isope-p-90-128

Upload: specule

Post on 27-Feb-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 ISOPE-P-90-128

    1/6

    Proceedings of he FIrSt Pacific/AsIa Offshore Me hamcs SymposIum

    Seoul, Korea,

    2428

    June, 1990

    COPYright @1990 by The InternatIOnal SocIety of OffshOle and Polar Engme s

    ANALYSIS ON FATIGUE FRACTURE OF PITCH TYPE CFRP BY E METHOD

    R I Murakami

    Fuilt'l iry 01

    Tol,u,/iillla

    Toku5lJ1l11a JAP 1S

    T.

    Adachi

    HIJalp

    ('OI'POI

  • 7/25/2019 ISOPE-P-90-128

    2/6

    3. EXPERIMENTAL RESULTS AND DISCUSSION

    3-1

    S-N

    Curve of

    CFRP

    Fig.2 shows

    S-N curves

    of p i t ch

    type

    CFRP

    for

    the

    s t r e s s r a t i o s

    of

    R=O

    and 0 .5 .

    F ig.2

    a l so inc ludes t he

    r e su l t

    o f

    epoxide

    r e s i n for

    ,R=O. For R=O, though t he re a re a few s ca t t e r ed

    fa t igue s t r eng th o f CFRP, t he

    S-N curve

    1S d i

    v1ded

    i n to th ree

    regions ;

    Stage

    a) ,

    b)

    and

    c ) .

    Such a

    div i s ion agrees we l l w1th

    a gener

    a l

    fea ture of S-N

    curve

    for composite mater -

    1als Shiwa e t

    aI ,

    1986). When t he s t r e s s r a

    t io

    inc reases , the

    decrease in

    fa t igue

    s t reng th i s grea te r in high cycle region than

    in low

    cycles region.

    The same

    dependence

    of

    fa t igue s t r eng th on s t r e s s r a t i o

    has

    been

    s tud ied

    by

    the o the r re sea rche rs Fu j i i

    and

    Zako,

    1985).

    7

    The

    fa t igue s t r eng th a t 10

    cyc les

    for

    CFRP

    i s about 5.6 t imes grea ter

    than

    t h a t fo r

    epoxy. This sugges ts t h a t t he o r i en t a t i o n of

    pi t ch

    type carbon

    f ibe r

    in r e s i n matr ix con

    t r ibu te s

    to 1ncrease i n f a t igue s t r eng th .

    Slnce

    t he r a t i o of fa t igue s t r eng th to u l t i

    mate

    t e n s i l e

    s t reng th

    i s

    72 for CFRP

    but i s

    about

    10

    fo r

    epoxy,

    t he

    decrease

    in

    fa t igue

    s t reng th due

    to

    CyCl1C s t re s s

    i s l e s s

    for CFRP

    than

    for epoxy.

    S

    2

    C r R P . 4

    __ _ _ _ _ _ _ _ _ C f . ~ P , ~ R ~ 4 ~ ~ ~

    _ _ _ _ _ _

    _ _

    Fig .2 S-N curves

    for CFRP

    3-2 Fractographic Resul t s

    We have observed

    the

    corne r c rack ing

    on

    fa t1gue

    f rac tu re

    sur face

    and have measured

    i t s

    shape

    and dimension. Then,

    the

    c r i t i c a l s t r e s s in

    t ens i ty ,

    K

    fc

    '

    a t

    f i n a l fa t igue

    f rac tu re was

    decided

    Murakami , 1987). Fig .3 shows t he r e

    l a : i o n

    between

    t he K

    f

    value and s t r e s s am

    pl1tude for

    R=O.

    The k

    fc

    value i s

    independent

    5

    20

    30

    G . MPa)

    Fig.3 Fat igue f rac tu re toughness

    for CFRP

    150

    of t he s t r e s s ~ l i t u d e and i s a cons tant of

    about 5.4MPa*m . This sugges ts t h a t as the

    fa t1gue

    damage

    for CFRP has approached a con

    s t an t

    value , the

    fa t igue f rac tu re

    would be

    happened.

    Fig.4 shows t y p i ca l frac tographs of CFRP

    for R=O.

    For

    R=O,

    t he re

    a re the p l a i n

    and

    m1r

    ro r l i k e p a t t e rn in epoxide r e s i n . Never th less

    the

    carbon

    f ibe r

    i s randomly

    or i en ted

    in the

    r e s i n

    matr ix , 1 t

    f a i l s

    v e r t i c a l l y to

    the load

    ax i s . The

    sur face

    of

    carbon

    f ibe r

    i s

    smooth

    and does not adhere to epoxide res in . As shown

    in

    Fig .5 , the

    roughness of t he f i n a l

    f rac tu re

    sur face

    i s grea t and

    the

    epoxide

    r e s i n

    adheres

    t o t he

    carbon f iber .

    Then, t he cyc l i c s t r e s s

    gives

    r i s e

    to

    the

    damage

    of r e s in mat r ix -ca r

    bon f ibe r

    i n t e r f ace

    and

    may

    promote

    to an

    in

    t e r fa c i a l

    decohesion

    for CFRP.

    When

    the

    s t r e s s r a t i o increases from R=O

    to

    R=0.5,

    the morphology of fa t igue

    damage

    plane i s almost

    the

    same

    as

    tha t for R=O, as

    shown

    in

    Fig .6 . Thereis a mirror l i k e a rea

    Kunio,

    1982)

    on the

    fa t igue f rac tu re su r face ,

    as

    shown in

    Fig .7 .

    This

    p a t t e rn

    i s very

    Slm1-

    l a r to t he f rac tu re

    appearance

    of r e s i n matrix

    1n CFRP, as

    shown in Fig .4 .

    3-3 Rela t ion between AE

    Pro te r t i e s

    and Fat igue

    Damage

    Fig.8

    shows

    the

    r e l a t ion

    between

    AE cumu

    l a t ive

    event

    count or AE

    energy

    and

    number

    ,of

    Fig.4 Fractograph of fa tg iue

    damage

    plane for CFRP, R=O, c(L=23MPa

    Fig .5 Fractograph of

    fa ina l f rac tu re

    sur face

    for CFRP, R=O, c ( ~ = 2 3 M P a

  • 7/25/2019 ISOPE-P-90-128

    3/6

    Fig.6

    Frac tograph of fa t igue damage

    plane for CFRP, R=O,

    c ~ = 1 5 . 7 M P a

    cyc les for CFRP, R=O and s t r e s s ampl i tude , 0 0- =

    30MPa. The fa t igue damage process i s div ided

    i n to th ree regions according

    to

    AE

    cumula t ive

    event count as fo l lows; Region 1 means

    the

    p r o ~ e s s t h a t AE

    cumula t ive event

    count

    l i n ea r -

    ly

    I n c r e a s e ~

    with inc reas ing

    number

    of

    cyc les

    N

    f

    12.5*10 cyc les) . Region2

    means

    the pro-

    cess

    t h a t

    AE

    cumula t ive event

    count s c ~ r e c e l y

    changes w ~ t h number

    of

    cyc les 12.5*10 cyc les

    N

    f

    17*10

    cyc les) . Region 3

    means

    the

    process

    tha t AE cumulat ive event count rap id ly in -

    creases

    ~ i t h l ~ c r e a s i n g number 0 cyc les and

    the

    specImen f Ina l ly fa i ls 17*10

    cyc les

    N ) .

    . When

    t he s t r e s s ampl i tude

    decreases ,

    glon 2 expands and t r an s f e r s to Region 3 . t

    before a

    f ina l

    f rac ture as

    shown

    in

    Fig 9 J U ~ f _

    t e r an

    enfurance l imi t

    of specimen, R e g i o ~ 3

    Fig 8

    Rela t ion between

    AE cumula t ive event

    count

    or AE

    energy

    and number

    of cyc les ,

    CFRP, R=O, ~ ~ = 3 0 M P a

    I

    I

    I I

    ~ ~ ~ ~

    I I I I

    I f I I

    t

    I I I

    ~ ~ ~ ~

    I I

    I I I I

    I I 1 I

    ~ ~ ~ ~

    r :

    : . 11 ;

    :

    ----- ------ ----- --

    T

    No of eye les

    25000.00

    Fig 9 Rela t ion between

    AE cumula t ive event

    count

    or AE

    energy

    and

    number

    of cycl les ,

    CFRP, R=O. 5, cr 1l. =25MPa

    151

    Fig.7

    Frac tograph

    of fa t igue f rac ture

    sur f ace for epoxy, R=0,

  • 7/25/2019 ISOPE-P-90-128

    4/6

    I

    I

    I

    I I I I

    - - - - - - - - - - - ~ - - - - - - r - - - - - - - - - - -

    I I I I

    I I I I

    , I I I

    I I I

    -----r-----'------

    I

    I I

    I I

    I I

    ---r-----'------

    AE

    AlI1llitude

    I

    I

    I

    I

    mY)

    10.00

    F i g . l l Rela t ion between

    AE

    ampl i tude

    and AE event count for CFRP

    shown in Fig .12 .

    But, Region 2 i s

    small

    and

    the AE

    does not

    happen on

    unloading

    process .

    This

    suggests

    t ha t the re i s a c r i t i c a l

    s t r e s s

    for

    an occurrence

    of AE

    on

    the

    unloading

    pro

    cess . Then, when the

    s t r e s s

    r a t i o inc reases ,

    it i s

    considered

    t h a t

    for

    R=O.5, the AE

    would

    not

    happen on

    the

    unloading

    process s ince the

    mlnimum cyc l i c s t r e s s

    i s

    grea te r t han a

    criti-

    ca l s t r e s s .

    For

    epoxide

    r e s i n , the

    AE

    even t

    has a low ampl i tude

    below 1.6mV as

    shown in

    Flg .13 .

    These

    AE even t s

    are

    a

    very

    s imi la r to

    tha t

    in

    Region 1 for CFRP.

    Shiwa

    e t

    al 1986) have shown t he same AE

    events for GFRP wi th epoxide matr ix as

    the

    present s tudy .

    According

    to

    t h e i r

    s tudy , the

    AE events

    in Region

    1 r e su l t from

    the

    f a i l u r e

    of epoxide

    matr ix: I t

    has

    a l s o been r epor ted

    t ha t the

    microcracking

    i n i t i a t e s in the

    r e s in

    matr ix under a cons iderab le

    low s t r e s s S a t o

    e t a I , 1986).

    As

    mentioned above, t he AE

    events

    in Region 1

    for

    CFRP were the same as

    t h a t for

    epoxode r e s i n . However

    for

    CFRP, it

    happens a t an i n i t i a l s tage of number of

    cyc les

    whi le

    fo r

    epoxide

    r e s i n ,

    the

    AE even t

    occurs a f t e r a ce r t a in of s t r e s s cyc le . I t i s

    then considered t h a t the AE event in an

    i n i

    tlal s tage of Region 1 r e su l t s from a damage

    of i n t e r face between

    r e s in matr ix

    and carbon

    f ibe r due to the cyc l i c

    s t r e s s

    and t h a t Region 1 means theoprocess which such

    a f a t igue damage extends to the r e s in matr ix .

    This i s co inClden t wi th the f r ac tog raph ic

    r e

    s u l t s for

    CFRP.

    I t i s

    considered

    t ha t

    for

    CFRP, the r eS ln

    matr ix t r an s f e r s

    the

    load

    to a carbon f ibe r

    which

    sus ta ins an appl ied

    load.

    When the

    crack

    caused by

    an i n t e r f ac i a l

    decohesion would i n i

    t l a t e in the

    r e s in matr ix ,

    the f ibe r p lays a

    ro le in

    a crack

    br idging.

    In

    Region

    2,

    because

    the

    f ibe r

    which

    i s p lay ing as a crack b r idg ing

    can be

    f a i l e d

    through

    the f a t igue

    damage,

    a

    few AE

    even t

    of hlgh

    ampl i tude would

    sporad

    i c a l l y happen. Such sporadic AE event was ob

    served in Region 2 a s shown i n F ig . l0 b ) . Also,

    t h i s

    r e su l t ag rees wi th

    the

    f ractographic ob

    se rva t ion where

    many carbon f i b e r s

    were

    per

    pendicu la r ly

    f a i l e d

    to

    the

    load

    a x i s on

    the

    fa t igue

    f rac ture

    sur f ace .

    When the

    fa t igue

    damage approaches a

    c r i t i c a l value,

    the

    crack w i l l

    s t a r t to pr o

    pagate and then

    the

    reSln matr ix

    and the

    ca r

    bon f ibe r

    w i l l be f a i led .

    Such

    a

    f a t igue dam

    age

    process

    i s Reion 3 in

    which

    many

    AE even t s

    b u r s t l y happen.

    Therefore , for

    CFRP, the fa -

    152

    I

    I

    I I I I

    I I I I

    -----,------,------r-----'------

    I I I

    I I I I

    I I I ,

    I I

    -----,------,----

    I I

    I I

    I I

    I I I I

    .. . . . . . . . . . .

    1-

    --r

    .........

    - -

    ..........

    I I I

    I I I ,

    :

    J

    : :

    -----,---- -,------r-----'------

    I I I I

    I I I I

    I I I I

    I I I I

    No of yeles

    1111866.00

    Fig.12

    Rela t ion between

    AE cumulat ive event

    count or AE energy and

    number

    of

    cyc les

    for

    CFRP, R=O.

    5,

    0 110 =16. 7MPa

    I

    I

    , ,

    , ,

    -----,------ ----

    ..

    -,------

    ,_--rr-II

    ,

    ,

    ,

    ,

    ..

    - -

    ..........

    ,

    ,

    :

    I:

    \I

    III:

    .......... - - .......... , .... -- -r ... - _ .... _

    I I

    t

    I

    I I I I

    I I I

    I , I I

    -----,------,------r-----'------

    I I I

    I I

    I I I I

    t

    I I I

    11 of eye

    les

    1000000 00

    Fig.13 Rela t ion between AE cumulat ive event

    count or

    AE energy and number

    of

    cyc les

    fo r epoxy, R=O, Jo. =4. 5MPa

    t i gue s t reng th

    in

    Stage a ) of S-N curve de

    pends

    on the

    adhesion

    of i n t e r face between

    the

    carbon f ibe r and the r e s in matr ix . In Stage c)

    o f S-N curve ,

    the

    carbon

    f ibe r c on t r i bu t e s to

    the inc rease

    in

    f a t igue

    s t reng th

    because

    of

    low appl ied loading . Stage b) i s

    the

    t r a n s i

    t i o n process from Stage a ) to Stage c ) .

    4. CONCLUSIONS

    The

    f a t igue s t r ength

    for CFRP in

    which

    c o a l t a r p i t c h

    type carbon f ibe r were

    randomly

    combined

    in epoxide r es in with a f ibe r content

    of about 33 has s tud ied by means of acous t ic

    emission

    method and

    f ractography.

    The

    conclu

    s ions

    obtained

    are

    as fol lows.

    1)

    For

    CFRP used in t h i s

    s tudy ,

    the

    decrease

    in f a t igue

    s t r e ng t h

    due to

    s t r e s s

    cyc le

    was l e s s

    than

    t ha t for epoxy. The o r i en t a

    t i o n of p i t c h

    type

    carbon f ibe r to epox ide

    matr ix cont r ibu ted

    to

    r e inforce the

    com

    pos i t e . The f a t lgue

    s t reng th decreased wi th

    inc reas ing s t r e s s

    r a t i o

    and

    showed an obv i

    ous

    mean

    s t r e s s

    dependence.

    2) On the

    fa t igue

    f rac ture sur face for CFRP,

    t he re was a mirror

    l i k e appearance in the

    r e s in matr ix . While, many carbon

    f i b e r s

    were f a i l e d through a

    cleavage

    p a t t e r n and

    were perpend icu la r ly to the t en s i l e ax i s .

    3)

    The occurrence

    of AE

    events

    c l o s e l y r e l a t

    ed to the

    f rac ture

    appearance and

    were

    d i

    vided

    i n t o

    t h ree reg ions according

    to the

    AE cumulat ive

    even t

    count .

    When the

    s t r e s s

    ampl i tude decreased, Region 2 in

    which

    t..

  • 7/25/2019 ISOPE-P-90-128

    5/6

    there are a few

    sporadic

    AE events re la ted

    to the fa i lu re

    of

    carbon

    f iber and i t

    be

    came greater .

    REFERENCES

    T.Fuj i i and M.Zako(1985); Fracture and Mech

    anics for

    Composite Mater ia l , Jikkyo

    Press,

    pp. 142.

    G.Maiser,

    H.Ott , A.Protzner

    and

    B.

    Protz(1986)

    ; Composites, Vol.17,

    No.2,

    pp.111.

    A.Poursar t ip M.F.Ashby and P.W.R.Beaumount(

    1986) ,Compos. Sci .

    Tech., Vol.25, No.3, pp.193.

    K.Suzuki, H.Nakanishi,

    M.Iwamoto,

    K.Kyou

    K.Koike,

    M.Imura

    and E.Jinen(1987), Fatigue

    Fracture

    Mechanism of

    ClassA-SMC by Acoustic

    Emission

    Method ,

    J . Soc. Mat. Sci . ,

    Japan,

    Vol.36, No.411,

    pp.1402.

    M.Shiwa, S.Yuyama and T.Kishi(1986),

    Acoustic

    Emission

    Signal Analysis during Fatigue

    Damage

    of

    GFRP ,

    Proc. of Progress in

    Acoustic

    Emis

    sion 3, Jap.

    SOil:. o.fNDI pp,.55,4.

    T . F u j i i ~ 1 9 7 6 ) , 'Composite MateJi ia,1(8), , J . Soc.

    Mater . Sc i. Jiapan .

    Vo

    1. 2'5." Nc >..

    275

    pp. 78'5.

    Y.Murakami(ed. ),(1987), Stress Intensit, Fac

    t o r s

    Handbook,

    Vol.

    2',

    Per 1;aJIUIll h Press . pp . T1 4

    T.

    Kunio

    ( 1982'): Re]a1Uiom, I fetw.eelJ)

    T'empei:a1 1llJi"e'"

    St ra in

    Rate

    and.

    Jilract.1llIr-e'

    li.IDPearance

    for

    ~ '

    J .

    Mat

    Sci . Vol.. 1181 Nc.5> pp .2.2.5.

    M.Onoue,

    K.YalII ag:uc:bIi:i ., Pi.N1akasal iC.,San:(l)." E'.

    Isono and T.Watal'llabe(,IgS2')

    'Sase and:Appliea

    t ion

    of

    Acoustic ElDl:iissicon ', ClOrOD.a'" lI'P,.S6 .

    N.Sato,

    T.Kurauchi and

    O.Ka.migaito(1986),

    Detect ion of

    Damage

    in Composite Mater ia ls by

    Thermo-Acoustic

    Emission Technique Proc.

    of

    Progress

    in Acoustic Emission 3,

    Jap.

    Soc. 'of

    NDr. pp.620.

    153

  • 7/25/2019 ISOPE-P-90-128

    6/6