworldofthecerebralcortex.Neuroinformatics,

2(2),145–162.https://doi.org/10.1385/NI:2:2:145

Tomasi,D.,Wang,G.-J.,&Volkow,N.D.(2013).Energeticcostofbrainfunctional

connectivity.ProceedingsoftheNationalAcademyofSciences,110(33),13642–

13647.https://doi.org/10.1073/pnas.1303346110

Tzourio-Mazoyer,N.,Landeau,B.,Papathanassiou,D.,Crivello,F.,Etard,O.,Delcroix,N.,…

Joliot,M.(2002).AutomatedanatomicallabelingofactivationsinSPMusinga

macroscopicanatomicalparcellationoftheMNIMRIsingle-subjectbrain.

NeuroImage,15(1),273–289.https://doi.org/10.1006/nimg.2001.0978

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 50: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

50

vandenHeuvel,M.P.,deLange,S.,Zalesky,A.,Seguin,C.,Yeo,T.,&Schmidt,R.(2017).

Proportionalthresholdinginresting-statefMRIfunctionalconnectivitynetworks

andconsequencesforpatient-controlconnectomestudies:Issuesand

recommendations.NeuroImage,152,437–449.

https://doi.org/10.1016/j.neuroimage.2017.02.005

vandenHeuvel,M.P.,&HulshoffPol,H.E.(2010).Exploringthebrainnetwork:areview

onresting-statefMRIfunctionalconnectivity.EuropeanNeuropsychopharmacology:

TheJournaloftheEuropeanCollegeofNeuropsychopharmacology,20(8),519–534.

https://doi.org/10.1016/j.euroneuro.2010.03.008

vandenHeuvel,M.P.,Stam,C.J.,Boersma,M.,&HulshoffPol,H.E.(2008).Small-worldand

scale-freeorganizationofvoxel-basedresting-statefunctionalconnectivityinthe

humanbrain.NeuroImage,43(3),528–539.

https://doi.org/10.1016/j.neuroimage.2008.08.010

VanDijk,K.R.A.,Sabuncu,M.R.,&Buckner,R.L.(2012).Theinfluenceofheadmotionon

intrinsicfunctionalconnectivityMRI.NeuroImage,59(1),431–438.

https://doi.org/10.1016/j.neuroimage.2011.07.044

vanWijk,B.C.M.,Stam,C.J.,&Daffertshofer,A.(2010).ComparingBrainNetworksof

DifferentSizeandConnectivityDensityUsingGraphTheory.PLoSONE,5(10),

e13701–e13701.https://doi.org/10.1371/journal.pone.0013701

Vargas,E.R.,&Wahl,L.M.(2014).Thegatewaycoefficient:anovelmetricforidentifying

criticalconnectionsinmodularnetworks.TheEuropeanPhysicalJournalB,87(7),

161.https://doi.org/10.1140/epjb/e2014-40800-7

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint

Page 51: It is made available under a CC-BY-NC-ND 4.0 International license … · Moore Building, University Park, PA 16802. Email: fhillary@psu.edu. This research was supported by a grant

Graphtheoryasatooltounderstandbraindisorders

51

Varoquaux,G.,&Craddock,R.C.(2013).Learningandcomparingfunctionalconnectomes

acrosssubjects.NeuroImage,80,405–415.

https://doi.org/10.1016/j.neuroimage.2013.04.007

Vincent,J.L.,Patel,G.H.,Fox,M.D.,Snyder,A.Z.,Baker,J.T.,Essen,D.C.V.,…Raichle,M.E.

(2007).Intrinsicfunctionalarchitectureintheanaesthetizedmonkeybrain.Nature,

447(7140),83.https://doi.org/10.1038/nature05758

Wang,L.,Hermens,D.F.,Hickie,I.B.,&Lagopoulos,J.(2012).Asystematicreviewof

resting-statefunctional-MRIstudiesinmajordepression.JournalofAffective

Disorders,142(1),6–12.

Watts,D.J.,&Strogatz,S.H.(1998).Collectivedynamicsof“small-world”networks.Nature,

393(6684),440–2.https://doi.org/10.1038/30918

.CC-BY-NC-ND 4.0 International licenseis made available under aThe copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/243741doi: bioRxiv preprint