ispitivanje radnih uslova ventilatora hladnih dimnih...

9
ISPITIVANJE RADNIH USLOVA VENTILATORA HLADNIH DIMNIH GASOVA KOTLA TE ''UGLJEVIK'' M. Erić, Z. Marković, P. Škobalj, D. Cvetinović, V. Spasojević, P. Stefanović Univerzitet u Beogradu, Institut za nuklearne nauke Vinča, P. fah 522, 11001 Beograd, Srbija Apstrakt: Blok ''Ugljevik'' I je u pogonu od 1985 godine kada je blok pušten u rad. Postojeće elektrofiltersko postrojenje u TE ''Ugljevik'' je projektovano za efikasnost otprašivanja od 99,68 %. Pri nominalnom radu od 300 MW, elektrofilteri izdvajaju oko 110 t/h pepela. Projektovana koncentracija ukupnih praškastih materija u dimnom gasu na izlazu iz elektrofiltera je 150 mg/Nm 3 , što je danas znatno pogoršano u odnosu na početni period. U uslovima povećane koncentracije čestica letećeg pepela radni vek vent ilatora hladnih dimnih gasova je znatno snižen usled abrazije lopatica radnog kola. Zbog toga je ugrađena konstrukcija vetilatora hladnih dimnih gasova koja može da radi u radnim uslovima povećane koncentracije praškastih materija do 2000 mg/Nm 3 . Novi ventilatori su pohabani pre predviđenog broja radnih sati. Proizvođač opreme je angažovao Institut za nuklearne nauke ’’Vinča’’, Laboratoriju za termotehniku i energetiku. da izvrši ispitivanja koncentracije praškastih materija u dimnom kanalu na izlazu iz elektrofiltera, a pre mesta izdvajanja hladnih dimnih gasova. Pored zahtevanih ispitivanja Institut za nuklearne nauke ’’Vinča’’ je izvršio i dodatna ispitivanja. U radu će biti prikazani rezultati merenja koncentracija praškastih materija, sadržaja SO 2 u dimnom gasu i ispitivanja sastava kristalnih jedinjenja u uzorcima letećeg pepela. Ključne reči: koncentracija praškastih materija, ventilator hladnih dimnih gasova, kristalna jedinjenja, Rendgenska strukturna analiza.

Upload: others

Post on 23-Oct-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

  • ISPITIVANJE RADNIH USLOVA VENTILATORA HLADNIH DIMNIH

    GASOVA KOTLA TE ''UGLJEVIK''

    M. Erić, Z. Marković, P. Škobalj, D. Cvetinović, V. Spasojević, P. Stefanović

    Univerzitet u Beogradu, Institut za nuklearne nauke Vinča, P. fah 522, 11001 Beograd, Srbija

    Apstrakt: Blok ''Ugljevik'' I je u pogonu od 1985 godine kada je blok pušten u rad. Postojeće

    elektrofiltersko postrojenje u TE ''Ugljevik'' je projektovano za efikasnost otprašivanja od 99,68 %.

    Pri nominalnom radu od 300 MW, elektrofilteri izdvajaju oko 110 t/h pepela. Projektovana

    koncentracija ukupnih praškastih materija u dimnom gasu na izlazu iz elektrofiltera je 150 mg/Nm3,

    što je danas znatno pogoršano u odnosu na početni period.

    U uslovima povećane koncentracije čestica letećeg pepela radni vek ventilatora hladnih dimnih

    gasova je znatno snižen usled abrazije lopatica radnog kola. Zbog toga je ugrađena konstrukcija

    vetilatora hladnih dimnih gasova koja može da radi u radnim uslovima povećane koncentracije

    praškastih materija do 2000 mg/Nm3. Novi ventilatori su pohabani pre predviđenog broja radnih

    sati.

    Proizvođač opreme je angažovao Institut za nuklearne nauke ’’Vinča’’, Laboratoriju za

    termotehniku i energetiku. da izvrši ispitivanja koncentracije praškastih materija u dimnom kanalu

    na izlazu iz elektrofiltera, a pre mesta izdvajanja hladnih dimnih gasova. Pored zahtevanih

    ispitivanja Institut za nuklearne nauke ’’Vinča’’ je izvršio i dodatna ispitivanja.

    U radu će biti prikazani rezultati merenja koncentracija praškastih materija, sadržaja SO2 u dimnom

    gasu i ispitivanja sastava kristalnih jedinjenja u uzorcima letećeg pepela.

    Ključne reči: koncentracija praškastih materija, ventilator hladnih dimnih gasova, kristalna

    jedinjenja, Rendgenska strukturna analiza.

  • INVESTIGATION ON WORKING CONDITIONS OF COLD FLUE GASES

    FANS AT STEAM BOILER OF THE TPP “UGLJEVIK”

    M. Erić, Z. Marković, P. Škobalj, D. Cvetinović, V. Spasojević, P. Stefanović

    University of Belgrade, Institute of Nuclear Sciences Vinca, P.O. Box 522, 11001 Belgrade,

    Serbia

    Abstract: The unit ''Ugljevik'' I has been in operation since 1985, when the unit put into operation.

    Existing electrostatic precipitators in TPP ''Ugljevik'' are designed for dust removal efficiency of

    99.68%, At the nominal operation of 300 MW electrostatic precipitators separate about 110 t/h of

    flying ash. Total designed concentration of particulate matter in the flue gas at the outlet of the

    electrostatic precipitator 150 mg/Nm3. Today concentration is significantly higher than in earliar

    period.

    In conditions of increased concentration of particulate matter lifetime of cold flue gases fan is

    significantly reduced due to the abrasion of turbine blades. Therefore, the new design of cold flue

    gases fans are mounted, which can work in the working conditions of increased concentrations of

    particulate matter up to 2000 mg/Nm3. New fans are worn before the scheduled hours of work.

    Institute of Nuclear Sciences ''Vinca'', Laboratory for Thermal Engineering and Energy was

    engaged by equipment manufacturer to perform tests of dust concentration in the flue channel at the

    outlet of electrostatic and before segregation of cold gases. In addition to the required tests for the

    Institute of Nuclear Sciences ''Vinca'' was conducted additional tests .

    The paper presents the results of the following tests: measurement of particulate matter

    concentration and the SO2 content in the flue gas and tests of the composition of crystalline

    compounds in samples of fly ash.

    Key words: particulate matter concentration, cold flue gases fan, crystalline compounds, X-ray

    difraction analysis.

    1. INTRODUCTION

    Thermal Power Plant has been in operation since 1985. During the war in Bosnia and Herzegovina

    from 1992 to 1995 year thermal power plant was out of order. Installed capacity of the thermal

    power plant Ugljevik I is 300 MW, with 1601 GWh of electrical energy per year. The unit Ugljevik

    I has been projected to work 200.000h. The unit has been working 104.500 h or 52% of projected

  • lifetime. Thermal power plant is using coal from open pit mine "Bogutovo Selo". Electrostatic

    precipitator (Figure 1) has been in operation since 1985 [1-2].

    In the conditions of increased concentration of particulate matter at the outlet of electrostatic

    precipitator there is problem of abrasion fan blades of cold flue gasses. Because of mentioned

    above, new construction of cold flue gasses fan has been installed, which can operate up to

    concentration level of 2000 mg/Nm3 of particulate matter. New fans are worn before the scheduled

    hours of work.

    Figure 1. Electrostatic precipitator and cold flue gas fan at left side of the steam boiler

    Manufacturer of equipment engaged Institute of Nuclear Sciences Vinca, Laboratory for thermal

    engineering in order to determine work conditions of cold flue gases fans, to perform tests of

    particulate matter concentration in dust channel at the end of electrostatic precipitator and before

    segregation of flue gasses. Institute of Nuclear Sciences of Vinca has done additional examination

    which can explain problems of turbine blades abrasion: determination of SO2 content in flue gas

    and determination of flying ash composition by X-ray difraction method.

  • 2. TEST METHODS AND RESULTS

    Particulate matter test of the Electrostatic Precipitator System (ESP) of the unit ''Ugljevik I'' was

    performed by Institute of Nuclear Sciences „Vinča“, Laboratory for Thermal Engineering and

    Energy according to ISO 9096. Special filters for high level particulate matter concentrations were

    used because expected concentration was much higher than standard range from 20 mg/Nm3 to

    1000 mg/Nm3. Measuring plane was defined behind electrostatic precipitator and before the

    segregation of flue gas for cooling the hot recirculated flue gases.

    Three tests were performed during the two days at both ESPs, which results are shown in the Table

    1 and Figure 2 [1].

    Table 1. Test results of particulate matter content in the flue gas behind ESP

    Parameter Unit Value - Left / Right ESP

    TEST No.1

    Load MW 270

    Content O2 in the flue gas % 7.90 / 6.80

    Particulate matter content in the flue gas at ESP exit

    (pressure 101325 Pa, Temperature 273 K, dry gas)

    measured O2

    mg/Nm3 2591.2 / 2033.7

    Particulate matter content in the flue gas at ESP exit

    (pressure 101325 Pa, Temperature 273 K, dry gas) O2=6% mg/Nm

    3 2884.6 / 2148.2

    TEST No.2

    Load MW 270

    Content O2 in the flue gas % 7.90 / 6.80

    Particulate matter content in the flue gas at ESP exit

    (pressure 101325 Pa, Temperature 273 K, dry gas)

    measured O2

    mg/Nm3 7414.9 / 1513.2

    *

    Particulate matter content in the flue gas at ESP exit

    (pressure 101325 Pa, Temperature 273 K, dry gas) O2=6% mg/Nm

    3 8490.4 / 1598.5

    *

    TEST No.3

    Load MW 285

    Content O2 in the flue gas % 6.82 / 6.38

    Particulate matter content in the flue gas at ESP exit

    (pressure 101325 Pa, Temperature 273 K, dry gas)

    measured O2

    mg/Nm3 2717.7 / 2015.7

    Particulate matter content in the flue gas at ESP exit

    (pressure 101325 Pa, Temperature 273 K, dry gas) O2=6% mg/Nm

    3 2874.9 / 2068.1

    * Results of test No. 2 are not considered because of ESP operating mode has been significantly changed during the

    sampling

    Sulfur dioxide content in the flue gas are measured during particulate matter sampling for all three

    tests in accordance with standard ISO 7935. Measurements were performed with Fuji ZKJ3 gas

    analyzer by NDIR method. Measuring range of the instrument is from 0 to 14285 mg/Nm3. The

    measured SO2 content was much higher than range of instrument for all three tests.

  • 0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    2000

    2200

    2400

    2600

    2800

    Guaranteed value

    Test number (L-left ESP / R-right ESP)

    1L 1R 2L 2L 3L 3R

    Pa

    rti

    cu

    late

    ma

    tter e

    mis

    sio

    n [

    mg

    /Nm

    3]

    Av

    erag

    ed v

    alu

    e fo

    r 2

    ser

    ies

    Figure 2. Test results of particulate matter concentration at the exit of ESP

    Flying ash composition analysis was determined by X-ray difraction method (XRD method). X-ray

    difraction has long been used as a definitive technique for identification of crystalline mineral

    components, and represents the most suitable method for identifaying minerals and other crystalline

    phases in a wide range of natural and syntetic materials. XRD is reliably method, especially in

    materials such as fly ash, where the individual crystals can not be identified by other techniques.

    The X-ray diffraction pattern of a pure substance is, therefore, like a fingerprint of the substance.

    The powder diffraction method is thus ideally suited for characterization and identification of

    polycrystalline phases.

    Today about 50,000 inorganic and 25,000 organic single component, crystalline phases, diffraction

    patterns have been collected and stored on magnetic or optical media as standards. The main use of

    powder diffraction is to identify components in a sample by a search/match procedure. Furthermore,

    the areas under the peak are related to the amount of each phase present in the sample [3-4].

    Two samples flying ash are sampled at the same measuring plane which was used for particulate

    matter concentration sampling. XRD analyses results of two collected samples are given in Figures

    3 – 5 [1].

    The Mohs scale of hardness (Figure 6) is the most common method used to rank minerals according

    to hardness. This scale grades minerals on a scale from 1 (very soft) to 10 (very hard). Mohs scale is

    a relative scale, the difference between the hardness of a diamond and that of a ruby is much greater

    than the difference in hardness between calcite and gypsum. As an example, diamond (10) is about

    4-5 times harder than corundum (9), which is about 2 times harder than topaz (8) [5].

  • TE Ugljevik Fly Ash 08.07.2011

    01-071-2014 (C) - Iron Sulfate - FeSO3 - S-Q 2.1 %

    01-071-1378 (C) - Iron Sulfate - Fe2(SO4)3 - S-Q 2.2 %

    01-072-0916 (C) - Anhydrite - Ca(SO4) - S-Q 27.0 %

    01-079-1345 (C) - Dolomite - CaMg(CO3)2 - S-Q 16.1 %

    01-089-3072 (C) - Corundum, syn - Al2O3 - S-Q 21.1 %

    03-065-0466 (C) - Quartz low, syn - SiO2 - S-Q 11.1 %

    01-089-8103 (C) - Hematite, syn - Fe2O3 - S-Q 8.1 %

    01-074-1226 (C) - Lime - CaO - S-Q 10.5 %

    01-089-5957 (C) - Potassium Peroxide - KO2 - S-Q 1.8 %

    Operations: Range Op. B-A | Bezier Background 1.000,1.000 | Import

    UZORAK1 - File: UZORAK1.raw - Type: 2Th/Th locked - Start: 10.000 ° - End: 90.000 ° - Step: 0.050 ° - Ste

    Lin

    (C

    ou

    nts

    )

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    1100

    1200

    1300

    1400

    1500

    1600

    2-Theta - Scale

    10 20 30 40 50 60 70 80 90

    Figure 3. XRD method test results of particulate matter composition for sample 1

    TE Ugljevik Fly Ash 09.07.2011

    01-071-2014 (C) - Iron Sulfate - FeSO3 - S-Q 1.5 %

    01-071-1378 (C) - Iron Sulfate - Fe2(SO4)3 - S-Q 1.5 %

    01-072-0916 (C) - Anhydrite - Ca(SO4) - S-Q 30.2 %

    01-079-1345 (C) - Dolomite - CaMg(CO3)2 - S-Q 15.3 %

    01-089-3072 (C) - Corundum, syn - Al2O3 - S-Q 20.4 %

    03-065-0466 (C) - Quartz low, syn - SiO2 - S-Q 11.4 %

    01-089-8103 (C) - Hematite, syn - Fe2O3 - S-Q 6.8 %

    01-074-1226 (C) - Lime - CaO - S-Q 10.9 %

    01-089-5957 (C) - Potassium Peroxide - KO2 - S-Q 2.0 %

    Operations: Range Op. B-A | Bezier Background 1.000,1.000 | Import

    UZORAK2 - File: UZORAK2.raw - Type: 2Th/Th locked - Start: 10.000 ° - End: 90.000 ° - Step: 0.050 ° - Ste

    Lin

    (C

    ou

    nts

    )

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    1100

    1200

    1300

    1400

    1500

    1600

    1700

    2-Theta - Scale

    10 20 30 40 50 60 70 80 90

    Figure 4. XRD method test results of particulate matter composition for sample 2

  • No. Mineral Unit Sample I Sample II

    1. Potassium peroxide – KO2 % 1,8 2,0

    2. Lime – CaO % 10,5 10,9

    3. Hematite – Fe2O3 % 8,1 6,8

    4. Quartz – SiO2 % 11,1 11,4

    5. Corundum – Al2O3 % 21,1 20,4

    6. Dolomite – CaMg(CO3)2 % 16,1 15,3

    7. Anhidrite (Калцијум сулфат) – Ca(SO4) % 27,0 30,2

    8. Iron sulfate - Fe2(SO4) % 2,2 1,5

    9. Iron sulfate – FeSO3 % 2,1 1,5

    Figure 5. XRD method test results of particulate matter composition, sampled in the flue gas behind ESP

    Three hard minerals, which have major contributin on abrasion of cold flue gases fan blades, were

    found in analysed samples: Corundum (~ 21%, Mohs scale 9), Quartz (~ 11%, Mohs scale 7) and

    Dolomite (~ 8%, Mohs scale 5.5).

    Figure 6. Mohs Mineral Hardnes scale

  • 3. CONCLUSION

    The extremely high concentrations of particulate matter were measured at the outlet of electrostatic

    precipitators:

    Test No.1:

    - average value for left ESP 2884,6 mg/Nm3

    - average value for right ESP 2148,2 mg/Nm3

    Test No.2:

    - average value for left ESP 8490,4 mg/Nm3

    - average value for right ESP 1598,5 mg/Nm3

    Test No.3:

    - average value for left ESP 2874,9 mg/Nm3

    - average value for right ESP 2068,1 mg/Nm3

    that are over 40 times higher than the emission limit values for plants with thermal capacity of over

    500 MW (50 mg/Nm3) and significantly lead to damage to devices and flue channels.

    Operation conditions during the Test No. 2 were not regular because of ESP operating mode has

    been significantly changed, and the results were not taken into consideration.

    Very high content of SO2 was measured in the flue gases (> 14 285 mg/Nm3) that, in low

    temperature zones, with no intense flows, reacts with a condensate and create sulfurous acid which

    causes corrosion of materials.

    X-ray difraction has shown great content of hardest minerals that contribute most to the abrasion of

    material:

    Corundum – Al2O3 (~ 21%, Mohs Mineral Hardness scale 9),

    Quartz – SiO2 (~ 11%, Mohs Mineral Hardness scale 7) и

    Hematite – Fe2O3 (~ 8%, Mohs Mineral Hardness scale 5.5),

    that in the total sum account for approximately 40% of the total amount of particulate matter which

    passes through the electrostatic precipitator.

    Modernization and reconstruction of electrostatic precipitators and installation system of

    desulphurization processes can increase the service life of thermal power plants and eliminate above

    mentioned problems.

    ACKNOLIGMENT

    This work as a part of the Project III 42010 was financially supported by Ministry of Education,

    Science and Technological Development of the Republic of Serbia.

  • REFERENCES

    [1] Erić, M., Radovanović, P., Working Conditions of Cold Flue Gases Fans at Steam Boiler of the

    TPP “Ugljevik” in Ugljevik, Report NIV LTE 481, Institute of Nuclear Sciences Vinča, Vinča,

    2011.

    [2] Grubor, B., Repić, B., Stefanović, P., Investigation on Electrostatic Precipitators Efficiency of

    the TPP “Ugljevik” , Report NIV LTE 172, Institute of Nuclear Sciences Vinča, Vinča, 2000.

    [3] Colin, W., D., Relation Between Coal and Fly Ash Mineralogy, Based on Quantitive X-Ray

    Diffraction Methods, 2005 World of Coal Ash (WOCA), April 11-15, 2005., Lexington,

    Kentacky, USA.

    [4] Colin, W., (School of Biological, Eart and Enviromental Sciences), Characteristic of Australian

    Fly Ashes Based on Quantitive X-Ray Diffraction Analysis, Cooperative Research Centre for

    Coal in Sustainble Development December 2003, Technical Note 21

    [5] Schuman, W., Minerals of the World, Sterling Publishing Co. Inc., New York, 2008.