isopleths of chlorophyll in radiance space janet w. campbell, timothy s. moore, and mark d. dowell...

23
ISOPLETHS OF CHLOROPHYLL IN RADIANCE SPACE Janet W. Campbell, Timothy S. Moore, and Mark D. Dowell Ocean Process Analysis Laboratory University of New Hampshire Durham, NH 03824-3525 USA Santa Fe, New Mexico November 21, 2002 This work was supported by a NASA MODIS Team contract (NAS5-96063) and NASA grant (NAG5-6289).

Upload: jeffery-harmon

Post on 18-Dec-2015

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ISOPLETHS OF CHLOROPHYLL IN RADIANCE SPACE Janet W. Campbell, Timothy S. Moore, and Mark D. Dowell Ocean Process Analysis Laboratory University of New

ISOPLETHS OF CHLOROPHYLL IN RADIANCE SPACE

Janet W. Campbell, Timothy S. Moore, and Mark D. Dowell

Ocean Process Analysis LaboratoryUniversity of New Hampshire

Durham, NH 03824-3525 USA

Santa Fe, New MexicoNovember 21, 2002

This work was supported by a NASA MODIS Teamcontract (NAS5-96063) and NASA grant (NAG5-6289).

Page 2: ISOPLETHS OF CHLOROPHYLL IN RADIANCE SPACE Janet W. Campbell, Timothy S. Moore, and Mark D. Dowell Ocean Process Analysis Laboratory University of New

According to a ratio algorithm….

Isopleths of chlorophyll are lines passing through the origin in the plane defined by the two

radiances used in the ratio.

Lw(443):Lw(550)

R(490):R(555)

max[R(443),R(490)]:R(555)

max[R(443),R(490),R(510)]:R(555)

• CZCS

• OC2

• OC3M

• OC4

Page 3: ISOPLETHS OF CHLOROPHYLL IN RADIANCE SPACE Janet W. Campbell, Timothy S. Moore, and Mark D. Dowell Ocean Process Analysis Laboratory University of New

According to a semi-analytic algorithm …

Isopleths of chlorophyll generally do not pass through the origin

in planes defined by two radiances.

• Gordon et al. 1988

• Garver & Siegel, 1997

• Carder et al. 1999

)(b)(a

)(b~)(R

b

brs

Page 4: ISOPLETHS OF CHLOROPHYLL IN RADIANCE SPACE Janet W. Campbell, Timothy S. Moore, and Mark D. Dowell Ocean Process Analysis Laboratory University of New

In this presentation, I will….

1. Demonstrate this by comparing

• Garver & Siegel (1997) algorithm

• OC4 algorithm (O’Reilly et al. 2000)

2. Show that covariance among optically active constituents reconciles this inconsistency.

Page 5: ISOPLETHS OF CHLOROPHYLL IN RADIANCE SPACE Janet W. Campbell, Timothy S. Moore, and Mark D. Dowell Ocean Process Analysis Laboratory University of New

Ratio algorithms are strongly supported by empirical data….

Page 6: ISOPLETHS OF CHLOROPHYLL IN RADIANCE SPACE Janet W. Campbell, Timothy S. Moore, and Mark D. Dowell Ocean Process Analysis Laboratory University of New

OC4

0

0.01

0.02

0.03

0.04

0 0.01 0.02 0.03 0.04

Normalized reflectance at 555

Max

imum

ref

lect

ance

Chl = 0.01 0.1 0.3 1

3

10

30

Isopleths of chlorophyll for the OC4 algorithm

Page 7: ISOPLETHS OF CHLOROPHYLL IN RADIANCE SPACE Janet W. Campbell, Timothy S. Moore, and Mark D. Dowell Ocean Process Analysis Laboratory University of New

Gordon et al. 1988

p

bp555

)(b

(555)bbp

)(a)(a)(a)(a cdmphw )(B

ph )(A)(a

Chl

)]443(Sexp[)(acdm (443)acdm

)(b)(b)(b bpbwb

Bricaud et al. 1995

)(b)(a

)(b~)(R

b

brs

S = 0.02

p = 1

Pope & Fry, 1997

Semi-analytic Model of Garver & Siegel, 1997

Page 8: ISOPLETHS OF CHLOROPHYLL IN RADIANCE SPACE Janet W. Campbell, Timothy S. Moore, and Mark D. Dowell Ocean Process Analysis Laboratory University of New

bbp=bbp(555)

adm=acdm(443)

Chl

Rrs(555)

max

. Rrs(

)

3-D “constituent space” maps into 2-D reflectance plane

%100)443(a

(443)a

%adm cdm

Page 9: ISOPLETHS OF CHLOROPHYLL IN RADIANCE SPACE Janet W. Campbell, Timothy S. Moore, and Mark D. Dowell Ocean Process Analysis Laboratory University of New

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 0.002 0.004 0.006 0.008 0.01

Rrs(555)

Rrs

(490

)

Pure Seawater

Chl = 0 %adm = 0

p=2 to 0

Chl = 10 mg m-3

%adm = 80%

bbp = 0

Feasible Points in 490 vs. 555 Reflectance Plane

Page 10: ISOPLETHS OF CHLOROPHYLL IN RADIANCE SPACE Janet W. Campbell, Timothy S. Moore, and Mark D. Dowell Ocean Process Analysis Laboratory University of New

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.000 0.002 0.004 0.006 0.008 0.010

Rrs(555)

Rrs

(490

)

0.025

0.040

0.063

0.10

0.16

0.25

0.40

0.63

1.0

1.6

2.5

4.0

6.3

10

12-33

pure seawater

a=aw, p=2

a=aw, p=0

chl=10, %adm=80%

bbp=0

Measured Chl

SeaBAM Data

Page 11: ISOPLETHS OF CHLOROPHYLL IN RADIANCE SPACE Janet W. Campbell, Timothy S. Moore, and Mark D. Dowell Ocean Process Analysis Laboratory University of New

Chl = 0.01 0.1 0.3 1 3

10, 30

Garver&Siegel Model%adm = 35%

0.00

0.01

0.02

0.03

0.04

0.00 0.01 0.02 0.03 0.04

Normalized reflectance at 555

Max

imum

ref

lect

ance

Max

imum

ref

lect

ance

Isopleths of Chl in the OC4 plane, holding %adm = 35%

bbp isopleths

Page 12: ISOPLETHS OF CHLOROPHYLL IN RADIANCE SPACE Janet W. Campbell, Timothy S. Moore, and Mark D. Dowell Ocean Process Analysis Laboratory University of New

0.00

0.01

0.02

0.03

0.04

0.00 0.01 0.02 0.03 0.04

Normalized reflectance at 555

Max

imum

ref

lect

ance

Garver & Siegel ModelChl = 0.3

%adm = 0 10 35 50 65 80

90

Chl = 0.3 isopleths varying %adm between 0 and 90%

bbp isopleths

Page 13: ISOPLETHS OF CHLOROPHYLL IN RADIANCE SPACE Janet W. Campbell, Timothy S. Moore, and Mark D. Dowell Ocean Process Analysis Laboratory University of New

0.00

0.01

0.02

0.03

0.04

0.00 0.01 0.02 0.03 0.04

Normalized reflectance at 555

Max

imum

ref

lect

ance

Garver & Siegel ModelChl = 0.3

%adm = 0 10 35 50 65 80 90

OC4

Chl = 0.3 isopleths varying %adm between 0 and 90%

Tracing points along the OC4 Chl = 0.3 isopleth, adm

increases as bbp decreases.

Page 14: ISOPLETHS OF CHLOROPHYLL IN RADIANCE SPACE Janet W. Campbell, Timothy S. Moore, and Mark D. Dowell Ocean Process Analysis Laboratory University of New

Garver&Siegel Model

0.00

0.01

0.02

0.00 0.01 0.02

Normalized reflectance at 555

Max

imum

ref

lect

ance

%adm = 0% 10% 50% 10% 75%

Chl = 10

90%

30%

Chl = 0.1 Chl = 1Chl = 0

SeaBAM data for Chl = 0.1, 1 and 10

Page 15: ISOPLETHS OF CHLOROPHYLL IN RADIANCE SPACE Janet W. Campbell, Timothy S. Moore, and Mark D. Dowell Ocean Process Analysis Laboratory University of New

OC4

0

0.01

0.02

0.03

0.04

0 0.01 0.02 0.03 0.04

Normalized reflectance at 555

Max

imum

ref

lect

ance

Chl = 0.01 0.1 0.3 1

3

10

30

Isopleths of chlorophyll for the OC4 algorithm

The Garver&Siegel model was inverted to derive the relationship between adm and bbp along the

OC4 isopleths of Chl.

Page 16: ISOPLETHS OF CHLOROPHYLL IN RADIANCE SPACE Janet W. Campbell, Timothy S. Moore, and Mark D. Dowell Ocean Process Analysis Laboratory University of New

0.001

0.01

0.1

1

10

0.0001 0.001 0.01 0.1 1

bbp

adm

Chl=0.1

Chl=0.3

Chl=1

Chl=3

Chl=10

Chl=30

Relationship between adm and bbp required to reconcile OC4 and Garver&Siegel model

Page 17: ISOPLETHS OF CHLOROPHYLL IN RADIANCE SPACE Janet W. Campbell, Timothy S. Moore, and Mark D. Dowell Ocean Process Analysis Laboratory University of New

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.000 0.002 0.004 0.006 0.008 0.010

Rrs(555)

Rrs

(490

)

0.025

0.040

0.063

0.10

0.16

0.25

0.40

0.63

1.0

1.6

2.5

4.0

6.3

10

12-33

pure seawater

a=aw, p=2

a=aw, p=0

chl=10, %adm=80%

bbp=0

Measured Chl

SeaBAM Data

Page 18: ISOPLETHS OF CHLOROPHYLL IN RADIANCE SPACE Janet W. Campbell, Timothy S. Moore, and Mark D. Dowell Ocean Process Analysis Laboratory University of New

y = 0.0017x-0.2437

R2 = 0.1553

y = 0.0213x-0.1004

R2 = 0.0336

y = 22.758x1.0451

R2 = 0.7064

y = 0.0002x-0.5021

R2 = 0.2868

0.001

0.01

0.1

1

10

0.0001 0.001 0.01 0.1

bbp

adm

Chl < 0.05 Chl = 0.1 Chl = 1 Chl = 10

Page 19: ISOPLETHS OF CHLOROPHYLL IN RADIANCE SPACE Janet W. Campbell, Timothy S. Moore, and Mark D. Dowell Ocean Process Analysis Laboratory University of New

CONCLUSIONS

1. According to semi-analytic models for Case 1 waters, optical properties are governed by three variables (Chl, adm, bbp). Chl isopleths in radiance space do not pass through the origin.

2. Empirical evidence supports ratio algorithms in which Chl isopleths do pass through the origin.

3. Covariance between adm and bbp reconciles this discrepancy.

Page 20: ISOPLETHS OF CHLOROPHYLL IN RADIANCE SPACE Janet W. Campbell, Timothy S. Moore, and Mark D. Dowell Ocean Process Analysis Laboratory University of New

CONCLUSIONS (cont.)

4. The nature of the relationship between adm and bbp depends on the trophic state:

• In oligotrophic waters, there is a negative correlation between adm and bbp.

• In eutrophic waters, the correlation is zero or positive.

5. This might contain a clue as to the nature of the particles that scatter light in the different ocean environments.

Page 21: ISOPLETHS OF CHLOROPHYLL IN RADIANCE SPACE Janet W. Campbell, Timothy S. Moore, and Mark D. Dowell Ocean Process Analysis Laboratory University of New

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.000 0.005 0.010 0.015 0.020 0.025 0.030

<0.02

0.025

0.040

0.063

0.10

0.16

0.25

0.40

0.63

1.0

1.6

2.5

4.0

6.3

10

>12

pure water

a=aw

bbp=0

Chl=10

NOMAD Data

Page 22: ISOPLETHS OF CHLOROPHYLL IN RADIANCE SPACE Janet W. Campbell, Timothy S. Moore, and Mark D. Dowell Ocean Process Analysis Laboratory University of New

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.000 0.002 0.004 0.006 0.008 0.010

Rrs(555)

Rrs

(490

)

0.025

0.040

0.063

0.10

0.16

0.25

0.40

0.63

1.0

1.6

2.5

4.0

6.3

10

12-33

pure seawater

a=aw, p=2

a=aw, p=0

chl=10, %adm=80%

bbp=0

Measured Chl

SeaBAM Data

Page 23: ISOPLETHS OF CHLOROPHYLL IN RADIANCE SPACE Janet W. Campbell, Timothy S. Moore, and Mark D. Dowell Ocean Process Analysis Laboratory University of New