iso/iec jtc 1/sc 29 n 15907

421
ISO/IEC JTC 1/SC 29 N 15907 ISO/IEC JTC 1/SC 29 Coding of audio, picture, multimedia and hypermedia information Secretariat: JISC (Japan) Document type: Meeting Report Title: Meeting Report, the 114th SC 29/WG 11 Meeting, 2016-02-22/26, San Diego, USA [SC 29/WG 11 N 15906] Status: Draft meeting report [Requested action: For SC 29's information] Date of document: 2016-06-03 Source: Convener, ISO/IEC JTC 1/SC 29/WG 11 Expected action: INFO Email of secretary: [email protected] Committee URL: http://isotc.iso.org/livelink/livelink/open/jtc1sc29

Upload: buidang

Post on 02-Jan-2017

371 views

Category:

Documents


24 download

TRANSCRIPT

ISO/IEC JTC 1/SC 29 N 15907

ISO/IEC JTC 1/SC 29Coding of audio, picture, multimedia and hypermedia information

Secretariat: JISC (Japan)

Document type: Meeting Report

Title: Meeting Report, the 114th SC 29/WG 11 Meeting, 2016-02-22/26, San Diego, USA [SC 29/WG11 N 15906]

Status: Draft meeting report [Requested action: For SC 29's information]

Date of document: 2016-06-03

Source: Convener, ISO/IEC JTC 1/SC 29/WG 11

Expected action: INFO

Email of secretary: [email protected]

Committee URL: http://isotc.iso.org/livelink/livelink/open/jtc1sc29

INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC 1/SC 29/WG 11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC 1/SC 29/WG 11 N15906

San Diego, CA, US – February 2016

Source: Leonardo Chiariglione

Title: Report of 114th

meeting

Status

Report of 114th meeting

Annex A – Attendance list ................................................................................................................. 25 Annex B – Agenda ............................................................................................................................. 35

Annex C – Input contributions ........................................................................................................... 39 Annex D – Output documents ............................................................................................................ 75

Annex E – Requirements report ......................................................................................................... 83 Annex F – Systems report .................................................................................................................. 91

Annex G – Video report ................................................................................................................... 155 Annex H – JCT-VC report ............................................................................................................... 171

Annex I – JCT-3V report ................................................................................................................. 288 Annex J – Audio report .................................................................................................................... 359

Annex K – 3DG report ..................................................................................................................... 399

1 Opening

The 114th MPEG meeting was held in San Diego, CA, USA, 2016/02/22T09:00-26T20:00

2 Roll call of participants

This is given in Annex 1

3 Approval of agenda

Tha approved agenda is given in Annex 2

4 Allocation of contributions

This is given in Annex 3

5 Communications from Convenor

There was no communication

6 Report of previous meetings

The following document was approved

15623 Report of 113th

meeting

7 Workplan management

7.1.1 Media coding

7.1.2 Profiles, Levels and Downmixing Method for 22.2 Channel Programs

The following document was approved

15999 ISO/IEC 14496-3:2009/DAM 6, Profiles, Levels and Downmixing Method for 22.2

Channel Programs

7.1.3 Additional Levels and Supplemental Enhancement Information

The following documents were approved

16030 Disposition of Comments on ISO/IEC 14496-10:2014/DAM2

16031 Text of ISO/IEC 14496-10:2014/FDAM2 Additional Levels and Supplemental

Enhancement Information

7.1.4 Progressive High 10 Profile

The following documents were approved

16032 Request for ISO/IEC 14496-10:2014/Amd.4

16033 Text of ISO/IEC 14496-10:2014/PDAM4 Progressive High 10 Profile, additional VUI

code points and SEI messages

7.1.5 Printing material and 3D graphics coding for browsers

The following document was approved

16037 Core Experiments Description for 3DG

7.1.6 Updated text layout features and implementations

The following documents were approved

15930 Request for ISO/IEC 14496-22:2015 AMD 2 Updated text layout features and

implementations

15931 Text of ISO/IEC 14496-22:2015 PDAM 2 Updated text layout features and

implementations

7.1.7 Video Coding for Browsers

The Convenor recalled the ITTF letter giving instructions on handling Type 3 declaration that

he had distributed on the livelink email system.

The most welcome clarification mandated that VCB activities should be stopped.

He also recalled that the Secretary had incredibly omitted to send the Convenor the Type 3

declaration that ITTF had sent to the Secretariat.

The Convenor also responded orally at the meeting and then in writing (m38221) to the FINB

document (m38044).

7.1.8 Internet Video Coding

The following documents were approved

16034 Study Text of ISO/IEC DIS 14496-33 Internet Video Coding

16035 Internet Video Coding Test Model (ITM) v 14.1

16036 Description of IVC Exploration Experiments

16038 Draft verification test plan for Internet Video Coding

7.1.9 MVCO Extensions on Time Segments and Multi-Track Audio

The following document was approved

15936 WD of ISO/IEC 21000-19:2010 AMD 1 Extensions on Time Segments and Multi-Track

Audio

7.1.10 Contract Expression Language

The following documents were approved

15937 DoC on ISO/IEC DIS 21000-20 2nd edition Contract Expression Language

15994 Text of ISO/IEC IS 21000-20 2nd edition Contract Expression Language

7.1.11 Media Contract Ontology

The following documents were approved

15939 DoC on ISO/IEC DIS 21000-21 2nd Media Contract Ontology

15940 Text of ISO/IEC IS 21000-21 2nd Media Contract Ontology

7.1.12 User Description

The following documents were approved

15941 DoC on ISO/IEC DIS 21000-22 User Description

15942 Text of ISO/IEC IS 21000-22 User Description

7.1.13 FU and FN extensions for Parser Instantiation

The following documents were approved

16041 Disposition of Comments on ISO/IEC 23002-4:2014/PDAM3

16042 Text of ISO/IEC 23002-4:2014/DAM3 FU and FN descriptions for parser instantiation

from BSD

7.1.14 Spatial Audio Object Coding

The following document was approved

16079 Draft of ISO/IEC 23003-2:2010 SAOC, Second Edition

7.1.15 MPEG Surround Extensions for 3D Audio

The following document was approved

15934 Study on ISO/IEC 23003-1:2007/DAM 3 MPEG Surround Extensions for 3D Audio

7.1.16 Support for MPEG-D DRC

The following documents were approved

16082 DoC on ISO/IEC 23003-3:2012/DAM 3 Support of MPEG-D DRC, Audio Pre-Roll and

IPF

16083 Text of ISO/IEC 23003-3:2012/FDAM 3 Support of MPEG-D DRC, Audio Pre-Roll and

IPF

7.1.17 Parametric DRC, Gain Mapping and Equalization Tools

The following documents were approved

16085 DoC on ISO/IEC 23003-4:2015 PDAM 1, Parametric DRC, Gain Mapping and

Equalization Tools

16086 Text of ISO/IEC 23003-4:2015 DAM 1, Parametric DRC, Gain Mapping and

Equalization Tools

7.1.18 Media Context and Control – Control Information

The following documents were approved

16109 Request for ISO/IEC 23005-2 4th

Edition Control Information

16110 Text of ISO/IEC CD 23005-2 4th

Edition Control Information

7.1.19 Media Context and Control – Sensory Information

The following documents were approved

16111 Request for ISO/IEC 23005-3 4th

Edition Sensory Information

16112 Text of ISO/IEC CD 23005-3 4th

Edition Sensory Information

7.1.20 Media Context and Control – Virtual World Object Characteristics

The following documents were approved

16113 Request for ISO/IEC 23005-4 4th

Edition Virtual world object characteristics

16114 Text of ISO/IEC CD 23005-4 4th

Edition Virtual world object characteristics

7.1.21 Media Context and Control – Data Formats for Interaction Devices

The following documents were approved

16115 Request for ISO/IEC 23005-5 4th Edition Data Formats for Interaction Devices

16116 Text of ISO/IEC CD 23005-5 4th Edition Data Formats for Interaction Devices

7.1.22 Media Context and Control – Common Types and Tools

The following documents were approved

16117 Request for ISO/IEC 23005-6 4th Edition Common types and tools

16118 Text of ISO/IEC CD 23005-6 4th Edition Common types and tools

7.1.23 HEVC

The following documents were approved

16045 Disposition of Comments on DIS ISO/IEC 23008-2:201x

16046 Text of ISO/IEC FDIS 23008-2:201x High Efficiency Video Coding [3rd

ed.]

16048 High Efficiency Video Coding (HEVC) Test Model 16 (HM16) Improved Encoder

Description Update 5

16049 HEVC Screen Content Coding Test Model 7 (SCM 7)

16050 MV-HEVC verification test report

16051 SHVC verification test report

16052 Verification test plan for HDR/WCG coding using HEVC Main 10 Profile

7.1.24 Conversion and coding practices for HDR/WCG video

The following document was approved

16063 WD of ISO/IEC TR 23008-14 Conversion and coding practices for HDR/WCG video

7.1.25 Additional colour description indicators

The following document was approved

16047 WD of ISO/IEC 23008-2:201x/Amd.1 Additional colour description indicators

7.1.26 MPEG-H 3D Audio File Format Support

The following documents were approved

16090 DoC on ISO/IEC 23008-3:2015/DAM 2, MPEG-H 3D Audio File Format Support

16091 Text of ISO/IEC 23008-3:2015/FDAM 2, MPEG-H 3D Audio File Format Support

7.1.27 MPEG-H 3D Audio Phase 2

The following document was approved

16092 Study on ISO/IEC 23008-3:2015/DAM 3, MPEG-H 3D Audio Phase 2

7.1.28 Carriage of Systems Metadata in MPEG-H 3D Audio

The following document was approved

16093 Study on ISO/IEC 23008-3:2015/DAM 4, Carriage of Systems Metadata

7.1.29 3D Audio Profiles

The following document was approved

16094 WD on New Profiles for 3D Audio

7.1.30 Point Cloud Compression

The following documents were approved

16121 Current status on Point Cloud Compression (PCC)

16122 Description of PCC Software implementation

7.1.31 Free Viewpoint Television

The following documents were approved

16128 Results of the Call for Evidence on Free-Viewpoint Television: Super-Multiview and

Free Navigation

16129 Description of 360 3D video application Exploration Experiments on Divergent multi-

view video

16130 Use Cases and Requirements on Free-viewpoint Television (FTV) v.3

7.1.32 Future Video Coding

The following documents were approved

16138 Requirements for a Future Video Coding Standard v2

16125 Presentations of the Workshop on 5G and beyond UHD Media

16066 Algorithm description of Joint Exploration Test Model 2 (JEM2)

16067 Description of Exploration Experiments on coding tools

16068 Call for test materials for future video coding standardization

7.1.33 Digital representations of light fields

The following documents were approved

16149 Summary notes of technologies relevant to digital representations of light fields

16150 Draft report of the Joint Ad hoc Group on digital representations of light/sound fields

for immersive media applications

7.1.34 Genome Compression

The following documents were approved

16134 Requirements on Genome Compression and Storage

16135 Lossy compression framework for Genome Data

16136 Draft Call for Proposal for Genomic Information Compression and Storage

16137 Presentations of the MPEG Seminar on Genome Compression Standardization

16146 Evaluation Procedure for the Draft Call for Proposals on Genomic Information

Representation and Compression

16145 Database for Evaluation of Genomic Information Compression and Storage

16147 Results of the Evaluation of the CfE on Genomic Information Compression and Storage

7.2 Composition coding

7.2.1 MPEG-H Composition Information

The following document was approved

15970 Technology under Consideration for ISO/IEC 23008-11 AMD 1

7.3 Description coding

7.3.1 Compact Descriptors for Video Analysis

The following documents were approved

15938 Results of the Call for Proposals on CDVA

16064 CDVA Experimentation Model (CXM) 0.1

16065 Description of Core Experiments in CDVA

7.4 Systems support

7.4.1 Coding-independent codepoints

The following documents were approved

16039 Request for ISO/IEC 23001-8:201x/Amd.1

16040 Text of ISO/IEC 23001-8:201x/PDAM1 Additional code points for colour description

7.4.2 Media orchestration

The following documents were approved

16131 Context and Objectives for Media Orchestration v.3

16132 Requirements for Media Orchestration v.3

16133 Call for Proposals on Media Orchestration Technologies

7.5 Transport and File formats

7.5.1 Carriage of MPEG-H 3D audio over MPEG-2 Systems

The following documents were approved

15912 DoC on ISO/IEC 13818-1:2015 DAM 5 Carriage of MPEG-H 3D audio over MPEG-2

Systems

15913 Text of ISO/IEC 13818-1:2015 FDAM 5 Carriage of MPEG-H 3D audio over MPEG-2

Systems

7.5.2 Carriage of Quality Metadata in MPEG-2 Systems

The following document was approved

15914 Text of ISO/IEC 13818-1:2015 AMD 6 Carriage of Quality Metadata in MPEG-2

Systems

7.5.3 Virtual segments

The following documents were approved

15915 DoC on ISO/IEC 13818-1:2015 PDAM 7 Virtual Segment

15916 Text of ISO/IEC 13818-1:2015 DAM 7 Virtual Segment

7.5.4 Signaling of carriage of HDR/WCG video in MPEG-2 Systems

The following documents were approved

15917 Request for ISO/IEC 13818-1:2015 AMD 8 Signaling of carriage of HDR/WCG video in

MPEG-2 Systems

15918 Text of ISO/IEC 13818-1:2015 PDAM 8 Signaling of carriage of HDR/WCG video in

MPEG-2 Systems

7.5.5 DRC file format extensions

The following documents were approved

15922 DoC on ISO/IEC 14496-12:2015 PDAM 1 DRC Extensions

15923 Text of ISO/IEC 14496-12:2015 DAM 1 DRC Extensions

7.5.6 Enhancements to the ISO Base Media File Format

The following document was approved

15925 WD of ISO/IEC 14496-12:2015 AMD 2

7.5.7 Carriage of NAL unit structured video in the ISO Base Media File Format

The following documents were approved

15927 Draft DoC on ISO/IEC DIS 14496-15 4th edition

15928 Draft text of ISO/IEC FDIS 14496-15 4th edition

7.5.8 MMT

The following documents were approved

15963 Description of Core Experiments on MPEG Media Transport

15964 Revised text of ISO/IEC 23008-1:201x 2nd edition MMT

7.5.9 Use of MMT Data in MPEG-H 3D Audio

The following documents were approved

15958 DoC on ISO/IEC 23008-1:201x PDAM 1 Use of MMT Data in MPEG-H 3D Audio

15959 Text of ISO/IEC 23008-1:201x DAM 1 Use of MMT Data in MPEG-H 3D Audio

7.5.10 MMT Enhancements for Mobile Environments

The following documents were approved

15995 Request for ISO/IEC 23008-1:201x AMD 2 Enhancements for Mobile Environments

15960 Text of ISO/IEC 23008-1:201x PDAM 2 Enhancements for Mobile Environments

7.5.11

The following document was approved

15961 WD of ISO/IEC 23008-1:201x AMD 3

7.5.12 Carriage of Green Metadata in an HEVC SEI Message

The following documents were approved

15948 DoC on ISO/IEC 23001-11:201x/DAM 1 Carriage of Green Metadata in an HEVC SEI

Message

15949 Text of ISO/IEC 23001-11:201x/FDAM 1 Carriage of Green Metadata in an HEVC SEI

Message

7.5.13 Support for AVC, JPEG and layered coding of images

The following documents were approved

15972 Request for ISO/IEC 23008-12 AMD 1

15973 Text of ISO/IEC 23008-12 PDAM 1 Support for AVC, JPEG and layered coding of

images

7.5.14 MPEG Media Transport Implementation Guidelines

The following documents were approved

15976 DoC for ISO/IEC PDTR 23008-13 2nd edition MPEG Media Transport Implementation

Guidelines

15977 Text of ISO/IEC DTR 23008-13 2nd edition MPEG Media Transport Implementation

Guidelines

15978 WD of ISO/IEC 23008-13 3rd edition MPEG Media Transport Implementation

Guidelines

7.5.15 DASH

The following documents were approved

15985 Technologies under Consideration for DASH

15986 Descriptions of Core Experiments on DASH amendment

15987 Draft Text of ISO/IEC 23009-1 3rd edition

7.5.16 Authentication, Access Control and Multiple MPDs

The following documents were approved

15979 DoC on ISO/IEC 23009-1:2014 DAM 3 Authentication, Access Control and multiple

MPDs

15980 Text of ISO/IEC 23009-1:2014 FDAM 3 Authentication, Access Control and multiple

MPDs

7.5.17 Segment Independent SAP Signalling, MPD chaining and other extensions

The following documents were approved

DoC on ISO/IEC 23009-1:2014 PDAM 4 Segment Independent SAP Signalling (SISSI), MPD

chaining, MPD reset and other extensions

Text of ISO/IEC 23009-1:2014 DAM 4 Segment Independent SAP Signalling (SISSI), MPD

chaining, MPD reset and other extensions

7.5.18 MPEG-DASH Implementation Guidelines

The following document was approved

15990 WD of ISO/IEC 23009-3 2nd edition AMD 1 DASH Implementation Guidelines

7.5.19 Server and Network Assisted DASH

The following document was approved

15991 Study of ISO/IEC DIS 23009-5 Server and Network Assisted DASH

7.5.20 DASH with Server Push and WebSockets

The following documents were approved

15992 Request for subdivision of ISO/IEC 23009-6 DASH with Server Push and WebSockets

15993 Text of ISO/IEC CD 23009-6 DASH with Server Push and WebSockets

7.6 Multimedia architecture

7.6.1 MPEG-M Architecture

The following documents were approved

15952 DoC on ISO/IEC CD 23006-1 3rd edition Architecture

15953 Text of ISO/IEC DIS 23006-1 3rd edition Architecture

7.6.2 MPEG extensible middleware (MXM) API

The following document was approved

15954 Text of ISO/IEC IS 23006-2 3rd edition MXM API

7.6.3 MPEG-V Architecture

The following documents were approved

16106 Technology under consideration

16107 Request for ISO/IEC 23005-1 4th

Edition Architecture

16108 Text of ISO/IEC CD 23005-1 4th

Edition Architecture

7.6.4 Mixed and Augmented Reality Reference Model

The following document was approved

16119 Text of ISO/IEC 2nd

CD 18039 Mixed and Augmented Reality Reference Model

7.6.5 Media-centric Internet of Things and Wearables

The following documents were approved

16140 Overview, context and objectives of Media-centric IoTs and Wearables

16141 Conceptual model, architecture and use cases for Media-centric IoTs and Wearables

16139 Draft Requirements for Media-centric IoTs and Wearables

16120 State of discussions related to MIoTW technologies

7.6.6 Big Media

The following document was approved

16151 Thoughts and Use Cases on Big Media

7.7 Application formats

7.7.1 Augmented Reality Application Format

The following document was approved

16103 Text of ISO/IEC FDIS 23000-13 2nd

Edition Augmented Reality Application Format

7.7.2 Publish/Subscribe Application Format

The following documents were approved

15944 DoC on ISO/IEC DIS 23000-16 Publish/Subscribe Application Format

15945 Text of ISO/IEC FDIS 23000-16 Publish/Subscribe Application Format

7.7.3 Multisensorial Effects Application Format

The following documents were approved

16104 DoC for ISO/IEC 23000-17:201x CD Multiple Sensorial Media Application Format

16105 Text of ISO/IEC 23000-17:201x DIS Multiple Sensorial Media Application Format

7.7.4 Omnidirectional Media Application Format

The following documents were approved

16143 Requirements for OMAF

15946 Technologies under Considerations for Omnidirectional Media Application Format

7.7.5 Common Media Application Format

The following documents were approved

16144 Requirements for the Common Media Application Format

15947 WD v.1 of Common Media Application Format

7.7.6 Visual Identiy Management Application Format

The following document was approved

16142 Use cases and requirements on Visual Identiy Management AF

7.8 Reference implementation

7.8.1 Reference Software for Internet Video Coding

The following documents were approved

16026 Disposition of Comments on ISO/IEC 14496-5:2001/PDAM41

16027 Text of ISO/IEC 14496-1:2001/DAM41 Reference Software for Internet Video Coding

7.8.2 Reference Software for Alternative Depth Information SEI message

The following documents were approved

16028 Disposition of Comments on ISO/IEC 14496-5:2001/PDAM42

16029 Text of ISO/IEC 14496-1:2001/DAM42 Reference Software for Alternative Depth

Information SEI message

7.8.3 Reference Software for File Format

The following document was approved

15935 WD of ISO/IEC 14496-32 Reference Software and Conformance for File Format

7.8.4 Reference Software and Implementation Guidelines of User Description

The following documents were approved

15921 Request for ISO/IEC 21000-22 AMD 1 Reference Software and Implementation

Guidelines of User Description

15943 Text of ISO/IEC 21000-22 PDAM 1 Reference Software and Implementation Guidelines

of User Description

7.8.5 Reference Software for Green Metadata

The following documents were approved

15950 Request for ISO/IEC 23001-11 AMD 2 Conformance and Reference Software

15951 Text of ISO/IEC 23001-11 PDAM 2 Conformance and Reference Software

7.8.6 Reference Software for Media Tool Library

The following documents were approved

16043 Disposition of Comments on ISO/IEC 23002-5:2013/PDAM3

16044 Text of ISO/IEC 23002-5:2013/DAM3 Reference software for parser instantiation from

BSD

7.8.7 SAOC and SAOC Dialogue Reference Software

The following document was approved

16078 Study on ISO/IEC 23003-2:2010/DAM 5, SAOC Reference Software

7.8.8 Reference Software for DRC

The following documents were approved

16087 Request for Amendment ISO/IEC 23003-4:2015/AMD 2, DRC Reference Software

16088 ISO/IEC 23003-4:2015/PDAM 2, DRC Reference Software

7.8.9 Reference Software for MPEG-M

The following document was approved

15955 Text of ISO/IEC IS 23006-3 3rd edition MXM Reference Software and Conformance

7.8.10 MMT Reference Software

The following documents were approved

15965 Text of ISO/IEC IS 23008-4 MMT Reference Software

15966 Request for ISO/IEC 23008-4 AMD 1 MMT Reference Software with Network

Capabilities

15967 Text of ISO/IEC 23008-4 PDAM 1 MMT Reference Software with Network Capabilities

7.8.11 HEVC Reference Software`

The following documents were approved

16053 Disposition of Comments on ISO/IEC 23008-5:2015/DAM3

16054 Disposition of Comments on ISO/IEC 23008-5:2015/DAM4

16055 Text of ISO/IEC FDIS 23008-5:201x Reference Software for High Efficiency Video

Coding [2nd

ed.]

16056 Request for ISO/IEC 23008-5:201x/Amd.1

16057 Text of ISO/IEC 23008-5:201x/PDAM1 Reference Software for Screen Content Coding

Profiles

7.8.12 3D Audio Reference Software

The following documents were approved

16095 3D Audio Reference Software RM6

16096 Workplan on 3D Audio Reference Software RM7

7.8.13 MPEG-DASH Reference Software

The following document was approved

15989 Work plan for development of DASH Conformance and reference software and sample

clients

7.9 Conformance

7.9.1 Internet Video Coding Conformance

The following documents were approved

16024 Disposition of Comments on ISO/IEC 14496-4:2004/PDAM46

16025 Text of ISO/IEC 14496-4:2004/DAM46 Conformance Testing for Internet Video Coding

7.9.2 Conformance of File Format

The following document was approved

15935 WD of ISO/IEC 14496-32 Reference Software and Conformance for File Format

7.9.3 Media Tool Library Conformance

The following documents were approved

16043 Disposition of Comments on ISO/IEC 23002-5:2013/PDAM3

16044 Text of ISO/IEC 23002-5:2013/DAM3 Reference software for parser instantiation from

BSD

7.9.4 Conformance for Green Metadata

The following documents were approved

15950 Request for ISO/IEC 23001-11 AMD 2 Conformance and Reference Software

15951 Text of ISO/IEC 23001-11 PDAM 2 Conformance and Reference Software

7.9.5 SAOC and SAOC Dialogue Enhancement Conformance

The following document was approved

16077 Study on ISO/IEC 23003-2:2010/DAM 4, SAOC Conformance

7.9.6 MPEG-V – Conformance

7.9.7 Conformance of MPEG-M

The following document was approved

15955 Text of ISO/IEC IS 23006-3 3rd edition MXM Reference Software and Conformance

7.9.8 MMT Conformance

The following document was approved

15968 Workplan of MMT Conformance

7.9.9 HEVC Conformance

The following documents were approved

16058 Disposition of Comments on ISO/IEC 23008-8:2015/DAM1

16059 Disposition of Comments on ISO/IEC 23008-8:2015/DAM2

16060 Disposition of Comments on ISO/IEC 23008-8:2015/DAM3

16061 Text of ISO/IEC FDIS 23008-8:201x HEVC Conformance Testing [2nd

edition]

16062 Working Draft of ISO/IEC 23008-8:201x/Amd.1 Conformance Testing for Screen

Content Coding Profiles

7.10 Maintenance

7.10.1 Systems coding standards

The following documents were approved

15910 DoC on ISO/IEC 13818-1:2015 AMD 1/DCOR 2

15911 Text of ISO/IEC 13818-1:2015 AMD 1/COR 2

15919 Text of ISO/IEC 13818-1:2015 DCOR 2

15920 Defect Report of ISO/IEC 14496-12

15926 Text of ISO/IEC 14496-14 COR 2

15929 Defect Report of ISO/IEC 14496-15

15932 DoC on ISO/IEC 14496-30:2014 DCOR 2

15933 Text of ISO/IEC 14496-30:2014 COR 2

15956 DoC on ISO/IEC 23008-1:2014 DCOR 2

15957 Text of ISO/IEC 23008-1:2014 COR 2

15962 Defects under investigation in ISO/IEC 23008-1

15969 Text of ISO/IEC 23008-11 DCOR 1

15974 DoC on ISO/IEC 23008-12 DCOR 1

15975 Text of ISO/IEC 23008-12 COR 1

15974 DoC on ISO/IEC 23008-12 DCOR 1

15975 Text of ISO/IEC 23008-12 COR 1

15983 Text of ISO/IEC 23009-1:2014 DCOR 3

15984 Defects under investigation in ISO/IEC 23009-1

7.10.2 Audio coding standards

The following documents were approved

15998 Text of ISO/IEC 14496-3:2009/AMD 3:2012/COR 1, Downscaled (E)LD

15924 Text of ISO/IEC 14496-5:2001/AMD 24:2009/DCOR 3, Downscaled (E)LD

16076 ISO/IEC 23003-2:2010/DCOR 3 SAOC, SAOC Corrections

16080 DoC on ISO/IEC 23003-3:2012/Amd.1:2014/DCOR 2

16081 Text of ISO/IEC 23003-3:2012/Amd.1:2014/COR 2

16084 Defect Report on MPEG-D DRC

16089 ISO/IEC 23008-3:2015/DCOR 1 Multiple corrections

8 Organisation of this meeting

8.1 Tasks for subgroups

The following tasks were assigned

Group Std Pt E/A Title

Requirements 7 Compact Descriptors for Video Analysis

A CMAF

V MioT – MPEG wearable

Exp FTV

Exp Future video coding

Exp Media orchestration

Exp Genome compression

Exp Everything 3D

Systems 2 1 A4 Carriage of additional Audio P&L

1 A5 Carriage of 3D Audio

1 A6 Carriage of quality metadata

1 A7 Virtual segments

4 15 E4 Carriage of layered HEVC

A2 Carriage of AVC-based 3D excluding

MVC

22 E3 Open Font Format

32 E1 FF RS (including SVC FF RS)

21 22 E1 User description

A 15 E1 MPAF

16 E1 PSAF

17 E1 Multisensorial AF

18 E1 MLAF

19 E1 Screen Sharing AF

20 E1 Omnidirectional Media AF

21 E1 CMAF

22 E1 Identity management AF

B 8 A1 CICP

10 A1 ROI coordinates

DA 1 A3 Authentication access control and multiple

MPD

2 E2 DASH C&RS

3 E3 Implementation guidelines

5 E1 SAND

6 E1 FDH

H 1 A1 MMT data carriage in 3D Audio

A2 Mobile MMT

4 E1 MMT Reference Software

7 E1 MMT Conformance

12 E1 Storage of image sequences in ISOBMFF

13 E2 MMT implementation guidelines

M 1 E3 Architecture

2 E3 MXM Engines and API

3 E3 Reference software

Exp Media orchestration

Video 4 10 A2 Additional levels and SEI

A4 Progressive High 10 Profile

33 E1 Internet Video Coding

7 6 E2 Reference software

14 E1 CDVS RS&C

15 E1 CDVA

B 4 E4 Parser instantiation from BSD

8 A1 CICP

C 4 A2 VTL extensions (HEVC)

Exp Future Video Coding

VC H 2 E3 SCC

5 A1 RExt Reference Software

A3 SHVC Reference Software

8 A2 RExt Conformance

A3 SHVC conformance

14 E1 HDR best practices

3V 4 4 A45 MFC+depth conformance

5 A39 MFC+depth RS

10 A3 Additional SEI

H 5 A2 MV-HEVC RS

A4 3D RS

8 A1 MV + 3D Conformance

Audio 4 3 A6 Levels for 22 channel programs

D 4 A1 Decoder generated DRC sets

A2 DRC C

A3 DRC RS

H 3 E2 3D Audio phase 2

A2 FF support for 3D Audio

6 E1 3D Audio RS

9 E1 3D Audio C

3DG 4 5 A40 Web3D coding RS

11 E2 Protos for ARAF in BIFS

25 E3 Web 3DG coding

27 A4 Web3D coding C

A 13 E2 ARAF

17 E1 Multisensory MAF

M 2 E3 MPEG-V engines

MAR E1 MAR RM

V 1 E3 Architecture

2 E3 Control Information

3 E3 Sensory information

4 E3 Virtual world object characteristics

5 E3 Data representation for interaction devices

6 E3 Common types and tools

7 E3 Conformance and reference software

Communication White

Paper

Animation Framework eXtension (AFX)

Compact descriptors for visual search

Image File Format

CEL & MCO

ARAF

Video 3D Audio

Introduction Make a good introduction for ARAF, UD

Column Open font format

Dynamic Range Control

HEVC/SCC

3D Audio

CDVS

User Description

ARAF

PSAF

8.2 Joint meetings

The following joint meetings were held

Groups What Day Time1 Time2 Where

R, V HDR Mon 15:30 16:30 V

R, V, VC, VCEG HDR, SCC Mon 16:30 18:00 VC

R, V, VCEG AVC Mon 18:00 18:30 VC

S, A System carriage Tue 09:00 10:00 A

R, V CDVA Tue 09:00 10:00 R

R, V, 3 Everything 3D Tue 10:00 11:00 R

S, R CMF, OMAF Tue 12:00 13:00 R

All MPEG Vision Wed 11:30 13:00 A

R, V, VCEG, VC HDR Wed 11:00 12:00 Salon D-E

JPEG-MPEG Joint standards Thu 09:00 10:00 JPEG

A, 3 3D Audio in VR/AR Thu 10:00 11:00 A

R, A 3D Audio profiles Thu 11:00 12:00 A

R, 3 MIoTW Thu 14:00 15:00 3

All Communication Thu 16:00 17:00 MIssion Beach

All MPEG Vision Thu 16:00 18:00

9 WG management

9.1 Terms of reference

The following document was approved

16000 Terms of Reference

9.2 Liaisons

9.2.1 Input liaisons

The following input liaisons were received

# Title Source Disposition

37576 Liaison statement JTC 1/

WG 10

IoT 3

37577 Liaison statement SC 37 Biometric presentation attack detection R

37578 ITU-T SG ITU-T

SG 16

16 on video coding collaboration V

37579 ITU-T SG 16 ITU-T

SG 16

on discontinued IPTV multimedia

application frameworks to include the

definition of IPTV in N13952

S

37580 ITU-R SG 6 ITU-R

SG 6

on ITU-R BS.1196-5Audio coding for

digital broadcasting

A

37581 JTC 1/WG 10 JTC 1/

WG 10

Invitation to the 4th JTC 1/WG 10

Meeting, 18th-22nd Jan. 2016

3

37582 JTC 1/WG 10 on JTC 1/

WG 10

Logistical information for the 4th JTC

1/WG 10 Meeting

3

37583 Liaison statement ITU-T

SG 20

a new Study Group, IoT and its

applications including smart cities and

communities (SC&C)

3

37584 Liaison statement JTC 1/

WG 10

collection of Data related to the Internet of

Things

3

37585 Liaison statement IETF URI Signing S

37653 Liaison statement ITU-T

SG 9

Specification of IP-VOD DRM for cable

television multiscreen system in Multi-

DRM environment

S

37654 HDR DVB V

37655 MPEG-H Audio DVB A

37656 Liaison statement 3GPP DASH S

37787 Liaison statement DVB TEMI S

37788 Liaison statement ITU-T

SG 16

HDR V

37899 MPEG-DASH (N15699) DASH

IF

S

38016 Liaison statement ETSI

ISG

CCM

HDR V

38040 Liaison statement HbbTV TEMI S

38041 Revised WD of ISO/IEC

30141

JTC 1/

WG 10

Internet of Things Reference Architecture

(IoT RA)

3

38042 JTC 1/

WG 10

Request contributions on IoT use cases 3

38082 HDR SMPTE V

38095 Liaison statement VSF higher resolution JPEG 2000 video in

MPEG-2 TS

S

37658 IEC CD 60728-13-1 Ed.

2.0

IEC TC

100

Cable networks for television signals,

sound signals and interactive services

37589 IEC CD 61937-13 and

61937-14

IEC TC

100

Digital audio - Interface for non-linear

PCM encoded audio bitstreams

37590 IEC CD 61937-2 Ed.

2.0/Amd.2

IEC TC

100

Digital audio - Interface for non-linear

PCM encoded audio bitstreams

37686 IEC CD 62608-2 Ed.1.0 IEC TC

100

Multimedia home network configuration -

Basic reference model

37591 IEC CD 63029 [IEC

100/2627/CD]

IEC TC

100

Multimedia e-publishing and e-book

technologies - Raster-graphics image-

based e-books

37592 IEC CD 63029 [IEC

100/2627A/CD]

IEC TC

100

Multimedia e-publishing and e-book

technologies - Raster-graphics image-

based e-books (Titre) : Introductory note

37650 IEC CDV 62394/Ed.3 IEC TC

100

Service diagnostic interface for consumer

electronics products and networks

37595 IEC CDV 62680-1-3,

62680-3-1 and 62943

IEC TC

100

Universal Serial Bus Type-CTM Cable

and Connector Specification, Revision 1.1

37586 IEC CDV 62766-4-1,

62766-4-2, 62766-5-1,

62766-5-2, 62766-6,

62766-7 and 62766-8

IEC TC

100

Open IPTV Forum (OIPF) consumer

terminal function and network interfaces

for access to IPTV and open Internet

multimedia services

37657 IEC CDV 62827-3 Ed.

1.0

IEC TC

100

Wireless Power Transfer - Management

37659 IEC CDV 62943/Ed. 1.0 IEC TC

100

Visible light beacon system for

multimedia applications

37598 IEC CDV 63002 Ed. 1.0 IEC TC

100

Identification and communication

interoperability method for external power

supplies used with portable computing

devices

37660 IEC CDV 63002 Ed.1.0 IEC TC

100

Identification and communication

interoperability method for external power

supplies used with portable computing

devices

37588 IEC CDV 63028 Ed. 1.0 IEC TC

100

Wireless Power Transfer - Magnetic

Resonance Interoperability

37596 IEC CDV IEC TC

100

MIDI (MUSICAL INSTRUMENT

DIGITAL INTERFACE)

SPECIFICATION 1.0 (ABRIDGED

EDITION, 2015)MIDI (MUSICAL

INSTRUMENT DIGITAL INTERFACE)

SPECIFICATION 1.0

37587 IEC DTR 62921 Ed. 2.0 IEC TC

100

QUANTIFICATION METHODOLOGY

FOR GREENHOUSE GAS EMISSIONS

FOR COMPUTERS AND MONITORS

37651 IEC IEC TC

100

NP Microspeakers

37597 IEC IEC TC

100

NP MIDI (MUSICAL INSTRUMENT

DIGITAL INTERFACE)

SPECIFICATION 1.0 (ABRIDGED

EDITION, 2015)

37652 IEC IEC TC

100

NP Multimedia Vibration Audio Systems -

Method of measurement for audio

characteristics of audio actuator by pinna-

conduction

37593 IEC IEC TC

100

NP: Universal Serial Bus interfaces for

data and power - Part 3-1

37594 IEC IEC TC

100

NP: Universal Serial Bus interfaces for

data and power - Part 1-3

37661 IEC TR 62935 Ed1.0 IEC TC

100

TECHNICAL REPORT OF

MEASUREMENT METHODS – High

Dynamic Range Video

37685 IEC TS 63033-1 IEC TC

100

CAR MULTIMEDIA SYSTEMS AND

EQUIPMENT – DRIVE MONITOR

SYSTEM

9.2.2 Output liaisons

The following output liaisons were sent

16148 Liaison with TC 276

16126 Liaison to JTC 1/WG 9

16015 Liaison Statement to IETF on URI signing

16016 Liaison Statement template on DASH with Server Push and WebSockets

16017 Liaison Statement to 3GPP on DASH

16018 Liaison Statement to DASH-IF on DASH

16019 Liaison Statement to DVB on TEMI

16020 Liaison Statement to HbbTV on TEMI

16021 Liaison Statement template on Common Media Application Format

16022 Liaison Statement template on HEVC sync samples in ISO/IEC 14496-15

16023 Liaison Statement to SCTE on Virtual Segments and DASH

16069 Liaison statement to ITU-T SG 16 on video coding collaboration

16070 Liaison statement to DVB on HDR

16071 Liaison statement to ATSC on HDR/WCG

16072 Liaison statement to ITU-R WP6C on HDR

16073 Liaison statement to ETSI ISG CCM on HDR

16074 Liaison statement to SMPTE on HDR/WCG

16097 Liaison Statement to DVB on MPEG-H 3D Audio

16098 Liaison Statement Template on MPEG-H 3D Audio

16099 Liaison Statement to ITU-R Study Group 6 on BS.1196-5

16100 Liaison Statement to IEC TC 100

16101 Liaison Statement to IEC TC 100 TA 4

16102 Liaison Statement to IEC TC 100 TA 5

16123 Liaison Statement to JTC1 WG10 related to MIoT

16124 Liaison Statement to ITU-T SG20 related to MIoT

9.2.3 Statement of benefits

The following document was approved

16075 Statement of benefit for establishing a liaison with DICOM

9.2.4 Organisations in liaison

The following document was approved

16011 List of organisations in liaison with MPEG

9.3 Ad hoc groups

The following document was approved

15905 List of AHGs Established at the 114th Meeting

9.4 Asset management

The following documents were approved

16005 Schemas

16006 Reference software

16007 Conformance

16008 Content

16009 URIs

9.5 IPR management

The following document was approved

16010 Call for patent statements on standards under development

9.6 Work plan and time line

The following documents were approved

16001 MPEG Standards

16002 Table of unpublished FDIS

16003 MPEG Work plan

16004 MPEG time line

16013 Complete list of all MPEG standards

15971 MPEG Strategic Standardisation Roadmap

10 Administrative matters

10.1 Schedule of future MPEG meetings

The following meeting schedule was approved

# City Country yy mm-mm dd-dd

115 Geneva CH 16 05-06 30-03

116 Chengdu CN 16 10 17-21

117 Geneva CH 17 01 16-20

118 Hobart AU 17 04 03-07

119 Torino IT 17 07 17-21

120 ?? ?? 17 10 23-27

121 ?? ?? 18 01 22-26

122 ?? ?? 18 04 16-20

10.2 Promotional activities

The following documents were approved

15996 White Paper on MPEG-21 Contract Expression Language (CEL) and MPEG-21

Media Contract Ontology (MCO)

15997 White Paper on the 2nd edition of ARAF

15907 Press Release of the 114th Meeting

11 Resolutions of this meeting

These were approved

12 A.O.B.

There was no other business

13 Closing

Meeting closed at 2016/02/26T20:00

– Attendance list

LastName FirstName Organization Country

Brown Gregg Microsoft United States

Chon Jaehong Qualcomm United States

Chong In suk Qualcomm United States

El-Maleh khaled Qualcomm United States

Hach Faraz Simon Fraser University Canada

Harvey Ian 20th Century Fox United States

Kempf James Ericsson United States

Koizumi Mariko Kyoto Seika University Japan

Lee Gwo Giun National Cheng Kung University China

Li Zhu University of Missouri, Kansas City United States

Lo Charles Qualcomm Technologies Incorporated United States

Nandhakumar Nandhu LG Electronics United States

Pazos Marcelo Qualcomm Inc. United States

Sedlik Jeffrey PLUS Coalition United States

Zhong Xin QUALCOMM United States

Zhou Wensheng SIP UCLA ITA United States

Aaron Anne Netflix United States

Abbas Adeel GoPro United States

Agnelli Matteo Fraunhofer IIS Germany

Agostinelli Massimiliano Trellis Management Ltd United Kingdom

Ahn Yong-Jo Kwangwoon University (KWU) Korea

Alberti Claudio EPFL Switzerland

Alpaslan Zahir Ostendo Technologies, Inc. United States

Alshina Elena Samsung Electronics Korea

Alvarez Jose Roberto Huawei Technologies United States

Amon Peter Siemens AG Germany

Andersson Kenneth Ericsson Sweden

Andriani Stefano ARRI Cinetechnik GmbH Germany

Aoki Shuichi NHK Japan

Artusi Alessandro Trellis United Kingdom

Azimi Maryam University of British Columbia Canada

Bae HyoChul Konkuk University Korea

Bailer Werner JOANNEUM RESEARCH Austria

Balestri Massimo Telecom Italia S.p.A. Italy

Ballocca Giovanni Sisvel Technology srl Italy

Bandoh Yukihiro NTT Japan

Bang Gun ETRI Korea

Baroncini Vittorio GBTech Italy

Barroux Guillaume Fujitsu Laboratories Ltd. Japan

Baumgarte Frank Apple Inc. United States

Baylon David ARRIS United States

Beack Seungkwon ETRI Korea

Benjelloun Touimi Abdellatif Huawei Technologies (UK) Co., Ltd.

United Kingdom

bergeron cyril Thales France

Bivolarsky Lazar Tata Communnications United States

Bober Miroslaw Surrey University United Kingdom

Boitard Ronan University of British Columbia Canada

Bouazizi Imed Samsung Research America United States

Boyce Jill Intel United States

brondijk robert Philips Netherlands

Bross Benjamin Fraunhofer HHI Germany

Bruylants Tim Vrije Universiteit Brussel - iMinds Belgium

Budagavi Madhukar Samsung Research America United States

Bugdayci Sansli Done Qualcomm Finland

Byun Hyung Gi Kangwon National University Korea

Carballeira Pablo Universidad Politecnica de Madrid Spain

Ceulemans Beerend iMinds - ETRO - VUB Belgium

Chai Chi Real Communications United States

Chalmers Alan University of Warwick United Kingdom

Champel Mary-Luc Technicolor France

Chandramouli Krishna Queen Mary, University of London United Kingdom

Chang Mike Huawei Devices United States

CHANG SUNG JUNE ETRI Korea

CHANG YAO JEN ITRI International China

Chen Chun-Chi InterDigital United States

Chen Hao Shanghai Jiao Tong University China

Chen Jianle Qualcomm Inc. United States

Chen Jie Peking University China

Chen Junhua Huawei Technologies Co., Ltd. China

Chen Peisong Broadcom Corporation United States

Chen Weizhong Huawei technologies CO.,LTD China

Chiariglione Leonardo CEDEO Italy

Chien Wei-Jung Qualcomm Inc. United States

Chinen Toru Sony Corporation Japan

Chiu Yi-Jen Intel Corp. United States

Cho Minju Seoul Women's University Korea

Choe Yoonsik Yonsei University Korea

Choi Byeongdoo Samsung Electronics Korea

Choi Hae Chul Hanbat National University Korea

Choi JangSik Kangwon national university Korea

Choi Jangwon LG Electronics Korea

Choi Kiho Samsung Electronics Korea

Choi Miran ETRI Korea

CHOI SEUNGCHEOL Sejong University Korea

Chon Sang Bae Samsung Electronics Korea

Chono Keiichi NEC Corp. Japan

Chujoh Takeshi Toshiba corporation Japan

Chun Sungmoon Insignal Korea

clare gordon orange labs France

Concolato Cyril Telecom ParisTech France

DA YOUNG JUNG Konkuk University Korea

Dang Niem SCTE United States

Daniels David Sky United Kingdom

Daniels Noah MIT United States

de Bruijn Werner Philips Netherlands

De Cock Jan Netflix United States

de Haan Wiebe Philips Netherlands

DEROUINEAU Nicolas VITEC France

Descampe Antonin intoPIX Belgium

Dias Andre BBC United Kingdom

Doherty Richard Dolby Labs United States

Dolan Michael TBT United States

Domanski Marek Poznan University of Technology Poland

doyen didier technicolor France

Ducloux Xavier B<>com France

Duenas Alberto NGCodec Inc United States

Dufourd Jean-Claude Institut Mines Telecom France

Ebrahimi Touradj EPFL Switzerland

Ehara Hiroyuki Panasonic Corporation Japan

fautier thierry harmonic United States

Feng Jie Vixs System Inc Canada

Fersch Christof Dolby Laboratories Germany

Filippov Alexey Huawei Technologies Russia

Filos Jason Qualcomm United States

Foessel Siegfried Fraunhofer IIS Germany

Fogg Chad MovieLabs United States

Francois Edouard Technicolor France

Fröjdh Per Ericsson Sweden

Fuchs Harald Fraunhofer IIS Germany

Gao Wen Harmonic Inc United States

Gendron Patrick Thomson Video Networks France

Gérard MADEC B-COM France

Gibbs Jon Huawei Technologies Co Ltd United Kingdom

Gibellino Diego Telecom Italia SPA Italy

GISQUET Christophe CANON Research France France

Grange Adrian Google United States

Grant Catherine Nine Tiles United Kingdom

Graziosi Danillo Ostendo Technologies Inc. United States

Grois Dan Fraunhofer HHI Germany

Grüneberg Karsten Fraunhofer HHI Germany

Gu Zhouye Arris Group Inc. United States

GUEZ VUCHER Marc SCPP France

Hagqvist Jari Nokia Technologies Finland

Hamidouche Wassim INSA de Rennes / IETR France

Hannuksela Miska Nokia Finland

Hara Junichi Ricoh company, ltd. Japan

HARA KAZUHIRO NHK Japan

HASHIMOTO Ryoji Renesas Electoronics Japan

HATTORI SALLY Twentieth Century Fox United States

He Dake BlackBerry Canada

He Yun Tsinghua Univ. China

He Yuwen InterDigital Communications United States

Hearty Paul Sony Electronics, Inc. United States

Hendry FNU Qualcomm United States

HEO JIN LG Electronics Korea

Hernaez Mikel Stanford University United States

Herre Juergen Fraunhofer IIS Germany

Hinds Arianne Cable Television Laboratories United States

Hipple Aaron Netflix United States

Hirabayashi Mitsuhiro SONY Corp. Japan

HO YO-SUNG GIST Korea

Hoang Dzung NXP Semiconductor United States

Hofmann Ingo Fraunhofer IIS Germany

Holland James Intel Corporation United States

Hong Seungwook Arris United States

Hsieh Ted Qualcomm United States

Huang Cheng Nanjing Zhongxingxin Software Co.Ltd China

Huang Qi Dolby China

Huang Tiejun Peking University China

Huang Wei Shanghai Jiao Tong University China

Huang Yu-Wen MediaTek Inc. China

Hughes Kilroy Microsoft United States

Iacoviello Roberto RAI Italy

Ichigaya Atsuro NHK Japan

Ikai Tomohiro Sharp corporation Japan

Ikeda Masaru Sony Electronics Inc. United States

IMANAKA Hideo NTT Japan

Ishikawa Takaaki Waseda University Japan

Iwamura Shunsuke NHK Japan

JANG DALWON Korea Electronics Technology Institute Korea

Jang EueeSeon HanyangUniversity Korea

Jang In-su ETRI Korea

Jang Si-Hwan ETRI Korea

Jang Wonkap Vidyo Inc. United States

Januszkiewicz Łukasz Zylia Sp. z o.o. Poland

Jasioski Marcin Imagination Ltd. Poland

Jeon Seungsu SungKyunKwan Univ. Korea

JEONG JINHO GreenCloud co.ltd. Korea

Jeong Min Hyuk Myongji University Korea

jiang minqiang santa clara university United States

Jin Guoxin Qualcomm United States

Jo Bokyun Kyunghee University Korea

Jo Bokyun Kyunghee University Korea

Jongmin Lee SK Telecom Korea

Joo Sanghyun ETRI Korea

Joshi Rajan Qualcomm United States

Joveski Bojan USTARTAPP France

JU HYUNHO Korea Electronics Technology Institute Korea

JUN DONGSAN ETRI Korea

Jung Cheolkon Xidian University China

Jung Joel Orange Labs France

Kaneko Itaru Tokyo Polytechnic University Japan

Kang DongNam Nexstreaming Korea

Kang Jewon Ewha W. University Korea

KANG JUNG WON ETRI Korea

Karczewicz Marta Qualcomm United States

Kawamura Kei KDDI Corp. (KDDI R&D Labs.) Japan

Keinert Joachim Fraunhofer IIS Germany

Kerofsky Louis Interdigital United States

Kervadec Sylvain Orange Labs France

Kim DaeYeon Chips&Media Inc. Korea

Kim Duckhwan ETRI Korea

Kim Hui Yong ETRI Korea

Kim Ilseung Hanyang Univ. Korea

Kim Jae Hoon Apple United States

Kim Jae-Gon Korea Aerospace University Korea

Kim Jungsun MediaTek Inc United States

Kim Kyuheon KyungHee Univ Korea

Kim Moo-Young Qualcomm United States

Kim Namuk Sungkyunkwan Univ. Korea

Kim Sang-Kyun Myongji Unversity Korea

Kim Seung-Hwan Sharp Labs of America United States

Kim Youngseop Dankook University Korea

Kimura Takuto NTT Japan

Klenner Peter Panasonic Germany

Ko Hyunsuk ETRI Korea

Koenen Rob TNO Netherlands

KOLAROV Krasimir APPLE United States

Konstantinides Konstantinos Dolby Labs United States

koo bontae etri Korea

Kratschmer Michael Fraunhofer IIS Germany

Krauss Kurt Dolby Laboratories Inc. Germany

Kudumakis Panos Queen Mary University of London United Kingdom

Kui Fan Pecking University, Shenzhen Graduated School China

Kuntz Achim Fraunhofer IIS Germany

Kwak Youngshin Ulsan National Institute of Science and Korea

Technology

Kwon Oh-Jin Sejong University Korea

Ladd Patrick Comcast United States

Lafruit Gauthier Université Libre de Bruxelles Belgium

LAI PoLin MediaTek USA United States

Lainema Jani Nokia Finland

Laverty Edward DTS Inc. United Kingdom

Lavric Traian Institut Mines-Télécom France

Le Léannec Fabrice Technicolor France

Lee Bumshik LG Electronics Korea

Lee Chang-kyu ETRI Korea

Lee Dongkyu Kwangwoon University Korea

Lee Hae ETRI Korea

Lee Jae Yung Sejong University Korea

Lee Jangwon LG Electronics Korea

Lee Jin Young ETRI Korea

Lee Jinho ETRI Korea

LEE JUNGHYUN Hanyang University Korea

Lee MyeongChun Korea Electronics Technology Institute Korea

Lee Seungwook ETRI Korea

Lee Sungwon Qualcomm United States

Lee Taegyu Yonsei University Korea

LEE Taejin ETRI Korea

Lee Yong-Hwan Far East University Korea

Lee Yung Lyul Sejong University Korea

Lei Shawmin MediaTek, Inc. China

Levantovsky Vladimir Monotype United States

Li Ge Peking University, Shenzhen Graduate School China

LI HAITING Huawei Technologies Co., Ltd. China

Li Jisheng Tsinghua University United States

Li Min Qualcomm Inc. United States

Li Ming ZTE Corporation China

Li Xiang Qualcomm United States

Li Zhu University of Missouri, Kansas City United States

Lim ChongSoon Panasonic R&D Center Singapore Singapore

Lim Jaehyun LG Electronics Korea

Lim Sung-Chang ETRI Korea

Lim Sungwon Sejong Univ. Korea

Lim Youngkwon Samsung United States

Lin Ching-Chieh ITRI China

Lin Chun-Lung ITRI international China

LIN HUI-TING ITRI/National Chiao Tung University China

lin tao Tongji University China

LIU LI Peking University China

Liu Shan MediaTek United States

liu wenjun huawei USA United States

Lohmar Thorsten Ericsson Germany

Lu Ang Zhejiang University China

Lu Taoran Dolby Laboratories United States

Luthra Ajay Arris United States

ma xiang Huawei Technologies Co. Ltd China

Macq Benoit UCL Belgium Malamal Vadakital Vinod Kumar Nokia Finland

Mandel Bill Universal Pictures [Comcast] United States

Maness Phillip DTS, Inc. United States

Margarit Dimitrie Sigma Designs United States

Marpe Detlev Fraunhofer HHI Germany

Mattavelli Marco EPFL Switzerland

MAZE Frederic Canon Research France France

McCann Ken Zetacast/Dolby United Kingdom

Minezawa Akira Mitsubishi Electric Corporation Japan

Minoo Koohyar Arris Group Inc. United States

Misra Kiran Sharp United States

Mitrea Mihai Institut Mines Telecom France

Morrell Martin Qualcomm United States

Murtaza Adrian Fraunhofer IIS Germany

Naccari Matteo BBC United Kingdom

Nakachi Takayuki NTT Japan

Nakagami Ohji Sony corporation Japan

NAM HYEONWOO DONGDUK WOMEN'S UNIVERSITY Korea

Narasimhan Sam Arris Inc United States

Nasiopoulos Panos UBC Canada

Natu Ambarish Australian Government Australia

Navali Prabhu Ericsson United States

Neuendorf Max Fraunhofer IIS Germany

Neukam Christian Fraunhofer IIS Germany

Nguyen Tung Fraunhofer HHI Germany

NICHOLSON Didier VITEC France

Norkin Andrey Netflix United States

Numanagic Ibrahim Simon Fraser University Canada

Ochoa Idoia Stanford University United States

Oh ByungTae Korea Aerospace University Korea

Oh Hyun Mook LG Electronics Korea

OH HYUN OH WILUS Inc. Korea

Oh Kwan-Jung ETRI Korea

Oh Sejin LG Electronics Korea

Ohm Jens-Rainer RWTH Aachen Germany

Onders Timothy Dolby Laboratories United States

Ostermann Joern Leibniz University Hannover Germany

Oyman Ozgur Intel Corporation United States

Pahalawatta Peshala AT&T Entertainment Group United States

PALLONE Gregory Orange France

Pan Hao Apple Inc. United States

PANAHPOUR TEHRANI Mehrdad NAGOYA UNIVERSITY Japan

Panusopone Krit ARRIS United States

parhy manindra Nvidia United States

Paridaens Tom Ghent University - iMinds - Multimedia Lab Belgium

parikh nidhish Nokia Ltd Finland

Park Kyungmo Samsung Electronics Co., Ltd. Korea

Park Min Woo Samsung Electronics Korea

Park Sang-hyo HanyangUniversity Korea

PARK YOUNGO SAMSUNG Korea

PENG WEN-HSIAO ITRI International/NCTU United States

Pereira Fernando Instituto Superior Técnico Portugal

Peters Nils Qualcomm United States

Philippe Pierrick Orange France

Piron Laurent Nagravision Switzerland

Poirier Tangi Technicolor France

Preda Marius Institut MINES TELECOM France

Pu Fangjun Dolby Laboratories United States

Qiu Wenyi Hisilicon China

Quackenbush Schuyler Audio Research Labs United States Ramasubramonian

Adarsh Krishnan Qualcomm Technologies Inc. United States

Rapaka Krishnakanth Qualcomm Inc United States

Reznik Yuriy Brightcove, Inc. United States

Ridge Justin Nokia Finland

ROH DONGWOOK LG ELECTRONICS Korea

Rosewarne Chris Canon Australia

Rouvroy Gaël Intopix Belgium

Rusanovskyy Dmytro Qualcomm Inc. United States

Said Amir Qualcomm Technologies, Inc. United States

Salehin S M Akramus Qualcomm Technolgies Inc United States

Samuelsson Jonatan Ericsson Sweden Sanchez de la Fuente Yago Fraunhofer HHI Germany

Schierl Thomas Fraunhofer HHI Germany

Seeger Chris NBCUniversal/Comcast United States

Segall Andrew Sharp United States

Sen Deep Qualcomm United States

Senoh Takanori NICT Japan

Seregin Vadim Qualcomm United States

Setiawan Panji Huawei Technologies Duesseldorf GmbH Germany

Shima Masato Canon Inc. Japan

Shivappa Shankar Qualcomm Technologies Inc. United States

Singer David Apple United States

Skupin Robert Fraunhofer Heinrich Hertz Institute for Telecommunication Germany

So Youngwan Samsung Elec. Korea

Sodagar Iraj Microsoft United States

Sohn Yejin Seoul Women's University Korea

Sole Joel Qualcomm United States

Song Jaeyeon Samsung Korea

Song Jeongook Qualcomm United States

Srinivasan Ranga Ramanujam Nvidia United States

Stankiewicz Olgierd Poznan University of Technology Poland

Stein Alan Technicolor United States

Stockhammer Thomas Qualcomm Incorporated Germany

Stolitzka Dale Samsung Electronics United States

Strom Jacob Ericsson Sweden

Su Yeping Apple Inc. United States

Suehring Karsten Fraunhofer HHI Germany

Sugimoto Takehiro NHK Japan

Suh Jong-Yeul LG Electronics Korea

Sullivan Gary Microsoft United States

Sun Haiwei Panasonic R&D Center Singapore Singapore

sun wendell Arris International United States

Suzuki Teruhiko Sony Corporation Japan

Swaminathan Viswanathan (Vishy) Adobe Systems Inc. United States

Sychev Maksim Huawei Technologies Russian Federation

Syed Yasser Comcast United States

T. Pourazad Mahsa TELUS & UBC Canada

Takabayashi Kazuhiko Sony Corporation Japan

Tanimoto Masayuki Nagoya Industrial Science Research Institute Japan

Teo Han Boon Panasonic Singapore

Tescher Andrew Microsoft United States

Thoma Herbert Fraunhofer IIS Germany

Thomas Emmanuel TNO Netherlands

Tian Dong Mitsubishi Electric Research Labs United States

Toma Tadamasa Panasonic Corp. Japan

Topiwala Pankaj FastVDO LLC United States

Tourapis Alexandros Apple Inc United States

Tu Jih-Sheng ITRI international China

Tulvan Christian Mines-Telecom, Telecom Sud-Paris France

Tung Yi-Shin MStar Semiconductor, Inc. China

van Deventer Oskar TNO Netherlands

Van Wallendael Glenn Ghent University - iMinds - Multimedia Lab Belgium

Vanam Rahul InterDigital Communications United States

Vetro Anthony Mitsubishi Electric United States

Voges Jan Leibniz Universitaet Hannover Germany

Wan Wade Broadcom Corporation United States

Wang Jian Polycom Canada

Wang Ronggang Peking University Shenzhen Graduate School China

Wang Xiaquan Hisilicon China

Wang Ye-Kui Qualcomm Incorporated United States

Watanabe Shinji ITSCJ Japan

Welch Jim IneoQuest Technologies United States

Wenger Stephan Vidyo United States

Willème Alexandre Université Catholique de Louvain (UCL) Belgium

Won Dongjae Sejong Univ. Korea

Wu Kai Panasonic R&D Center Singapore Singapore

Wu Ping ZTE UK Ltd United Kingdom

Wuebbolt Oliver Technicolor Germany

XIANGJIAN WU Kwangwoon University Korea

Xie Qingpeng Huawei China

Xiu Xiaoyu InterDigital Communications Inc. United States

Xu Haiyan HanyangUniversity Korea

Xu Jizheng Microsoft China

Xu Xiaozhong MediaTek United States

XU YILING Shanghai Jiaotong University China

Yamamoto Yuki Sony Corporation Japan

Yang Anna Korea Aerospace Universiy Korea

Yang Haitao Huawei Technologies Co., Ltd. China

Yang Jar-Ferr National Cheng Kung University China

YANG JEONG MIN Korea Electronics Technology Institute Korea

Ye Yan InterDigital Communications United States

Yea Sehoon LG Electronics Korea

Yin Jiaxin Huawei China

Yin Peng Dolby United States

Yoon Kyoung-ro Konkuk University Korea

YU Lu Zhejiang University China

Yu Yue Arris United States

Yun JaeKwan ETRI Korea

Yun Jihyeok Kyung Hee University Korea

Yun Jihyeok Kyunghee University Korea

Zernicki Tomasz Zylia Poland

Zhang Li Qualcomm United States

Zhang Louis AMD Canada

Zhang Wenhao Intel Corp. China

ZHANG XINGGONG Peking University China

ZHAO WILF VIXS Canada

Zhao Xin Qualcomm Technologies, Inc. United States

Zhao Zhijie Huawei Technologies Duesseldorf GmbH Germany

Zhou Jiantong Huawei Technologies Co., LTD. China

Zhou Minhua Broadcom United States

Zhu Jianqing Fujitsu R&D Center China

Zoia Giorgio Independent Consultant Switzerland

Zou Feng Qualcomm United States

– Agenda

# # # Item

1 Opening

2 Roll call of participants

3 Approval of agenda

4 Allocation of contributions

5 Communications from Convenor

6 Report of previous meetings

7 Workplan management

1 Media coding

1 Support for Dynamic Range Control

2 Additional Levels and Supplemental Enhancement Information

3 Alternative depth information

4 Printing material and 3D graphics coding for browsers

5 Metadata for Realistic Material Representation

6 Composite Font Representation

7 Video Coding for Browsers

8 Internet Video Coding

9 MVCO

10 Contract Expression Language

11 Media Contract Ontology

12 FU and FN extensions for Parser Instantiation

13 FU and FN extensions for SHVC and Main10 Profiles of SHVC

14 Tools for Reconfigurable Media Coding Implementations

15 Support for MPEG-D DRC

16 Media Context and Control – Control Information

17 Media Context and Control – Sensory Information

18 Media Context and Control – Virtual World Object Characteristics

19 Media Context and Control – Data Formats for Interaction Devices

20 Media Context and Control – Common Types and Tools

21 HEVC

22 3D Audio

23 3D Audio Profiles

24 3D Audio File Format Support

25 Carriage of systems metadata

26 Free Viewpoint Television

27 Higher Dynamic Range and Wide Gamut Content Distribution

28 Future Video Coding

29 Processing and Sharing of Media under User Control

30 Genome Compression

31 Lightfield Formats

2 Composition coding

3 Description coding

1 MPEG-7 Visual

2 Compact Descriptors for Video Analysis

3 Green Metadata for HEVC SEI message

4 MPEG-21 User Description

4 Systems support

1 Coding-independent codepoints

2 Media orchestration

5 IPMP

6 Digital Item

7 Transport and File formats

1 Carriage of Layered HEVC in MPEG-2 TS

2 Carriage of Green Metadata

3 Carriage of 3D Audio

4 Carriage of Quality Metadata in MPEG-2 Systems

5 Enhanced carriage of HEVC

6 Carriage of AVC based 3D video excluding MVC

7 Carriage of Timed Metadata Metrics of Media in the ISO Base Media File

Format

8 Carriage of ROI information

9 MPEG Media Transport

10 Image File Format

11 Authentication, Access Control and Multiple MPDs

12 DASH for Full Duplex Protocols

13 MPEG-DASH Implementation Guidelines

14 Server and Network Assisted DASH

8 Multimedia architecture

1 MPEG-M Architecture

2 MPEG-M API

3 MPEG-V Architecture

4 Media-centric Internet of Things and Wearables

5 Big media

9 Application formats

1 Augmented Reality AF

2 Publish/Subscribe Application Format (PSAF)

3 Multisensorial Effects Application Format

4 Media Linking Application Format

5 Screen Sharing Application Format

6 Omnidirectional Media Application Format

7 Media-related privacy management Application Format

10 Reference implementation

1 MVC plus depth extension of AVC Reference Software

2 3D extension of AVC Reference Software

3 MPEG-4 Audio Synchronization Reference Software

4 Pattern based 3D mesh compression Reference Software

5 Support for Dynamic Range Control, New Levels for ALS Simple Profile, and

Audio Synchronization Reference Software

6 Video Coding for Browsers Reference Software

7 Video coding for Internet Video Coding

8 CEL and MCO Reference Software

9 MPEG-7 Visual Reference Software

10 CDVS Reference Software

11 ARAF reference software

12 Media Tool Library Reference Software

13 SAOC and SAOC Dialogue Reference Software

14 DRC Reference Software

15 Reference Software for MPEG-V

16 Reference Software for MPEG-M

17 MMT Reference Software

18 HEVC Reference Software

19 HEVC RExt Reference Software

20 MV-HEVC Reference Software

21 SHVC Reference Software

22 3D-HEVC Reference Software

23 3D Audio Reference Software

24 MPEG-DASH Reference Software

11 Conformance

1 New levels for AAC profiles and uniDRC support

2 Multi-resolution Frame Compatible Stereo Coding extension of AVC

Conformance

3 3D-AVC Conformance

4 MFC+Depth Extension of AVC Conformance

5 Additional Multichannel Conformance Data

6 Pattern based 3D mesh compression Conformance

7 Video Coding for Browsers Conformance

8 Internet Video Coding Conformance

9 CDVS Conformance

10 CEL and MCO Conformance

11 ARAF Conformance

12 Media Tool Library Conformance

13 SAOC and SAOC Dialogue Enhancement Conformance

14 MPEG-V – Conformance

15 Conformance for MPEG-M

16 MMT Conformance

17 HEVC Conformance

18 3D Audio Conformance

12 Maintenance

1 Systems coding standards

2 Video coding standards

3 Audio coding standards

4 3DG coding standards

5 Systems description coding standards

6 Visual description coding standards

7 Audio description coding standards

8 MPEG-21 standards

9 MPEG-A standards

8 Organisation of this meeting

1 Tasks for subgroups

2 Joint meetings

3 Room assignment

9 WG management

1 Terms of reference

2 Officers

3 Editors

4 Liaisons

5 Responses to National Bodies

6 Work item assignment

7 Ad hoc groups

8 Asset management

1 Reference software

2 Conformance

3 Test material

4 URI

9 IPR management

10 Facilities

11 Work plan and time line

10 Administrative matters

1 Schedule of future MPEG meetings

2 Promotional activities

11 Resolutions of this meeting

12 A.O.B.

13 Closing

– Input contributions

MPEG number

Title Source

m37527 Input on 14496-15 defect report

Ye-Kui Wang, Guido Franceschini, David Singer

m37528 FTV AHG: Results of newer HTM codecs on FTV test sequences

Takanori Senoh, Akio Ishikawa, Makoto Okui, Kenji Yamamoto, Naomi Inoue, Pablo Carballeira López, Francisco Morán Burgos

m37529

Resubmission of Swissaudec's MPEG-H "Phase 2" Core Experiment According to MPEG Plenary's Decision from Oct 23, 2015

Clemens Par

m37531 Study Of 23008-3 DAM4 (w15851) - Carriage Of Systems Metadata

Michael Dolan, Dave Singer, Schuyler Quackenbush

m37532 Functional components for Media Orchestration

M. Oskar van Deventer

m37533 Proposal of additional text and data for MMT Implementation guidelines

Shuichi Aoki, Yuki Kawamura

m37534 Contribution on Media Orchestration

Jean-Claude Dufourd

m37535 Hybrid Log-Gamma HDR A. Cotton, M. Naccari (BBC)

m37536

Description of the reshaper parameters derivation process in ETM reference software

K. Minoo (Arris), T. Lu, P. Yin (Dolby), L. Kerofsky (InterDigital), D. Rusanovskyy (Qualcomm), E. Francois (Technicolor)

m37537 Report of HDR Core Experiment 4

P. Topiwala (FastVDO), E. Alshina (Samsung), A. Smolic (Disney), S. Lee (Qualcomm)

m37538 Report of HDR Core Experiment 5

P. Topiwala (FastVDO), R. Brondijk (Philips), J. Sole (Qualcomm), A. Smolic (Disney),

m37539 Encoder optimization for HDR/WCG coding

Y. He, Y. Ye, L. Kerofsky (InterDigital)

m37540 Timed Metadata and Orchestration Data for Media Orchestration

Sejin Oh

m37542 Report on CE6 R.Brondijk(Philips), S.Lasserre(Technicolor), Y.He(Interdigital), D. Rusanovskyy (Qualcomm)

m37543

Some observations on visual quality of Hybrid Log-Gamma (HLG) TF processed video (CE7)

A. Luthra, D. Baylon, K. Minoo, Y. Yu, Z. Gu

m37544 Summary of Voting on ISO/IEC 23009-1:2014/PDAM 4

SC 29 Secretariat

m37545 Summary of Voting on ISO/IEC 23008-

SC 29 Secretariat

8:201x/DAM 1

m37546 Summary of Voting on ISO/IEC 23008-1:2014/DCOR 2

SC 29 Secretariat

m37547 Summary of Voting on ISO/IEC DIS 21000-21 [2nd Edition]

SC 29 Secretariat

m37548 Summary of Voting on ISO/IEC DIS 21000-22

SC 29 Secretariat

m37549 Summary of Voting on ISO/IEC 14496-26:2010/DAM 4

SC 29 Secretariat

m37550 Summary of Voting on ISO/IEC DIS 21000-20 [2nd Edition]

SC 29 Secretariat

m37551 Summary of Voting on ISO/IEC DIS 23008-4

SC 29 Secretariat

m37552 Summary of Voting on ISO/IEC 14496-12:201x/PDAM 1

SC 29 Secretariat

m37553 Summary of Voting on ISO/IEC 14496-3:2009/PDAM 6

SC 29 Secretariat

m37554 Summary of Voting on ISO/IEC 23008-1:201x/PDAM 1

SC 29 Secretariat

m37555 Summary of Voting on ISO/IEC 13818-1:2015/DAM 5

SC 29 Secretariat

m37556 Summary of Voting on ISO/IEC 13818-1:2015/DAM 6

SC 29 Secretariat

m37557 Summary of Voting on ISO/IEC DIS 23000-13 [2nd Edition]

SC 29 Secretariat

m37558 Summary of Voting on ISO/IEC CD 23006-1 [3rd Edition]

SC 29 Secretariat

m37559 Summary of Voting on ISO/IEC 23008-3:201x/DAM 2.2

SC 29 Secretariat

m37560 Summary of Voting on ISO/IEC 23003-3:2012/DAM 3

SC 29 Secretariat

m37561 Summary of Voting on ISO/IEC DIS 23006-2 [3rd Edition]

SC 29 Secretariat

m37562 Summary of Voting on ISO/IEC DIS 23006-3 [3rd Edition]

SC 29 Secretariat

m37563 Summary of Voting on ISO/IEC 23001-11:201x/DAM 1

SC 29 Secretariat

m37564 Summary of Voting on ISO/IEC 13818-1:2015/PDAM 7

SC 29 Secretariat

m37565 Table of Replies on ISO/IEC 14496-5:2001/FDAM 37

ITTF via SC 29 Secretariat

m37566 Table of Replies on ISO/IEC 14496-4:2004/FDAM 43

ITTF via SC 29 Secretariat

m37567 Table of Replies on ISO/IEC FDIS 23001-12

ITTF via SC 29 Secretariat

m37568 Table of Replies on ISO/IEC 14496-27:2009/FDAM 6

ITTF via SC 29 Secretariat

m37569 Table of Replies on ISO/IEC FDIS 23001-8 [2nd Edition]

ITTF via SC 29 Secretariat

m37570 Table of Replies on ISO/IEC 13818-1:2015/FDAM 3

ITTF via SC 29 Secretariat

m37571 Table of Replies on ISO/IEC 13818-1:2015/FDAM 2

ITTF via SC 29 Secretariat

m37572 Table of Replies on ISO/IEC 13818-1:201x/FDAM 4

ITTF via SC 29 Secretariat

m37573

Summary of Voting on ISO/IEC 14496-3:2009/Amd.3:2012/DCOR 1

SC 29 Secretariat

m37574 Table of Replies on ISO/IEC FDIS 23001-7 [3rd Edition]

ITTF via SC 29 Secretariat

m37575 Table of Replies on ISO/IEC FDIS 23008-12

ITTF via SC 29 Secretariat

m37576 Liaison Statement from JTC 1/WG 10

JTC 1/WG 10 via SC 29 Secretariat

m37577 Liaison Statement from SC 37

SC 37 via SC 29 Secretariat

m37578 Liaison Statement from ITU-T SG 16 on video coding collaboration

ITU-T SG 16 via SC 29 Secretariat

m37579

Liaison Statement from ITU-T SG 16 on discontinued work items on IPTV multimedia application frameworks

ITU-T SG 16 via SC 29 Secretariat

m37580 Liaison Statement from ITU-R SG 6 on ITU-R BS.1196-5

ITU-R SG 6 via SC 29 Secretariat

m37581 Liaison Statement from JTC 1/WG 10 on Invitation to the 4th JTC 1/WG 10

JTC 1/WG 10 via SC 29 Secretariat

Meeting

m37582

Liaison Statement from JTC 1/WG 10 on Logistical information for the 4th JTC 1/WG 10 Meeting

JTC 1/WG 10 via SC 29 Secretariat

m37583 Liaison Statement from ITU-T SG 20

ITU-T SG 20 via SC 29 Secretariat

m37584 Liaison Statement from JTC 1/WG 10

JTC 1/WG 10 via SC 29 Secretariat

m37585 Liaison Statement from IETF

IETF via SC 29 Secretariat

m37586

IEC CDV 62766-4-1, 62766-4-2, 62766-5-1, 62766-5-2, 62766-6, 62766-7 and 62766-8

IEC TC 100 via SC 29 Secretariat

m37587 IEC DTR 62921 Ed. 2.0 IEC TC 100 via SC 29 Secretariat

m37588 IEC CDV 63028 Ed. 1.0 IEC TC 100 via SC 29 Secretariat

m37589 IEC CD 61937-13 and 61937-14

IEC TC 100 via SC 29 Secretariat

m37590 IEC CD 61937-2 Ed. 2.0/Amd.2

IEC TC 100 via SC 29 Secretariat

m37591 IEC CD 63029 [IEC 100/2627/CD]

IEC TC 100 via SC 29 Secretariat

m37592 IEC CD 63029 [IEC 100/2627A/CD]

IEC TC 100 via SC 29 Secretariat

m37593 IEC NP: Universal Serial Bus interfaces for data and power - Part 3-1

IEC TC 100 via SC 29 Secretariat

m37594 IEC NP: Universal Serial Bus interfaces for data and power - Part 1-3

IEC TC 100 via SC 29 Secretariat

m37595 IEC CDV 62680-1-3, 62680-3-1 and 62943

IEC TC 100 via SC 29 Secretariat

m37596

IEC CDV MIDI (MUSICAL INSTRUMENT DIGITAL INTERFACE) SPECIFICATION 1.0 (ABRIDGED EDITION, 2015)

IEC TC 100 via SC 29 Secretariat

m37597

IEC NP MIDI (MUSICAL INSTRUMENT DIGITAL INTERFACE) SPECIFICATION 1.0 (ABRIDGED EDITION, 2015)

IEC TC 100 via SC 29 Secretariat

m37598 IEC CDV 63002 Ed. 1.0 IEC TC 100 via SC 29 Secretariat

m37599

National Body Contribution on observation regarding convergence on media format

USNB via SC 29 Secretariat

m37600 National Body Contribution on the quality of ISOs

USNB via SC 29 Secretariat

editing processes

m37601 Patent declarations where the patent holder is unwilling to grant licences

ITTF via SC 29 Secretariat

m37602 Report on CE7 xCheck and Viewing

m37603 Corrections of TEMI text errors to include in COR2

Jean Le Feuvre

m37604 5G and future media consumption [5G/Beyond UHD]

Emmanuel Thomas, Toon Norp, José Almodovar

m37605 Report of HDR Core Experiment 1

Jacob Strom, Joel Sole, Yuwen He

m37606

Proposed Improvements to Algorithm Description of Joint Exploration Test Model 1

J. Chen (Qualcomm), E. Alshina (Samsung), G. J. Sullivan (Microsoft), J.-R. Ohm (RWTH Aachen Univ.), J. Boyce (Intel)

m37607 [MMT-IG] Proposal of additional text for chapter 5.7.2

Yejin Sohn, Minju Cho, Jongho Paik

m37608

[FTV AHG] Response to Call for Evidence on Free-Viewpoint Television: Zhejiang University

Lu Yu(Zhejiang University), Qing Wang, Ang Lu, Yule Sun

m37609 Report of AHG on Media Orchestration

Rob Koenen for AHG,

m37610 Performance of JEM 1 tools analysis

E. Alshina, A. Alshin, K. Choi, M. Park (Samsung)

m37611

CE1-related: Optimization of HEVC Main 10 coding in HDR videos Based on Disorderly Concealment Effect

C. Jung, S. Yu, Q. Lin(Xidian Univ.), M. Li, P. Wu(ZTE)

m37612 Adaptive Quantization-Based HDR video Coding with HEVC Main 10 Profile

C. Jung, Q. Fu, G. Yang, M. Li, P. Wu

m37613

Adaptive PQ: Adaptive Perceptual Quantizer for HDR video Coding with HEVC Main 10 Profile

C. Jung, S. Yu, P. Ke, M. Li, P. Wu

m37614 CE-6 test4.2: Color enhancement

Y. He, L. Kerofsky, Y. Ye (InterDigital)

m37615 HEVC encoder optimization

Y. He, Y. Ye, L. Kerofsky (InterDigital)

m37616 [FDH] Comments on DASH-FDH push-template

PoLin Lai, Shan Liu, Lulin Chen, Shawmin Lei

m37617 CE-FDH: Streaming flow control of sever push with a push directive

Lulin Chen, Shan Liu, Shawmin Lei

m37618 CE-FDH- Server push with a fragmented MPD

Lulin Chen, Shan Liu, PoLin Lai, Shawmin Lei

m37619 Luma delta QP adjustment J. Kim, J. Lee, E. Alshina, Y. Park(Samsung)

based on video statistical information

m37620 Comments on DASH-FDH URL Templates

Li Liu, XG Zhang

m37621 An automatic push-directive

Peter Klenner, Frank Herrmann

m37622 [CE-FDH] Comments on push template

Franck Denoual, Frederic Maze, Herve Ruellan

m37623 [CE-FDH] Editorial comments on WD

Franck Denoual, Frederic Maze,

m37624 Adaptive Gamut Expansion for Chroma Components

A Dsouza, Aishwarya, K Pachauri (Samsung)

m37625 HDR-VQM Reference Code and its Usage

K Pachauri, S Sahota (Samsung)

m37626 [FDH] Comments on FDH WebSocket Bindings

Kevin Streeter, Vishy Swaminathan

m37627 SCC encoder improvement

Y.-J. Chang, P.-H. Lin, C.-L. Lin, J.-S. Tu, C.-C. Lin (ITRI)

m37628 light field uses cases and workflows

D. Doyen, A. Schubert, L. Blondé, R. Doré

m37629

[MMT-IG]Use case: Combination of MMT and HTTP streaming for synchronized presentation

Minju Cho, Yejin Sohn, Jongho Paik

m37630 CE7: Cross-check report for Experiment 7.2

M. Naccari, M. Pindoria (BBC)

m37631 HEVC tile tracks brand Jean Le Feuvre, Cyril Concolato, Franck Denoual, Frédéric Mazé

m37632 L-HEVC track layout simplifications

Jean Le Feuvre, Cyril Concolato, Franck Denoual, Frédéric Mazé

m37633 Selective Encryption for AVC Video Streams (MRPM)

cyril bergeron, Benoit Boyadjis, Sebastien lecomte

m37634 Selective encryption for HEVC video streams (MRPM)

Wassim Hamidouche, Cyril Bergeron, Olivier Déforges

m37635

m37636

PKU’s Response to MPEG CfP for Compact Descriptor for Visual Analysis

Zhangshuai Huang, Ling-Yu Duan, Jie Chen, Longhui Wei, Tiejun Huang, Wen Gao,

m37637 Summary of Voting on ISO/IEC CD 23000-17

SC 29 Secretariat

m37638 (removed)

m37639 Summary of Voting on ISO/IEC 14496-14:2003/DCOR 2

SC 29 Secretariat

m37640

Summary of Voting on ISO/IEC 23003-3:2012/Amd.1:2014/DCOR 2

SC 29 Secretariat

m37641 Summary of Voting on ISO/IEC 23008-12:201x/DCOR 1

SC 29 Secretariat

m37642 Summary of Voting on Combined on ISO/IEC 14496-5:2001/PDAM 42

SC 29 Secretariat

m37643 Summary of Voting on Combined on ISO/IEC 23003-4:2015/PDAM 1

SC 29 Secretariat

m37644 Summary of Voting on ISO/IEC DIS 14496-15 [4th Edition]

SC 29 Secretariat

m37645 Summary of Voting on ISO/IEC 23008-5:2015/DAM 3

SC 29 Secretariat

m37646 Summary of Voting on ISO/IEC 23008-5:201x/DAM 4

SC 29 Secretariat

m37647 (removed)

m37648 Summary of Voting on ISO/IEC DIS 15938-6 [2nd Edition]

SC 29 Secretariat

m37649 Summary of Voting on ISO/IEC DIS 23000-16

SC 29 Secretariat

m37650 IEC CDV 62394/Ed.3 IEC TC 100 via SC 29 Secretariat

m37651 IEC NP Microspeakers IEC TC 100 via SC 29 Secretariat

m37652

IEC NP Multimedia Vibration Audio Systems - Method of measurement for audio characteristics of audio actuator by pinna-conduction

IEC TC 100 via SC 29 Secretariat

m37653 Liaison Statement from ITU-T SG 9

ITU-T SG 9 via SC 29 Secretariat

m37654 Liaison Statement from DVB on HDR

DVB via SC 29 Secretariat

m37655 Liaison Statement from DVB on MPEG-H Audio

DVB via SC 29 Secretariat

m37656 Liaison Statement from 3GPP

3GPP via SC 29 Secretariat

m37657 IEC CDV 62827-3 Ed. 1.0 IEC TC 100 via SC 29 Secretariat

m37658 IEC CD 60728-13-1 Ed. 2.0

IEC TC 100 via SC 29 Secretariat

m37659 IEC CDV 62943/Ed. 1.0 IEC TC 100 via SC 29 Secretariat

m37660 IEC CDV 63002 Ed.1.0 IEC TC 100 via SC 29 Secretariat

m37661 IEC TR 62935 Ed1.0 IEC TC 100 via SC 29 Secretariat

m37662 Centralized Texture-Depth Packing SEI Message for H.264/AVC

Jar-Ferr Yang, Hung-Ming Wang, Chiu-Yu Chen, Ting-Ann Chang,

m37663 Centralized Texture-Depth Packing SEI Message for

Jar-Ferr Yang, Hung-Ming Wang, Chiu-Yu Chen, Ting-Ann Chang,

HEVC

m37664 BT.HDR and its implications for VUI

C. Fogg

m37665 Commercial requirements for next-generation video

T. Fautier (Harmonic), C. Fogg

m37666 Hybrid Log Gamma observations

C. Fogg

m37667 HDR Core Experiments (CE) observations

C. Fogg

m37668 ICtCp testing C. Fogg

m37669 HDR-10 status update C. Fogg

m37670 Best practices for HDR10 C. Fogg

m37671 Noise reduction for HDR video

C. Fogg, A. Tourapis

m37672 Traffic engineering for Multipath MMT

Jihyeok Yun, Kyeongwon Kim, Taeseop Kim, Doug Young Suh, Jongmin Lee,

m37673 Quadtree plus binary tree structure integration with JEM tools

J. An, H. Huang, K. Zhang, Y.-W. Huang, S. Lei (MediaTek)

m37674 [FTV AhG] Soccer Light Field Interpolation Applied on Compressed Data

Lode Jorissen, Patrik Goorts, Yan Li, Gauthier Lafruit

m37675 High level syntax support for ARIB STD-B67 in AVC

M. Naccari, A. Cotton, T. Heritage (BBC), Y. Nishida, A. Ichigaya (NHK), M. Raulet (ATEME)

m37676 Tutorial: Media Sync in DVB-CSS and HbbTV 2.0

Oskar van Deventer

m37677 Coordination functionality for MPEG MORE

Oskar van Deventer

m37678

Answer to the Call for Evidence for Genome Compression and Storage: Reference-free Compression of Aligned Next-Generation Sequencing Data

Jan Voges, Marco Munderloh, Joern Ostermann

m37679

CE7-related: Some comments on system gamma setting for HLG (CE7)

m37680

Recommended conversion process of YCbCr 4:2:0 10b SDR content from BT.709 to BT.2020 color gamut

E. Francois, K. Minoo, R. van de Vleuten, A. Tourapis

m37681

Report of HDR Core Experiment 7: On the visual quality of HLG generated HDR and SDR video

A. Luthra (Arris), E. Francois (Technicolor), L. van de Kerkhof (Philips)

m37682 Enhanced Filtering and Interpolation Methods for Video Signals

A.M. Tourapis, Y. Su, D. Singer (Apple Inc)

m37683 Enhanced Luma Adjustment Methods

A.M. Tourapis, Y. Su, D. Singer (Apple Inc)

m37684 HDRTools: Extensions and Improvements

A.M. Tourapis, Y. Su, D. Singer (Apple Inc), C. Fogg (Movielabs)

m37685 IEC TS 63033-1 IEC TC 100 via SC 29 Secretariat

m37686 IEC CD 62608-2 Ed.1.0 IEC TC 100 via SC 29 Secretariat

m37687 AHG on HDR and WCG: Average Luma Controlled Adaptive dQP

A. Segall, J. Zhao (Sharp), J. Strom, M. Pettersson, K. Andersson (Ericsson)

m37688 HDR CE5: Report of Experiment 5.3.2

W. Dai, M. Krishnan, P. Topiwala (FastVDO)

m37689 CE1-related: LUT-based luma sample adjustment

C. Rosewarne, V. Kolesnikov (Canon)

m37690 Content colour gamut SEI message

Hyun Mook Oh, Jangwon Choi, Jong-Yeul Suh

m37691 HDR CE2: report of CE2.b-1 experiment (reshaper setting 1)

E. Francois, Y. Olivier, C. Chevance (Technicolor)

m37692 Video usability information signaling for SDR backward compatibility

Hyun Mook Oh, Jong-Yeul Suh

m37693 HDR CE6: report of CE6-4.6b experiment (ETM using SEI message)

E. Francois, C. Chevance, Y. Olivier (Technicolor)

m37694 Re-shaper syntax extension for HDR CE6

Hyun Mook Oh, Jong-Yeul Suh

m37695 CE7: Results Core Experiment 7.1 test a and b

M. Naccari, A. Cotton, M. Pindoria

m37696 Non-normative HM encoder improvements

K. Andersson, P. Wennersten, R. Sjöberg, J. Samuelsson, J. Ström, P. Hermansson, M. Pettersson (Ericsson)

m37697 MIoT Use-case Jo Bukyun

m37698

HDR CE6: Core Experiments 4.3 and 4.6a: Description of the Philips CE system in 4:2:0 and with automatic reshaper parameter derivation

Wiebe de Haan, Robert Brondijk, rocco goris, Rene van der Vleuten

m37699 HDR CE6-related: Cross Check of CE6.46b

Robert Brondijk, Wiebe de Haan

m37700 HDR CE7-related: xcheck 7 1a & 1 b

Robert Brondijk

m37701

CE1-related: Optimization of HEVC Main 10 coding in HDR videos Based on Disorderly Concealment Effect

C. Jung, S. Yu, Q. Lin (Xidian Univ.), M. Li, P. Wu (ZTE)

m37702 HDR CE7: xCheck 1a 1b and Core Experiement 2a and 2b

Robert Brondijk, Wiebe de Haan, Rene van der Vleuten, Rocco Goris

m37703 CE2-related: Adaptive Quantization-Based HDR

C. Jung, Q. Fu, G. Yang(Xidian Univ.), M. Li, P. Wu(ZTE)

video Coding with HEVC Main 10 Profile

m37704 HDR CE5: Report on Core Experiment CE5.3.1

Robert Brondijk, Wiebe de Haan, Jeroen Stessen

m37705 CE5-related: xCheck of CE5.3.2

robert brondijk, rocco goris

m37706

CE2-related: Adaptive PQ: Adaptive Perceptual Quantizer for HDR video Coding with HEVC Main 10 Profile

C. Jung, S. Yu, P. Ke(Xidian Univ.), M. Li, P. Wu(ZTE)

m37707 Highly efficient HDR video compression

Alan Chalmers, Jonathan Hatchett, Tom Bashford Rogers, Kurt Debattista

m37708 HDR CE6: Cross-check of 6.46a

W. Dai, M. Krishnan, P. Topiwala (FastVDO)

m37709 Future video coding requirements on virtual reality

J. Ridge, M.M. Hannuksela (Nokia)

m37710

CIECAM02 based Orthogonal Color Space Transformation for HDR/WCG Video

Y. Kwak, Y. Baek(UNIST), J. Lee, J. W. Kang, H.-Y. Kim(ETRI)

m37711

Editorial Clarifications on Text of ISO/IEC 13818-1:2015 AMD7 Virtual Segmentation

Yasser Syed, Alex Giladi, Wendell Sun,

m37712

Palette encoder improvements for the 4:2:0 chroma format and lossless

C. Gisquet, G. Laroche, P. Onno (Canon)

m37713 Comments on alignment of SCC text with multi-view and scalable

C. Gisquet, G. Laroche, P. Onno (Canon)

m37714 Bug fix for DPB operations when current picture is a reference picture

X. Xu, S. Liu, S. Lei (MediaTek)

m37715 Cross Check Report for CE on HREP (Test Site Fraunhofer IDMT)

Judith Liebetrau, Thomas Sporer, Alexander Stojanow

m37716 Bottom-up hash value calculation and validity check for SCC

W. Xiao (Xidian Univ.), B. Li, J. Xu (Microsoft)

m37717 HDR CE7-related: Additional results for Experiment 7.2a

M. Naccari, M. Pindoria, A. Cotton (BBC)

m37718 Crosscheck of HDR CE5.3.1 (JCTVC-W0069)

J. Samuelsson, M. Pettersson, J. Strom (Ericsson)

m37719

Crosscheck of Luma delta QP adjustment based on video statistical information (JCTVC-W0039)

J. Samuelsson, J. Strom, P. Hermansson (Ericsson)

m37720 Report on HDR CE3 Vittorio Baroncini, Louis Kerofsky, Dmytro Rusanovskyy

m37721 [SAND] A Proposal to improve SAND alternatives

Iraj Sodagar

m37722 SJTU 4k test sequences evaluation report

Namuk Kim, Seungsu Jeon, Huikjae Shim

m37723 HDR CE2: CE2.a-2, CE2.c, CE2.d and CE2.e-3

T. Lu, F. Pu, P. Yin, T. Chen, W. Husak (Dolby), Y. He, L. Kerofsky, Y. Ye (InterDigital)

m37724 HDR CE2 related: Further Improvement of JCTVC-W0084

T. Lu, F. Pu, P. Yin, T. Chen, W. Husak (Dolby), Y. He, L. Kerofsky, Y. Ye (InterDigital)

m37725 Indication of SMPTE 2094-10 metadata in HEVC

R. Yeung, S. Qu, P. Yin, T. Lu, T. Chen, W. Husak (Dolby)

m37726

Description of Color Graded SDR content for HDR/WCG Test Sequences

P. J. Warren, S. M. Ruggieri, W. Husak, T. Lu, P. Yin, F. Pu (Dolby)

m37727 SDR backward compatibility requirements for HEVC HDR extension

L. van de Kerkhof, W. de Haan (Philips), E. Francois (Technicolor)

m37728 VCEG Ad hoc group report on HDR Video Coding (VCEG AHG5)

J. Boyce, E. Alshina, J. Samuelsson (AHG chairs)

m37729 HDR CE2-related: some experiments on reshaping with input SDR

Y. Olivier, E. Francois, C. Chevance

m37730

HDR CE3: Results of subjective evaluations conducted with the DSIS method

Martin Rerabek, Philippe Hanhart, Touradj Ebrahimi

m37731

HDR CE3: Benchmarking of objective metrics for HDR video quality assessment

Philippe Hanhart, Touradj Ebrahimi

m37732

Description of the Exploratory Test Model (ETM) for HDR/WCG extension of HEVC

K. Minoo (Arris), T. Lu, P. Yin (Dolby), L. Kerofsky (InterDigital), D. Rusanovskyy (Qualcomm), E. Francois (Technicolor), ,

m37733 Proposed text for BT.HDR in AVC

C. Fogg (MovieLabs)

m37734

HDR CE2: Report of CE2.a-3, CE2.c and CE2.d experiments (for reshaping setting 2)

Yue Yu, Zhouye Gu, Koohyar Minoo, David Baylon, Ajay Luthra

m37735

HDR CE2: Report of CE2.b-2, CE2.c and CE2.d experiments (for reshaping setting 2)

Zhouye Gu, Koohyar Minoo, Yue Yu, David Baylon, Ajay Luthra

m37736 SHVC verification test results

Y. He, Y. Ye (InterDigital), Hendry, Y.-K Wang (Qualcomm), V. Baroncini (FUB)

m37737

Proposed editorial improvements to HEVC Screen Content Coding Draft Text 5

R. Joshi, G. Sullivan, J. Xu, Y. Ye, S. Liu, Y.-K. Wang, G. Tech

m37738 Report of HDR Core Experiment 6

Robert Brondijk, Sebastien Lasserre, Dmytro Rusanovskyy, yuwen he

m37739 Report of HDR Core Experiment 2

D.Rusanovskyy(Qualcomm), E.Francois (Technicolor), L.Kerofsky (InterDigital), T.Lu(Dolby), K. Minoo(Arris),

m37740 HDR CE2: CE2.c-Chroma QP offset study report

D.Rusanovskyy, J.Sole, A.K.Ramasubramonian, D. B. Sansli, M. Karczewicz (Qualcomm),

m37741 Effective Colour Volume SEI

A. Tourapis, Y. Su, D. Singer (Apple Inc.)

m37742 HDR CE5 test 3: Constant Luminance results

J. Sole, D. Rusanovskyy, A. Ramasubramonian, D. Bugdayci, M. Karczewicz (Qualcomm)

m37743 HDR CE2-related: Results for combination of CE1 (anchor 3.2) and CE2

J. Sole, A. Ramasubramonian, D. Rusanovskyy, D. Bugdayci, M. Karczewicz (Qualcomm)

m37744 HDR CE2: Report on CE2.a-1 LCS

A.K. Ramasubramonian, J. Sole, D. Rusanovskyy, D. Bugdayci, M. Karczewicz

m37745 HDR CE2: CE2.e-1 Enhancement of ETM

Dmytro Rusanovskyy

m37746 HDR CE6: Test 4.1 Reshaper from m37064

D. B. Sansli, A. K. Ramasubramonian, D. Rusanovskyy, J. Sole, M. Karczewicz (Qualcomm)

m37747

Comparison of Compression Performance of HEVC Screen Content Coding Extensions Test Model 6 with AVC High 4:4:4 Predictive profile

B. Li, J. Xu, G. J. Sullivan (Microsoft)

m37748

Evaluation of Chroma Subsampling for High Dynamic Range Video Compression

R. Boitard, M.T. Pourazad, P. Nasiopoulos

m37749 Evaluation of Backward-compatible HDR Transmission Pipelines

M. Azimi, R. Boitard, M. T. Pourazad, P. Nasiopoulos

m37750 Evaluation report of SJTU Test Sequences

T. Biatek, X. Ducloux (BCom)

m37751 Media Orchestration in the Security Domain

Krishna Chandramouli, Ebroul Izquierdo

m37752 ATSC Liaison on HDR/WCG

Walt Husak

m37753 Report of HDR Core Experiment 3

Vittorio Baroncini, Louis Kerofsky, Dmytro Rusanovskyy

m37754 [FTV AhG] Software for SMV and FN sweeping subjective tests

Yule Sun, Yan Li, Qing Wang, Ang Lu, Lu Yu, Krzysztof Wegner, Gauthier Lafruit

m37755 Proposed Common Media Format for Segmented Media

David Singer, Krasimir Kolarov, Kilroy Hughes, John Simmons, Bill May, Jeffrey Goldberg, Alex Giladi, Will Law,

m37756 Proposed Requirements for Common Media Format for Segmented Media

Krasimir Kolarov, John Simmons, David Singer, Iraj Sodagar, Bill May, Jeffrey Goldberg, Will Law, Yasser Syed, Sejin Oh, Per Fröjdh, Kevin Streeter, Diego Gibellino

m37757

m37758 Closed form HDR 4:2:0 chroma subsampling

Andrey Norkin (Netflix)

(HDR CE1 and AHG5 related)

m37759 Cross-check report on HDR/WCG CE1 new anchor generation

D. Jun, J. Lee, J.W. Kang (ETRI)

m37760 [FTV AHG] View Synthesis for Linear and Arc Video Sequences

Ji-Hun Mun, Yunseok Song, Yo-Sung Ho

m37761

[PACO] Generalized Playback Control: a framework for flexible playback control

Iraj Sodagar

m37762 [PACO] PACO CE Report Iraj Sodagar

m37763 Root Elements for Media-centric IoT and Wearable (M-IoTW)

Anna Yang, Jae-Gon Kim, Sungmoon Chun, Hyunchul Ko

m37764 Common and Gesture-Based Wearable Description for M-IoTW

Sungmoon Chun, Hyunchul Ko, Anna Yang, Jae-Gon Kim

m37765 CE6-related: xCheck of CE6 4.1

Robert Brondijk

m37766

Answer to the Call for Evidence on Genome Compression: Review of genomic information compression tools

Ibrahim Numanagic, Faraz Hach, James Bonfield, Claudio Alberti, Jan Voges,

m37767 Proposal for the update to the database of genomic test data

Claudio Alberti, Marco Mattavelli, Ana A. Hernandez-Lopez, Mikel Hernaez, Idoia Ochoa, Rachel G. Goldfeder, Noah Daniels, Jan Voges, Daniel Greenfield

m37768

Revision of N15739 “Evaluation framework for lossy compression of genomic Quality Values―

Claudio Alberti, Marco Mattavelli, Ana A. Hernandez-Lopez, Mikel Hernaez, Idoia Ochoa, Rachel G. Goldfeder, Noah Daniels, Jan Voges, Daniel Greenfield

m37769 CDVSec: CDVS for Fingerprint Matching

Giovanni Ballocca, Attilio Fiandrotti, Massimo Mattelliano, Alessandra Mosca

m37770 Corrections and Clarifications on MPEG-H 3D Audio DAM3

Oliver Wuebbolt, Johannes Boehm, Alexander Krueger, Sven Kordon, Florian Keiler

m37771

HDR CE7: Comments on visual quality and compression performance of HLG for SDR backward compatible HDR coding system

E. Francois, Y. Olivier, C. Chevance (Technicolor)

m37772 Fragmented MPD for DASH streaming applications

Lulin Chen, Shan Liu, PoLin Lai, Shawmin Lei

m37773

Introduction to tiled full parallax light field display and requirements for FTV discussion

Danillo Graziosi, Zahir Y. Alpaslan, Hussein S. El-Ghoroury

m37774 Proposed amendment items for ISO/IEC 14496-

Vladimir Levantovsky (on behalf of AHG on Font Format Representation)

22 "Open Font Format"

m37775 Report of the AHG on Font Format Representation

Vladimir Levantovsky (On behalf of AHG on Font Format Representation)

m37776 [Part 3] MPD chaining for DASH ad insertion with early termination use case

Iraj Sodagar

m37777

[FTV AhG] Elemental images resizing method to compress integral 3D image

Kazuhiro Hara, Masahiro Kawakita, Jun Arai, Tomoyuki Mishina, Hiroshi Kikuchi

m37778 Evaluation Report of Chimera Test Sequence for Future Video Coding

H. Ko, S.-C. Lim, J. Kang, D. Jun, J. Lee, H. Y. Kim (ETRI)

m37779 JEM1.0 Encoding Results of Chimera Test Sequence

S.-C. Lim, H. Ko, J. Kang, H. Y. Kim (ETRI)

m37780 Demonstration of audio and video for MPEG-UD

Hyun Sook Kim, Sungmoon Chun, Hyunchul Ko, Miran Choi

m37781 Demo for MPEG-UD: Face-to-face speech translation

Miran Choi, Minkyu Lee, Young-Gil Kim, Sanghoon Kim

m37782 withdrawn

m37783 Report on the decoding complexity of IVC

Sang-hyo Park, Seungho Kuk, Haiyan Xu, Yousun Park, Euee S. Jang

m37784

JCT-3V AHG Report: HEVC Conformance testing development (AHG5)

Y. Chen, T. Ikai, K. Kawamura, S. Shimizu, T. Suzuki

m37785

Proposed editorial improvements to MV-HEVC and 3D-HEVC Conformance Draft

Y. Chen, T. Ikai, K. Kawamura, S. Shimizu, T. Suzuki

m37786 Information on how to improve Text of DIS 14496-33 IVC

Sang-hyo Park, Yousun Park, Euee S. Jang

m37787 Liaison Statement from DVB

DVB via SC 29 Secretariat

m37788 Liaison Statement from ITU-R WP 6C

ITU-R WP 6C via SC 29 Secretariat

m37789

Proposed Draft 2 of Reference Software for Alternative Depth Info SEI Message Extension of AVC

T. Senoh (NICT)

m37790 Defect report on ISO/IEC 13818-1 regarding STD buffer sizes for HEVC

Karsten Grüneberg, Thorsten Selinger

m37791 Report on corrected USAC conformance bitstreams

Christof Fersch

m37792 HEVC Green Metadata Proposition

[email protected], [email protected], [email protected]

m37793 Suggested modification to structure in Virtual

Wendell Sun, Prabhu Navali

Segmentation

m37794

JRS Response to Call for Proposals for Technologies Compact Descriptors for Video Analysis (CDVA) - Search and Retrieval

Werner Bailer, Stefanie Wechtitsch

m37795 Cross-check of JCTVC-W0107: Closed form HDR 4:2:0 chroma subsampling

A. Tourapis

m37796 SJTU 4K test sequences evaluation report from Sejong University

N. Kim, J. Choi, G.-R. Kim, Y.-L. Lee (Sejong Univ.)

m37797

Proposal for the Definition of a Ultra-Low Latency HEVC Profile for Content Production Applications

Marco Mattavelli, Wassim Hamidouche,

m37798 [FTV AhG] View Synthesis on Compressed Big Buck Bunny

Yan Li, Gauthier Lafruit

m37799

Extension of Prediction Modes in Chroma Intra Coding for Internet Video Coding

Anna Yang, Jae-Yung Lee, Jong-Ki Han, Jae-Gon Kim

m37800 Wearables and IoT&AAL use case standardisation

Kate Grant

m37801 Light Fields for Cinematic Virtual Reality

Tristan Salomé, Gauthier Lafruit

m37802

Follow up on application scenarios for privacy and security requirements on genome usage, compression, transmission and storage

Jaime Delgado, Silvia Llorente

m37803

Proposed White Paper on MPEG-21 Contract Expression Language (CEL) and MPEG-21 Media Contract Ontology (MCO)

Jaime Delgado, Silvia Llorente, Laurent Boch, VÃctor RodrÃ-guez Doncel

m37804 Proof of concept: NAMF for Multipath MMT

Jihyeok Yun, Kyeongwon Kim, Taeseop Kim, Dough Young Suh, Jong Min Lee

m37805 113th MPEG Audio Report Schuyler Quackenbush

m37806 Editor's preparation for ISO/IEC 3rd FDIS 23006-2

Jae-Kwan Yun, Guiseppe Vavalà (CEDEO)

m37807 Editor's preparation for ISO/IEC 3rd FDIS 23006-3

Jae-Kwan Yun, Guiseppe Vavalà (CEDEO), Massimo Balestri(Telecom Italia),

m37808 Proposal of metadata description for light display in MPEG-V

Jae-Kwan Yun, Yoonmee Doh, Hyun-woo Oh, Jong-Hyun Jang

m37809 Direction-dependent sub-TU scan order on intra prediction

S. Iwamura, A. Ichigaya (NHK)

m37810 [FTV AhG] Test materials for 360 3D video application discussion

Gun Bang, Gwhang soon Lee, Nam Ho Hur

m37811 Summary of Voting on ISO/IEC 14496-30:2014/DCOR 2

SC 29 Secretariat

m37812 Summary of Voting on ISO/IEC 13818-1:2015/Amd.1/DCOR 2

SC 29 Secretariat

m37813 Summary of Voting on ISO/IEC 14496-5:2001/PDAM 41

SC 29 Secretariat

m37814 Summary of Voting on ISO/IEC 23002-4:2014/PDAM 3

SC 29 Secretariat

m37815 Summary of Voting on ISO/IEC 23009-1:2014/DAM 3

ITTF via SC 29 Secretariat

m37816 Proposed number of core channels for LC profile of MPEG-H 3D Audio

Takehiro Sugimoto, Tomoyasu Komori

m37817 Proposal of Additional Requirements for Media Orchestration

Sejin Oh, Jangwon Lee, Jong-Yeul suh

m37818 Additional Use Cases and Requirements for Media Orchestration

Jangwon Lee, Sejin Oh, Jong-Yeul Suh

m37819 Additional Requirements for Omnidirectional Media Format

Jangwon Lee, Sejin Oh, Jong-Yeul Suh

m37820 Evaluation report of B-Com test sequence (JCTVC-V0086)

O. Nakagami, T. Suzuki (Sony)

m37821 Comment on test sequence selection

O. Nakagami, T. Suzuki (Sony)

m37822 Evaluation report of Huawei test sequence

K. Choi, E. Alshina, A. Alshin, M. Park (Samsung)

m37823 Evaluation report of Huawei test sequence

Kiho Choi, E. Alshina, A. Alshin, M. Park

m37824 Adaptive Multiple Transform for Chroma

K. Choi, E. Alshina, A. Alshin, M. Park, M. Park, C. Kim (Samsung)

m37825 Cross-check of JVET-B0023

E. Alshina, K. Choi, A. Alshin, M. Park, M. Park, C. Kim (Samsung)

m37826 Sony's crosscheck report on USAC conformance

Yuki Yamamoto, Toru Chinen

m37827 Proposed simplification of HOA parts in MPEG-H 3D Audio Phase 2

Hiroyuki EHARA, Kai WU, Sua-Hong NEO

m37828 Efficient color data compression methods for PCC

Li Cui, Haiyan Xu, Seung-ho Lee, Marius Preda, Christian Tulvan, Euee S. Jang

m37829 Evaluation Report of P. Philippe (Orange)

Chimera and Huawei Test Sequences for Future Video Coding

m37830 Comments on the defect report of 14496-15

Teruhiko Suzuki, Kazushiko Takabayashi, Mitsuhiro Hirabayashi (Sony), Michael Dolan (Fox)

m37831 A proposal of instantiation to olfactory information for MPEG-V 4th edition part 1

Hae-Ryong Lee, Jun-Seok Park, Hyung-Gi Byun, Jang-Sik Choi, Jeong-Do Kim

m37832 MPEG-H Part 3 Profile Definition

Christof Fersch

m37833 ETRI's cross-check report for CE on High Resolution Envelope Processing

Seungkwon Beack, Taejin Lee

m37834

Maintenance report on MPEG Surround Extension tool for internal sampling-rate

Seungkwon Beack, Taejin Lee, Jeongil Seo, Adrian Murtaza

m37835 RAI's contribution to MPEG-UD reference software

Alberto MESSINA, Maurizio MONTAGNUOLO

m37836 Requirements for Omnidirectional Media Application Format

Eric Yip, Byeongdoo Choi, Gunil Lee, Madhukar Budagavi, Hossein Najaf-Zadeh, Esmaeil Faramarzi, Youngkwon Lim(Samsung)

m37837 Proposed Text for Omnidirectional Media Application Format

Byeongdoo Choi, Eric Yip, Gunil Lee, Madhukar Budagavi, Hossein Najaf-Zadeh, Esmaeil Faramarzi, Youngkwon Lim(Samsung)

m37838 Descriptions on MANE Youngwan So, Kyungmo Park

m37839 MMT service initiation Youngwan So, Kyoungmo Park

m37840 Simplification of the common test condition for fast simulation

X. Ma, H. Chen, H. Yang (Huawei)

m37841 Performance analysis of affine inter prediction in JEM1.0

H. Zhang, H. Chen, X. Ma, H. Yang (Huawei)

m37842 Harmonization of AFFINE, OBMC and DBF

H. Chen, S. Lin, H. Yang, X. Ma (Huawei)

m37843 [CE-FDH] Fast start for DASH FDH

Franck Denoual, Frederic Maze, Herve Ruellan, Youenn Fablet, Nael Ouedraogo

m37844 New brand for Image File Format

Franck Denoual, Frederic Maze

m37845 Non-normative JEM encoder improvements

K. Andersson, P. Wennersten, R. Sjoberg, J. Samuelsson, J. Strom, P. Hermansson, M. Pettersson (Ericsson)

m37846 Reference Software for ISO BMFF Green Metadata parsing

[email protected], [email protected], [email protected]

m37847 [CE-FDH] Additional parameters for Push Directives

Kazuhiko Takabayashi, Mitsuhiro Hirabayashi

m37848 [PACO] Carriage of playback control related information/data

Kazuhiko Takabayashi, Mitsuhiro HIrabayashi

m37849 Comment on 23009-1 Mitsuhiro HIrabayashi, Kazuhiko Takabayashi, Paul Szucs,

strudy DAM3 Yasuaki Yamagishi

m37850 TRUFFLE: request of virtualized network function to MANE

Doug Young Suh, Bokyun Jo, Jongmin Lee

m37851 Editorial comment on 14496-12

Mitsuhhiro Hirabayashi, Kazuhiko Takabayashi, MItsuru Katsumata

m37852 The usage of fragment counter for a bigger size of MFU

Dongyeon Kim, Youngwan So, Kyungmo Park

m37853 Clarifications on MPEG-H DAM3

Sang Bae Chon, Sunmin Kim

m37854

Keypoint Trajectory Coding on Compact Descriptor for Video Analysis (CDVA)

Dong Tian, Huifang Sun, Anthony Vetro

m37855

Evaluation Report of Huawei and B-Com Test Sequences for Future Video Coding

F. Racapé, F. Le Léannec, T. Poirier (Technicolor)

m37856 [SAND] selection of cached representations

Remi Houdaille

m37857

HDR CE2: crosscheck of CE2.a-2, CE2.c, CE2.d and CE2.e-3 (JCTVC-W0084)

C. Chevance, Y. Olivier (Technicolor)

m37858 HDR CE2: crosscheck of CE2.a-1 LCS (JCTVC-W0101)

C. Chevance, Y. Olivier (Technicolor)

m37859 HDR CE6: crosscheck of CE6.4.3 (JCTVC-W0063)

C. Chevance, Y. Olivier (Technicolor)

m37860 Enhancement of Enose CapabilityType for MPEG-V 4th edition part 2

Sungjune Chang, Hae-Ryong Lee, Hyung-Gi Byun, Jang-Sik Choi, Jeong-Do Kim

m37861

A modification of syntax and examples for EnoseSensorType for MPEG-V 4th edition part 5

Jong-Woo Choi, Hae-Ryong Lee, Hyung-Gi Byun, Jang-Sik Choi, Jeong-Do Kim

m37862 Adaptive reference sample smoothing simplification

A. Filippov, V. Rufitskiy (Huawei)

m37863 Proposed Study on DAM3 for MPEG-H 3D Audio

Christian Neukam, Michael Kratschmer, Max Neuendorf, Nikolaus Rettelbach, Toru Chinen

m37864 ISO/IEC 14496-15: on extractor design for HEVC files

M. M. Hannuksela, V. K. Malamal Vadakital (Nokia)

m37865

ISO/IEC 14996-15: decode time hints for implicit reconstruction of access units in L-HEVC

V. K. Malamal Vadakital, M. M. Hannuksela (Nokia)

m37866 Multi-layer HEVC support in HEIF

V. K. Malamal Vadakital, M. M. Hannuksela (Nokia)

m37867 Progressive refinement indication for HEIF

M. M. Hannuksela, E. B. Aksu (Nokia)

m37868 HEIF conformance files E. B. Aksu (Nokia), L. Heikkilä (Vincit), J. Lainema, M. M. Hannuksela (Nokia)

m37869 Derived visual tracks for ISOBMFF and HEIF

V. K. Malamal Vadakital, M. M. Hannuksela (Nokia)

m37870 Relative location offsets for ISOBMFF

M. M. Hannuksela, V. K. Malamal Vadakital (Nokia)

m37871 Comments on DAM4 Yago Sanchez, Robert Skupin, Karsten Grueneberg, Cornelius Hellge, Thomas Schierl

m37872

Comments on the use-cases, requirements and specification for Common Media Format

Thorsten Lohmar, Prabhu Navali, Per Fröjdh, Jonatan Samuelsson

m37873 HEVC tile subsets in 14496-15

Karsten Grüneberg, Yago Sanchez

m37874 Thoughts on MPEG-H 3D Audio

Nils Peters, Deep Sen, Jeongook Song, Moo Young Kim

m37875 Proposed Study on DAM4 for MPEG-D SAOC

Adrian Murtaza, Leon Terentiv, Jouni Paulus

m37876 Proposed Study on DAM5 for MPEG-D SAOC

Adrian Murtaza, Leon Terentiv, Jouni Paulus

m37877 Proposed Study on DAM3 for MPEG-D MPEG Surround

Adrian Murtaza, Achim Kuntz

m37878 Proposed Corrigendum to MPEG-D SAOC

Adrian Murtaza, Jouni Paulus, Leon Terentiv

m37879 Thoughts on MPEG-D SAOC Second Edition

Adrian Murtaza, Jouni Paulus, Leon Terentiv

m37880

BRIDGET Response to the MPEG CfP for Compact Descriptors for Video Analysis (CDVA) - Search and Retrieval

Massimo Balestri (Telecom Italia), Gianluca Francini (Telecom Italia), Skjalg Lepsoy (Telecom Italia), Miroslaw Bober (University of Surrey), Sameed Husain (University of Surrey), Stavros Paschalakis (Visual Atoms)

m37881 Proposed RM7 of MPEG-D DRC software

Michael Kratschmer, Frank Baumgarte

m37882 Proposed Corrigendum to MPEG-D DRC

Michael Kratschmer, Frank Baumgarte

m37883 Complexity Constraints for MPEG-H

Max Neuendorf, Michael Kratschmer, Manuel Jander, Achim Kuntz, Simone Fueg, Christian Neukam, Sascha Dick, Florian Schuh

m37884 Parametric Limiter for MPEG-D DRC

Michael Kratschmer, Frank Baumgarte

m37885 Proposed DCOR to MPEG-H 3D Audio edition 2015

Max Neuendorf, Achim Kuntz, Simone Fueg, Andreas Hölzer, Michael Kratschmer, Christian Neukam, Sascha Dick, Elena Burdiel, Toru Chinen,

m37886 Constraints for USAC in adaptive streaming applications

Max Neuendorf, Matthias Felix, Bernd Herrmann, Bernd Czelhan, Michael Härtl

m37887 CDVS: Matlab code maintenance

Alessandro Bay (Politecnico di Torino), Massimo Balestri (Telecom Italia)

m37888 Evaluation Report of B-COM Test Sequence for Future Video Coding

H. B. Teo, M. Dong (Panasonic)

(JCTVC-V0086)

m37889 3DA CE on High Resolution Envelope Processing (HREP)

Sascha Disch, Florin Ghido, Franz Reutelhuber, Alexander Adami, Jürgen Herre

m37890 Polyphase subsampled signal for spatial scalability

E. Thomas (TNO)

m37891 Software for MPEG-H 3D Audio RM6

Michael Fischer, Achim Kuntz, Sangbae Chon, Å•ukasz Januszkiewicz, Sven Kordon, Nils Peters, Yuki Yamamoto

m37892 Review of MPEG-H 3DA Metadata

Simone Füg, Christian Ertel, Achim Kuntz

m37893

[FTV AHG] Technical Description of Poznan University of Technology proposal for Call for Evidence on Free-Viewpoint Television

Marek Domanski, Adrian Dziembowski, Adam Grzelka, �ukasz Kowalski, Dawid Mieloch, Jarosław Samelak, Olgierd Stankiewicz, Jakub Stankowski, Krzysztof Wegner

m37894 Proposed modifications on MPEG-H 3D Audio

Gregory Pallone

m37895 Study on MPEG-D DRC 23003-4 PDAM1

Frank Baumgarte, Michael Kratschmer,

m37896 Study on Base Media File Format 14496-12 PDAM1

Frank Baumgarte, David Singer, Michael Kratschmer,

m37897 Review of MPEG-H 3DA Signaling

Max Neuendorf, Sascha Dick, Nikolaus Rettelbach,

m37898

Coding Efficiency / Complexity Analysis of JEM 1.0 coding tools for the Random Access Configuration

H. Schwarz, C. Rudat, M. Siekmann, B. Bross, D. Marpe, T. Wiegand (Fraunhofer HHI)

m37899 Reply Liaison on MPEG-DASH (N15699)

Iraj Sodagar on behalf of DASH-IF

m37900 Additional Use Case of Media Orchestration

Jin Young Lee

m37901

Report of AhG on Responding to Industry Needs on Adoption of MPEG Audio

Schuyler Quackenbush

m37902 Report of AhG on 3D Audio and Audio Maintenance

Schuyler Quackenbush

m37903 Use Case of MIoT Jin Young Lee

m37904 On the Image file format and enhancements

David Singer

m37905 Error in the sample groups in 14496-12

David Singer

m37906 Possible DASH Defects Jean Le Feuvre, Cyril Concolato, , ,

m37907 ISOBMFF Defect Jean Le Feuvre, Cyril Concolato

m37908 Editorial reorganization of MIME-related sections in ISOBMFF

Cyril Concolato, Jean Le Feuvre

m37909 White Paper on ARAF 2nd Edition

Traian Lavric, Marius Preda

m37910 Big Data for personalized user experience in AR

Traian Lavric, Marius Preda, Veronica Scurtu

m37911 image analysis description for M-IoTW

duckhwan kim, bontae koo

m37912 Future video coding support for guided transcoding

J. Samuelsson, T. Rusert, K. Anderssson, R. Sjöberg (Ericsson)

m37913 Dependent Random Access Point (DRAP) pictures in DASH

J. Samuelsson, M. Pettersson, R. Sjoberg (Ericsson)

m37914 Support of VR video in ISO base media file format

Ye-Kui Wang, Hendry, Marta Karczewicz

m37915 Comments on ISO/IEC 14496-15

Hendry, Ye-Kui Wang,

m37916 Comments on DuI Thomas Stockhammer

m37917 Proposed Updates to Broadcast TV Profile

Thomas Stockhammer

m37918 Next Generation Audio in DASH

Thomas Stockhammer

m37919 [FDH] Editorial and technical comments on WD3

Iraj Sodagar

m37920 Languages, Roles and Roles schemes

Thomas Stockhammer

m37921 Labels in DASH Thomas Stockhammer

m37922 Selection Priority and Group

Thomas Stockhammer

m37923 Adaptation Set Switching Thomas Stockhammer

m37924 SAND: Comments on DIS Thomas Stockhammer

m37925 SAND: Addition of Byte Ranges

Thomas Stockhammer

m37926 SAND: Partial File Delivery Thomas Stockhammer

m37927 Clarification on the format of xlink remote element

Waqar Zia, Thomas Stockhammer

m37928 On Conformance and Reference Software

Waqar Zia, Thomas Stockhammer

m37929 Updates on Web Interactivity Track

Thomas Stockhammer

m37930 Zylia Poznan Listening Test Site Properties

Jakub Zamojski, ŕukasz Januszkiewicz, Tomasz Żernicki

m37931 Updates on Partial File Handling

Thomas Stockhammer

m37932 Corrections and clarifications on Tonal Component Coding

ŕukasz Januszkiewicz, Tomasz Żernicki

m37933 Low Complexity Tonal Component Coding

Tomasz Żernicki, ŕukasz Januszkiewicz, Andrzej Rumiński, Marzena Malczewska

m37934 Web3D Coding for large objects with attributes and texture

Christian Tulvan, Euee S. Jang, Marius Preda

m37935 Conformance Assets Christian Tulvan, Marius Preda

m37936 Big Data platform for 3D reconstruction and diffusion

Christian Tulvan, Marius Preda

m37937 Software Assets Christian Tulvan, Marius Preda

m37938 Content Assets Christian Tulvan, Marius Preda

m37939 MMT Session Setup and Control

Imed Bouazizi

m37940 MMT Integration with CDNs

Imed Bouazizi

m37941 Migrating Sessions from HTTP to MMT

Imed Bouazizi

m37942 MMT as a Transport Component for Broadcast

Imed Bouazizi

m37943 Support for new Container Formats

Imed Bouazizi

m37944 Customized Presentations for MPEG-CI

Imed Bouazizi

m37945 MMT Developer's Day Imed Bouazizi

m37946 MPEG Workshop on 5G / Beyond UHD Media

Abdellatif Benjelloun Touimi, Imed Bouazizi, Iraj Sodagar, Jörn Ostermann, Marius Preda, Per Fröjdh, Shuichi Aoki

m37947 Listening Test Results for TCC from FhG IIS

Sascha Dick, Christian Neukam

m37948 Updates to the MMT reference software

Imed Bouazizi

m37949 [MMT] Update of MP table Hyun-Koo Yang, Kyungmo Park, Youngwan So

m37950 Software implementation of visual information fidelity (VIF) for HDRTools

H. R. Tohidypour, M. Azimi, M. T. Pourazad, P. Nasiopoulos

m37951 FTV AHG: fast DERS (Depth Estimation Software)

Takanori Senoh, Akio Ishikawa, Makoto Okui, Kenji Yamamoto, Naomi Inoue,

m37952 A Progressive High 10 profile in ISO/IEC 14496-10/MPEG-4 part 10/AVC

A.M. Tourapis, D. Singer, K. Kolarov

m37953 FTV AHG: CfE Response fDEVS

Takanori Senoh, Akio Ishikawa, Makoto Okui, Kenji Yamamoto, Naomi Inoue,

m37954

Generalized Constant and Non-Constant Luminance Code Points in ISO/IEC 14496-10 and ISO/IEC 23001-8

A.M. Tourapis, Y. Su, D. Singer, K. Kolarov, C. Fogg

m37955 FTV AHG: improved VSRS (view synthesis software)

Takanori Senoh, Akio Ishikawa, Makoto Okui, Kenji Yamamoto, Naomi Inoue,

m37956 Performance evaluation of JEM 1 tools by Qualcomm

J. Chen, X. Li, F. Zou, M. Karczewicz, W.-J. Chien, T. Hsieh (Qualcomm)

m37957 Evaluation report of Netflix Chimera and SJTU test sequences

F. Zou, J. Chen, X. Li, M. Karczewicz (Qualcomm)

m37958 Non Square TU K. Rapaka, J. Chen, L. Zhang, W.-J. Chien, M. Karczewicz

Partitioning (Qualcomm)

m37959 Personalized Video Insertion for TRUFFLE

Jongmin Lee

m37960 NAT Traversal for TRUFFLE

Jongmin Lee

m37961 Universal string matching for ultra high quality and ultra high efficiency SCC

L. Zhao, K. Zhou, J. Guo, S. Wang, T. Lin (Tongji Univ.)

m37962

Four new SCC test sequences for ultra high quality and ultra high efficiency SCC

J. Guo, L. Zhao, Tao Lin (Tongji Univ.)

m37963

Performance comparison of HEVC SCC CTC sequences between HM16.6 and JEM1.0

S. Wang, T. Lin (Tongji Univ.)

m37964 Further improvement of intra coding tools

S.-H. Kim, A. Segall (Sharp)

m37965 Report of evaluating Huawei surveillance test sequences

C.-C. Lin, J.-S. Tu, Y.-J. Chang, C.-L. Lin (ITRI)

m37966 Report of evaluating Huawei UGC test sequences

J.-S. Tu, C.-C. Lin, Y.-J. Chang, C.-L. Lin (ITRI)

m37967 Cross-check of SCC encoder improvement (JCTVC-W0042)

B. Li, J. Xu (Microsoft)

m37968

Cross-check of Non-normative HM encoder improvements (JCTVC-W0062)

B. Li, J. Xu (Microsoft)

m37969 Recursive CU structure for IVC+

Kui Fan, Ronggang Wang, Zhenyu Wang, Ge Li, Tiejun Huang, Wen Gao,

m37970 Speed optimization for IVC decoder

Shenghao Zhang, Kui Fan, Ronggang Wang, Ge Li, Tiejun Huang, Wen Gao

m37971

Crosscheck for bottom-up hash value calculation and validity check for SCC (JCTVC-W0078)

W. Zhang (Intel)

m37972 De-quantization and scaling for next generation containers

J. Zhao, A. Segall, S.-H. Kim, K. Misra (Sharp)

m37973 Netflix Chimera test sequences evaluation report

M. Sychev, H. Chen (Huawei)

m37974 MMT signaling for Presentation Timestamp

Kyungmo Park

m37975 MIoT API instances Sang-Kyun Kim, Min Hyuk Jeong, Hyun Young Park

m37976 Introduction to IoTivity APIs (MIoT)

Sang-Kyun Kim, Min Hyuk Jeong, Hyun Young Park,

m37977 Modification of 3DPrintingLUT

In-Su Jang, Yoon-Seok Cho, Jin-Seo Kim, Min Hyuk Jeong, Sang-Kyun Kim

m37978 MMT signaling message for consumption Report

jaehyeon bae, youngwan so, kyungmo park

m37979

Some considerations on hue shifts observed in HLG backward compatible video

M. Pindoria, M. Naccari, T. Borer, A. Cotton (BBC)

m37980 Evaluation report of SJTU Test Sequences from Sharp

T. Ikai (Sharp)

m37981 3D Printing Color Reproduction command and preference

In-Su Jang, Yoon-Seok Cho, Jin-Seo Kim, Min Hyuk Jeong, Sang-Kyun Kim

m37982 Cross-check of JCTVC-W0085

J. Lee, J. W. Kang, D. Jun, H. Ko (ETRI)

m37983 [FTV AHG] Data Format for Super Multiview Video Application

Mehrdad Panahpour Tehrani, Kohei Isechi, Keita Takahashi, Toshiaki Fujii (Nagoya University)

m37984 [FTV AHG] Free Navigation Using Superpixel Segmentation

Mehrdad Panahpour Tehrani, Kazuyoshi Suzuki, Keita Takahashi, Toshiaki Fujii (Nagoya University), Tomoyuki Tezuka (KDDI)

m37985 [FTV AHG] A New Technology for Free Navigation in Sport Events

Mehrdad Panahpour Tehrani, Ryo Suenaga, Tetta Maeda, Kazuyoshi Suzuki, Keita Takahashi, Toshiaki Fujii (Nagoya University)

m37986 Bugfix on the software for MPEG-H 3D Audio

Taegyu Lee, Henney Oh

m37987 Information on Korean standard for terrestrial UHD broadcast services

Henney Oh(WILUS inc. on behalf of NGBF)

m37988 Mpeg-UD Reference S/W for RRUI Service

Jaewon Moon (KETI), Jongyun Lim(KETI), Tae-Boem Lim(KETI), Seung Woo Kum(KETI), Min-Uk Kim(Konkuk Univ.), Hyo-Chul Bae(Konkuk Univ.)

m37989 On SAND conformance Emmanuel Thomas

m37990 Evaluation of some intra-coding tools of JEM1

A. Filippov, V. Rufitskiy (Huawei)

m37991 Proposed changes to ISO/IEC CD 23006-1 3rd edition

Giuseppe Vavalà (CEDEO), Kenichi Nakamura (Panasonic)

m37992 Demonstration of usage of MPEG-UD

Bojan Joveski, Mihai Mitrea, Rama Rao Ganji

m37993

Towards a reference architecture for Media-centric IoT and Wearable (M-IoTW)

Mihai Mitrea, Bojan Joveski

m37994 Modification of merge candidate derivation

W. -J. Chien, J. Chen, S. Lee, M. Karczewicz (Qualcomm)

m37995 HDR CE2: cross-check report of JCTVC-W0033

T. Lu, F. Pu, P. Yin

m37996 HDR CE2: cross-check report of JCTVC-W0097

T. Lu, F. Pu, P. Yin

m37997 [FTV-AHG]ZJU's rendering experiment on SoccerArc of FTV

Ang Lu, Lu Yu, Qing Wang, Yule Sun, ,

m37998 TU-level non-separable secondary transform

X. Zhao, A. Said, V. Seregin, M. Karczewicz, J. Chen, R. Joshi (Qualcomm)

m37999 Proposal of metadata descriptions for handling sound effect in MPEG-V

Saim Shin, Jong-Seol James Lee, Dalwon Jang, Sei-Jin Jang, Hyun-Ho Joo, Kyoungro Yoon

m38000 Improvements on adaptive loop filter

M. Karczewicz, L. Zhang, W.-J. Chien, X. Li (Qualcomm)

m38001 Customized Presentation Scheme for live broadcasting

Yiling Xu, Wenjie Zhu, Hao Chen, Wenjun Zhang

m38002 Customized Presentation Scheme for VoD

Yiling Xu, Wenjie Zhu, Bo Li, Lianghui Zhang, Wenjun Zhang

m38003 MMT Asset Compensation Relationship

Yiling Xu, Hao Chen, Teng Li, Wenjun Zhang

m38004

Evaluation report of SJTU test sequences for future video coding standardization

S.-H. Park, H. Xu, E. S. Jang (Hanyang Univ.)

m38005 MMT Asset homogeneity relationship

Yiling Xu, Hao Chen, Teng Li, Wenjun Zhang

m38006 IG of Content Accessible Time Window

Yiling Xu, Chengzhi Wang, Hao Chen, Wenjun Zhang

m38007 An optimized transfer mechanism for static slices in video stream

Yiling Xu, Chengzhi Wang, Hao Chen, Wenjun Zhang

m38008

HDR CE6: cross-check report of test4.2: Color enhancement (JCTVC-W0034)

E.Alshina(Samsung)

m38009 HDR CE2 related: cross-check report of linear luma re-shaper

E.Alshina

m38010 Improving protocol efficiency for short messages transmission

Yiling Xu, Hao Chen, Ning Zhuang, Wenjun Zhang

m38011 Real-time interaction message

Yiling Xu, Ning Zhuang, Hao Chen, Chengzhi Wang, Wenjun Zhang

m38012 Resource Request/Response Message

Yiling Xu, Hao Chen, Ning Zhuang, Wenjun Zhang

m38013 Spatial Partitioning Based on the Attributes of Media Content

Yiling Xu, Shaowei Xie, Ying Hu, Wenjun Zhang

m38014 The Scheme of adaptive FEC

Yiling Xu, Wei Huang, Hao Chen, Bo Li, Wenjun Zhang

m38015 Shared experience use cases for MPEG Media Orchestration

Oskar van Deventer

m38016 Liaison statement from ETSI ISG CCM

David Holliday (Dolby)

m38017 [FTV Ahg] Report on test results with quality

Wenhao Hong, Ang Lu, Lu Yu

assessment index: 3D-PQI. Zhejiang University

m38018 Impact of 8-bits coding on the Green Metadata accuracy

Yahia Benmoussa, Nicolas Derouineau, Nicolas Tizon, Eric Senn,

m38019 Crosscheck of JVET-B0022(ATMVP)

X. Ma, H. Chen, H. Yang (Huawei)

m38028 Proposed editorial improvements for MMT 2nd edition

Kyungmo Park

m38029 Architecture for shared experience - MPEG MORE

Oskar van Deventer

m38030 [MMT-IG] MMT QoS management for media adaptation service

Kyungmo Park, Youngwan So

m38031

Contribution to WD of ISO/IEC 21000-19 AMD 1 Extensions on Time-Segments and Multi-Track Audio

Thomas Wilmering, Panos Kudumakis

m38032 Moving Regions of Interest signalling in MPD

Emmanuel Thomas

m38033

Enhancement of "dequantization and inverse transform" metadata (III)

yahia benmoussa, eric senn, Nicolas Tizon, Nicolas Derouineau

m38034 Technical comments on Amd 3: authorization and authentication scheme

Emmanuel Thomas

m38035 Report on SAND-CE Emmanuel Thomas, Mary-Luc Champel, Ali C. Begen

m38036 Shared experience requirements for MPEG Media Orchestration

Oskar van Deventer

m38037

[FTV AHG] Further results on scene reconstruction with hybrid SPLASH 3D models

Sergio GarcÃa Lobo, Pablo Carballeira López, Francisco Morán Burgos

m38038 [FDH] CE-FDH Conference Call Notes

Kevin Streeter

m38039 CE6-related: Cross check report for Test 4.1 Reshaper from m37064

M. Naccari (BBC)

m38040 Liaison Statement from HbbTV

HbbTV via SC 29 Secretariat

m38041 Liaison Statement from JTC 1/WG 10 on Revised WD of ISO/IEC 30141

JTC 1/WG 10 via SC 29 Secretariat

m38042

Liaison Statement from JTC 1/WG 10 on Request contributions on IoT use cases

JTC 1/WG 10 via SC 29 Secretariat

m38043 Request for editorial Changkyu Lee, Juyoung Park,

correction of header compression in ISO/IEC 23008-1 2nd edition

m38044

National Body Contribution on ITTFs contribution on option 3 declarations (SC 29 N 15497)

Finland NB via SC 29 Secretariat

m38045 National Body Contribution on the defect report of ISO/IEC 14496-15

Japan NB via SC 29 Secretariat

m38046 Table of Replies on ISO/IEC FDIS 23005-2 [3rd Edition]

ITTF via SC 29 Secretariat

m38047 Table of Replies on ISO/IEC FDIS 23005-4 [3rd Edition]

ITTF via SC 29 Secretariat

m38048 Table of Replies on ISO/IEC FDIS 23005-5 [3rd Edition]

ITTF via SC 29 Secretariat

m38049 Table of Replies on ISO/IEC FDIS 23005-6 [3rd Edition]

ITTF via SC 29 Secretariat

m38050 Proposal of error modification of validator in reference software

Si-Hwan Jang, Sanghyun Joo, Kyoung-Ill Kim, Chanho Jung, Jiwon Lee, Hyung-Gi Byun, Jang-Sik Choi

m38051 Demo program of visual communication for reference software

Si-Hwan Jang, Sanghyun Joo, Kyoung-Ill Kim, Chanho Jung, Jiwon Lee, Hyung-Gi Byun, Jang-Sik Choi

m38052

Cross-check of m37799 (Extension of Prediction Modes in Chroma Intra Coding for Internet Video Coding)

Sang-hyo Park, Won Chang Oh, Euee S. Jang

m38053

Proposal of Validation Tool for MPEG-21 User Description Reference Software

Hyo-Chul Bae, Kyoungro Yoon, Seung-Taek Lim, Dalwon Jang,

m38054 Title Editor’s input for the WD of MPEG-V Part 1 Version 4

Seung Wook Lee, JinSung Choi, Kyoungro Yoon

m38055 Title Editor’s input for the WD of MPEG-V Part 2 Version 4

Seung Wook Lee, JinSung Choi, Kyoungro Yoon

m38056 Editor’s input for the CD of MPEG-V Part 5 Version 4

Seung Wook Lee, JinSung Choi, Kyoungro Yoon, Hyo-Chul Bae

m38057 MIoT Use-case (Vibration subtitle for movie by using wearable device)

Da Young Jung, Hyo-Chul Bae, Kyoungro Yoon,

m38058

JCT-VC AHG report: HEVC HM software development and software technical evaluation (AHG3)

K. Suehring, K. Sharman

m38059 JCT-VC AHG report: HEVC conformance test development (AHG4)

T. Suzuki, J. Boyce, R. Joshi, K. Kazui, A. Ramasubramonian, Y. Ye

m38060 JCT-VC AHG report: Test sequence material (AHG10)

T. Suzuki, V. Baroncini, R. Cohen, T. K. Tan, S. Wenger, H. Yu

m38061 Preliminary study of filtering performance in HDR10 pipeline

K Pachauri, Aishwarya

m38062 [AhG][FTV] New depth estimation and view synthesis

Beerend Ceulemans, Minh Duc Nguyen, Gauthier Lafruit, Adrian Munteanu

m38063

[FTV AhG] SMV/FN subjective assessment: MultiView Perceptual Disparity Model

Pablo Carballeira, Jesús Gutiérrez, Francisco Morán, Narciso GarcÃa

m38064 Report of VCEG AHG6 on JEM Software Development

X. Li, K. Suehring (AHG chairs)

m38065

Cross-check of JCTVC-W0075 on palette encoder improvements for lossless mode

V. Seregin (Qualcomm)

m38066 JCT-VC AHG report: SCC coding performance analysis (AHG6)

H. Yu, R. Cohen, A. Duenas, K. Rapaka, J. Xu, X. Xu (AHG chairs)

m38067

HDR CE2: Cross-check of JCTVC-W0084 (combines solution for CE2.a-2, CE2.c, CE2.d and CE2.e-3)

D. Rusanovskyy

m38068

Recommended practices for power measurements and analysis for multimedia applications

Steve Saunders, Alexis Michael Tourapis, Krasimir Kolarov, David Singer

m38069 SCC Level Limits Based on Chroma Format

S Deshpande, S.-H. Kim

m38070 [FDH] Additional comments on DASH-FDH push-template

PoLin Lai, Shan Liu, Lulin Chen, Shawmin Lei

m38071

JCT-VC AHG report: HEVC test model editing and errata reporting (AHG2)

B. Bross, C. Rosewarne, M. Naccari, J.-R. Ohm, K. Sharman, G. Sullivan, Y.-K. Wang

m38072 JCT-VC AHG report: SHVC verification testing (AHG5)

V. Baroncini, Y.-K. Wang, Y. Ye

m38073 comment on FEC signaling in MMT

Lulin Chen, Shan Liu, Shawmin Lei

m38074 [AHG 5] Further confirmation on MV-HEVC conformance streams

K. Kawamura, S. Naito (KDDI)

m38075 Bug report (#114) on MV-HEVC Reference Software

K. Kawamura, S. Naito (KDDI)

m38076 JCT-VC AHG report: SCC extensions text editing (AHG7)

R. Joshi, J. Xu (AHG co-chairs), Y. Ye, S. Liu, G. Sullivan, R. Cohen (AHG vice-chairs)

m38077 Report of VCEG AHG4 on Test Sequence Selection

T. Suzuki, J. Boyce, A. Norkin (AHG chairs)

m38078

Cross-check of non-normative JEM encoder improvements (JVET-B0039)

B. Li, J. Xu (Microsoft)

m38079 Cross-check of JVET-B0038: Harmonization of AFFINE, OBMC and DBF

X. Xu, S. Liu (MediaTek)

m38080 JCT-VC AHG report: SCC extensions software development (AHG8)

K. Rapaka, B.Li (AHG co-chairs), R. Cohen, T.-D. Chuang, X. Xiu, M. Xu (AHG vice-chairs)

m38081 Crosscheck for further improvement of HDR CE2 (JCTVC-W0085)

Y. Wang, W. Zhang, Y. Chiu (Intel)

m38082 SMPTE Liaison on HDR Walt Husak

m38083 Summary of Voting on ISO/IEC 23008-8:2015/DAM 2

ITTF via SC 29 Secretariat

m38084 Summary of Voting on ISO/IEC 23008-8:2015/DAM 3

ITTF via SC 29 Secretariat

m38085

Performance Testing for ISO/IEC 15938-3:2002/Amd 3:2009: Image signature tools

Karol Wnukowicz, Stavros Paschalakis, Miroslaw Bober

m38086 JCT-VC AHG report: Project management (AHG1)

G. J. Sullivan, J.-R. Ohm

m38087 JCT-VC AHG report: SHVC software development (AHG12)

V. Seregin, H. Yong, G. Barroux

m38088 JCT-VC AHG report: SHVC test model editing (AHG11)`

G. Barroux, J. Boyce, J. Chen, M. Hannuksela, G.-J. Sullivan, Y.-K. Wang, Y. Ye

m38089 JCT-VC AHG report: Complexity of SCC extensions (AHG9)

Alberto Duenas (AHG chair), M. Budagavi, R. Joshi, S.-H. Kim, P. Lai, W. Wang, W. Xiu (co-chairs)

m38090

Report of the AHG on MVCO, Contract Expression Language, and Media Contract Ontology

Jaime Delgado

m38091

HDR CE2: cross-check report of CE2.b-2, CE2.c and CE2.d experiments (JCTVC-W0094)

C. Chevance, Y. Olivier (Technicolor)

m38092 Report of VCEG AHG1 on Coding Efficiency Improvements

M. Karczewicz, M. Budagavi (AHG chairs)

m38093 Report of MPEG AHG on C. Fogg, E. Francois, W. Husak, A. Luthra,

HDR and WCG Video Coding

m38094 FF-LDGM Codes for CE on MMT Adaptive AL-FEC

Takayuki Nakachi, Masahiko Kitamura, Tatsuya Fujii

m38095 VSF Liaison Walt Husak

m38096

Coding results of 4K surveillance and 720p portrait sequences for future video coding

K. Kawamura, S. Naito (KDDI)

m38097 Summary of Voting on ISO/IEC 14496-4:2004/PDAM 46

SC 29 Secretariat

m38098 Summary of Voting on ISO/IEC 23002-5:2013/PDAM 3

SC 29 Secretariat

m38099 Summary of Voting on ISO/IEC PDTR 23008-13 [2nd Edition]

SC 29 Secretariat

m38100

Cross-check of JVET-B0058: Modification of merge candidate derivation

H. Chen, H. Yang (Huawei)

m38101 [FTV AHG] 3D-HEVC extensions for free navigation

Marek Domanski, Jarosław Samelak, Olgierd Stankiewicz, Jakub Stankowski, Krzysztof Wegner

m38102 MMT Adhoc Group Report Imed Bouazizi

m38103

Cross-check of JVET-B0039: Non-normative JEM encoder improvements

C. Rudat, B. Bross, H. Schwarz (Fraunhofer HHI)

m38104 Cross-check of Non Square TU Partitioning (JVET-B0047)

O. Nakagami (Sony)

m38105 Crosscheck of the improvements on ALF in JVET-B060

C.-Y. Chen, Y.-W. Huang (MediaTek)

m38106 Cross-check of JVET-B0060

B. Li, J. Xu (Microsoft)

m38107 QEC Effort Ali C. Begen

m38108

Chross-check of JVET-B0059: TU-level non-separable secondary transform

S.-H. Kim (Sharp)

m38109 SJTU 4k test sequences evaluation report

S. Jeon, N. Kim, H. Shim, B. Jeon (SKKU)

m38110 Requirements on Cinematic Virtual Reality Mapping Schemes

Ziyu Wen, Jisheng Li, Sihan Li, Jiangtao Wen

m38111 Summary of Voting on ISO/IEC 14496-10:2014/DAM 2

ITTF via SC 29 Secretariat

m38112 Summary of Voting on ITTF via SC 29 Secretariat

ISO/IEC DIS 23008-2:201x [3rd Edition]

m38113 Speech-Related Wearable Element Description for M-IoTW

Miran Choi, Hyun-ki Kim

m38114

ARAF Expansion for Transformation System between the outdoor GPS and Indoor Navigation

JinHo Jeong, HyeonWoo Nam

m38115 VCB AHG Report Mohamad Raad

m38116 IVC AhG report Ronggang Wang, Euee S. Jang

m38117 Simplification of Low Delay configurations for JVET CTC

M. Sychev (Huawei)

m38118 Information and Comments on Hybrid Log Gamma

J. Holm

m38119 [FDH] Lists are sufficient Thomas Stockhammer

m38120 Report of the AHG on RMC

Marco Mattavelli

m38121 AHG on Requirements on Genome Compression and Storage

Marco Mattavelli

m38122 Report of BoG on parallel encoding and removal of cross-RAP dependencies

K. Suehring, H. Yang (BoG coordinators)

m38123 3D dynamic point cloud data sets

Lazar Bivolarsky

m38124 [FDH] Complementary test examples for Segment Lists compression

Emmanuel Thomas

m38125 Systems' Agenda Youngkwon Lim

m38126 Coverage of, additions and correction to the ISOBMFF conformance files

Cyril Concolato, Jean Le Feuvre

m38127 Indication of SMPTE 2094-20 metadata in HEVC

Wiebe de Haan, Leon van de Kerkhof, Rutger Nijland

m38128 Report of the AhG on Green MPEG

Xavier Ducloux

m38129 Report of AHG on Big Media

Abdellatif Benjelloun Touimi, Miroslav Bober, Mohammed Raad

m38130 Updates on Adaptation Set Linking based on NB Comments

Thomas Stockhammer

m38131 Report of AHG on Media-Related Privacy Management

Youngkwon Lim

m38132 MLAF demonstration Marius Preda on behalf of BRIDGET consortium

m38133 AHG on Graphics compression

Lazar Bivoalrsky

m38134 JCT-3V AHG report: J.-R. Ohm, G. J. Sullivan

Project management (AHG1)

m38135 DASH Ad-hoc Group Report

Iraj Sodagar

m38136 Point Cloud Codec for Tele-immersive Video

Rufael Mekuria (CWI), Kees Blom (CWI), Pablo Cesar (CWI)

m38137 MPEG-21 UD AhG Report Bojan Joveski, Sanghyun Joo

m38138

JCT-3V AHG Report: 3D-HEVC Draft and MV-HEVC / 3D-HEVC Test Model editing (AHG2)

G. Tech, J. Boyce, Y. Chen, M. Hannuksela, T. Suzuki, S. Yea, J.-R. Ohm, G. Sullivan

m38139

JCT-3V AHG Report: MV-HEVC and 3D-HEVC Software Integration (AHG3)

G. Tech, H. Liu, Y. Chen,

m38140 Report of AhG for Lightfield formats

Arianne Hinds

m38141 Report of AHG on Future Video Coding Technology Evaluation

Jens-Rainer Ohm, Gary J. Sullivan, Jill Boyce, Jianle Chen, Karsten Suehring, Teruhiko Suzuki

m38142 Media Orchestration - C&O and requirements additions

Oskar van Deventer

m38143 File format AHG Report David Singer

m38144 AHG Report on Media-centric Internet of Things (MIoT) and Wearable

Mihai Mitrea, Sang-Kyun Kim, Sungmoon Chun

m38145 AHG on AR Traian Lavric, Marius Preda

m38146 next draft of Media Orchestration C&O

Jean-Claude Dufourd

m38147

ISO/IEC 14496-15: on extractor design for HEVC files (merging m37864 and m37873)

M. M. Hannuksela, V. K. Malamal Vadakital (Nokia), K. Grüneberg, Y. Sanchez (Fraunhofer HHI)

m38148 Overview of ICtCp J. Pytlarz (Dolby)

m38149 Report of AHG on Application Formats

Youngkwon Lim

m38150 Comments on Broadcast TV profile (MPEG-DASH 3rd edition)

Mary-Luc Champel

m38151 Scheme for indication of content element roles

Kurt Krauss, Thomas Stockhammer

m38152 Background information related to IoT standardisation activities

Kate Grant

m38153 [CE-FDH] CE report on FDH

Kevin Streeter, Vishy Swaminathan

m38154 A Proof of Concept for SAND conformance

Emmanuel Thomas

m38155 Report of VCEG AHG2 on Subjective Distortion Measurement

T. K. Tan (AHG chair)

m38156 SHM software modifications for multi-view support

X. Huang (USTC), M. M. Hannuksela (Nokia)

m38157 SHM software modifications for multi-view support

X. Huang (USTC), M. M. Hannuksela (Nokia)

m38158 AHG on FTV (Free-viewpoint Television)

Masayuki Tanimoto, Krzysztof Wegner, Gauthier Lafruit

m38159 Some Elementary Thoughts on HDR Backward Compatibility

P. Topiwala (FastVDO)

m38160 Report on BoG on informal subjective viewing related to JVET-B0039

K. Andersson, E. Alshina (BoG coordinators)

m38161

Reconstructed 3D point clouds and meshes donated by UPM/BRIDGET

Francisco Morán Burgos, Daniel Berjón DÃez, Rafael Pagés Scasso

m38162 [FDH] Complementary comments on URL Template

Li Liu

m38163

m38164 [FDH] Proposal for Simplified Template Format for FDH

Kevin Streeter, Vishy Swaminathan

m38165 Misc-Clarifications-on-14496-30-2014

Michael Dolan

m38166 SAND SoDIS 1st draft Mary-Luc Champel

m38167 [CE-FDH] Push Directive enabling fast start streaming on MPD request

Frederic Maze, Franck Denoual (Canon), Kazuhiko Takabayashi, Mitsuhiro Hirabayashi (Sony)

m38168 SAND capabilities messages

Mary-Luc Champel

m38171 Updated DuI and DCOR3 items

Iraj Sodagar

m38172 Report of BoG on selection of test material

T. Suzuki, J. Chen (BoG coordinators)

m38173 Updates to the WebSocket Binding of FDH

Imed Bouazizi

m38174 CE8 Report Walt Husak

m38175 AhG on MPEG Vision Rob Koenen

m38176 Conversion and Coding Practices for HDR/WCG Video, Draft 1

J. Samuelsson (editor)

m38177 Withdrawn

m38178 AhG on Lightfield Formats Arianne Hinds

m38179 Notes for MPEG Vision Session

Rob Koenen

m38180 JCT-3V AHG Report: 3D Coding Verification Testing (AHG4)

V. Baroncini, K. Müller, S. Shimizu

m38181 CE8 Report

m38182 Description of Exploration Experiments on Coding Tools

E. Alshina, J. Boyce, Y.-W. Huang, S.-H. Kim, L. Zhang (EE coordinators)

m38183 Requirements for OMAF Byeongdoo Choi, Youngkwon Lim(Samsung), Jangwon Lee, Sejin Oh(LG)

m38184 Open GOP resolution change using SHVC

Yago Sanchez, Robert Skupin, Patrick Gendron

m38185 TRUFFLE: Request of virtualized network function to vMANE

Bokyun Jo, Doug Young Suh, Jongmin Lee

m38186 TRUFFLE: Virtual Network Function message to vMANE

Bokyun Jo, Doug Young Suh, Jongmin Lee

m38187 [FDH] Update to Text of FDH Working Draft

Kevin Streeter

m38188 MMT signaling message for consumption report (updated M37978)

Jaehyeon Bae, Kyungmo Park, Youngwan So, Hyun-koo Yang

m38189 [CE-FDH] Simplified fast start push directive

Frederic Maze (Canon), Kazuhiko Takabayashi (Sony)

m38190 [SAND] Update of the conformance workplan

m38191 [DuI] Proposal to fix the cyclic definition of the media content component

Frédéric Mazé

m38192 SRD input for text for 23009-1 DAM4

Emmanuel Thomas

m38193

Verification Test Plan for HDR/WCG Video Coding Using HEVC Main 10 Profile

R. Sjöberg, V. Baroncini, A. K. Ramasubramonian (editors)

m38194 Input on media content component definition for Text of 23009-1 DCOR 3

Frederic Maze

m38195 Actions on TuC Iraj Sodagar

m38196 URI Signing input text for WD part 3

Emmanuel Thomas

m38197 SAND update for CE document

Emmanuel Thomas

m38198 DASH Subgroup Report Iraj Sodagar

m38199 Call for test material for future video coding standardization

A. Norkin, H. Yang, J.-R. Ohm, G. J. Sullivan, T. Suzuki (call coordinators)

m38200 Meeting Report of 2nd JVET Meeting

G. J. Sullivan, J.-R. Ohm (JVET coordinators)

m38201 Algorithm description of Joint Exploration Test Model 2

J. Chen, E. Alshina, G. J. Sullivan, J.-R. Ohm, J. Boyce (JEM editors)

m38202 JVET common test conditions and software reference configurations

K. Suehring, X. Li (CTC editors)

m38203 Meeting Report of 14th JCT-3V Meeting

J.-R. Ohm, G. J. Sullivan

m38204 MV-HEVC Verification Test Report

V. Baroncini, K. Müller, S. Shimizu

m38205 Draft 2 of Reference Software for Alternative Depth Info SEI in 3D-AVC

T. Senoh

m38206 MV-HEVC and 3D-HEVC Conformance Draft 4

T. Ikai, K. Kawamura, T. Suzuki

m38207 3D-HEVC Software Draft 4 G. Tech, H. Liu, Y. W. Chen

m38208

Meeting Report of the 23rd JCT-VC Meeting (19–26 February 2016, San Diego, USA)

G. J. Sullivan, J.-R. Ohm (chairs)

m38209 Reference Software for Screen Content Coding Draft 1

K. Rapaka, B. Li, X. Xiu (editors)

m38210 Draft text for ICtCp support in HEVC (Draft 1)

P. Yin, C. Fogg, G. J. Sullivan (editors)

m38211

Report of MPEG AHG on Future Video Coding Technology Evaluation (copy of m38141)

J.-R. Ohm, G. J. Sullivan, J. Boyce, J. Chen, K. Sühring, T. Suzuki

m38212

High Efficiency Video Coding (HEVC) Test Model 16 (HM 16) Update 5 of Encoder Description

C. Rosewarne, B. Bross, M. Naccari, K. Sharman, G. J. Sullivan (editors)

m38213 Verification Test Report for Scalable HEVC (SHVC)

Y. Ye, V. Baroncini, Y.-K. Wang (editors)

m38214 HEVC Screen Content Coding Draft Text 6

R. Joshi, S. Liu, G. J. Sullivan, Y.-K. Wang, J. Xu, Y. Ye (editors)

m38215 Conformance Testing for SHVC Draft 5

J. Boyce, A. K. Ramasubramonian (editors)

m38216 Reference software for Scalable HEVC (SHVC) Extensions Draft 4

Y. He, V. Seregin (editors)

m38217

Conformance Testing for Improved HEVC Version 1 Testing and Format Range Extensions Profiles Draft 6

T. Suzuki, K. Kazui (editors)

m38218 Screen Content Coding Test Model 7 Encoder Description (SCM 7)

R. Joshi, J. Xu, R. Cohen, S. Liu, Y. Ye (editors)

m38219

Conformance Testing for HEVC Screen Content Coding (SCC) Extensions Draft 1

R. Joshi, J. Xu (editors)

m38220 Common Test Conditions for HDR/WCG Video Coding Experiments

E. François, J. Sole, J. Ström, P. Yin (editors)

m38221 Convenor's response to FINB's "Regarding ITTF’s contribution on

Leonardo Chiariglione

“option 3― declarations"

– Output documents

MPEG

no Source Title

w15904 General/All Resolutions of the 114th Meeting

w15905 General/All List of AHGs Established at the 114th Meeting

w15906 General/All Report of the 114th Meeting

w15907 General/All Press Release of the 114th Meeting

w15908 General/All Meeting Notice of the 115th Meeting

w15909 General/All Meeting Agenda of the 115th Meeting

w15910 Systems DoC on ISO/IEC 13818-1:2015 AMD 1/DCOR 2

w15911 Systems Text of ISO/IEC 13818-1:2015 AMD 1/COR 2

w15912 Systems DoC on ISO/IEC 13818-1:2015 DAM 5 Carriage of MPEG-H 3D audio over MPEG-2 Systems

w15913 Systems Text of ISO/IEC 13818-1:2015 FDAM 5 Carriage of MPEG-H 3D audio over MPEG-2 Systems

w15914 Systems Text of ISO/IEC 13818-1:2015 AMD 6 Carriage of Quality Metadata in MPEG-2 Systems

w15915 Systems DoC on ISO/IEC 13818-1:2015 PDAM 7 Virtual Segment

w15916 Systems Text of ISO/IEC 13818-1:2015 DAM 7 Virtual Segment

w15917 Systems Request for ISO/IEC 13818-1:2015 AMD 8 Signaling of carriage of HDR/WCG video in MPEG-2 Systems

w15918 Systems Text of ISO/IEC 13818-1:2015 PDAM 8 Signaling of carriage of HDR/WCG video in MPEG-2 Systems

w15919 Systems Text of ISO/IEC 13818-1:2015 DCOR 2

w15920 Systems Defect Report of ISO/IEC 14496-12

w15921 Systems Request for ISO/IEC 21000-22 AMD 1 Reference Software and Implementation Guidelines of User Description

w15922 Systems DoC on ISO/IEC 14496-12:2015 PDAM 1 Enhanced DRC

w15923 Systems Text of ISO/IEC 14496-12:2015 DAM 1 Enhanced DRC

w15924 Audio Text of ISO/IEC 14496-5:2001/AMD 24:2009/DCOR 3, Downscaled (E)LD

w15925 Systems WD of ISO/IEC 14496-12:2015 AMD 2

w15926 Systems Text of ISO/IEC 14496-14 COR 2

w15927 Systems Draft DoC on ISO/IEC DIS 14496-15 4th edition

w15928 Systems Draft text of ISO/IEC FDIS 14496-15 4th edition

w15929 Systems Defect Report of ISO/IEC 14496-15

w15930 Systems Request for ISO/IEC 14496-22:2015 AMD 2 Updated text layout features and implementations

w15931 Systems Text of ISO/IEC 14496-22:2015 PDAM 2 Updated text layout features and implementations

w15932 Systems DoC on ISO/IEC 14496-30:2014 DCOR 2

w15933 Systems Text of ISO/IEC 14496-30:2014 COR 2

w15934 Audio Study on ISO/IEC 23003-1:2007/DAM 3 MPEG Surround Extensions for 3D Audio

w15935 Systems WD of ISO/IEC 14496-32 Reference Software and Conformance for File Format

w15936 Systems WD of ISO/IEC 21000-19:2010 AMD 1 Extensions on Time Segments and Multi-Track Audio

w15937 Systems DoC on ISO/IEC DIS 21000-20 2nd edition Contract Expression Language

w15938 Systems Results of the Call for Proposals on CDVA

w15939 Systems DoC on ISO/IEC DIS 21000-21 2nd Media Contract Ontology

w15940 Systems Text of ISO/IEC IS 21000-21 2nd Media Contract Ontology

w15941 Systems DoC on ISO/IEC DIS 21000-22 User Description

w15942 Systems Text of ISO/IEC IS 21000-22 User Description

w15943 Systems Text of ISO/IEC 21000-22 PDAM 1 Reference Software and Implementation Guidelines of User Description

w15944 Systems DoC on ISO/IEC DIS 23000-16 Publish/Subscribe Application Format

w15945 Systems Text of ISO/IEC FDIS 23000-16 Publish/Subscribe Application Format

w15946 Systems Technologies under Considerations for Omnidirectional Media Application Format

w15947 Systems WD v.1 of Common Media Application Format

w15948 Systems DoC on ISO/IEC 23001-11:201x/DAM 1 Carriage of Green Metadata in an HEVC SEI Message

w15949 Systems Text of ISO/IEC 23001-11:201x/FDAM 1 Carriage of Green Metadata in an HEVC SEI Message

w15950 Systems Request for ISO/IEC 23001-11 AMD 2 Conformarnce and Reference Software

w15951 Systems Text of ISO/IEC 23001-11 PDAM 2 Conformance and Reference Software

w15952 Systems DoC on ISO/IEC CD 23006-1 3rd edition MXM

w15953 Systems Text of ISO/IEC DIS 23006-1 3rd edition MXM

w15954 Systems Text of ISO/IEC IS 23006-2 3rd edition MXM API

w15955 Systems Text of ISO/IEC IS 23006-3 3rd edition MXM Conformance

w15956 Systems DoC on ISO/IEC 23008-1:2014 DCOR 2

w15957 Systems Text of ISO/IEC 23008-1:2014 COR 2

w15958 Systems DoC on ISO/IEC 23008-1:201x PDAM 1 Use of MMT Data in MPEG-H 3D Audio

w15959 Systems Text of ISO/IEC 23008-1:201x DAM 1 Use of MMT Data in MPEG-H 3D Audio

w15960 Systems Text of ISO/IEC 23008-1:201x PDAM 2 Enhancements for Mobile Environments

w15961 Systems WD of ISO/IEC 23008-1:201x AMD 3

w15962 Systems Defects under investigation in ISO/IEC 23008-1

w15963 Systems Description of Core Experiments on MPEG Media Transport

w15964 Systems Revised text of ISO/IEC 23008-1:201x 2nd edition MMT

w15965 Systems Text of ISO/IEC IS 23008-4 MMT Reference Software

w15966 Systems Request for ISO/IEC 23008-4 AMD 1 MMT Reference Software with Network Capabilities

w15967 Systems Text of ISO/IEC 23008-4 PDAM 1 MMT Reference Software with Network Capabilities

w15968 Systems Workplan of MMT Conformance

w15969 Systems Text of ISO/IEC 23008-11 DCOR 1

w15970 Systems Technology under Consideration for ISO/IEC 23008-11 AMD 1

w15971 Convener MPEG Strategic Standardisation Roadmap

w15972 Systems Request for ISO/IEC 23008-12 AMD 1 Support for AVC, JPEG and layered coding of images

w15973 Systems Text of ISO/IEC 23008-12 PDAM 1 Support for AVC, JPEG and layered coding of images

w15974 Systems DoC on ISO/IEC 23008-12 DCOR 1

w15975 Systems Text of ISO/IEC 23008-12 COR 1

w15976 Systems DoC for ISO/IEC PDTR 23008-13 2nd edition MPEG Media Transport Implementation Guidelines

w15977 Systems Text of ISO/IEC DTR 23008-13 2nd edition MPEG Media Transport Implementation Guidelines

w15978 Systems WD of ISO/IEC 23008-13 3rd edition MPEG Media Transport Implementation Guidelines

w15979 Systems DoC on ISO/IEC 23009-1:2014 DAM 3 Authentication, Access Control and multiple MPDs

w15980 Systems Text of ISO/IEC 23009-1:2014 FDAM 3 Authentication, Access Control and multiple MPDs

w15981 Systems DoC on ISO/IEC 23009-1:2014 PDAM 4 Segment Independent SAP Signalling (SISSI), MPD chaining, MPD reset and other extensions

w15982 Systems Text of ISO/IEC 23009-1:2014 DAM 4 Segment Independent SAP Signalling (SISSI), MPD chaining, MPD reset and other extensions

w15983 Systems Text of ISO/IEC 23009-1:2014 DCOR 3

w15984 Systems Defects under investigation in ISO/IEC 23009-1

w15985 Systems Technologies under Consideration for DASH

w15986 Systems Descriptions of Core Experiments on DASH amendment

w15987 Systems Draft Text of ISO/IEC 23009-1 3rd edition

w15989 Systems Work plan for development of DASH Conformance and reference software and sample clients

w15990 Systems WD of ISO/IEC 23009-3 2nd edition AMD 1 DASH Implementation Guidelines

w15991 Systems Study of ISO/IEC DIS 23009-5 Server and Network Assisted DASH

w15992 Systems Request for subdivision of ISO/IEC 23009-6 DASH with Server Push and WebSockets

w15993 Systems Text of ISO/IEC CD 23009-6 DASH with Server Push and WebSockets

w15994 Systems Text of ISO/IEC IS 21000-20 2nd edition Contract Expression Language

w15995 Systems Request for ISO/IEC 23008-1:201x AMD 2 Enhancements for Mobile Environments

w15996 Communications White Paper on MPEG-21 Contract Expression Language (CEL) and MPEG-21 Media Contract Ontology (MCO)Â

w15997 Communications White Paper on the 2nd edition of ARAF

w15998 Audio Text of ISO/IEC 14496-3:2009/AMD 3:2012/COR 1, Downscaled (E)LD

w15999 Audio ISO/IEC 14496-3:2009/DAM 6, Profiles, Levels and Downmixing Method for 22.2 Channel Programs

w16000 General/All Terms of Reference

w16001 General/All MPEG Standards

w16002 General/All Table of unpublished MPEG FDISs

w16003 General/All MPEG work plan

w16004 General/All MPEG time line

w16005 General/All Schema assets

w16006 General/All Software assets

w16007 General/All Conformance assets

w16008 General/All Content assets

w16009 General/All URI assets

w16010 General/All Call for patent statements on standards under development

w16011 General/All List of organisations in liaison with MPEG

w16012 General/All MPEG Standard Editors

w16013 General/All Complete list of all MPEG standards

w16014 General/All Verbal reports from the Requirements, Systems, Video, Audio, 3DG and Communication subgroups made at this meeting

w16015 Convener Liaison Statement to IETF on URI signing

w16016 Convener Liaison Statement template on DASH with Server Push and WebSockets

w16017 Convener Liaison Statement to 3GPP on DASH

w16018 Convener Liaison Statement to DASH-IF on DASH

w16019 Convener Liaison Statement to DVB on TEMI

w16020 Convener Liaison Statement to HbbTV on TEMI

w16021 Convener Liaison Statement template on Common Media Application Format

w16022 Convener Liaison Statement template on HEVC sync samples in ISO/IEC 14496-15

w16023 Convener Liaison Statement to SCTE on Virtual Segments and DASH

w16024 Video Disposition of Comments on ISO/IEC 14496-4:2004/PDAM46

w16025 Video Text of ISO/IEC 14496-4:2004/DAM46 Conformance Testing for Internet Video Coding

w16026 Video Disposition of Comments on ISO/IEC 14496-5:2001/PDAM41

w16027 Video Text of ISO/IEC 14496-5:2001/DAM41 Reference Software for Internet Video Coding

w16028 Video Disposition of Comments on ISO/IEC 14496-5:2001/PDAM42

w16029 Video Text of ISO/IEC 14496-5:2001/DAM42 Reference Software for Alternative Depth Information SEI message

w16030 Video Disposition of Comments on ISO/IEC 14496-10:2014/DAM2

w16031 Video Text of ISO/IEC 14496-10:2014/FDAM2 Additional Levels and Supplemental Enhancement Information

w16032 Video Request for ISO/IEC 14496-10:2014/Amd.4

w16033 Video Text of ISO/IEC 14496-10:2014/PDAM4 Progressive High 10 Profile, additional VUI code points and SEI messages

w16034 Video Study Text of ISO/IEC DIS 14496-33 Internet Video Coding

w16035 Video Internet Video Coding Test Model (ITM) v 14.1

w16036 Video Description of IVC Exploration Experiments

w16037 3DG Core Experiments Description for 3DG

w16038 Video Draft verification test plan for Internet Video Coding

w16039 Video Request for ISO/IEC 23001-8:201x/Amd.1

w16040 Video Text of ISO/IEC 23001-8:201x/PDAM1 Additional code points for colour description

w16041 Video Disposition of Comments on ISO/IEC 23002-4:2014/PDAM3

w16042 Video Text of ISO/IEC 23002-4:2014/DAM3 FU and FN descriptions for parser instantiation from BSD

w16043 Video Disposition of Comments on ISO/IEC 23002-5:2013/PDAM3

w16044 Video Text of ISO/IEC 23002-5:2013/DAM3 Reference software for parser instantiation from BSD

w16045 Video Disposition of Comments on DIS ISO/IEC 23008-2:201x

w16046 Video Text of ISO/IEC FDIS 23008-2:201x High Efficiency Video Coding [3rd ed.]

w16047 Video WD of ISO/IEC 23008-2:201x/Amd.1 Additional colour description indicators

w16048 Video High Efficiency Video Coding (HEVC) Test Model 16 (HM16) Improved Encoder Description Update 5

w16049 Video HEVC Screen Content Coding Test Model 7 (SCM 7)

w16050 Video MV-HEVC verification test report

w16051 Video SHVC verification test report

w16052 Video Verification test plan for HDR/WCG coding using HEVC Main 10 Profile

w16053 Video Disposition of Comments on ISO/IEC 23008-5:2015/DAM3

w16054 Video Disposition of Comments on ISO/IEC 23008-5:2015/DAM4

w16055 Video Text of ISO/IEC FDIS 23008-5:201x Reference Software for High Efficiency Video Coding [2nd ed.]

w16056 Video Request for ISO/IEC 23008-5:201x/Amd.1

w16057 Video Text of ISO/IEC 23008-5:201x/PDAM1 Reference Software for Screen Content Coding Profiles

w16058 Video Disposition of Comments on ISO/IEC 23008-8:2015/DAM1

w16059 Video Disposition of Comments on ISO/IEC 23008-8:2015/DAM2

w16060 Video Disposition of Comments on ISO/IEC 23008-8:2015/DAM3

w16061 Video Text of ISO/IEC FDIS 23008-8:201x HEVC Conformance Testing [2nd edition]

w16062 Video Working Draft of ISO/IEC 23008-8:201x/Amd.1 Conformance Testing for Screen Content Coding Profiles

w16063 Video WD of ISO/IEC TR 23008-14 Conversion and coding practices for HDR/WCG video

w16064 Video CDVA Experimentation Model (CXM) 0.1

w16065 Video Description of Core Experiments in CDVA

w16066 Video Algorithm description of Joint Exploration Test Model 2 (JEM2)

w16067 Video Description of Exploration Experiments on coding tools

w16068 Video Call for test materials for future video coding standardization

w16069 Convener Liaison statement to ITU-T SG 16 on video coding collaboration

w16070 Convener Liaison statement to DVB on HDR

w16071 Convener Liaison statement to ATSC on HDR/WCG

w16072 Convener Liaison statement to ITU-R WP6C on HDR

w16073 Convener Liaison statement to ETSI ISG CCM on HDR

w16074 Convener Liaison statement to SMPTE on HDR/WCG

w16075 Convener Statement of benefit for establishing a liaison with DICOM

w16076 Audio ISO/IEC 23003-2:2010/DCOR 3 SAOC, SAOC Corrections

w16077 Audio Study on ISO/IEC 23003-2:2010/DAM 4, SAOC Conformance

w16078 Audio Study on ISO/IEC 23003-2:2010/DAM 5, SAOC Reference Software

w16079 Audio Draft of ISO/IEC 23003-2:2010 SAOC, Second Edition

w16080 Audio DoC on ISO/IEC 23003-3:2012/Amd.1:2014/DCOR 2

w16081 Audio Text of ISO/IEC 23003-3:2012/Amd.1:2014/COR 2

w16082 Audio DoC on ISO/IEC 23003-3:2012/DAM 3 Support of MPEG-D DRC, Audio Pre-Roll and IPF

w16083 Audio Text of ISO/IEC 23003-3:2012/FDAM 3 Support of MPEG-D DRC, Audio Pre-Roll and IPF

w16084 Audio Defect Report on MPEG-D DRC

w16085 Audio DoC on ISO/IEC 23003-4:2015 PDAM 1, Parametric DRC, Gain Mapping and Equalization Tools

w16086 Audio Text of ISO/IEC 23003-4:2015 DAM 1, Parametric DRC, Gain Mapping and Equalization Tools

w16087 Audio Request for Amendment ISO/IEC 23003-4:2015/AMD 2, DRC Reference Software

w16088 Audio ISO/IEC 23003-4:2015/PDAM 2, DRC Reference Software

w16089 Audio ISO/IEC 23008-3:2015/DCOR 1 Multiple corrections

w16090 Audio DoC on ISO/IEC 23008-3:2015/DAM 2, MPEG-H 3D Audio File Format Support

w16091 Audio Text of ISO/IEC 23008-3:2015/FDAM 2, MPEG-H 3D Audio File Format Support

w16092 Audio Study on ISO/IEC 23008-3:2015/DAM 3, MPEG-H 3D Audio Phase 2

w16093 Audio Study on ISO/IEC 23008-3:2015/DAM 4, Carriage of Systems Metadata

w16094 Audio WD on New Profiles for 3D Audio

w16095 Audio 3D Audio Reference Software RM6

w16096 Audio Workplan on 3D Audio Reference Software RM7

w16097 Convener Liaison Statement to DVB on MPEG-H 3D Audio

w16098 Convener Liaison Statement Template on MPEG-H 3D Audio

w16099 Convener Liaison Statement to ITU-R Study Group 6 on BS.1196-5

w16100 Convener Liaison Statement to IEC TC 100

w16101 Convener Liaison Statement to IEC TC 100 TA 4

w16102 Convener Liaison Statement to IEC TC 100 TA 5

w16103 3DG Text of ISO/IEC FDIS 23000-13 2nd Edition Augmented Reality Application Format

w16104 3DG DoC for ISO/IEC 23000-17:201x CD Multiple Sensorial Media Application Format

w16105 3DG Text of ISO/IEC 23000-17:201x DIS Multiple Sensorial Media Application Format

w16106 3DG Technology under consideration

w16107 3DG Request for ISO/IEC 23005-1 4th Edition Architecture

w16108 3DG Text of ISO/IEC CD 23005-1 4th Edition Architecture

w16109 3DG Request for ISO/IEC 23005-2 4th Edition Control Information

w16110 3DG Text of ISO/IEC CD 23005-2 4th Edition Control Information

w16111 3DG Request for ISO/IEC 23005-3 4th Edition Sensory Information

w16112 3DG Text of ISO/IEC CD 23005-3 4th Edition Sensory Information

w16113 3DG Request for ISO/IEC 23005-4 4th Edition Virtual world object characteristics

w16114 3DG Text of ISO/IEC CD 23005-4 4th Edition Virtual world object characteristics

w16115 3DG Request for ISO/IEC 23005-5 4th Edition Data Formats for Interaction Devices

w16116 3DG Text of ISO/IEC CD 23005-5 4th Edition Data Formats for Interaction Devices

w16117 3DG Request for ISO/IEC 23005-6 4th Edition Common types and tools

w16118 3DG Text of ISO/IEC CD 23005-6 4th Edition Common types and tools

w16119 3DG Text of ISO/IEC 2nd CD 18039 Mixed and Augmented Reality Reference Model

w16120 3DG State of discussions related to MIoTW technologies

w16121 3DG Current status on Point Cloud Compression (PCC)

w16122 3DG Description of PCC Software implementation

w16123 Convener Liaison Statement to JTC1 WG10 related to MIoT

w16124 Convener Liaison Statement to ITU-T SG20 related to MIoT

w16125 Requirements Presentations of the Workshop on 5G and beyond UHD Media

w16126 Requirements Liaison to JTC1/WG9

w16127 Requirements Draft Terms of Reference of the joint Ad hoc Group on Genome Information Representation between TC 276/WG5 and ISO/IEC JTC1/SC29/WG11

w16128 Requirements Results of the Call for Evidence on Free-Viewpoint Television: Super-Multiview and Free Navigation

w16129 Requirements Description of 360 3D video application Exploration Experiments on Divergent multi-view video

w16130 Requirements Use Cases and Requirements on Free-viewpoint Television (FTV) v.3

w16131 Requirements Context and Objectives for Media Orchestration v.3

w16132 Requirements Requirements for Media Orchestration v.3

w16133 Requirements Call for Proposals on Media Orchestration Technologies

w16134 Requirements Requirements on Genome Compression and Storage

w16135 Requirements Lossy compression framework for Genome Data

w16136 Requirements Draft Call for Proposal for Genome Compression and Storage

w16137 Requirements Presentations of the MPEG Seminar on Prospect of Genome Compression Standardization

w16138 Requirements Requirements for a Future Video Coding Standard v2

w16139 Requirements Draft Requirements for Media-centric IoTs and Wearables

w16140 Requirements Overview, context and objectives of Media-centric IoTs and Wearable

w16141 Requirements Conceptual model, architecture and use cases for Media-centric IoTs and Wearable

w16142 Requirements Use cases and requirements on Visual Identity Management AF

w16143 Requirements Requirements for OMAF

w16144 Requirements Requirements for the Common Media Application Format

w16145 Requirements Database for Evaluation of Genomic Information Compression and Storage

w16146 Requirements Evaluation Procedure for the Draft Call for Proposals on Genomic Information Representation and Compression

w16147 Requirements Results of the Evaluation of the CfE on Genomic Information Compression and Storage

w16148 Requirements Liaison with TC 276

w16149 Requirements Summary notes of technologies relevant to digital representations of light fields

w16150 Requirements Draft report of the Joint Ad hoc Group on digital representations of light/sound fields for immersive media applications

w16151 Requirements

Thoughts and Use Cases on Big Media

– Requirements report

Source: Jörn Ostermann (Leibniz Universität Hannover)

1.1 Requirements documents approved at this meeting

No. Title

16125 Presentations of the Workshop on 5G and beyond UHD Media

16127 Draft Terms of Reference of the Joint Ad hoc Group on Genome Information

Representation between TC 276/WG 5 and ISO/IEC JTC 1/SC 29/WG 11

16128 Results of the Call for Evidence on Free-Viewpoint Television: Super-Multiview

and Free Navigation

16129 Description of 360 3D video application Exploration Experiments on Divergent

multi-view video

16130 Use Cases and Requirements on Free-viewpoint Television (FTV) v.3

16131 Context and Objectives for Media Orchestration v.3

16132 Requirements for Media Orchestration v.3

16133 Call for Proposals on Media Orchestration Technologies

16134 Requirements on Genome Compression and Storage

16135 Lossy compression framework for Genome Data

16136 Draft Call for Proposal for Genome Compression and Storage

16137 Presentations of the MPEG Seminar on Genome Compression Standardization

16138 Requirements for a Future Video Coding Standard v2

16139 Draft Requirements for Media-centric IoTs and Wearables

16140 Overview, Context and Objectives of Media-centric IoT‘s and Wearable

16141 Conceptual model, architecture and use cases for Media-centric IoT‘s and Wearable

16142 Use cases and requirements on Visual Identity Management AF

16143 Requirements for OMAF

16144 Requirements for the Common Media Application Format

16145 Database for Evaluation of Genomic Information Compression and Storage

16146 Evaluation Procedure for the Draft Call for Proposals on Genomic Information

Representation and Compression

16147 Results of the Evaluation of the CfE on Genomic Information Compression and

Storage

16148 Liaison with TC 276

16149 Summary notes of technologies relevant to digital representations of light fields

16150 Draft report of the Joint Ad hoc Group on digital representations of light/sound

fields for immersive media applications

16151 Thoughts and Use Cases on Big Media

1.2 MPEG-A

2.1. Part 19 – Omnidirectional Media Application Format

For certain virtual reality devices, omnidirectional video is required. The purpose of

this application format is to develop a standardized representation of this video format

together with 3D audio. For video the mapping of omnidirectional video to rectangular

video is important in order to enable the use of HEVC (Figure 1). The requirements are

given in N16143 Requirements for OMAF.

Figure 1 Content flow process for omnidirectional media – here video.

2.2. Part 20 – Common Media Application Format

The segmented media format that has been widely adopted for internet delivery using

DASH, Web browsers, commercial services such as Netflix and YouTube, etc. is

derived from the ISO Base Media File Format, using MPEG codecs, Common

Encryption, etc. The same components have already been widely adopted and

specified by many application consortia (ARIB, ATSC, DECE, DASH-IF, DVB,

HbbTV, SCTE, 3GPP, DTG, DLNA, etc.), but the absence of a common media

format, or minor differences in practice, mean that slightly different media files must

often be prepared for the same content. The industry would further benefit from a

common format, embodied in an MPEG standard, to improve interoperability and

distribution efficiency.

The Common Media Application Format defines the media format only. MPEG

technologies such as DASH and MMT may be used for the delivery of the Common

Media Application Format Segment. Multiple delivery protocols may specify how the

same Common Media Application Format Segments are delivered. The description

and delivery of presentations are both considered to be in layers above the layer that

Video

encode

Video

decode

Video

rendering on

a sphere

Image stitching,

and

equirectangular

mapping

defines the media format and the encoding and decoding of Media Segments, and

therefore they are out of the proposed scope. The Requirements are presented in

N16144 Requirements for the Common Media Application Format. It is foreseen that

this MAF will include profiles defining the allowable media representations.

1.3 Explorations

3.1. 3D Media Formats

Light fields and sound fields for representation of true 3D contents will gain more relevance

in the future. At the 111th

and 112th

MPEG meeting, especially video related aspects were

discussed and presented. In the area of images, JPEG started an activity on light fields.

N16149 Summary notes of technologies relevant to digital representations of light fields

shows the results of a brain storming session (Figure 2). In N16150 Draft report of the Joint

Ad hoc Group on digital representations of light/sound fields for immersive media

applications is the table of contents for a document to be produced by a joint MPEG/JPEG

adhoc group JAhG on Digital Representations of Light/Sound Fields for Immersive Media

Applications.

Figure 2 Components and interfaces of a 3D A/V system

3.2. Compact Descriptors for Video Analysis (CDVA)

The envisioned activity which will go beyond object recognition required for example in

broadcast applications. Especially for automotive and security applications, object

classification is of much more relevance than object recognition (Figure 3, Figure 4). MPEG

foresees IP-cameras with a CDVA encoder which enables search, detection and classification

at low transmission rates. Related technology within MPEG can be found in MPEG-7 and

video signatures.

2

Visual'features'encoding'

Visual'features'extrac2on'

Image/video'

encoding'

Image/video'

decoding'

Visual'features'decoding'

Visual'features'extrac2on'

Visual'analysis'task'

“Compress)Then)Analyze”3

“Analyze)then)compress”3

Fig. 1. Pipelines for the “ Analyze-Then-Compress” and “ Compress-Then-Analyze” paradigms.

Although several different descriptors havebeen proposed in recent years, they all share asimilar processing pipeline.

That is, a feature vector is computed following three main processing steps, namely pre-smoothing, transformation

and spatial pooling [2]. For example, the state-of-the-art SIFT descriptor [3] is obtained performing Gaussian

smoothing, followed by the computation of local gradients, which are then pooled together to build a histogram.

Several visual analysis applications, such as object recognition, traffic/habitat/environmental monitoring, surveil-

lance, etc., might benefit from the technological evolution of networks towards the “ Internet-of-Things”, where

low-power battery-operated nodes are equipped with sensing capabilities and are able to carry out computational

tasks and collaborate over a network. In particular, Visual Wireless Sensor Networks (VWSNs) are a promising

technology for distributed visual analysis tasks [4][5]. The traditional approach to such scenarios, which will be

denoted “ Compress-Then-Analyze” (CTA) in the following, is based on a two-step paradigm. First, the signal of

interest (i.e., a still image or a video sequence) is acquired by a sensor node. Then, it is compressed (e.g., resorting to

JPEG or H.264/AVC coding standards) in order to be efficiently transmitted over a network. Finally, visual analysis

is performed at a sink node [6][7][8]. Since the signal is acquired and subsequently compressed, visual analysis is

based on a lossy representation of the visual content, possibly resulting in impaired performance [9][10]. Although

such paradigm has been efficiently employed in a number of applications (e.g., video surveillance, smart cameras,

etc.), several analysis tasks might require streaming high quality visual content. This might be infeasible even with

state-of-the-art VWSN technology [11] due to the severe constraints imposed by the limited network bandwidth. A

possible solution consists in driving the encoding process so as to optimize visual analysis, rather than perceptual

quality, at the receiver side. For example, JPEG coding can be tuned so as to preserve SIFT features in decoded

images [12].

At the same time, an alternative “ Analyze-Then-Compress” (ATC) approach, in a sense orthogonal to CTA,

is gaining popularity in the research community. The ATC paradigm relies on the fact that some tasks can

be performed resorting to a succinct representation based on local features, disregarding the actual pixel-level

content. According to ATC, local features are extracted from a signal directly by the sensing node. Then, they are

compressed to be efficiently dispatched over the network. As illustrated in Figure 1, “ Analyze-Then-Compress” and

“ Compress-Then-Analyze” represent concurrent paradigms that can beemployed to address the problem of analyzing

content captured from distributed cameras. Compression of visual features is key to the successful deployoment of

the ATC scheme, since VWSNs typically pose strict constraints regarding the available bandwidth. Several works

July 2, 2013 DRAFT

Figure 3 The upper part of the diagram shows the ―Analyze-Then-Compress‖ (ATC) paradigm. That is,

sets of video features are extracted from raw frames end encoded before transmission resulting in low

bandwidth communications. This is opposite to traditional ―Compress-Then-Analyze‖ (CTA) paradigm,

in which video features are extracted close to complex visual analysis.

Figure 4 Usage of CDVA for identification of classes and recognition.

It is foreseen that identification of classes is much more challenging than object recognition.

This work might start later than the work on detection and recognition. For detection and

recognition, challenges include flexible objects and specular surfaces. Furthermore, low

latency is required.

At the previous 112th

meeting, a CfP N15339 Call for Proposals for Compact Descriptors for

Video Analysis - Search and Retrieval (CDVA) and the related evaluation framework N15338

Evaluation Framework for Compact Descriptors for Video Analysis - Search and Retrieval

were issued. Evaluation of three full proposals was done at this 114th

meeting. Sufficient

technology was submitted such that the standardization work can start in the Video subgroup.

3.3. Big Media Big data is to MPEG of interest in case media is involved. Thoughts towards an use cases to

which MPEG could contribute are in N16151 Thoughts and Use Cases on Big Media.

3.4. Free Viewpoint TV

Free Viewpoint TV was the vision that drove the development of many different 3D video

coding extensions. It is now time to take back a step and see where the future of 3D will go.

Super-multiview displays and holographic displays are currently under development. They

will provide horizontal as well as vertical parallax. Hence, we need further extensions of

current multiview technology, which assumes a linear camera arrangement, in order to

accommodate for more general camera arrangements for future displays. For interaction and

navigation purposes, modern human computer interfaces need to be developed. The purpose

of the exploration was previously described in N14546 Purpose of FTV Exploration.

In order to decide on a potential start of a standardization activity, a Call N15348 Call for

Evidence on Free-Viewpoint Television: Super-Multiview and Free Navigation was issued at

the 112th

meeting. MPEG provides software in N15349 FTV Software Framework that may be

used for the purpose of the call. Evaluation was carried out at this meeting.

It appears that the problem is of very limited interest to industry. MPEG received only two

full proposals related to navigation. For FTV based on dense camera arrangements, only one

partial proposal was received. All proposals improve on the anchors. However, the anchors

and reference sequences were of insufficient quality such that a subjective evaluation done at

the meeting is without any merit.

Results are summarized in N16128 Results of the Call for Evidence on Free-Viewpoint

Television: Super-Multiview and Free Navigation. Use cases and requirements were updated

in N16130 Use Cases and Requirements on Free-viewpoint Television (FTV) v.3. The new

requirements also consider N16129 Description of 360 3D video application Exploration

Experiments on Divergent multi-view video, which promotes divergent multi-view applications

such as 360-degree 3D video and wide-area FTV (Figure 5).

Figure 5: The concept of virtual views synthesis on 360-degree 3D video

At this point no timeline for the work of the group could be defined. However, the group is

requested to create a plan for the generation of adequate references. In this context, MPEG

members are encouraged to provide further test sequences for virtual reality applications.

3.5. Future Video Coding

A N15726 Workshop on 5G and beyond UHD Media was held in order to explore the

opportunities of new mobile networks and application for MPEG standardization.

Presentation are available as N16125 Presentations of the Workshop on 5G and beyond UHD

Media.

Seven speakers from industry discussed service and technologies. Cloud computing and

Internet of Things will have an impact on network usage. Latency for latency of the 5G

network is between 1 and 5 ms. Assuming adequate bandwidth, many services can be

implemented in the cloud. This will also enable an abundance of virtual reality and

augmented reality applications with remote computing.

The requirements for future video coding were updated in N16138 Requirements for a Future

Video Coding Standard v2. Further input from industry is desirable. Especially the impact of

the pre- and post-processing, learning, transcoding and the cloud on the codec design should

be studied.

3.6. HDR and WCG

MPEG and VCEG concluded that HDR and WCG can very well be coded using current

HEVC Main 10 technology. The potential enhancements demonstrated at this meeting do not

warrant a separate standardization effort. Nevertheless, HDR and WCG will be an intrinsic

part of the development of any future video coding standard.

3.7. Genome Compression

Today, DNA sequencing creates a lot of data. One data set is easily about 800 Mbyte.

Typically, several data sets are made for one person. Given that today machines are optimized

for speed and not for accuracy, an interesting opportunity for compression technology might

exist. TC276 Biotechnology is currently not considering compression. A N16148 Liaison with

TC 276 was approved. In order to collaborate also within adhoc groups, N16127 Draft

Terms of Reference of the Joint Ad hoc Group on Genome Information Representation

between TC 276/WG 5 and ISO/IEC JTC 1/SC 29/WG 11 was approved.

In response to a Call for Evidence on Genome compression, MPEG received for submissions

from research institutes and universities. Eight tools were proposed which progress over the

state of the art as summarized in N16147 Results of the Evaluation of the CfE on Genomic

Information Compression and Storage. MPEG concluded that there is sufficient interest and

technology to issue N16136 Draft Call for Proposal for Genome Compression and Storage

with evaluation taking place at the 116th

meeting. This call is issued and will be evaluated

jointly with TC276. Due to the meeting schedule of TC 276, the text of the final call will most

likely be fixed in March 2016. The N16146 Evaluation Procedure for the Draft Call for

Proposals on Genomic Information Representation and Compression needs further update

especially in the area of lossy compression highlighted in N16135 Lossy compression

framework for Genome Data. A new version of the requirements is N16134 Requirements on

Genome Compression and Storage.

MPEG selected a test set for evaluating compression performance. The data set as described

in N16145 Database for Evaluation of Genomic Information Compression and Storage

includes human, plant and animal genomes.

N16137 Presentation of the MPEG Seminar on Genome Compression Standardization

includes the slides of some stake holder as presented at the seminar at this meeting.

Manufactures, service providers and technologists presented their current thinking. It appears

that the temporal evolution of the genome is an important application for genome processing.

The standard will have to balance compression efficiency, computation resources, random

access and search capabilities. Typically, every three years a new sequencer is released. A

new generation of sequences encourages service providers to stop using their old sequencers.

Furthermore, a change in sequencing technology giving other lengths of the runs and different

error patterns are expected within 5 years.

3.8. Media-centric Internet of Things

The Requirements subgroup recognizes that MPEG-V provides technology that is applicable

in the area of Internet of Things. Three documents were drafted: N16140 Overview, context

and objectives of Media-centric IoTs and Wearable, N16141 Conceptual mode, architecture

and use cases for Media-centric IoTs and Wearable, and N16139 Draft Requirements for

Media-centric IoTs and Wearable.

3.9. Media Orchestration

For applications like augmented broadcast, concert recording or class room recording with

several cameras as described in N16131 Context and Objectives for Media Orchestration v.3,

play back requires spatial and temporal synchronization of the different displays.

Requirements were extracted and summarized in N16132 Requirements for Media

Orchestration v.3. A call was defined in N16133 Call for Proposals on Media Orchestration

Technologies. Evaluation is planned for the 115th

meeting.

3.10. Visual Identity Management

The purpose of this activity is to enable Processing and sharing of media under user control

(Figure 6). N16142 Use cases and requirements on Visual Identity Management AF was

created.

Capturing Device

Privacy Management System

Rendering Device

User

Description

UserDescription

UserDescription

Media File

Privacy Management Metadta

P

Fingerp

rints

of face

s

Keys to

encryp

t face

s Description KeyUser Description

Figure 6 Faces in the image become only visible if the key for decrypting a

particular face is known to the rendering device.

– Systems report

Source: Young-Kwon Lim, Chair

1. General Input Documents

1.1 AHG reports

All AHG reports have been approved.

1.2 General technical contributions

Number Session Title Source Dispositions

m37567 Plenary Table of Replies on ISO/IEC FDIS 23001-12

ITTF via SC 29 Secretariat

Noted

m37569 Plenary Table of Replies on ISO/IEC FDIS 23001-8 [2nd Edition]

ITTF via SC 29 Secretariat

Noted

m37570 Plenary Table of Replies on ISO/IEC 13818-1:2015/FDAM 3

ITTF via SC 29 Secretariat

Noted

m37571 Plenary Table of Replies on ISO/IEC 13818-1:2015/FDAM 2

ITTF via SC 29 Secretariat

Noted

m37572 Plenary Table of Replies on ISO/IEC 13818-1:201x/FDAM 4

ITTF via SC 29 Secretariat

Noted

m37574 Plenary Table of Replies on ISO/IEC FDIS 23001-7 [3rd Edition]

ITTF via SC 29 Secretariat

Noted

m37575 Plenary Table of Replies on ISO/IEC FDIS 23008-12

ITTF via SC 29 Secretariat

Noted

m38046 Plenary Table of Replies on ISO/IEC FDIS 23005-2 [3rd Edition]

ITTF via SC 29 Secretariat

Noted

m38047 Plenary Table of Replies on ISO/IEC FDIS 23005-4 [3rd Edition]

ITTF via SC 29 Secretariat

Noted

m38048 Plenary Table of Replies on ISO/IEC FDIS 23005-5 [3rd Edition]

ITTF via SC 29 Secretariat

Noted

m38049 Plenary Table of Replies on ISO/IEC FDIS 23005-6 [3rd Edition]

ITTF via SC 29 Secretariat

Noted

m37935 Plenary Conformance Assets Christian Tulvan, Marius Preda

Noted

m37937 Plenary Software Assets Christian Tulvan, Marius Preda

Noted

m37938 Plenary Content Assets Christian Tulvan, Marius Preda

Noted

m37946 Plenary MPEG Workshop on 5G / Abdellatif Benjelloun Noted

Beyond UHD Media Touimi, Imed Bouazizi, Iraj Sodagar, Jörn Ostermann, Marius Preda, Per Fröjdh, Shuichi Aoki

1.3 Summary of discussion

-

1.4 Demo

1.5 FAQ

.

1.6 AOB

None.

2. MPEG-2 Systems (13818-1)

2.1 Topics

2.1.1 ISO/IEC 13818-1:2014 AMD 5 Carriage of 3D Audio

This amendment defines stream type, descriptors and buffer model to carry MPEG-H 3D

audio bitstream in MPEG-2 TS. Two stream types will be assigned to distinguish main stream

from auxiliary stream. Descriptors will provide information on user selectable and/or

modifiable audio objects and information on which object contains either supplementary or

main audio. T-STD extension will allow

splitting an encoded audio scene into several elementary streams. One single audio decoder

decodes all elementary streams to one audio presentation. Each of those elementary streams

carries one or more encoded channel signals.

2.1.2 ISO/IEC 13818-1:2014 AMD 6 Carriage of Quality Metadata

This amendment specifies the carriage of Quality Metadata (ISO/IEC 23001-10) in MPEG-2

systems. Quality metadata enhances adaptive streaming in clients during the presentation of

media. The carriage is specified for transport streams only and includes the signalling of static

metadata as well as dynamic metadata.

2.1.3 ISO/IEC 13818-1:2014 AMD 7 Virtual Segment

This amendment provides several enhancements to the current ISO/IEC 13818-1 (specifically

to Annex U, TEMI), in order to allow easy distributed generation of time-aligned segments

for multiple adaptive streaming systems, such as MPEG DASH and aid in IPTV services. We

also provide tools for verifying stream integrity and authenticity in real time. We would like

to ask for a 2-month PDAM ballot due to the industry and SDO need in features introduced in

this amendment.

2.1.4 ISO/IEC 13818-1:2014 AMD 8 Signaling HDR and WCG video content in

MPEG-2 TS

All Main 10 Profile based receivers will be able to decode the video but may not be able to do

appropriate processing required to make video presentable on a non-HDR or non-WCG

display. Therefore in many applications (such as broadcast) that use the MPEG-2 TS it will be

beneficial to signal presence of WCG and HDR video content as well as additional

information at a program level. This enables HDR and WCG capable receivers process the

information in video ES and render the decoded content correctly. Receivers that do not have

the capability to process WCG and HDR can either ignore the content or do their best effort to

render the content on non-WCG and non-HDR display devices. This amendment suggests

some minimal MPEG-2 TS ‗signaling‘ to indicate presence of WCG and HDR video in the

HEVC elementary stream.

2.2 Contributions

Number

Session Title Source Dispositions

m37812

MPEG-2

Summary of Voting on ISO/IEC 13818-1:2015/Amd.1/DCOR 2

SC 29 Secretariat Refer N15960

m37603

MPEG-2

Corrections of TEMI text errors to include in COR2

Jean Le Feuvre Accepted N15919

m37790

MPEG-2

Defect report on ISO/IEC 13818-1 regarding STD buffer sizes for HEVC

Karsten Grüneberg, Thorsten Selinger

Accepted N15919

m37556

MPEG-2

Summary of Voting on ISO/IEC 13818-1:2015/DAM 6

SC 29 Secretariat Noted

m37564

MPEG-2

Summary of Voting on ISO/IEC 13818-1:2015/PDAM 7

SC 29 Secretariat Refer N15915

m37793

MPEG-2

Suggested modification to structure in Virtual Segmentation

Wendell Sun, Prabhu Navali

Accepted N15916

m37711

MPEG-2

Editorial Clarifications on Text of ISO/IEC 13818-1:2015 AMD7 Virtual Segmentation

Yasser Syed, Alex Giladi, Wendell Sun,

Accepted N15916

2.3 Summary of discussions

2.4 Action Points / Ballots

ITU-T H.222.0 (10/2014)|ISO/IEC

13818-1:2015/FDAM 2

(SC 29 N 15177)

Systems

AMENDMENT 2: Carriage of layered

HEVC

FDAM

(2015-

12-02)

ITU-T H.222.0 (10/2014)|ISO/IEC Systems FDAM

13818-1:2015/FDAM 3

(SC 29 N 15157)

AMENDMENT 3: Carriage of Green

Metadata in MPEG-2 Systems

(2015-

12-02)

ITU-T H.222.0 (10/2014)|ISO/IEC

13818-1:2015/DAM 5

(SC 29 N 14824)

Systems

AMENDMENT 5: Carriage of MPEG-H

3D audio over MPEG-2 Systems

DAM

(2015-

12-25)

ITU-T H.222.0 (10/2014)|ISO/IEC

13818-1:2015/DAM 6

(SC 29 N 15155)

Systems

AMENDMENT 6: Carriage of Quality

Metadata in MPEG-2 Systems

DAM

(2016-

01-01)

3. ISO Base Media File Format (14496-12)

3.1 Topics

3.1.1 ISO/IEC 14496-12:201X/AMD 1: Enhanced DRC

This Amendment adds support for DRC configuration extensions in MPEG-D DRC. It

increases the available range of downmix coefficients. The loudness metadata is enhanced to

support the EQ extension of MPEG-D DRC.

.

3.2 Contributions

Number

Session Title Source Dispositions

m37552

File Format

Summary of Voting on ISO/IEC 14496-12:201x/PDAM 1

SC 29 Secretariat Refer N15922

m37851

File Format

Editorial comment on 14496-12

Mitsuhhiro Hirabayashi, Kazuhiko Takabayashi, MItsuru Katsumata

Accepted N15920

m37869

File Format

Derived visual tracks for ISOBMFF and HEIF

V. K. Malamal Vadakital, M. M. Hannuksela (Nokia)

Noted

m37870

File Format

Relative location offsets for ISOBMFF

M. M. Hannuksela, V. K. Malamal Vadakital (Nokia)

Noted

m37896

File Format

Study on Base Media File Format 14496-12 PDAM1

Frank Baumgarte, David Singer, Michael Kratschmer,

Noted

m37905

File Format

Error in the sample groups in 14496-12

David Singer Noted

m37907

File Format

ISOBMFF Defect Jean Le Feuvre, Cyril Concolato

Noted

m3790 File Editorial reorganization of Cyril Concolato, Jean Le Accepted

8 Format MIME-related sections in ISOBMFF

Feuvre N15920

m37914

File Format

Support of VR video in ISO base media file format

Ye-Kui Wang, Hendry, Marta Karczewicz

Noted

m37929

File Format

Updates on Web Interactivity Track

Thomas Stockhammer

m37931

File Format

Updates on Partial File Handling

Thomas Stockhammer

3.3 Summary of discussions

3.3.1 m37552 Summary of Voting on ISO/IEC 14496-12:201x/PDAM 1

Disposition: noted

Covered in Audio.

3.3.2 m37851 Editorial comment on 14496-12

Disposition: accepted

Into the corrigendum text (this is editorial).

3.3.3 m37869 Derived visual tracks for ISOBMFF and HEIF

Disposition: noted

We wonder if we could use the unified number space for track and item IDs in the track

reference box, and then in the samples use the track reference index to select source(s)?

Quicktime Effects tracks were very much like this and we should see what can be learnt from

them. Other effects include alpha composition and so on. We are concerned that we may be

straying into the composition layer, and we need to be clear what's media carriage and what's

composition. At what point do 'non-destructive operations on video' become composition?

We welcome further contributions.

3.3.4 m37870 Relative location offsets for ISOBMFF

Disposition: noted

Alas, fragment processing is defined to be local to the client and fragments (#) are stripped

before HTTP request. Queries are server-based (?) but the syntax is defined by the server, not

the standard. Maybe there could be an HTTP header or value of content-range that asks for a

set of boxes rather than a set of byte-ranges? We note that adding 4 bytes to the beginning of

any mdat is fine today, but maybe we can use an index rather than identifier? Yes, we need

relative addressing to work; an even more complex itemLocation box could be defined ('mdat

relative construction method' that picks out the mdat), but that doesn't solve data in tracks.

We should study the fragment identifiers defined in MPEG-21. The use-cases may be of

interest to JPEG, and indeed JPIP (which allows retrieval of boxes or parts thereof) should be

studied.

Further contributions welcome.

3.3.5 m37896 Study on Base Media File Format 14496-12 PDAM1

Disposition: noted

Progressed in the audio group.

3.3.6 m37905 Error in the sample groups in 14496-12

Disposition: noted

Into the defect report, and we hope into the COR once the DCOR has closed balloting.

3.3.7 m37907 ISOBMFF Defect

Disposition: noted

We feel that making a study for a ballot that closes a week after the meeting is of questionable

utility. We would welcome these as NB comments, editors to address what they can that are

editorial and incorporate the rest into a revised Defect Report.

3.3.8 m37908 Editorial reorganization of MIME-related sections in

ISOBMFF

Disposition: accepted

We like the general direction, but we need to do the drafting and see how it works. We would

need one or more new RFCs that obsolete the existing ones and point to the new texts.

Editors and enthusiasts to draft and propose.

3.3.9 m37914 Support of VR video in ISO base media file format

Disposition: noted

Seems like a reasonable approach, and maybe 37869 above might apply for when the VR is

tiled over several tracks?

3.3.10 WD of amendment 2 (output from last meeting)

Disposition: noted

We think that the handling of MIME types and parameters should be removed, given the input

above (37908) and a more comprehensive approach taken.

Revised output WD at this meeting, without the MIME material.

3.3.11 Joint meeting with JPEG

In a joint meeting with JPEG we decided to cease the dual publication of 14496-12 with

15444-12; we will withdraw 15444-12, mark it "superceded by 14496-12".

We also look for volunteers to help modernize the Registration Authority, making it easier

and more dynamic to browse, better linked to conformance files, and so on. JPEG notes that

there are boxes missing from the RA that are in their specs, and the RA Representative

explained that the RA is never proactive on registration; registration happens on request.

3.3.12 Misc

There is a clash between the file format, which says that 4CCs are simply four printable

characters, and the codecs parameter, which effectively says that they cannot include a

―.‖. Ouch. How do we address this? Introduce an escape syntax? (Make sure it's in the

defect report.) "Be aware that a period character may be in the first four characters and is not

a separator but part of the 4CC? Or escape it? What do we do with spaces?"

Some people would like to use MP3-in-4 and know it's MP3, but none of our signaling is that

precise. Can we do better?

3.4 Action Points / Ballots

JTC 1.29.13.412/COR1

(14496-12/COR1)

ISO/IEC 14496-

12:2015/DCOR 1

(SC 29 N 15490)

Part 12: ISO base media file

format

TECHNICAL

DCOR

(2016-

03-07)

CORRIGENDUM 1

4. MP4 File Format (14496-14)

4.1 Topics

4.2 Contributions

Number

Session Title Source Dispositions

m37639

File Format

Summary of Voting on ISO/IEC 14496-14:2003/DCOR 2

SC 29 Secretariat Noted

4.3 Summary of discussions

4.3.1 m37639 Summary of Voting on ISO/IEC 14496-14:2003/DCOR 2

Disposition: noted

With no comments, we do not need a DoCR we assume. Corrigendum incorporates other

editorial fixes (e.g. 37851 below) as appropriate.

4.4 Action Points / Ballots

5. NAL File Format (14496-15)

5.1 Topics

5.1.1 ISO/IEC 14496-15:201x 4th edition

This edition adds the storage of video bitstreams consisting of multiple views and the

associated depth, encoded based on Annex I of ISO/IEC 14496-10. The design is based on the

MVC file format, which is specified in Clause 7 of ISO/IEC 14496-15, in a backwards-

compatible manner. In the design, storage of the texture and depth of a particular view in

either separate tracks or the same track is supported. The design also includes the signalling of

various indications, such as the presence of texture and/or depth for each view, as well as

whether the texture or depth component or both of a view is required for the presentation of

another view. The amendment also adds the signaling (using HEVC video descriptor) to

indicate use of HEVC low-delay coding mode in each access unit where the STD buffer

management is performed using the HEVC HRD parameters. In addition, this new edition

provides file format support for AVC based 3D video excluding MVC, e.g., MVC+D, 3DV-

AVC, MFC, and MFC+D.

5.2 Contributions

Number

Session Title Source Dispositions

m37644

File Format

Summary of Voting on ISO/IEC DIS 14496-15 [4th Edition]

SC 29 Secretariat Refer 15927

m37527

File Format

Input on 14496-15 defect report

Ye-Kui Wang, Guido Franceschini, David Singer

Accepted 15929

m37631

File Format

HEVC tile tracks brand Jean Le Feuvre, Cyril Concolato, Franck Denoual, Frédéric Mazé

Accepted 15928

m37632

File Format

L-HEVC track layout simplifications

Jean Le Feuvre, Cyril Concolato, Franck Denoual, Frédéric Mazé

Accepted 15928

m37830

File Format

Comments on the defect report of 14496-15

Teruhiko Suzuki, Kazushiko Takabayashi, Mitsuhiro Hirabayashi (Sony), Michael Dolan (Fox)

noted

m37864

File Format

ISO/IEC 14496-15: on extractor design for HEVC files

M. M. Hannuksela, V. K. Malamal Vadakital (Nokia)

Refer m37864

m37865

File Format

ISO/IEC 14996-15: decode time hints for implicit reconstruction of access units in L-HEVC

V. K. Malamal Vadakital, M. M. Hannuksela (Nokia)

Noted

m37873

File Format

HEVC tile subsets in 14496-15

Karsten Grüneberg, Yago Sanchez

Refer m37864

m37915

File Format

Comments on ISO/IEC 14496-15

Hendry, Ye-Kui Wang, Accepted 15928

m38147

File Format

SO/IEC 14496-15: on extractor design for HEVC files (merging

M. M. Hannuksela, V. K. Malamal Vadakital (Nokia), K. Grüneberg,

Accepted 15928

m37864 and m37873) Y. Sanchez (Fraunhofer HHI)

m38045

Plenary National Body Contribution on the defect report of ISO/IEC 14496-15

Japan NB via SC 29 Secretariat

accepted

5.3 Summary of discussions

5.3.1 m37644 Summary of Voting on ISO/IEC DIS 14496-15 [4th Edition]

Disposition: see DoCR

Thank you. We expect to issue the draft FDIS text after (a) a 6-week editing period and (b)

actual FDIS text after review for consistency at the next meeting. There are a few questions

remaining that will require study by experts to help us make an informed and correct

conclusion.

One of them concerns the applicability of 'labelling' in tracks that contain more than just the

base layer – the sample tables and sample groups.

Options; they apply to:

(a) entire bitstream

(b) the bitstream formed by the layers in the track and their direct and indirect reference layers

(c) all the layers in this track

(d) base layer only

(e) any valid subset of the layered bitstream

a –vague, but could be the tracks forming the complete subset; implies editing all tracks when

streams are subsetted, or that the information may be incomplete

b – fails to mark useful points in upper layers when the lower layers don't have that (e.g. more

frequent sync points)

c –

d – must be used for the tracks marked hev1/hvc1

e --

It may depend on sample entry type and whether there is an LHEVC config in the sample

entry.

For HEVC-compatible tracks, the rules need to be congruent with what the HEVC reader

expects.

sync sample table

independent and disposable samples

sample groups

sap (documents layers, so not a problem)

sync

tsas

stsa

roll

rap

5.3.2 m37632 L-HEVC track layout simplifications

Disposition: partially accepted

We agree that we should produce one or more brands that defined simplified subsets; but we

don't feel we can do definition of these, or major removal of tools, in an FDIS when the DIS

ballot passed.

But some restrictions we feel able to make generally now (casually phrased here, see contrib

for details):

align in-band/out-of-band sample entry types over all tracks (of the same bitstream)

if you are only HEVC-compatible, don't use the '2' sample entries

We envision a few brands defined in an amendment, such as:

implicit recon only

extractor-based simple cases

tiled simple cases

5.3.3 m37631 HEVC tile tracks brand

Disposition: accepted in principle

While we did not review the details, we agree to insert such a brand ('simple tiling') into the

expected amendment of 'simple brands'. We understand the last to mean "don't spread both

tiling and temporal scalability over multiple tracks". The language will need work for

precision, and we're not sure we agree with all the restrictions or have all the possible

restrictions here.

5.3.4 m37915 Comments on ISO/IEC 14496-15

Disposition: partially accepted

We wonder whether we can simply disallow EOB Nal Units? No, they have an effect, so we

need the rule that during implicit reconstruction if there are EOBs, they are merged and a

single one is placed at the end of the AU.

Yes, the word 'slice' after NAL unit is odd; we agree that the definition needs editorial work

and note it is not aligned with the HEVC definition.

Extractors must not be circular at the sample level, and we hope to simplify at the file/brand

level. Also, we expect to ban the use of extractors in simple tile tracks in the upcoming

amendment.

On passing only Tile data to a decoder, we think that what is passed is necessarily dependent

on the decoder design and what it needs; we might have informative text of an example

process.

Tile regions are defined by tile region sample groups.

5.3.5 m37865 ISO/IEC 14996-15: decode time hints for implicit

reconstruction of access units in L-HEVC

Disposition: noted

We think that the number of file-based readers that need decode timestamps for pacing or

need HRD-compliant pacing is very small. We note that at the moment we use decode-time

alignment for implicit reconstruction. Do we need to fix it in FDIS, or can we re-use B.4.1 or

something like it, in an amendment? Contributions welcome.

We should note that when operating at lower levels, the timestamps may not correspond to

ideal pacing or HRD compliance, and that ctts may or will be present even if no re-ordering

occurs.

We agree that we need to make a statement that decoding times must be such that if the tracks

were combined into a single stream ordered by decoding time, the access unit order will be

correct.

5.3.6 M38147 ISO/IEC 14496-15: on extractor design for HEVC files

(merging m37864 and m37873)

Disposition: accepted

We note that this would add a byte to all extractors and other contributions have already

expressed concern over their bit-rate in some circumstances; we're also worried about

introducing a technical improvement like this in an FDIS text. We assume that the 'rewrite'

could be done between the file-format parser and the HEVC decoder, but this functionality

acts rather like hint tracks: it tells that re-write process what needs to be done, cook-book

style, whereas a general re-writer would need to inspect the stream and work it out for itself.

There may be cases where working it out on the fly is hard, without any ancillary information.

We like at least some of the use-cases, however.

Choices:

1) Reject

2) Accept

3) Define a new ExtractorMultiple in an amendment, and leave the existing extractor

alone

4) Introduce a reserved=0 byte in the existing extractor now, and rules for when it's not 0,

and then amendment introduce the new material

5) Defer extractors now to a future amendment while we think (remove all mention of

extractors from the HEVC section for the moment)

We like it enough not to do (1). 5 may not be as simple as it looks and leads to a proliferation

of sample entry variants (requiring or not extractors). We are hesitant to put new technology

in an FDIS text (2). Option (4) has the bit-rate anxiety and doesn't have forward compatibility;

if this byte is non-zero, then parsing must cease. That means that we'd need two sets of

sample entry-types, and we start exploding again. (3) has two extractor types, further

increasing choices and complexity, but actually the choices are there in specification versions

and player versions; we could select which extractor is required under the extractor brand. But

3 would require more sample entry types, again (which extractors are you required to

support?).

It looks as if (2) is the only way ahead that doesn't introduce even more complexity. Accept

and check.

5.3.7 m37864 ISO/IEC 14496-15: on extractor design for HEVC files

Disposition: noted

See above

5.3.8 m37873 HEVC tile subsets in 14496-15

Disposition: noted

See above

5.3.9 m37527 Input on 14496-15 defect report

Disposition: accepted

We had some communication also that some are unclear whether emu-prevention bytes are

included, but it's clear that a sample is an Access Unit, and the Access Unit is a set of NAL

Units, and NAL units have emu prevention. It might appear that there are two syntaxes for

NAL unit, but it's clear which we select (the one without start codes). Do we need a note?

We publish a revised defect report incorporating the discussion below, and this point.

5.3.10 m38045 National Body Contribution on the defect report of ISO/IEC

14496-15

Disposition: accepted

We will ensure that any Corrigendum truly is a correction and not a technical change, and we

will take care to make sure any technical change is communicated to possibly concerned

parties.

If needed we will try to de-correlate the Sync Sample Table and the SAP type so as to respect

existing definitions. We also need to ensure that the common definitions (e.g. of what a Sync

sample promises) are in line with the specific definitions for them in part 15, and indeed for

BLA and CRA we have some contradictions. At the moment, we do seem to have such a

contradiction. We need to send liaisons to a number of organizations outlining the problem

and requesting their view and how to resolve it. (DVB, DASH-IF, DECE, BDA, 3GPP SA4,

ATSC).

5.3.11 m37830 Comments on the defect report of 14496-15

Disposition: noted

(See also M38045 above). Another option is that we maintain the formal definition as-is, but

have a strong recommendation to follow a stricter definition, and some way in the files to

indicate which definition was followed. We think a note will be needed no matter what.

5.3.12 Editor's comments

1. In 7.6.7:

When version 1 of the SampleToGroupBox is used for the random access point sample

grouping, the grouping_type_parameter specifies the tier_id value of the layer(s) or view(s)

that are refreshed in the associated sample. [Ed. (MH): This paragraph specifies the bitstream

subset to which the random access point sample group applies, and hence seems to contradict

with the statements above that the information provided by the random access point sample

group is true for any valid subset in the entire MVC/MVD bitstream.]

We need to differentiate version 0 and version 1 clearly.

2. In 9.6.3:

The semantics of the fields that are common to LHEVCDecoderConfigurationRecord and

HEVCDecoderConfigurationRecord remain unchanged. [Ed. (YK): A check is needed on

whether some of the semantics need to be adjusted to be clearly applicable in the multi-layer

context.]

Editors to check.

3. In 9.7.3.1.1:

[Ed. (MH): The constraints above require the needed parameter sets to be present within the

samples or sample entries that are needed for decoding a picture on a particular layer. The

constraints might have to be even stricter so that they would require the needed parameter sets

to be present within the picture units of the present particular layer or the reference layer and

within the samples or sample entries that are needed for decoding a picture on a particular

layer.]

No strong opinions; isn't this a video coding spec. question? (In what layer are the parameter

sets for that layer?). The rules for the video coding layer must also be followed.

4. In 9.7.3.1.1:

[Ed. (YK): There was a note under m37228 in the FF minutes saying: "It‘s also clear (but we

probably don‘t say it and should) that if multiple sample entries are used with in-line

parameter sets, then the parameter sets are reset at a change of sample entry. That also means

that any change of sample entry has to be at an IRAP." The explicit restriction mentioned in

the last sentence should be applicable to all file formats of video codecs using parameter sets.

Should it be separately said in all the FFs of AVC and its extensions, and HEVC and its

extensions, or just be said in a common place? Or, and it seems making sense, to add to part

12 for all video FFs, to say that sample entry change shall be at a random access point (or

even sync sample).]

We state that decoders are reset on change of sample entry of the base track, and behavior is

undefined if the base track does not change sample entry but a layer track does.

5. In A.5:

[Ed. (YK): What if the set of extracted or aggregated NAL units is empty? Same as for SVC,

each of these fields takes a value conformant with the mapped tier description? But there may

be no such mapped tier for MVC and MVD. Disallow empty cases?]

We delete the question, as we think empty extractors and aggregators are at most useless and

probably not allowed.

5.4 Action Points / Ballots

ISO/IEC DIS 14496-15 4th Edition

(SC 29 N 15245)

Part 15: Carriage of NAL unit structured

video in the ISO Base Media File Format

DIS

(2016-

02-05)

6. Open Font Format (14496-22)

6.1 Topics

6.1.1 ISO/IEC 14496-22 AMD 1 Updates for font collections functionality

The third edition of the "Open Font Format" specification integrated changes introduced by all

previous amendments and corrigendum and added a number of new tools and technologies such as

extended functionality for font collections, new text layout feature tags and new glyph encoding

formats. Early implementations of the new font collection functions revealed certain aspects of the

specification that deemed to be incomplete, this amendment is intended to clarify specific details of

font collection functionality and make other necessary changes and updates.

6.1.2 ISO/IEC 14496-22 AMD 2 Updated text layout features and implementations

6.2 Contributions

.

Number Session Title Source Dispositions

m37774 font Proposed amendment items for ISO/IEC 14496-22 "Open Font Format"

Vladimir Levantovsky (on behalf of AHG on Font Format Representation)

Accepted 15931

6.3 Summary of discussions

6.4 Action Points

JTC 1.29.13.222.01

(14496-22/AMD1)

ISO/IEC 14496-

22:2015/DAM 1

(SC 29 N 15375)

Part 22: Open Font Format

AMENDMENT 1: Updates

for font collections

functionality

DAM

(2016-

04-11)

7. Timed Text (14496-30)

7.1 Topics

7.2 Contributions

.

Number Session Title Source Dispositions

m37811 File Format

Summary of Voting on ISO/IEC 14496-30:2014/DCOR 2

SC 29 Secretariat

Refer 15932

m38165 File Format

Misc-Clarifications-on-14496-30-2014

Michael Dolan

Accepted 15933

7.3 Summary of discussions

7.3.1 M38165 Misc-Clarifications-on-14496-30-2014

Disposition: accepted with revisions

Thank you. We add an informative section, and a clear definition of 'empty document'.

7.4 Action Points

8. Reference Software and Conformance for File (14496-32)

8.1 Topics

8.2 Contributions

.

Number Session Title Source Dispositions

m37928 File Format

On Conformance and Reference Software

Waqar Zia, Thomas Stockhammer

Accepted N15935

m38126 File Format

Coverage of, additions and correction to the ISOBMFF conformance files

Cyril Concolato, Jean Le Feuvre

Accepted N15935

8.3 Summary of discussions

8.3.1 m38126 Coverage of, additions and correction to the ISOBMFF

conformance files

Disposition: accepted

We will also look together at updating the RA, at least to point to tools and conformance files,

but maybe to improve it generally, base it in Github, and so on. We will run the tool here over

the files contributed files for Image file format, below. We also need to look at merging the

old spreadsheet and this feature-coverage list. New WD from this meeting.

8.4 Action Points

9. MVCO (21000-19)

9.1 Topics

9.1.1 ISO/IEC 21000-19 AMD 1 Extensions on Time-Segments and Multi-Track Audio

This amendment constitutes an extension to MVCO and in particular to its functionality related to

description of composite IP entities in the audio domain, whereby the components of a given IP entity

can be located in time and, for the case of multi-track audio, associated with specific tracks.

9.2 Contributions

Number Session Title Source Dispositions

m38031 MPEG-21

Contribution to WD of ISO/IEC 21000-19 AMD 1 Extensions on Time-Segments and Multi-Track Audio

Thomas Wilmering, Panos Kudumakis

Accepted 15936

9.3 Summary of discussions

9.4 Action Points / Ballots

10. Contract Expression Language (21000-20)

10.1 Topics

10.1.1 ISO/IEC 21000-20 2nd

edition

The identified additions will permit the use of MCO and CEL as electronic formats for media

contracts, by covering aspects that are missing in the first edition. Such aspects are real

narrative contracts in most cases indicate the applicable law and the court agreed for any

dispute among the parties; a number of conditions are found to be used in real contracts but

cannot be modelled with the current version of the two standards: representation of obligation

to payments related to contracts

10.2 Contributions

Number Session Title Source Dispositions

m37550 MPEG-21

Summary of Voting on ISO/IEC DIS 21000-20 [2nd Edition]

SC 29 Secretariat Refer 15937

10.3 Summary of discussions

10.4 Action Points / Ballots

ISO/IEC DIS 21000-20 2nd Edition

(SC 29 N 15144) Part 20: Contract Expression Language

DIS

(2015-

12-21)

11. Media Contract Ontology (21000-21)

11.1 Topics

11.1.1 ISO/IEC 21000-21 2nd

edition

The identified additions will permit the use of MCO and CEL as electronic formats for media

contracts, by covering aspects that are missing in the first edition. Such aspects are real

narrative contracts in most cases indicate the applicable law and the court agreed for any

dispute among the parties; a number of conditions are found to be used in real contracts but

cannot be modelled with the current version of the two standards: representation of obligation

to payments related to contracts

11.2 Contributions

Number Session Title Source Dispositions

m37547 MPEG-21

Summary of Voting on ISO/IEC DIS 21000-21 [2nd Edition]

SC 29 Secretariat Refer 15939

11.3 Summary of discussions

11.4 Action Points / Ballots

ISO/IEC DIS 21000-21 2nd Edition

(SC 29 N 15146) Part 21: Media contract ontology

DIS

(2015-

12-21)

12. User Description (21000-22)

12.1 Topics

12.1.1 User Description

The MPEG User Description (MPEG-UD) aims to provide interoperability among various

personalized applications and services. A user can store all his information in the MPEG-UD.

The MPEG-UD may be safely and securely managed by the users, e.g. by separating between

public and private encrypted data. Some data is static in while other data is dynamic.

12.2 Contributions

Number Session Title Source Dispositions

m37548 user Summary of Voting on ISO/IEC DIS 21000-22

SC 29 Secretariat Refer 15941

m37780 user Demonstration of audio and video for MPEG-UD

Hyun Sook Kim, Sungmoon Chun, Hyunchul Ko, Miran Choi

Noted

m37781 user Demo for MPEG-UD: Face-to-face speech translation

Miran Choi, Minkyu Lee, Young-Gil Kim, Sanghoon Kim

Noted

m37835 user RAI's contribution to MPEG-UD reference software

Alberto MESSINA Accepted 15943

m37988 user Mpeg-UD Reference S/W for RRUI Service

Jaewon Moon(KETI), Jongyun Lim(KETI), Tae-Boem Lim(KETI), Seung Woo Kum(KETI), Min-Uk Kim(Konkuk Univ.), Hyo-Chul Bae(Konkuk Univ.)

Accepted 15943

m37992 user Demonstration of usage of MPEG-UD

Bojan Joveski, Mihai Mitrea, Rama Rao Ganji

Noted

m38050 user Proposal of error modification of validator in reference software

Si-Hwan Jang, Sanghyun Joo, Kyoung-Ill Kim, Chanho Jung, Jiwon

Accepted 15943

Lee, Hyung-Gi Byun, Jang-Sik Choi

m38051 user Demo program of visual communication for reference software

Si-Hwan Jang, Sanghyun Joo, Kyoung-Ill Kim, Chanho Jung, Jiwon Lee, Hyung-Gi Byun, Jang-Sik Choi

Noted

m38053 user Proposal of Validation Tool for MPEG-21 User Description Reference Software

Hyo-Chul Bae, Kyoungro Yoon, Seung-Taek Lim, Dalwon Jang,

Accepted 15943

12.3 Summary of discussions

12.4 Action Points

ISO/IEC DIS 21000-22

(SC 29 N 15149) Part 22: User Description

DIS

(2015-

12-21)

13. MP-AF (23000-15)

13.1 Topics

13.1.1 ISO/IEC 23000-15 Multimedia Preservation Application Format

The objective of the Multimedia Preservation Description Information (MPDI) framework is

to provide a standardized description to multimedia content to enable users to plan, execute,

and evaluate preservation operations to achieve the objectives of digital preservation.

13.2 Contributions

Number Session Title Source Dispositions

13.3 Summary of discussions

13.4 Action Points

ISO/IEC FDIS 23000-15

(SC 29 N 15432)

Part 15: Multimedia preservation

application

FDIS

(2016-

04-04)

ISO/IEC 23000-15:201x/DAM 1

(SC 29 N 15434)

Part 15: Multimedia preservation

application

AMENDMENT 1: Implementation

Guideline for MP-AF

DAM

(2016-

04-11)

14. Publish/Subscribe AF (23000-16)

14.1 Topics

14.1.1 ISO/IEC 23000-16 Publish/Subscribe Application Format

Publish/Subscribe (PubSub) is an established communication paradigm where senders do not

communicate information directly to intended receivers but rely instead on a service that

mediates the relationship between senders and receivers. While generic PubSub specifications

exist, there are some specific features that are typical of a multimedia application that can be

easily supported by a media-friendly PubSub format based on MPEG technology.

14.2 Contributions

Number Session Title Source Dispositions

m37649 AF Summary of Voting on ISO/IEC DIS 23000-16

SC 29 Secretariat

Accepted 15944

14.3 Summary of discussions

14.4 Action Points

ISO/IEC DIS 23000-16

(SC 29 N 15235)

Part 16: Publish/Subscribe Application

Format

DIS

(2016-

01-29)

15. Media Linking AF (23000-18)

15.1 Topics

15.1.1 ISO/IEC 23000-17 Media Linking AF

The development of the MAF called ―Media Linking Application Format‖ (MLAF ISO/IEC

23000-18) is prompted by existing many examples of services where media transmitted for

consumption on a primary device (source item) give users hints to consume other related

media on a secondary or companion device (destination items). To facilitate interoperability

of such services it is beneficial to define a standard data structure (a ―format‖) that codifies

the relationship between the two information sources.

15.2 Contributions

Number Session Title Source Dispositions

M38132 MLAF demonstration Marius Preda on behalf

of BRIDGET consortium

Noted

15.3 Summary of discussions

15.4 Action Points

ISO/IEC DIS 23000-18

(SC 29 N 15436)

Part 18: Media Linking Application

Format

DIS

(2016-

05-12)

16. Adaptive Screen Content Sharing AF (23000-19)

16.1 Topics

16.1.1 ISO/IEC 23000-18 Adaptive Screen Content Sharing Application Format

16.2 Contributions

Number Session Title Source Dispositions

16.3 Summary of discussions

16.4 Action Points

17. Omnidirectional Media AF (23000-20)

17.1 Topics

17.1.1 ISO/IEC 23000-20 Omnidirectional Media Application Format

17.2 Contributions

Number Session Title Source Dispositions

m37819 AF Additional Requirements for Omnidirectional Media Format

Jangwon Lee, Sejin Oh, Jong-Yeul Suh

Accepted 16143

m37836 AF Requirements for Omnidirectional Media Application Format

Eric Yip, Byeongdoo Choi, Gunil Lee, Madhukar Budagavi, Hossein Najaf-Zadeh, Esmaeil Faramarzi, Youngkwon Lim(Samsung)

Accepted 16143

m37837 AF Proposed Text for Omnidirectional Media Application Format

Byeongdoo Choi, Eric Yip, Gunil Lee,Madhukar Budagavi, Hossein Najaf-Zadeh, Esmaeil Faramarzi, Youngkwon Lim(Samsung)

Accepted 15946

m37914 AF Support of VR video in ISO base media file format

Ye-Kui Wang, Hendry, Marta Karczewicz

Accepted 15946

17.3 Summary of discussions

17.4 Action Points

18. Common Media AF (23000-21)

18.1 Topics

18.1.1 ISO/IEC 23000-21 Common Media Application Format

18.2 Contributions

Number Session Title Source Dispositions

m37755 AF Proposed Common Media Format for Segmented Media

David Singer, Kilroy Hughes, Bill May, Jeffrey Goldberg, Alex Giladi, Will Law,

Accepted 15947

m37756 AF Proposed Requirements for Common Media Format for Segmented Media

Krasimir Kolarov, John Simmons, David Singer, Iraj Sodagar, Bill May, Jeffrey Goldberg, Will Law, Yasser Syed, Sejin Oh, Per Fröjdh, Kevin Streeter, Diego Gibellino

Accepted 16144

m37872 AF Comments on the use-cases, requirements and specification for Common Media Format

Thorsten Lohmar, Prabhu Navali, Per Fröjdh, Jonatan Samuelsson

Accepted 15947

18.3 Summary of discussions

18.4 Action Points

19. Common encryption format for ISO BMFF (23001-7)

19.1 Topics

19.1.1 ISO/IEC 23001-7 3rd

Edition

This format defines a way to encrypt media (audio, video, etc.) in files of the ISO base media

file format family. By using a common encryption format, a single media asset can be used by

several services and devices using different digital rights management systems, and the

implementation complexity that would be consequent on having duplicate files and formats

for the same content can be reduced or eliminated.

19.2 Contributions

Number Session Title Source Disposition

19.3 Summary of discussions

19.4 Action Points / Ballots

20. CICP (23001-8)

20.1 Topics

20.2 Contributions

Number Session Title Source Disposition

20.3 Summary of discussions

20.4 Action Points

ISO/IEC FDIS 23001-8:201x [2nd

Edition]

(SC 29 N 15233)

Part 8: Coding-independent code-points

FDIS

(2015-

11-23)

21. Common encryption format for MPEG-2 TS (23001-9)

21.1 Topics

21.1.1 ISO/IEC 23001-9 AMD 1 Support of Sparse Encryption

The 'cbc2' mode in ISO/IEC 23001-7:201X / AMD1 proposes sparse encryption, where every

16 bytes out of 160 bytes of bitstream are encrypted. Carriage of such a mode in MPEG-2

transport will result in very significant overhead, as two TS packets would be needed to carry

160 bytes of bitstream. This amendment provides a framework that significantly reduces the

overhead of such encryption mode while remaining backwards compliant with the existing

MPEG-2 TS conditional access framework.

21.2 Contributions

Number Session Title Source Disposition

21.3 Summary of discussions

21.4 Action Points

ISO/IEC FDIS 23001-9:201x [2nd

Edition]

(SC 29 N 15445)

Part 9: Common Encryption for MPEG-2

Transport Streams

FDIS

(2016-

03-13)

22. Timed metadata metrics of Media in ISOBMFF (23001-10)

22.1 Topics

22.1.1 ISO/IEC 23001-10 Timed Metadata Metrics of Media in the ISO Base Media File

Format

Specifies a storage format for commonly used, timed metadata metrics of media, such as

quality related PSNR, SSIM, and others, for carriage in metadata tracks of the ISO Base

Media File Format.

22.1.2 ISO/IEC 23001-10 AMD 1 Carriage of ROI

This amendment of ISO/IEC 23001 defines a storage format for a new type of timed metadata

metrics which are spatial coordinates. These coordinates relate to the position of media track

with respect to another media track in the ISO Base Media File Format.

22.2 Contributions

Number Session Title Source Disposition

22.3 Summary of discussions

22.4 Action Points

ISO/IEC 23001-10:2015/DAM 1

(SC 29 N 15499)

Part 10: Carriage of Timed Metadata

Metrics of Media in ISO Base Media File

Format, AMENDMENT 1: Carriage of

ROI coordinates

DAM

(2016-

05-17)

23. Green Metadata (23001-11)

23.1 Topics

23.1.1 ISO/IEC 23001-11 Amd.1: Carriage of Green Metadata in an HEVC SEI

Message

This amendment will specify an HEVC SEI message carrying metadata that could be used for

energy-efficient media consumption as specified in ISO/IEC 23001-11:201x. The amendment also

modifies text specifying the carriage of Green Metadata in an AVC SEI message so that the AVC and

HEVC SEI messages are consistent.

23.2 Contributions

Number

Session

Title Source Dispositions

m37563

Green Summary of Voting on ISO/IEC 23001-11:201x/DAM 1

SC 29 Secretariat Refer 15948

m37792

Green HEVC Green Metadata Proposition

[email protected], [email protected], [email protected]

Noted

m37846

Green Reference Software for ISO BMFF Green Metadata parsing

[email protected], [email protected], [email protected]

Accepted 15951

m38018

Green Impact of 8-bits encoding on the Green Metadata accuracy

Yahia Benmoussa, Nicolas Derouineau, Nicolas Tizon, Eric Senn,

Noted

m38033

Green Enhancement of "dequantization and inverse transform" metadata (III)

yahia benmoussa, eric senn, Nicolas Tizon, Nicolas Derouineau

Noted

m38068

Green Recommended practices for power measurements and analysis for multimedia applications

Steve Saunders, Alexis Michael Tourapis, Krasimir Kolarov, David Singer

Noted

23.3 Summary of discussions

23.4 Action Points

ISO/IEC 23001-11:2015/DAM 1

(SC 29 N 15168)

Part 11: Green metadata, AMENDMENT

1: Carriage of Green Metadata in an

HEVC SEI Message

DAM

(2016-

01-05)

24. 23001-12 Sample Variants in File Format

24.1 Topics

24.1.1 ISO/IEC 23001-12 Sample Variants in ISOBMFF

This adds support for a general framework for sample ―variants‖ in the ISOBMFF. This

would be used by a forensic ―watermarking‖ system to modify the base sample, but is

independent of the ―watermarking‖ algorithm. Variants are sample data that may be used by a

decoder and DRM system to ultimately output video or audio that is marked in a way that can

be unique to individual decoders or decoder product models. The application of the variants

during the decode process is under control of the DRM system (and ultimately the content

provider).

24.2 Contributions

Number Session Title Source Dispositions

24.3 Summary of discussions

24.4 Action Points

ISO/IEC FDIS 23001-12

(SC 29 N 15115)

Part 12: Sample Variants in the ISO Base

Media File Format

FDIS

(2015-

11-04)

25. MXM (23006-1)

25.1 Topics

25.1.1 MXM

25.2 Contributions

Number

Session

Title Source Dispositions

m37991

MXM Proposed changes to ISO/IEC CD 23006-1 3rd edition

Giuseppe Vavalà (CEDEO), Kenichi Nakamura (Panasonic)

Accepted 15953

m37558

MXM Summary of Voting on ISO/IEC CD 23006-1 [3rd Edition]

SC 29 Secretariat Refer 15952

25.3 Summary of discussions

25.4 Action Points

26. MXM API (23006-2)

26.1 Topics

26.1.1 MXM

26.2 Contributions

Number

Session

Title Source Dispositions

m3756 MXM Summary of Voting on ISO/IEC DIS SC 29 Secretariat Noted

1 23006-2 [3rd Edition] m37806 mxm Editor's preparation for ISO/IEC 3rd

FDIS 23006-2 Jae-Kwan Yun, Jong-Hyun Jang

Accepted 15954

26.3 Summary of discussions

26.4 Action Points

ISO/IEC DIS 23006-2 [3rd Edition]

(SC 29 N 15127)

Part 2: MPEG extensible middleware

(MXM) API

DIS

(2016-

01-05)

27. MXM Conformance (23006-3)

27.1 Topics

27.1.1 MXM

27.2 Contributions

Number

Session

Title Source Dispositions

m37562

MXM Summary of Voting on ISO/IEC DIS 23006-3 [3rd Edition]

SC 29 Secretariat Noted

m37807 mxm Editor's preparation for ISO/IEC 3rd FDIS 23006-3

Jae-Kwan Yun, Jong-Hyun Jang

Accepted 15955

27.3 Summary of discussions

27.4 Action Points

ISO/IEC DIS 23006-3 [3rd Edition] Part 3: Conformance and reference DIS

(SC 29 N 15129) software (2016-

01-05)

28. MMT (23008-1)

28.1 Topics

28.1.1 ISO/IEC 23008-1:201x AMD 1 Use of MMT Data in MPEG-H 3D Audio

This amendment defines normative behavior of using the system data carried over MPEG-H

3D Audio

28.1.2 ISO/IEC 23008-1:201x AMD 2 Mobile MMT

28.2 Contributions

number Session

Title Source

m37546

MMT Summary of Voting on ISO/IEC 23008-1:2014/DCOR 2

SC 29 Secretariat Refer 15956

m37554

MMT Summary of Voting on ISO/IEC 23008-1:201x/PDAM 1

SC 29 Secretariat Refer 15958

m37804

MMT Proof of concept: NAMF for Multipath MMT

Jihyeok Yun, Kyeongwon Kim, Taeseop Kim, Dough Young Suh, Jong Min Lee

Noted

m37838

MMT Descriptions on MANE Youngwan So, Kyungmo Park

Accepted 15960

m37839

MMT MMT Session initiation Youngwan So, Kyoungmo Park

Accepted 15960

m37850

MMT TRUFFLE: request of virtualized network function to MANE

Doug Young Suh, Bokyun Jo, Jongmin Lee

Noted

m37852

MMT The usage of fragment counter for a bigger size of MFU

Dongyeon Kim, Youngwan So, Kyungmo Park

Accepted 15957

m37939

MMT MMT Session Setup and Control Imed Bouazizi Accepted 15960

m37940

MMT MMT Integration with CDNs Imed Bouazizi Noted

m37941

MMT Migrating Sessions from HTTP to MMT

Imed Bouazizi Accepted 15960

m37942

MMT MMT as a Transport Component for Broadcast

Imed Bouazizi Accepted 15960

m37943

MMT Support for new Container Formats Imed Bouazizi noted

m37949

MMT [MMT] Update of MP table Hyun-Koo Yang, Kyungmo Park, Youngwan So

Accepted 15960

m37959

MMT Personalized Video Insertion for TRUFFLE

Jongmin Lee Accepted 15960

m37960

MMT NAT Traversal for TRUFFLE Jongmin Lee Accepted 15960

m37974

MMT MMT signaling for Presentation Timestamp

Kyungmo Park Accepted 15960

m37978

MMT MMT signaling message for consumption Report

jaehyeon bae, youngwan so, kyungmo park

Accepted 15960

m38007

MMT An optimized transfer mechanism for static slices in video stream

Yiling Xu, Chengzhi Wang, Hao Chen, Wenjun Zhang

Noted

m38010

MMT Improving protocol efficiency for short messages transmission

Yiling Xu, Hao Chen, Ning Zhuang, Wenjun Zhang

Noted

m38011

MMT Real-time interaction message Yiling Xu, Ning Zhuang, Hao Chen, Chengzhi Wang, Wenjun Zhang

Noted

m38012

MMT Resource Request/Response Message

Yiling Xu, Hao Chen, Ning Zhuang, Wenjun Zhang

Accepted 15961

m38028

MMT Proposed editorial improvements for MMT 2nd edition

Kyungmo Park Accepted 15964

m38043

MMT Request for editorial correction of header compression in ISO/IEC 23008-1 2nd edition

Changkyu Lee, Juyoung Park,

Ccepted 15957

m38073

MMT comment on FEC signaling in MMT

Lulin Chen, Shan Liu, Shawmin Lei

Noted

M37442

Signaling of Content Accessible Time Window

Yiling Xu, Chengzhi Wang, Wenjie Zhu, Wenjun Zhang

Accepted 15961

28.3 Summary of discussions

Refer m38012

28.4 Action Points

ISO/IEC 23008-1:2014/DCOR 2 Part 1: MPEG media transport (MMT), DCOR

(SC 29 N 15249) TECHNICAL CORRIGENDUM 2 (2015-

12-01)

29. MMT Reference Software (23008-4)

29.1 Topics

29.2 Contributions

number Session

Title Source

m37551

MMT Summary of Voting on ISO/IEC DIS 23008-4

SC 29 Secretariat Noted

m37948

MMT Updates to the MMT reference software Imed Bouazizi Acce

pted

1596

7

29.3 Summary of discussions

Refer m38012

29.4 Action Points

ISO/IEC DIS 23008-4

(SC 29 N 15108)

Part 4: MMT Reference and

Conformance Software

DIS

(2015-

12-21)

30. FEC Codes (23008-10)

30.1 Topics

30.2 Contributions

number Session

Title Source

m38014

MMT Performance of adaptive FEC proposed in m37481

Yiling Xu, Wei Huang, Hao Chen, Bo Li, Wenjun Zhang

Noted

m38094

MMT FF-LDGM Codes for CE on

MMT Adaptive AL-FEC

Takayuki Nakachi,

Masahiko Kitamura,

Tatsuya Fujii

noted

30.3 Summary of discussions

Refer m38012

30.4 Action Points

31. CI (23008-11)

31.1 Topics

31.1.1 ISO/IEC 23008-11 1st edition

MMT defines a composition layer to enable the authoring and delivery of rich media services.

The Composition Information (Cl) is authored using HTML5 and thus exhibits all the

Capabilities and tools availablefor HTML5. In addition, MMT CI provides tools to support

dynamic media scenes and their delivery over unicast channels, authoring of content for

secondary screens, as well as separation of media dynamics from scene setup. This is

achieved in a backward compatible manner using a dedicated CI file that is in XML format.

31.2 Contributions

number Session

Title Source

m37944

MMT Customized Presentations for MPEG-CI

Imed Bouazizi Accepted 15970

m38001

MMT Customized Presentation Scheme for live broadcasting

Yiling Xu, Wenjie Zhu, Hao Chen, Wenjun Zhang

Accepted 15970

m38002

MMT Customized Presentation Scheme for VoD

Yiling Xu, Wenjie Zhu, Bo Li, Lianghui Zhang, Wenjun Zhang

Noted

m3800 MMT MMT Asset composition Yiling Xu, Hao Chen, Noted

3 relationship Teng Li, Wenjun Zhang

m38005

MMT MMT Asset homogeneity relationship

Yiling Xu, Hao Chen, Teng Li, Wenjun Zhang

Noted

m38013

MMT Spatial Partitioning Based on the Attributes of Media Content

Yiling Xu, Shaowei Xie, Ying Hu, Wenjun Zhang

Noted

31.3 Summary of discussions

Refer m38012

31.4 Action Points

32. MMT Implementation Guide (23008-13)

32.1 Topics

32.1.1 ISO/IEC 23008-13 1st edition

The MMT Implementation Guidelines describe the usage of MMT for different media

delivery scenarios. It describes the different functions that MMT provides and shows using

examples how they can deployed separately or together to realize a media delivery service.

32.2 Contributions

number Session

Title Source

M38099

MMT Summary of Voting on ISO/IEC PDTR

23008-13 [2nd Edition]

SC 29 Secretariat Refer 15976

m37607

MMT [MMT-IG] Proposal of additional text for chapter 5.7.2

Yejin Sohn, Minju Cho, Jongho Paik

Accepted 15978

m37629

MMT [MMT-IG]Use case: Combination of MMT and HTTP streaming for synchronized presentation

Minju Cho, Yejin Sohn, Jongho Paik

Accepted 15978

m37672

MMT Implementation guidelines for Multipath MMT: failure moderation

Jihyeok Yun, Kyeongwon Kim, Taeseop Kim, Doug Young Suh, Jong Min Lee,

Noted

m38006

MMT IG of Content Accessible Time Window Yiling Xu, Chengzhi Wang, Hao Chen,

Accepted

Wenjun Zhang 15978

m38030

MMT [MMT-IG] MMT QoS management for media adaptation service

Kyungmo Park, Youngwan So

Accepted 15978

m37533

MMT Proposal of additional text and data for MMT Implementation guidelines

Shuichi Aoki, Yuki Kawamura

Accepted 15978

32.3 Summary of discussions

Refer m38012

32.4 Action Points

33. Image File Format (23008-12)

33.1 Topics

33.1.1 ISO/IEC 23008-12 1st edition

Support for

1) sequences, timed or untimed, with or without audio etc.

2) single still images, the simple case, maybe based on JPX

33.2 Contributions

number Session

Title Source

m37641

File Format

Summary of Voting on ISO/IEC 23008-12:201x/DCOR 1

SC 29 Secretariat Refer 15974

m37844

File Format

New brand for Image File Format

Franck Denoual, Frederic Maze

Rejected

m37866

File Format

Multi-layer HEVC support in HEIF

V. K. Malamal Vadakital, M. M. Hannuksela (Nokia)

Accepted 15973

m37867

File Format

Progressive refinement indication for HEIF

M. M. Hannuksela, E. B. Aksu (Nokia)

Accepted 15973

m37868

File Format

HEIF conformance files E. B. Aksu (Nokia), L. Heikkilä (Vincit), J. Lainema, M. M. Hannuksela (Nokia)

Accepted 15935

m37904

File Format

On the Image file format and enhancements

David Singer Accepted 15975

33.3 Summary of discussions

33.3.1 m37641 Summary of Voting on ISO/IEC 23008-12:201x/DCOR 1

Disposition: see DoCR

We agree to also incorporate the clarification below under Misc.

33.3.2 m37844 New brand for Image File Format

Disposition: not accepted

We note that a similar effect might be achieved for the user by having a primary item that's a

crop of another item, and one could say that the cropped image is also an alternative to a tile

item (i.e. the tile item isn't primary, but an alternative to a primary). This is more accessible to

more readers (those capable only of cropping, and those capable of decoding tiles).

We note also that files using this new brand would be 'general' HEIF files, not specifically

from their MIME type declared as being HEVC-coded, which might be a disadvantage.

We are concerned about 'brand proliferation' and we feel we will probably need new brands

when we see market adoption.

33.3.3 m37866 Multi-layer HEVC support in HEIF

Disposition: accepted

We note that a layered HEVC coded image will deliver the base layer from the decoder if no

layer selection is made, but this is coding-system dependent. We'd prefer not to copy the

syntax of 'oinf', but that means we'd need to make it a record in the part 15 spec., or perhaps

we can say "has the same fields as the oinf"? Editors to do their best. We should state the

reserved values.

33.3.4 m37867 Progressive refinement indication for HEIF

Disposition: partially accepted

We note that a reader might do progressive display 'opportunistically', noticing that files have

the structures (alternative group, sequence of data) that allows it. We wonder if the brand is

needed to warn/promise.

For now, we'd like an informative Annex on progressive display in the amendment, but hold

on making a brand. There is already a note in 6.2, which should point forward to this new

Annex (which should address the subject of the note as well).

33.3.5 m37904 On the Image file format and enhancements

Disposition: accepted

On the extension problem: we add 's' to the end of the extensions for sequences, in the COR,

and hold off on IANA registration for the COR finishing.

Yes, we switch to avci.

The profile-tier-value is a mistake, should be the 3 bytes etc.

Into the amendment.

33.3.6 m37868 HEIF conformance files

Disposition: accepted

We note that the conformance suite doesn't need to cover all the negative cases, and indeed

there may be some positive ones that don't need checking. We seem to have quite a few not-

yet-covered positive cases (filter: blank on the file, positive on the type). Into the WD of

conformance.

33.3.7 Misc

In ItemPropertyContainerBox, it seems possible that a ‗free‘ atom might be present amongst

the properties. I understand that it isn‘t sensible to be associated with any item, but its

presence uses up a slot, correct (i.e. that index within propertyContainer counts but is

unassociated).

we should clarify this (I think the answer is yes, it uses up a slot)

The definition of ‗ispe‘ of claims that its quantity is to be exactly one, but the text suggests

that it can be more than one. We think the definition is correct and the text should be fixed to

avoid confusion. Could we decide on this e.g. in Thursday's file format session.

Box Type: 'ispe'Property Type: Descriptive item

propertyContainer: ItemPropertyContainerBoxMandatory (per an item):

YesQuantity (per an item): One

The ImageSpatialExtentsProperty documents the width and height of the associated image

item. Every image item must be associated with at least one property of this type, prior to the

association of all transformative properties, that declares the width and height of the image.

33.4 Action Points

34. Media presentation description and segment formats (23009-1)

34.1 Topics

34.1.1 ISO/IEC 23009-1 AMD 1 Extended profiles and time synchronization

This amendment will add support of UTC timing synchronization and Inband event

synchronization

34.1.2 ISO/IEC 23009-1 AMD 2 Spatial Relationship Description, Generalized URL

parameters and other extensions

This amendment to ISO/IEC 23009-1 adds the ability for MPD authors to express:

- Spatial relationships between representations in the MPD;

- Flexible parameter insertions in URLs used to query media segments;

- Role @values compatible with the kind values used in the W3C HTML5

recommendation;

Different signaling of client authentication and content authorization methods

34.1.3 ISO/IEC 23009-1 AMD 3 Authentication, Access Control and multiple MPDs

The following rationales are provided: Authentication and authorization of a client are key enablers of establishing trust in a client (e.g., a

player). This is needed to ensure only clients that obey a specific set of requirements (e.g. ones imposed

by advertisers or MVPDs) have access to content.

MPD linking allows pointing to media components in other MPDs to provide a relation, such that

seamless transition between such MPDs is possible. A specific example is mosaic channels in

combination with Spatial Relation Description as defined in the ISO/IEC 23009-1:2014 Amd.2.

The callback event is considered relevant for different use cases, including consumption and ad

tracking.

Period continuity enables to break content into multiple Periods, but provides a seamless playout across

Period boundaries. This is relevant for use cases such as providing robust live services and ad insertion.

34.1.4 ISO/IEC 23009-1 AMD 4 Segment Independent SAP Signalling, MPD chaining

and other extensions

This amendment provides several enhancements to the current ISO/IEC 23009-1, addressing

several use cases of significant importance to the industry

MPD chaining is introduced to simplify implementation of pre-roll ads in cases of

targeted dynamic advertising in live linear content. This use case ("show pre-roll, and

switch into a live channel or to a VoD asset) is very common and essential for

implementing advanced advertising systems

Segment Independent SAP Signalling (SISSI) is introduced in order to improve DASH

performance in low latency video streaming while using high-efficiency video coding

structures. The improved aspects include, among others, reduced channel change time

in broadcast and multicast. The solution also allows for a more responsive rate

adaptation logic. In this context this amendment defines a new profile which uses the

new signaling and is suitable for a linear TV service.

MPD Reset: This functionality permits to signal that the updated MPD is no longer

contains previously promised claims, and a reset, typically resulting from an encoder

outage.

Simplified On-Demand Periods: This functionality allows to split an On-Demand

file into multiple virtual Periods.

34.2 Contributions

Number

Session

Title Source Dispositions

m37544

DASH Summary of Voting on ISO/IEC 23009-1:2014/PDAM 4

SC 29 Secretariat Refer 15981

m37815

DASH Summary of Voting on ISO/IEC 23009-1:2014/DAM 3

ITTF via SC 29 Secretariat

Refer 15979

m37917

DASH Proposed Updates to Broadcast TV Profile

Thomas Stockhammer

Accepted 15983

m37621

DASH An automatic push-directive Peter Klenner, Frank Herrmann

noted

m37772

DASH Fragmented MPD for DASH streaming applications

Lulin Chen, Shan Liu, PoLin Lai, Shawmin Lei

Noted

m37849

DASH Comment on 23009-1 strudy DAM3 Mitsuhiro HIrabayashi, Kazuhiko Takabayashi, Paul Szucs, Yasuaki Yamagishi

noted

m37871

DASH Comments on DAM4 Yago Sanchez, Robert Skupin, Karsten Grueneberg, Cornelius Hellge, Thomas Schierl

Noted

m37906

DASH Possible DASH Defects Jean Le Feuvre, Cyril Concolato, , ,

Accepted 15983

m37913

DASH Dependent Random Access Point (DRAP) pictures in DASH

J. Samuelsson, M. Pettersson, R. Sjoberg (Ericsson)

Noted

m37916

DASH Comments on DuI Thomas Stockhammer

Accepted 15983

m37918

DASH Next Generation Audio in DASH Thomas Stockhammer

Accepted 15981

m37920

DASH Roles and Roles schemes Thomas Stockhammer

Accepted 15983

m37921

DASH Labels in DASH Thomas Stockhammer

Accepted 15982

m37922

DASH Selection Priority and Group Thomas Stockhammer

Noted

m37923

DASH Adaptation Set Switching Thomas Stockhammer

Accepted 15982

m37927

DASH Clarification on the format of xlink remote element

Waqar Zia, Thomas Stockhammer

Accepted 15983

m37945

DASH Support for VR in DASH Imed Bouazizi

m38032

DASH Moving Regions of Interest signalling in MPD

Emmanuel Thomas

Accepted 15982

m38034

DASH Technical comments on Amd 3: authorization and authentication scheme

Emmanuel Thomas

Noted

m37616

DASH [FDH] Comments on DASH-FDH push-template

PoLin Lai, Shan Liu, Lulin Chen, Shawmin Lei

Noted

m37617

DASH CE-FDH: Streaming flow control of sever push with a push directive

Lulin Chen, Shan Liu, Shawmin Lei

Noted

m37618

DASH CE-FDH- Server push with a fragmented MPD

Lulin Chen, Shan Liu, PoLin Lai, Shawmin Lei

Noted

m37620

DASH Comments on DASH-FDH URL Templates

Li Liu, XG Zhang Noted

m37622

DASH [CE-FDH] Comments on push template Franck Denoual, Frederic Maze, Herve Ruellan

Noted

m37623

DASH [CE-FDH] Editorial comments on WD Franck Denoual, Frederic Maze,

Accepted 15993

m37626

DASH [FDH] Comments on FDH WebSocket Bindings

Kevin Streeter, Vishy Swaminathan

Accepted 15993

m37843

DASH [CE-FDH] Fast start for DASH FDH Franck Denoual, Frederic Maze, Herve Ruellan, Youenn Fablet, Nael Ouedraogo

Accepted 15993

m37847

DASH [CE-FDH] Additional parameters for Push Directives

Kazuhiko Takabayashi, Mitsuhiro Hirabayashi

Accepted 15993

m37919

DASH [FDH] Editorial and technical comments on WD3

Iraj Sodagar Accepted 15993

m38038

DASH [FDH] CE-FDH Conference Call Notes Kevin Streeter Noted

m38070

DASH [FDH] Additional comments on DASH-FDH push-template

PoLin Lai, Shan Liu, Lulin Chen, Shawmin Lei

Noted

m37761

DASH [PACO] Generalized Playback Control: a framework for flexible playback

Iraj Sodagar noted

control

m37762

DASH [PACO] PACO CE Report Iraj Sodagar Noted

m37848

DASH [PACO] Carriage of playback control related information/data

Kazuhiko Takabayashi, Mitsuhiro HIrabayashi

Noted

M38107

QEC Effort Ali C. Begen

Noted

M38150

Comments on Broadcast TV profile (MPEG-DASH 3rd edition)

Mary-Luc Champel

Accepted 15983

M38151

Scheme for indication of content element roles

Kurt Krauss, Thomas Stockhammer

Noted

M38119

[FDH] Lists are sufficient

Thomas Stockhammer

Noted

M38164

[FDH] Proposal for Simplified Template Format for FDH

Kevin Streeter, Vishy Swaminathan

Accepted 15993

M38162

[FDH] Complementary comments on URL Template

Li Liu Noted

M38167

[CE-FDH] Push Directive enabling fast start streaming on MPD request

Frederic Maze, Franck Denoual (Canon), Kazuhiko Takabayashi, Mitsuhiro Hirabayashi (Sony)

Noted

34.3 Summary of discussions

Refer m38918

34.4 Action Points

ISO/IEC 23009-1:2014/DAM 3

(SC 29 N 15183)

Part 1: Media presentation description

and segment formats,

AMENDMENT 3: Authentication, MPD

linking, Callback Event, Period

Continuity and other Extensions

DAM

(2016-

02-12)

Draft 3rd

edition = 2nd

edition + COR 1 + AMD 1 + AMD 2 (Emmanuel) + DAM 3 + DCOR

2

35. Conformance and Ref. SW. for DASH (23009-2)

35.1 Topics

35.1.1 ISO/IEC 23009-2 1st edition

35.2 Contributions

Number Session Title Source Dispositions

m37281 DASH On DASH Conformance

Software Waqar Zia, Thomas Stockhammer

Noted

m37226 DASH DASH: On NB comments on

ISO/IEC CD 23009-2 [2nd Edition]

Christian Timmerer, Brendan Long, Waqar Zia,

noted

35.3 Summary of discussions

Refer m38918

35.4 Action Points

ISO/IEC DIS 23009-2:201x [2nd Edition]

(SC 29 N 15641)

Part 2: Conformance and reference

software

DIS

(2016-

07-28)

36. Implementation Guidelines (23009-3)

36.1 Topics

36.1.1 ISO/IEC 23009-3 1st edition

36.2 Contributions

Number Session Title Source Dispositions

m37776 DASH [Part 3] MPD chaining for DASH ad insertion with early termination use case

Iraj Sodagar Accepted 15990

36.3 Summary of discussions

Refer m38918

36.4 Action Points

37. Segment encryption and authentication (23009-4)

37.1 Topics

37.1.1 ISO/IEC 23009-4 1st edition

37.2 Contributions

Number Session Title Source Dispositions

37.3 Summary of discussions

37.4 Action Points

38. SAND (23009-5)

38.1 Topics

38.1.1 ISO/IEC 23009-5 1st edition

In order to enhance the delivery of DASH content, Server and network assisted DASH

(SAND) introduces messages that are exchanged between infrastructure components and

DASH clients over underlying network protocols (e.g., HTTP 1.1, 2.0 or Websockets). The

infrastructure components may comprise, but are not limited to, servers, proxies, caches,

CDN and analytics servers.

38.2 Contributions

Number Session Title Source Dispositions

m37721 DASH [SAND] A Proposal to improve SAND alternatives

Iraj Sodagar Accepted 15991

m37856 DASH [SAND] selection of cached representations

Remi Houdaille

Accepted 15991

m37924 DASH SAND: Comments on DIS Thomas Stockhammer

Accepted 15991

m37925 DASH SAND: Addition of Byte Ranges Thomas Stockhammer

Accepted 15991

m37926 DASH SAND: Partial File Delivery Thomas Stockhammer

noted

m37989 DASH On SAND conformance Emmanuel Thomas

noted

m38035 DASH Report on SAND-CE Emmanuel Thomas, Mary-Luc Champel, Ali C. Begen

noted

M38166 SAND SoDIS 1st draft

Mary-Luc Champel

Accepted 15991

M38168 SAND capabilities messages

Mary-Luc Champel

Accepted 15991

M38154 A Proof of Concept for SAND conformance

Emmanuel Thomas

noted

38.3 Summary of discussions

Refer m38918

38.4 Action Points

ISO/IEC DIS 23009-5

(SC 29 N 15454)

Part 5: Server and network assisted

DASH (SAND)

DIS

(2016-

04-20)

39. Exploration – Media Orchestration

39.1 Media Orchestration

39.2 Contributions

Number Session Title Source Dispositions

m37532 MORE Functional components for Media Orchestration

M. Oskar van Deventer noted

m37534 MORE Contribution on Media Orchestration

Jean-Claude Dufourd noted

m37540 MORE Timed Metadata and Orchestration Data for Media Orchestration

Sejin Oh noted

m37609 MORE Interim Output AHG on Media Orchestration

Several noted

m37676 MORE Tutorial: Media Sync in DVB-CSS and HbbTV 2.0

Oskar van Deventer noted

m37677 MORE Coordination functionality for MPEG MORE

Oskar van Deventer noted

m37751 MORE Media Orchestration in the Security Domain

Krishna Chandramouli, Ebroul Izquierdo

noted

m37817 MORE Proposal of Additional Requirements for Media Orchestration

Sejin Oh, Jangwon Lee, Jong-Yeul suh

noted

m37818 MORE Additional Use Cases and Requirements for Media Orchestration

Jangwon Lee, Sejin Oh, Jong-Yeul Suh

noted

m37900 MORE Additional Use Case of Media Orchestration

Jin Young Lee noted

m38015 MORE Shared experience use cases for MPEG Media Orchestration

Oskar van Deventer noted

m38029 MORE Architecture for shared experience - MPEG MORE

Oskar van Deventer noted

m38036 MORE Shared experience requirements for MPEG Media Orchestration

Oskar van Deventer noted

39.3 Summary of discussions

39.4 Action Points

40. Exploration – Application Formats

40.1 Contributions

Number Session Title Source Dispositions

m37633 AF Selective Encryption for AVC Video Streams

cyril bergeron, Benoit Boyadjis, Sebastien lecomte

Noted

m37634 AF Selective encryption for HEVC video streams

Wassim Hamidouche, Cyril Bergeron, Olivier Déforges

Noted

40.2 Summary of discussions

40.3 Action Points

41. Liaison

41.1 List of input liaison letters

Number

Session

Title Source Disposition

m37579 Liaison

Liaison Statement from ITU-T SG 16 on discontinued work items on IPTV multimedia application frameworks

ITU-T SG 16 via SC 29 Secretariat

Noted

m37585 Liaison

Liaison Statement from IETF IETF via SC 29 Secretariat 16015

m37653 Liaison

Liaison Statement from ITU-T SG 9

ITU-T SG 9 via SC 29 Secretariat

Noted

m37656 Liaison

Liaison Statement from 3GPP 3GPP via SC 29 Secretariat 16017

m37787 Liaison

Liaison Statement from DVB DVB via SC 29 Secretariat 16019

m37899 Liaison

Reply Liaison on MPEG-DASH (N15699)

Iraj Sodagar on behalf of DASH-IF

16018

m38040 Liaison

Liaison Statement from HbbTV HbbTV via SC 29 Secretariat

16020

m38095

VSF Liaison Walt Husak noted

m37658 Liaison

IEC CD 60728-13-1 Ed. 2.0 IEC TC 100 via SC 29 Secretariat

noted

m37589 Liaison

IEC CD 61937-13 and 61937-14 IEC TC 100 via SC 29 Secretariat

noted

m37590 Liaison

IEC CD 61937-2 Ed. 2.0/Amd.2 IEC TC 100 via SC 29 Secretariat

noted

m37686 Liaison

IEC CD 62608-2 Ed.1.0 IEC TC 100 via SC 29 Secretariat

noted

m37591 Liaison

IEC CD 63029 [IEC 100/2627/CD]

IEC TC 100 via SC 29 Secretariat

noted

m37592 Liaison

IEC CD 63029 [IEC 100/2627A/CD]

IEC TC 100 via SC 29 Secretariat

noted

m37650 Liaison

IEC CDV 62394/Ed.3 IEC TC 100 via SC 29 Secretariat

noted

m37595 Liaison

IEC CDV 62680-1-3, 62680-3-1 and 62943

IEC TC 100 via SC 29 Secretariat

noted

m37586 Liaison

IEC CDV 62766-4-1, 62766-4-2, 62766-5-1, 62766-5-2, 62766-6, 62766-7 and 62766-8

IEC TC 100 via SC 29 Secretariat

noted

m37657 Liaison

IEC CDV 62827-3 Ed. 1.0 IEC TC 100 via SC 29 Secretariat

noted

m37659 Liaison

IEC CDV 62943/Ed. 1.0 IEC TC 100 via SC 29 Secretariat

noted

m37598 Liaison

IEC CDV 63002 Ed. 1.0 IEC TC 100 via SC 29 Secretariat

noted

m37660 Liaison

IEC CDV 63002 Ed.1.0 IEC TC 100 via SC 29 Secretariat

noted

m37588 Liaison

IEC CDV 63028 Ed. 1.0 IEC TC 100 via SC 29 Secretariat

noted

m37596 Liaison

IEC CDV MIDI (MUSICAL INSTRUMENT DIGITAL INTERFACE) SPECIFICATION 1.0 (ABRIDGED EDITION, 2015)

IEC TC 100 via SC 29 Secretariat

noted

m37587 Liaison

IEC DTR 62921 Ed. 2.0 IEC TC 100 via SC 29 Secretariat

noted

m37651 Liaison

IEC NP Microspeakers IEC TC 100 via SC 29 Secretariat

noted

m37597 Liaison

IEC NP MIDI (MUSICAL INSTRUMENT DIGITAL INTERFACE) SPECIFICATION 1.0 (ABRIDGED EDITION, 2015)

IEC TC 100 via SC 29 Secretariat

noted

m37652 Liaison

IEC NP Multimedia Vibration Audio Systems - Method of measurement for audio characteristics of audio actuator by pinna-conduction

IEC TC 100 via SC 29 Secretariat

noted

m37593 Liaison

IEC NP: Universal Serial Bus interfaces for data and power - Part 3-1

IEC TC 100 via SC 29 Secretariat

noted

m37594 Liaison

IEC NP: Universal Serial Bus interfaces for data and power -

IEC TC 100 via SC 29 Secretariat

noted

Part 1-3

m37661 Liaison

IEC TR 62935 Ed1.0 IEC TC 100 via SC 29 Secretariat

noted

m37685 Liaison

IEC TS 63033-1 IEC TC 100 via SC 29 Secretariat

noted

42. Resolutions of Systems

Refer 15904

43. Action Plan

43.1 Short descriptions

43.2 Check

44. References

44.1 Standing Documents

Pr Pt Documents No. Meeting 1 1 MPEG-1 White Paper – Multiplex Format N7675 05/07 Nice 1 1 MPEG-1 White Paper – Terminal Architecture N7676 05/07 Nice 1 1 MPEG-1 White Paper – Multiplexing and

Synchronization N7677 05/07 Nice

2 1 MPEG-2 White Paper – Multiplex Format/ N7678 05/07 Nice 2 1 MPEG-2 White Paper – Terminal Architecture N7679 05/07 Nice 2 1 MPEG-2 White Paper – Multiplexing and

Synchronization N7680 05/07 Nice

2 11 MPEG-2 White Paper – MPEG-2 IPMP N7503 05/07 Poznan 4 1 MPEG-4 White Paper – MPEG-4 Systems N7504 05/07 Poznan 4 1 MPEG-4 White Paper – Terminal Architecture N7610 05/10 Nice 4 1 MPEG-4 White Paper – M4MuX N7921 06/01 Bangkok 4 1 MPEG-4 White Paper – OCI N8148 06/04 Montreux 4 6 MPEG-4 White Paper – DMIF N8149 06/04 Montreux 4 11 MPEG-4 White Paper – BIFS N7608 05/10 Nice 4 12 MPEG-4 White Paper – ISO File Format N8150 06/04 Montreux 4 14 MPEG-4 White Paper – MP4 File Format N7923 06/01 Bangkok 4 15 MPEG-4 White Paper – AVC FF N7924 06/01 Bangkok 4 13 White Paper on MPEG-4 IPMP N7505 05/07 Poznan 4 13 MPEG IPMP Extensions Overview N6338 04/03 München 4 17 White Paper on Streaming Text N7515 05/07 Poznan 4 18 White Paper on Font Compression and Streaming N7508 05/07 Poznan 4 20 Presentation Material on LASER N6969 05/01 Hong-

Kong 4 20 White Paper on LASeR N7507 05/07 Poznan 4 22 White Paper on Open Font Format N7519 05/07 Poznan 7 1 MPEG-7 White Paper - MPEG-7 Systems N7509 05/07 Poznan 7 1 MPEG-7 White Paper – Terminal Architecture N8151 06/04 Montreux 21 9 MPEG-21 White Paper – MPEG-21 File Format N7925 06/01 Bangkok A X MPEG Application Format Overview N9421 07/10 Shenzhen A X MAF Overview Document N9840 08/04

Archamps A X MAF Overview Presentation N9841 08/04

Archamps B X MPEG-B White Paper – BinXML N7922 06/01 Bangkok E X MPEG Multimedia Middleware Context and

Objectives N6335 04/03 München

E X 1rst M3W White paper N7510 05/07 Poznan E X 2

nd M3W White Paper : Architecture N8152 06/04 Montreux

E X Tutorial on M3W N8153 06/04 Monreux E X M3W White Paper : Multimedia Middleware N8687 06/10 Hanzhou

Architecture E X M3W White Paper : Multimedia API N8688 06/10 Hanzhou E X M3W White Paper : Component Model N8689 06/10 Hanzhou E X M3W White Paper : Resource and Quality

Management N8690 06/10 Hanzhou

E X M3W White Paper : Component Download N8691 06/10 Hanzhou E X M3W White Paper : Fault Management N8692 06/10 Hanzhou E X M3W White Paper : System Integrity

Management N8693 06/10 Hanzhou

44.2 Mailing Lists Reminder

Topic Information Kindly

Hosted by

General

Systems List

Reflector : [email protected]

Subscribe: http://lists.aau.at/mailman/listinfo/gen-sys

Archive: http://lists.aau.at/mailman/private/gen-sys/

Alpen-

Adria-

Universität

Klagenfurt

File Format

Reflector : [email protected]

Subscribe: http://lists.aau.at/mailman/listinfo/mp4-sys

Archive: http://lists.aau.at/mailman/private/mp4-sys/

Alpen-

Adria-

Universität

Klagenfurt

Application

Format

Reflector : [email protected]

Subscribe: http://lists.aau.at/mailman/listinfo/maf-sys

Archive: http://lists.aau.at/mailman/private/maf-sys/

Alpen-

Adria-

Universität

Klagenfurt

CEL, MCO,

PSAF

Reflector: [email protected]

Subscribe: http://lists.aau.at/mailman/listinfo/mpeg-m

Archive: http://lists.aau.at/mailman/private/mpeg-m

Alpen-

Adria-

Universität

Klagenfurt

MPEG-V

Reflector: [email protected]

Subscribe: http://lists.aau.at/mailman/listinfo/metaverse

Archive: http://lists.aau.at/mailman/private/metaverse/

Alpen-

Adria-

Universität

Klagenfurt

MPEG

Media

Transport

Reflector: [email protected]

Subscribe: http://mailhost.tnt.uni-

hannover.de/mailman/listinfo/mmt

University of

Hannover

MP-AF

Reflector: [email protected]

Subscribe:https://listserv.uni-hannover.de/cgi-

bin/wa?A0=preservation-tnt

DASH Reflector [email protected]

Subscribe http://lists.aau.at/mailman/listinfo/dash

Green

Reflector [email protected]

Subscribe To subscribe, contact Felix Fernandes

([email protected])

User

Description

Reflector [email protected]

Subscribe http://lists.aau.at/mailman/listinfo/user

MLAF

Reflector [email protected]

Subscribe http://lists.aau.at/mailman/listinfo/mpeg-

maf-dev

Draft Systems Agenda 144

44.3 Latest References and Publication Status (as of 100th

meeting)

Reference on the ISO Web Site :

Pr Pt Standard No. Date 2 1 ISO/IEC 13818-1:2000 (MPEG-2 Systems 2

nd Edition) 00/12

2 1 ISO/IEC 13818-1:2000/COR1 (FlexMux Descr.) N3844 01/01 Pisa 2 1 ISO/IEC 13818-1:2000/COR2 (FlexMuxTiming_ descriptor) N4404 01/12 Pattaya 2 1 ISO/IEC 13818-1:2000/Amd.1 (Metadata on 2) & COR1 on Amd.1 N5867 03/07

Trondheim 2 1 ISO/IEC 13818-1:2000/Amd.2 (Support for IPMP on 2) N5604 03/03 Pattaya 2 1 ISO/IEC 13818-1:2000/Amd.3 (AVC Carriage on MPEG-2) N5771 03/07

Trondheim 2 1 ISO/IEC 13818-1:2000/Amd.4 (Metadata Application CP) N6847 04/10 Palma 2 1 ISO/IEC 13818-1:2000/Amd.5 (New Audio P&L Sig.) N6585 04/07

Redmond 2 1 ISO/IEC 13818-1:2000/COR3 (Correction for Field Picture) N6845 04/10 Palma 2 1 ISO/IEC 13818-1:2000/COR4 (M4MUX Code Point) N7469 05/07 Poznan 2 1 ISO/IEC 13818-1:2000/COR5 (Corrections related to 3rd Ed.) N7895 06/01

Bangkok 2 1 ISO/IEC 13818-1:2007 (MPEG-2 Systems 3

rd Edition)

2 1 ISO/IEC 13818-1:2007/Amd.1 (Transport of Streaming text) N8369 06/07

Klagenfurt 2 1 ISO/IEC 13818-1:2007/Amd.2 (Carriage of Auxialiry Video Data) N8798 07/01

Marrakech 2 1 ISO/IEC 13818-1:2007/Cor.1.2 (Reference to AVC Specification) N9365 07/10

Shenzhen 2 1 ISO/IEC 13818-1:2007/Cor.3 N1093

7

09/10 Xian

2 1 ISO/IEC 13818-1:2007/Amd.3 (SVC in MPEG-2 Systems) N1005

8

08/07

Hannover 2 1 ISO/IEC 13818-1:2007/Amd.3/Cor.1 N1093

8

09/10 Xian

2 1 ISO/IEC 13818-1:2007/Amd.4 (Transport of Multiview Video) N1074

5

09/07 London

2 1 ISO/IEC 13818-1:2007/Amd.5 (Transport of JPEG2000) N1170

8

11/01 Daegu

2 1 ISO/IEC 13818-1:2007/Amd.6 (Extension to AVC descriptor) N1171

0

11/01 Daegu

2 1 ISO/IEC 13818-1:2007/AMD 7 Signalling of stereoscopic video in

MPEG-2 systems N1246

2

12/02 San Jose

2 1 ISO/IEC 13818-1 4th edition N1263

3

12/04 Geneva

2 1 ISO/IEC 13818-1:201X/AMD 1 Extensions for simplified carriage of

MPEG-4 over MPEG-2 N1284

0

12/07

Stockholm 2 1 ISO/IEC 13818-1:201X/AMD 2 Signalling of Transport profiles,

signalling MVC stereo view association and MIME type registration N1325

6

13/01 Geneva

2 1 ISO/IEC 13818-1:2013/AMD 3 Carriage of HEVC N1365

6

13/07 Vienna

Draft Systems Agenda 145

2 1 ISO/IEC 13818-1:2013/AMD 4 Support for event signalling in

Transport Stream in MPEG-2 systems N1365

8

13/07 Vienna

2 1 ISO/IEC 13818-1 5th edition 2 1 Text of ISO/IEC 13818-1:2015 COR 1 15627 15/10 Geneva 1 ISO/IEC 13818-1:2015 AMD 4 New Profiles and Levels for MPEG-4

Audio Descriptor 15630 15/10 Geneva

2 11 ISO/IEC 13818-1:2003 (IPMP on 2) N5607 03/03 Pattaya 4 1 ISO/IEC 14496-1 (MPEG-4 Systems 1

st Ed.) N2501 98/10 Atl. City

4 1 ISO/IEC 14496-1/Amd.1 (MP4, MPEG-J) N3054 99/12 Hawaii 4 1 ISO/IEC 14496-1/Cor.1 N3278 00/03

Noordwijk. 4 1 ISO/IEC 14496-1:2001 (MPEG-4 Systems 2

nd Ed.) N3850 01/01 Pisa

4 1 ISO/IEC 14496-1:2001/Amd.1 (Flextime) 4 1 ISO/IEC 14496-1:2001/Cor.1 N4264 01/07 Sydney 4 1 ISO/IEC 14496-1:2001/Cor.2 N5275 02/10 Shangai 4 1 ISO/IEC 14496-1:2001/Cor.3 N6587 04/07

Redmond 4 1 ISO/IEC 14496-1:2001/Amd.2 (Textual Format) N4698 02/03 Jeju

Island 4 1 ISO/IEC 14496-1:2001/Amd.3 (IPMP Extensions) N5282 02/10

Shanghai 4 1 ISO/IEC 14496-1:2001/Amd.4 (SL Extension) N5471 02/12 Awaji 4 1 ISO/IEC 14496-1:2001/Amd.7 (AVC on 4) N5976 03/10

Brisbanne 4 1 ISO/IEC 14496-1:2001/Amd.8 (ObjectType Code Points) N6202 03/12 Hawaii 4 1 ISO/IEC 14496-1:200x/Amd.1 (Text Profile Descriptors) N7229 05/04 Busan 4 1 ISO/IEC 14496-1:200x/Cor4 (Node Coding Table) N7473 05/07 Poznan 4 1 ISO/IEC 14496-1 (MPEG-4 Systems 3

rd Ed.) N5277 02/10

Shanghai 4 1 ISO/IEC 14496-1:200x/Amd.1 (Text Profile Descriptors) N7229 05/04 Busan 4 1 ISO/IEC 14496-1:200x/Cor.1 (Clarif. On audio codec behavior) N8117 06/04

Montreux 4 1 ISO/IEC 14496-1:200x/Amd.2 (3D Profile Descriptor Extensions) N8372 06/07

Klagenfurt 4 1 ISO/IEC 14496-1:200x/Cor.2 (OD Dependencies) N8646 06/10

Hangzhou 4 1 ISO/IEC 14496-1:200x/Amd.3 (JPEG 2000 support in Systems) N8860 07/01

Marrakech 4 1 ISO/IEC 14496-1 (MPEG-4 Systems 4

th Ed.) N1094

3

09/10 Xian

4 1 ISO/IEC 14496-1:2010/Amd.1 (Usage of LASeR in MPEG-4 systems

and Registration Authority for MPEG-4 descriptors) N1124

8

10/04 Dresden

4 1 ISO/IEC 14496-1:2010 AMD2 Support for raw audiovisual data N1364

7

13/04 Incheon

4 4 ISO/IEC 14496-4 4 4 ISO/IEC 14496-4:200x/Amd.17 (ATG Conformance) N8861 07/01

Marrakech 4 4 ISO/IEC 14496-4:200x/Amd.22 (AudioBIFS v3 conformance) N9295 07/07

Lausanne

Draft Systems Agenda 146

4 4 ISO/IEC 14496-4:200x/Amd.23 (Synthesized Texture conformance) N9369 07/10

Shenzhen 4 4 ISO/IEC 14496-4:200x/Amd.24 (File Format Conformance) N9370 07/10

Shenzhen 4 4 ISO/IEC 14496-4:200x/Amd.25 (LASeR V1 Conformance) N9372 07/10

Shenzhen 4 4 ISO/IEC 14496-4:200x/Amd.26 (Open Font Format Conf.) N9815 08/04

Archamps 4 4 ISO/IEC 14496-4:200x/Amd.27 (LASeR Amd.1 Conformance) N9816 08/04

Archamps 4 4 ISO/IEC 14496-4:200x/Amd.37 (Additional File Format

Conformance) N1075

0

09/07 London

4 4 ISO/IEC 14496-4:200x/Amd.40 (ExtendedCore2D profile

conformance) N1211

7

11/07 Torino

4 5 ISO/IEC 14496-5 4 5 ISO/IEC 14496-5:200x/Amd.12 (File Format) N9020 07/04 San Jose 4 5 ISO/IEC 14496-5:200x/Amd.16 (SMR Ref. Soft) N9672 08/01 Antalya 4 5 ISO/IEC 14496-5:200x/Amd.17 (LASeR Ref. Soft) N9674 08/01 Antalya 4 5 ISO/IEC 14496-5:200x/Amd.28 (LASeR Adaptation Ref. Soft) N1156

6

10/10

Guangzhou 4 5 ISO/IEC 14496-5:2001/Amd. 29 (Reference software for LASeR

presentation and modification of structured information (PMSI)) N1211

8

11/07 Torino

4 6 ISO/IEC 14496-6:2000 4 8 ISO/IEC 14496-8 (MPEG-4 on IP Framework) N4712 02/03 Jeju 4 11 ISO/IEC 14496-11 (MPEG-4 Scene Description 1st

Edition)

N6960 05/01

HongKong 4 11 ISO/IEC 14496-11/Amd.1 (AFX) N5480 02/12 Awaji 4 11 ISO/IEC 14496-11/Amd.2 (Advanced Text and Graphics) N6205 03/12 Hawaii 4 11 ISO/IEC 14496-11/Cor.1 N6203 03/12 Hawaii 4 11 ISO/IEC 14496-11/Cor.3 Valuator/AFX related correction N6594 04/07

Redmond 4 11 ISO/IEC 14496-11/Amd.3 Audio BIFS Extensions N6591 04/07

Redmond 4 11 ISO/IEC 14496-11/Amd.4 XMT and MPEG-J Extensions N6959 05/01

HongKong 4 11 ISO/IEC 14496-11/Cor.3 (Audio BIFS Integrated in 3

rd Edition) N7230 05/04 Busan

4 11 ISO/IEC 14496-11/Cor.5 (Misc Corrigendum) N8383 06/07

Klagenfurt 4 11 ISO/IEC 14496-11/Amd.5 Symbolic Music

Representation N8657 06/10

Hangzhou 4 11 ISO/IEC 14496-11/Cor.6 (AudioFx Correction) N9021 07/04 San Jose 4 11 ISO/IEC 14496-11/Amd.6 Scene Partitioning N1024

7

08/10 Busan

4 11 ISO/IEC 14496-11/Amd.7 ExtendedCore2D Profile N1125

1

10/04 Dresden

4 12 ISO/IEC 14496-12 (ISO Base Media File Format) N5295 02/10

Shanghai 4 12 ISO/IEC 14496-12/Amd.1 ISO FF Extension N6596 04/07

Redmond

Draft Systems Agenda 147

4 12 ISO/IEC 14496-12/Cor.1 (Correction on File Type Box) N7232 05/04 Busan 4 12 ISO/IEC 14496-12/Cor.2 (Miscellanea) N7901 06/01

Bangkok 4 12 ISO/IEC 14496-12/Amd.1 (Description of timed

metadata) N8659 06/10

Hangzhou 4 12 ISO/IEC 14496-12/Cor.3 (Miscellanea) N9024 07/04 San Jose 4 12 ISO/IEC 14496-12/Amd.2 (Flute Hint Track) N9023 07/04 San Jose 4 12 ISO/IEC 14496-12 (ISO Base Media File Format 3

rd

edition)

N9678 08/01 Antalya

4 12 ISO/IEC 14496-12/Cor.1 N1025

0

08/10 Busan

4 12 ISO/IEC 14496-12/Cor.2 N1044

1

09/02

Lausanne 4 12 ISO/IEC 14496-12/Amd.1 General improvements

including hint tracks, metadata support, and sample

groups

N1058

0

09/04 Maui

4 12 ISO/IEC 14496-12/Cor.3 N1075

3

09/07 London

4 12 ISO/IEC 14496-12/Cor.4 N1172

3

11/01 Daegu

4 12 ISO/IEC 14496-12:2008/Amd.2 Support for sub-track

selection & switching, post-decoder requirements, and

color information

N1226

8

11/11 Geneva

4 12 ISO/IEC 14496-12:2008 COR 5 N1264

2

12/04 Geneva

4 12 ISO/IEC 14496-12 4th edition N1264

0

12/04 Geneva

4 12 ISO/IEC 14496-12:201X AMD1 Various enhancements

including support for large metadata

N1284

4

12/07

Stockholm 4 12 ISO/IEC 14496-12:2012/AMD 2 carriage of timed text

and other visual overlays

N1366

3

13/07 Vienna

4 12 ISO/IEC 14496-12:2012 COR 1 N1366

7

13/07 Vienna

4 13 ISO/IEC 14496-13 (IPMP-X) N5284 02/10

Shanghai 4 14 ISO/IEC 14496-14:2003 (MP4 File Format) N5298 02/10

Shanghai 4 14 ISO/IEC 14496-14:2003/Cor.1 (Audio P&L Indication) N7903 06/01

Bangkok 4 14 ISO/IEC 14496-14:2003/Amd.1 Handling of MPEG-4

audio enhancement layers N1113

8

10/01 Kyoto

4 15 ISO/IEC 14496-15 (AVC File Format) N5780 03/07

Trondheim 4 15 ISO/IEC 14496-15/Amd.1 (Support for FREXT) N7585 05/10 Nice 4 15 ISO/IEC 14496-15/Cor.1 N7575 05/10 Nice 4 15 ISO/IEC 14496-15/Cor.2 (NAL Unit Restriction) N8387 06/07

Klagenfurt 4 15 ISO/IEC 14496-15/Amd.2 (SVC File Format Extension) N9682 08/01 Antalya 4 15 ISO/IEC 14496-15 (AVC File Format 2

nd edition) N1113 10/01 Kyoto

Draft Systems Agenda 148

9 4 15 ISO/IEC 14496-15:2010/Cor.1 N1172

8

11/01 Daegu

4 15 ISO/IEC 14496-15:2010/Amd. 1 (Sub-track definitions) N1212

8

11/07 Torino

4 15 ISO/IEC 14496-15:2010/COR 2 N1264

5

12/04 Geneva

4 15 ISO/IEC 14496-15:2010 3rd edition Carriage of NAL unit

structured video in the ISO Base Media File Format N1347

8

13/04 Incheon

4 17 ISO/IEC 14496-17 (Streaming Text) N7479 05/07 Poznan 4 18 ISO/IEC 14496-18 (Font Compression and Streaming) N6215 03/12 Hawaii 4 18 ISO/IEC 14496-18/Cor.1 (Misc. corrigenda and

clarification) N8664 06/10

Hangzhou 4 18 ISO/IEC 14496-18:2012 COR 1 N1367

1

13/07 Vienna

4 19 ISO/IEC 14496-19 (Synthesized Texture Stream) N6217 03/12 Hawaii 4 20 ISO/IEC 14496-20 (LASeR & SAF) N7588 05/10 Nice 4 20 ISO/IEC 14496-20/Cor.1 (Misc. corrigenda and

clarification) N8666 06/10

Hangzhou 4 20 ISO/IEC 14496-20/Amd.1 (LASeR Extension) N9029 07/04 San Jose 4 20 ISO/IEC 14496-20/Cor.2 (Profile Removal) N9381 07/10

Shenzhen 4 20 ISO/IEC 14496-20/Amd.2 (SVGT1.2 Support) N9384 07/10

Shenzhen 4 20 ISO/IEC 14496-20 (LASeR & SAF 2

nd edition) N

4 20 ISO/IEC 14496-20/Amd.1 SVGT1.2 support N 4 20 ISO/IEC 14496-20/Amd.2 Adaptation N1075

9

09/07 London

4 20 ISO/IEC 14496-20/Amd.3 PMSI N1095

4

09/10 Xian

4 20 ISO/IEC 14496-20/Cor. 1 N1137

6

10/07 Geneva

4 22 ISO/IEC 14496-22 (Open Font Format) N8395 06/07

Klagenfurt 4 22 ISO/IEC 14496-22 (Open Font Format 2

nd edition) N

4 22 ISO/IEC 14496-22/Amd.1 Support for many-to-one range

mappings N1095

4

09/10 Xian

4 22 ISO/IEC 14496-22:2009/Amd. 2 Additional script and

language tags N1247

2

12/02 San Jose

4 28 ISO/IEC IS 14496-28 Composite Font Representation N1247

3

12/02 San Jose

4 28 ISO/IEC 14496-28:2012 COR 1 N1367

4

13/07 Vienna

4 30 ISO/IEC 14496-30 Timed Text and Other Visual

Overlays in ISO Base Media File Format N1367

6

13/07 Vienna

7 1 ISO/IEC 15938-1 (MPEG-7 Systems) N4285 01/07 Sydney 7 1 ISO/IEC 15938-1/Amd.1 (MPEG-7 Systems Extensions) N6326 04/03 Munich 7 1 ISO/IEC 15938-1/Cor.1 (MPEG-7 Systems Corrigendum) N6328 04/03 Munich 7 1 ISO/IEC 15938-1/Cor.2 (MPEG-7 Systems Corrigendum) N7490 05/07 Poznan

Draft Systems Agenda 149

7 1 ISO/IEC 15938-1/Amd.2 (BiM extension) N7532 05/10 Nice 7 2 ISO/IEC 15938-2 (MPEG-7 DDL) N4288 01/07 Sydney 7 5 ISO/IEC 15938-5 MDS 7 5 ISO/IEC 15938-5/Amd. 4 Social Metadata N1264

9

12/04 Geneva

7 7 ISO/IEC 15938-7 7 7 ISO/IEC 15938-7/Amd.2 (Fast Access Ext. Conformance) N8672 06/10

Hangzhou 7 12 ISO/IEC 15938-12 MPEG Query Format N9830 08/04

Archamps 7 12 ISO/IEC 15938-12/Cor.1 N1045

2

09/02

Lausanne 7 12 ISO/IEC 15938-12/Cor.2 N1095

9

09/10 Xian

7 12 ISO/IEC 15938-12/And.1 Ref, SW and flat metadata output N1138

3

10/07 Geneva

7 12 ISO/IEC 15938-12/And.2 Semantic enhancement N1173

4

11/01 Daegu

7 12 ISO/IEC 15938-12 2nd

edition MPEG Query Format N1285

0

12/07

Stockholm 21 2 ISO/IEC 21000-2 (DID) 21 2 ISO/IEC 21000-2:2005/Amd.1Presentation Element N1173

6

11/01 Daegu

21 3 ISO/IEC 21000-3 (DII) 21 3 ISO/IEC 21000-3:2003 AMD 2 Digital item semantic

relationships N1304

1

12/10

Shangahi 21 4 ISO/IEC 21000-4 (IPMP) 21 4 ISO/IEC 21000-4:2005/Amd.1Protection of Presentation

Element N1173

8

11/01 Daegu

21 4 ISO/IEC 21000-4:2006/COR 1 N1227

8

11/11 Geneva

21 5 ISO/IEC 21000-5 (Open Release Content Profile) N9687 08/01 Antalya 21 8 ISO/IEC 21000-8 (Reference Software) 21 8 ISO/IEC 21000-8:2008/Amd. 2 (Reference software for

Media Value Chain Ontology) N1213

5

11/07 Torino

21 9 ISO/IEC 21000-9 (MPEG-21 File Format) N6975 05/01

HongKong 21 9 ISO/IEC 21000-9/Amd.1 (MPEG-21 Mime Type) N9837 08/04

Archamps 21 15 ISO/IEC 21000-15 (Security in Event Reporting) N9839 08/04

Archamps 21 16 ISO/IEC 21000-16 (MPEG-21 Binary Format) N7247 05/04 Busan 21 19 ISO/IEC 21000-19 (Media Value Chain Ontology) N1114

6

10/01 Kyoto

21 21 ISO/IEC 21000-21 Media Contract Ontology N1309

9

12/10

Shanghai A 4 ISO/IEC 23000-4 (Musical Slide Show MAF) N9037 07/04 San Jose A 4 ISO/IEC 23000-4 (Musical Slide Show MAF 2

nd Ed.) N9843 08/04

Archamps

Draft Systems Agenda 150

A 4 ISO/IEC 23000-4 Amd.1 Conformance & Reference

Software N

A 4 ISO/IEC 23000-4 Amd.2 Conformance & Reference

Software for Protected MSS MAF N

A 6 ISO/IEC 23000-6 (Professional Archival MAF) N A 6 ISO/IEC 23000-6 Amd.1 Conformance and Reference

Software N

A 6 ISO/IEC 23000-6 2nd

edition (Professional Archival

MAF)

N1285

3

12/07

Stockholm A 7 ISO/IEC 23000-7 (Open Access MAF) N9698 08/01 Antalya A 7 ISO/IEC 23000-7 Amd.1 Conformance and Reference

Software N

A 8 ISO/IEC 23000-8 (Portabe Video AF) N9853 08/04

Archamps A 9 ISO/IEC 23000-9 (Digital Multi. Broadcasting MAF) N9397 07/10

Shenzhen A 9 ISO/IEC 23000-9/Cor.1 (Digital Multi. Broadcasting

MAF) N9854 08/04

Archamps A 9 ISO/IEC 23000-9/Amd.1 (Conformance & Reference

SW) N1115

1

10/01 Kyoto

A 9 ISO/IEC 23000-9/Amd.1/Cor. 1 N1174

2

11/01 Daegu

A 9 ISO/IEC 23000-9:2008/Amd.1:2010/COR.2 N1228

3

11/11 Geneva

A 10 ISO/IEC 23000-10 (Video Surveillance AF) N9397 07/10

Shenzhen A 10 ISO/IEC 23000-11/Amd.1 Conformance & Reference SW N A 10 ISO/IEC 23000-10 2nd edition Surveillance

Application Format

N1304

5

12/10

Shanghai A 10 ISO/IEC 23000-10:2012/AMD 1 Conformance and

reference software N1396

6

13/10 Geneva

A 11 ISO/IEC 23000-11 (Stereoscopic video MAF) N9397 07/10

Shenzhen A 11 ISO/IEC 23000-11/Cor.1 N A 11 ISO/IEC 23000-11/Amd.1 Conformance and Reference

software N1157

4

10/10

Guangzhou A 11 ISO/IEC 23000-11:2009/Amd. 2 Signalling of additional

composition type and profiles N1214

3

11/07 Torino

A 11 ISO/IEC 23000-11:2009/AMD 3 Support movie fragment

for Stereoscopic Video AF N1396

9

13/10 Geneva

A 12 ISO/IEC 23000-12 (Interactive Music AF) N A 12 ISO/IEC 23000-12/Amd. 1 Conformance & Reference

SW. N1174

6

11/01 Daegu

A 12 ISO/IEC 23000-12:2010 Amd. 2 Compact representation

of dynamic volume change and audio equalization N1248

3

12/02 San Jose

A 12 ISO/IEC 23000-12:2010/AMD 3 Conformance and

Reference Software N1327

3

13/01 Geneva

B 1 ISO/IEC 23001-1 (XML Binary Format) N7597 05/10 Nice B 1 ISO/IEC 23001-1/Cor.1 (Misc. Editorial and technical N8680 06/10

Draft Systems Agenda 151

clar.) Hangzhou B 1 ISO/IEC 23001-1/Cor.2 (Misc. Editorial and technical

clar.) N9049 07/04 San Jose

B 1 ISO/IEC 23001-1/Amd.1 (Reference Soft. & Conf.) N8886 07/01

Marrakech B 1 ISO/IEC 23001-1/Amd.1 (Exten. On encoding of wild

cards) N9296 07/07

Lausanne B 2 ISO/IEC 23001-2 (Fragment Request Unit) N9051 07/04 San Jose B 3 ISO/IEC 23001-3 (IPMP XML Messages) N9416 07/04 San Jose B 8 ISO/IEC 23001-8 coding-independent code-points N1327

8

130/01 Geneva

B 9 ISO/IEC 23001-9 Common Encryption for MPEG-2

Transport Streams

N1397

3

13/10 Geneva

E 1 ISO/IEC 23008-1 Architecture N8892 07/01

Marrakech E 2 ISO/IEC 23008-2 Multimedia API N8893 07/01

Marrakech E 3 ISO/IEC 23008-3 Component Model N8894 07/01

Marrakech E 4 ISO/IEC 23008-4 Ressource & Quality Management N8895 07/01

Marrakech E 5 ISO/IEC 23008-5 Component Download N9053 07/04 San Jose E 6 ISO/IEC 23008-6 Fault Management N9054 07/04 San Jose E 7 ISO/IEC 23008-7 System Integrity Management N9055 07/04 San Jose E 8 ISO/IEC 23008-7 Reference Software N M 1 ISO/IEC 23006-1 Architecture and Technologies N1116

3

10/01 Kyoto

M 1 ISO/IEC 23006-1 2nd edition Architecture N1345

4

13/01 Geneva

M 1 ISO/IEC 23006-1 2nd edition Architecture N1248

7

12/02 San Jose

M 2 ISO/IEC 23006-2 MXM API N1116

5

10/01 Kyoto

M 2 ISO/IEC 23006-2 2nd edition MXM API N1349

2

13/04 Incheon

M 3 ISO/IEC 23006-3 Reference Software N1116

8

10/01 Kyoto

M 3 ISO/IEC 23006-3 2nd edition Conformance and

Reference Software

N1349

3

13/04 Incheon

M 4 ISO/IEC 23006-4 MXM Protocols N1117

0

10/01 Kyoto

M 4 ISO/IEC 23006-4 2nd edition Elementary services N1307

2

12/10

Shanghai M 5 ISO/IEC 23006-5 Service aggregation N1307

4

12/10

Shanghai U 1 ISO/IEC 23007-1 Widgets N1125

6

10/04 Dresden

U 1 ISO/IEC 23007-1:2010/FDAM 1 Widget Extensions N1215

3

11/07 Torino

Draft Systems Agenda 152

U 1 ISO/IEC 23007-1:2010/Amd.1:2012/ COR 2 N1397

4

13/10 Geneva

U 2 ISO/IEC 23007-2 Advanced user interaction interface N1267

0

12/04 Geneva

U 3 ISO/IEC 23007-3 Conformance and Reference SW N1176

7

11/01 Daegu

V 1 ISO/IEC 23005-1 Architecture N1141

9

10/07 Geneva

V 1 ISO/IEC 23005-1 2nd edition Architecture N1380

3

13/07 Vienna

V 2 ISO/IEC 23005-2 Control Information N1142

2

10/07 Geneva

V 3 ISO/IEC 23005-3 Sensory Information N1142

5

10/07 Geneva

V 3 ISO/IEC 23005-3:2013/COR1 N1380

7

13/07 Vienna

V 4 ISO/IEC 23005-4 Virtual World Object

Characteristics

N1142

7

10/07 Geneva

V 5 ISO/IEC 23005-5 Data Formats for Interaction

Devices

N1142

9

10/07 Geneva

V 6 ISO/IEC 23005-6 Common Data Format N1143

2

10/07 Geneva

V 7 ISO/IEC 23005-7 Conformance and Reference

Software

N1195

2

11/03 Geneva

V 7 ISO/IEC 23005-7 2nd edition Conformance and

reference software

N1381

2

13/07 Vienna

H 1 ISO/IEC 23008-1 MPEG Media Transport N1398

2

13/10 Geneva

DASH 1 ISO/IEC 23009-1 Media Presentation Description and

Segment Formats

N1232

9

11/11 Geneva

DASH 1 ISO/IEC 23009-1:2012 COR. 1 N1349

5

13/04 Incheon

DASH 1 ISO/IEC 23009-1:201x 2nd

edition N1368

7

13/07 Vienna

DASH 2 ISO/IEC 23009-2 DASH Conformance and reference

software

N1369

1

13/07 Vienna

Page: 153 Date Saved: 2016-06-03

44.4 Standard development procedure from July 1st, 2012

It is recommend to issue iterative CD ballots until specs become mature enough not to

receive any technical comments to DIS and to be able to FDIS ballot.

CD

DIS

2 month ballot for AMDs 3 month ballot for combined NP + CD ballot 4 month ballot if WG11 decided to have

FDIS

Yes

NO vote?

minimum 2 weeks of ballot preparation by ITTF +

2 month translation+

3 month ballot

IS

No

preparation + 2 month ballot

Page: 154 Date Saved: 2016-06-03

44.5 Recommended due date for ballot texts

Meeting Starting Date Due date of CD (2 month ballot)

Due date of DIS

113 2015/10/19 2015/08/09 2015/04/25

114 2016/02/22 2015/12/12 2015/08/29

115 2016/05/30 2016/03/20 2015/12/06

116 2016/10/17 2016/08/07 2016/04/23

Page: 155 Date Saved: 2016-06-03

– Video report

Source: Jens Ohm and Gary Sullivan, Chairs

14 Organization of the work An opening Video subgroup plenary was held Monday Feb 22

nd during 14:00-15:30, at which

the status of work was reviewed and activities for the current meeting were planned.

Video plenaries were held as follows:

Mon 14:00-15:30

Wed 11:30-13:00 – Review work and discuss further proceeding

Fri 9:00-12:00 – Approval of documents, setup AHGs

Breakout (BO) work was performed on the following topics during the week: AVC, (CICP,)

MPEG-7/CDVS/CDVA, IVC, RVC, HDR, and Future Video Coding / JVET.

14.1 Room allocation

Room allocations during the meeting were as follows:

Video plenary: Salon F&G; MPEG-7: Salon H; Test: Pacific Beach

14.2 AHGs and Breakout Topics

No additional review of the following AHG reports was performed in theVideo plenary.

Mandates for related BoG activities were discussed as follows.

IVC:

- Produce study of DIS

- Clarify versioning/profiling mechanism for IVC and possible future extensions

- Clarify whether IVC needs mechanisms for systems interconnection, e.g. file format,

transport, DASH, etc.

- Extend ITM by new tools under consideration

- Check whether an old version of ITM is good enough for a documentation of encoder

description

- Promotion: Verification test plan, including the possibility to download the bitstreams

and replay them with the realtime decoder

- Clarify how to proceed with a potential open SW project for IVC realtime encoding /

licensing, some forms of which could be incompatible with ISO standard rules, such that

it could not be published as standard.

MPEG-7:

- It was discussed whether action should be taken to remove motion trajectory D, but at

this meeting not enough expertise was available to determine which parts of MPEG-7

would be affected.

- No specific action on CDVS

Page: 156 Date Saved: 2016-06-03

- CDVA: Review CfP submissions jointly with Requirements, decide next steps thereafter,

probably start technical work in Video.

14.3 Ballots

Ballot results were inspected and handled accordingly in preparation of DoC documents, in

coordination with JCT-VC and JCT-3V.

m37545 Summary of Voting on ISO/IEC 23008-8:201x/DAM 1 [SC 29 Secretariat]

m37642 Summary of Voting on Combined on ISO/IEC 14496-5:2001/PDAM 42 [SC 29 Secretariat]

m37645 Summary of Voting on ISO/IEC 23008-5:2015/DAM 3 [SC 29 Secretariat]

m37646 Summary of Voting on ISO/IEC 23008-5:201x/DAM 4 [SC 29 Secretariat]

m37648 Summary of Voting on ISO/IEC DIS 15938-6 [2nd Edition] [SC 29 Secretariat]

(new edition of MPEG-7 Reference software)

m37813 Summary of Voting on ISO/IEC 14496-5:2001/PDAM 41 [SC 29 Secretariat]

(IVC Reference software)

m37814 Summary of Voting on ISO/IEC 23002-4:2014/PDAM 3 [SC 29 Secretariat]

m38084 [Preliminary] Summary of Voting on ISO/IEC 23008-8:2015/DAM 3 [ITTF via SC 29 Secretariat]

m38097 Summary of Voting on ISO/IEC 14496-4:2004/PDAM 46 [SC 29 Secretariat]

(IVC conformance)

m38098 Summary of Voting on ISO/IEC 23002-5:2013/PDAM 3 [SC 29 Secretariat]

m38111 Summary of Voting on ISO/IEC 14496-10:2014/DAM 2 [ITTF via SC 29 Secretariat]

m38112 Summary of Voting on ISO/IEC DIS 23008-2:201x [3rd Edition] [ITTF via SC 29 Secretariat]

m37566 Table of Replies on ISO/IEC 14496-4:2004/FDAM 43 [ITTF via SC 29 Secretariat]

m37569 Table of Replies on ISO/IEC FDIS 23001-8 [2nd Edition] [ITTF via SC 29 Secretariat]

Page: 157 Date Saved: 2016-06-03

14.4 Liaisons

The following Liaison inputs were reviewed, and dispositions were prepared in coordination

with JCT-VC and JCT-3V and other MPEG subgroups, as applicable.

m37578 Liaison Statement from ITU-T SG 16 on video coding collaboration [ITU-T SG 16 via SC 29 Secretariat]

(Responded to in N16069)

m37654 Liaison Statement from DVB on HDR [DVB via SC 29 Secretariat]

(Responded to in N16070)

m37752 ATSC Liaison on HDR/WCG [Walt Husak]

(Responded to in N16071)

m37788 Liaison Statement from ITU-R WP 6C [ITU-R WP 6C via SC 29 Secretariat]

(Responded to in N16072)

m38082 SMPTE Liaison on HDR [Walt Husak]

(Responded to in N16074)

m38016 Liaison statement from ETSI ISG CCM [David Holliday]

(Responded to in N16073)

14.5 Joint Meetings

The following joint meetings were held:

14.5.1 Joint Video/Req Mon 15:30-16:30 (Salon F&G)

This discussion considered HDR requirements issues. Current test:

CE1: HEVC without normative / decoder-side changes, with ST2084 transfer function

CE2: HEVC with additional reshaping for colour mapping (sequence-dependent)

The test has been conducted without an intention for viewing the decoder output on an SDR

display; it was only optimized for HDR.

Problems to be solved:

- Improve coding efficiency of HEVC with the constraint that the Main 10 decoder is not

changed (by the next meeting if not the current one, we expected to be able to answer the

question whether this requires any changes at all) – still necessary to define restrictions to

be observed in encoder optimization

- Enable legacy (SDR) devices to replay HDR content (backward compatibility)

Is backward compatibility mandatory for all market segments? No – for example OTT streaming

does not require this (as a separate encoding can be streamed for HDR and non-HDR clients).

However, there are important market segments that require it – for example, SDR/HDR

simulcast is undesirable for most broadcasters, although some may like to launch HDR only.

SHVC can be used for backward compatibility, requiring additional bandwidth compared to

single layer. Single layer backward compatibility would be desirable. It was agreed to:

Page: 158 Date Saved: 2016-06-03

- Update requirements document for single-layer backward compatibility

- Work towards establishing methods for evaluating HDR and SDR quality jointly

14.5.2 Joint Video/VCEG/Req/VC Mon 16:30-18:00 (Salon D)

Issues discussed in this session focused on the following topics. Further notes can be found in the

corresponding JCT-VC report.

- HDR issues: including CE1 vs. CE2 test planning, HDR backward compatibility

requirements, and the SMPTE liaison statement in m38082, "HDR10" verification

testing, and development of "good practices" technical report

- SCC text finalization aspects related to HDR: Clarification of the colour remapping

information (CRI) SEI message semantics, and the ITU-R liaison statement m37788 (and

issues surrounding the draft new Rec. ITU-R BT.[HDRTV])

- SCC other text finalization aspects (profile chroma format requirements, combined

wavefronts and tiles support, DVB bug fix with current-picture referencing)

- Review of other SEI message and VUI contributions under consideration

- Other topics noted of joint interest, which should proceed as planned and feasible (SHVC

verification testing, RExt conformance, SHVC conformance, SHVC software)

14.5.3 Joint Video/VCEG/Req Mon 18:00-18:30 (Salon D)

Issues discussed in this session focused on the following topics. Further notes can be found in the

corresponding JCT-VC report.

- Liaison letters between MPEG and SG16/VCEG

- AVC issues (Progressive High 10 profile m37952, AVC support for draft new Rec. ITU-

R BT.[HDRTV], m37675High level syntax support for ARIB STD-B67, m37954

Generalized constant and non-Constant luminance matrix coefficient code points,

corrections of colour transfer characteristics and display light vs. captured light

clarification)

- CICP remains a coordination topic and should be kept aligned with HEVC and AVC (and

has been planned for twin text in ITU-T for quite some time).

- JCT-3V wrapping up its final work

- JVET exploration and future video:

o JVET is tasked with exploring potential compression improvement technology,

regardless of whether it differs substantially from HEVC or not; discussions of

converting that work into a formal standardization project, whether that's a new

standard or not, timelines for standardization, profiles, etc., belong in the parent

bodies rather than in JVET

o m37709 on video for virtual reality systems

m37675 High level syntax support for ARIB STD-B67 in AVC [M. Naccari, A. Cotton, T. Heritage (BBC), Y. Nishida, A. Ichigaya (NHK), M. Raulet (ATEME)]

See joint discussion notes above.

Page: 159 Date Saved: 2016-06-03

m37733 Proposed text for BT.HDR in AVC [C. Fogg (MovieLabs)]

See joint discussion notes above.

m37952 A Progressive High 10 profile in ISO/IEC 14496-10/MPEG-4 part 10/AVC [A.M. Tourapis, D. Singer, K. Kolarov]

See joint discussion notes above.

m37954 Generalized Constant and Non-Constant Luminance Code Points in ISO/IEC 14496-10 and ISO/IEC 23001-8 [A.M. Tourapis, Y. Su, D. Singer, K. Kolarov, C. Fogg]

New amendment (Amd4) – editors: Alexis, Gary

This should also enroll the correction of colour transfer characteristics.

14.5.4 Joint Vid/Req Tue 9:00-10:00 (Requirements room)

- CDVA CfP

m37636 PKU‟s Response to MPEG CfP for Compact Descriptor for Visual Analysis [Zhangshuai Huang, Ling-Yu Duan, Jie Chen, Longhui Wei, Tiejun Huang, Wen Gao]

Encodes a sequence of CDVS descriptors, frame by frame. Intra-frame predictor coding for

global descriptor/local descriptor/coordinate coding.

Local descriptors: multiple reference frames - using previous k-frames (k=3), checking ratio test,

frame by frame, selection of the local descriptor from the closest reference in time, going

backwards. Using CDVS compressed descriptors. Residual quantization and error coding is not

in fact used.

Global descriptor – just copy or use a new one.

Coordinate coding: affine model for the previous frame, residual for all other frames.

Database encoded at 2fps with 4k CDVS.

Matching is using Hough-transform with 5 peak selection and subsequent thresholding at 75%

Retrieval Pairwise Temp localization

16k 64k 256k 16k 64k 256k

16k-256k 16k 64k 256k

16-256

M37636 0.676 0.707 0.683 0.739 0.757 0.798 0.662 0.567 0.596 0.622 0.528

Comments:

Possible problem with the frame-based affine prediction when the assumption of a single

consistent motion is broken.

High complexity in retrieval: 1139s ~ 20 minutes (outside the requirement of 1 min)

Drop in performance – poor interoperability between 256k and 16k, performance below

16k

Patent statement and license declaration missing.

BFLOG – used.

m37854 Keypoint Trajectory Coding on Compact Descriptor for Video Analysis (CDVA) [Dong Tian, Huifang Sun, Anthony Vetro]

This is a partial proposal addressing the use of motion trajectories to encode positions of key-

points in the sequence of frames. Assumption: one coherent trajectory per keypoint.

Page: 160 Date Saved: 2016-06-03

Example uses: improved spatial localization or action recognition.

Note: For action recognition the keypoints locations may or may not be on the meaningful

positions of human body or on the object of interest, if they are determined by the key-point

detector and selector.

Two different coding methods are proposed: interframe and scalable keypoint coding (frame vs

trajectory based coding order). Tabulated results presented bit savings (compared to affine

model) of between 8-25%.

The possibility to consider proposal as an extension of CDVA towards video analysis based on

motion (e.g. for surveillance applications) was discussed. That may require, e.g., dense or more

accurate motion information. More detailed requirements would help (retrieval for similar

motion, classification of motions, action recognition, etc).

Currently no data with suitable motion patterns and localization information is in the current

CDVA dataset.

Recommended to acquire suitable datasets and present at the next meeting.

m37880 BRIDGET Response to the MPEG CfP for Compact Descriptors for Video Analysis (CDVA) - Search and Retrieval [Massimo Balestri (Telecom Italia), Gianluca Francini (Telecom Italia), Skjalg Lepsoy (Telecom Italia), Miroslaw Bober (University of Surrey), Sameed Husain (University of Surrey), Stavros Paschalakis (Visual Atoms)]

Uses CDVS technology as basis, with some differences:

o RVD-W global descriptor: Size variable, binary representation similar to SCFV, cannot be

directly matched with SCFV.

o Coordinate coding for selected frames (from TI proposal to CDVS)

o Different binary descriptor format (time indexed sequence of keyframe descriptors, segment

link information currently not used)

Extraction

o Same CDVS extraction parameters (mode 0) for all CDVA modes

o VGA, 1:6 temporal subsampling -> candidate key frame

Intraframe coding of selected frames

Frame selection (based on RVD-W)

o Threshold to keep frames in same segment

o Determine if shot is static by matching first and last frame of segment -> middle as

representative, otherwise iteratively split shot in the middle and repeat

o Use 300 most relevant local features

Matching

o Build DB of reference keyframe descriptors

o Query for all query descriptors

o Score is max of all matches

o Localization: match counted if local score is above threshold

Retrieval

o DB of reference and distractor keyframe descriptors

o Queries are merged, duplicates removed, sort again and return top 20 results

Only used on one operating point, arriving at 4-5K descriptor sizes

No information from other frames in segment used

o No location information for other frames encoded

Page: 161 Date Saved: 2016-06-03

Retrieval Pairwise Temp localisation

16k 64k 256k 16k 64k 256k

16k-256k 16k 64k 256k

16-256

M37880 0.728 0.728 0.728 0.757 0.757 0.757 0.757 0.549 0.549 0.549 0.549

Comments:

Retrieval time 2 mins – outside the 1 mins requirement.

m37794 JRS Response to Call for Proposals for Technologies Compact Descriptors for Video Analysis (CDVA) - Search and Retrieval [Werner Bailer, Stefanie Wechtitsch]

Generic method of coding image-level descriptors, containing global/local/localisation

information.

Coding is based on temporal segments, determined by similiarities of global descriptors.

Global descriptors are coded with the ―median‖ global descriptor, selected as the medoid of all

global descriptors. Subsequently, a number of global descriptors, which differ from the medoid

descriptor by more then a threshold, are selected and coded differentially.

Local descriptors are selected from the reference frames (filtered out), matched to already

selected and coded differentially or referenced (if there is a small difference). One large local

feature vector is created for the entire segment and the time index of this descriptors is created.

Key-point locations are encoded for the selected frames and independently per intra-frame (no

prediction).

A binary representation format was presented.

Retrieval Pairwise Temp localisation

16k 64k 256k 16k 64k 256k

16k-256k 16k 64k 256k

16-256

M37794 0.491 0.283 0.258 0.577 0.593 0.594 0.498 0.362 0.377 0.376 0.311

Comments:

Surprising drop in performance at higher rate in retrieval.

Does not fulfil requirement of the retrieval in 1 min (~ 2 mins).

Patent statement declaration is missing.

Tuning of parameter is still needed.

Comparison of proposals

The best performing proposal at each operating point is marked yellow.

m37636 m37794 m37780

Retrieval 16 0.676 0.491 0.728

64 0.707 0.283 0.728

256 0.683 0.258 0.728

Pairwise 16 0.739 0.577 0.757 64 0.757 0.593 0.757 256 0.798 0.594 0.757

16-256 0.662 0.498 0.757

Temp loc 16 0.567 0.362 0.549 64 0.596 0.377 0.549 256 0.622 0.376 0.549

16-256 0.528 0.311 0.549

Page: 162 Date Saved: 2016-06-03

14.5.5 Vid/Req Tue 10 AR/FTV/Lightfields (Requirements room)

See the Requirements report for a description of the activity in this exploration area.

14.5.6 Joint Video/VCEG/Req/VC Tuesday 14:00–18:00 (Salon D)

This session considered topic areas of HDR that had been deferred so far and were pending

discussion. Notes of this session can be found in the corresponding JCT-VC report.

It was reported that MPEG requirements had concluded on Monday that BC is important (but it

was yet to be clarified which types of BC are needed and how to test it).

14.5.7 Joint Video/VCEG/Req/VC Wed 11:00-12:00 (Salon D&E)

Issues discussed in this session focused on HDR and especially on the testing of CE2 vs. CE1

and its implications. Further notes can be found in the corresponding JCT-VC report.

After review of the results of a visual test of CE2 vs. CE1 results, it was concluded that the

amount of benefit for HDR/WCG quality that was demonstrated by the post-processing

techniques of CE2 (as tested) was not so clear or large. Moreover, it was also noted that the CRI

SEI message can already do similar processing to some of what was tested in the CE2 category.

It was thus agreed not to plan to create a new profile (or any other "normative" or implicitly

required specification that would imply that something new is needed to properly enable HDR

service). Further SEI/VUI work may be desirable, but not a new profile, and we have a clear

indication that nothing (not even some SEI message) is necessary to properly deliver HDR (for

an HDR-specific service, without consideration of backward compatibility).

The following JCT-VC meeting resolution was thus prepared: In consultation with the parent

bodies, the JCT-VC reports the conclusion reached at the 114th meeting of WG 11 that the

creation of a new HEVC profile or other new normative specification is not necessary to

properly enable HDR/WCG video compression using the current edition of HEVC (3rd edition

for ISO/IEC). No technology has been identified that would justify the creation of such a new

specification. Future work on HDR/WCG in JCT-VC will focus primarily on formal verification

testing and guidelines for encoding practices.

14.5.8 MPEG/JPEG: Joint Standards Thu 9:00-10:00 (Room 3G)

Potential areas of mutual interest between MPEG and JPEG were reviewed in this joint meeting.

See the corresponding Requirements report for topics discussed, which included virtual reality,

augmented reality, and point clouds.

14.6 Output Documents planned

A provisional list of output documents was drafted in the opening plenary and further updated

during the Wednesday plenary. See the final list of output documents in section 22.1.

15 MPEG-7 Visual and CDVS The BoG on these topics was chaired by Miroslaw Bober. It met on all days Monday through

Thursday, with meetings announced per reflectors.

The BoG reported its recommendations to the video plenary, where they were confirmed as

decisions of the Video SG.

Page: 163 Date Saved: 2016-06-03

15.1 MPEG-7 Visual and XM

m38085 Performance Testing for ISO/IEC 15938-3:2002/Amd 3:2009: Image signature tools [Karol Wnukowicz, Stavros Paschalakis, Miroslaw Bober]

It was detected and reported in previous meetings, that the new XM software (due to update of

external libraries used) was no longer able to fulfil the conformance requirements of image

signature descriptor. This contribution shows that formulating conformance tolerances more

loosely is sufficient to solve the problem, without losing matching performance. No further

action on this is necessary, the corrigendum on conformance (under ballot) is fully resolving the

problem.

Plans were again confirmed for issuing a new edition of ISO/IEC 15938-3; this will be studied

by the AHG until the next meeting to determine how large the effort would be and whether this

might cause any problems.

Since no negative votes and no substantial comments were received in the DIS ballot, the new

edition of ISO/IEC 15938-6 can progress directly to publication without issuing an FDIS.

15.2 CDVS

The BoG was initially tasked to generate an initial version of the white paper and present it in the

Commununications SG on Thursday. However, this unfortunately did not happen.

15.2.1 Conformance testing and reference software

The DIS is currently under ballot; no action was necessary. A minor bug is known in the

software, which will be reolved in the FDIS.

15.2.2 TM

No new version of the TM was issued. It is planned for future work to combine the MPEG-7 XM

and CDVS TM for usage in scene classification tasks. The outcome of this could become an

amendment of TR 15938-8.

15.2.3 Other

m37769 CDVSec: CDVS for Fingerprint Matching [Giovanni Ballocca, Attilio Fiandrotti, Massimo Mattelliano, Alessandra Mosca]

The contribution was reviewed.

m37887 CDVS: Matlab code maintenance [Alessandro Bay (Politecnico di Torino), Massimo Balestri (Telecom Italia)]

The contribution was reviewed.

15.3 MPEG-7/CDVA

After receiving substantial input to the CfP (see section 14.5), it was decided to start the

technical work in the Video SG. All proposals are based on CDVS, extending over the timeline.

A common denominator is CDVS based description of keyframes, augmented by expressing

temporal changes (and eventually coding them efficiently). An initial version of the test model

(entitled as CXM0.1) was drafted. This extracts CDVS for keyframes, and only defines a new

description if the change is sufficiently large. Therefore, the resulting description has variable

rate (depending on sequence characteristics) . The CXM also contains elements for extraction,

pairwise matching and retrieval. The bitstream consists of a timestamp and a CDVS descriptor.

For potential extension of CXM, two Core Experiments were defined:

- CE1: Temporal subsampling. Discuss whether it is mandatory to use same CDVS mode

Page: 164 Date Saved: 2016-06-03

- CE2: Keypoint locations, including temporally consistent keypoint locations

Furthermore, a document on the results of the CfP was drafted as output doc. This will provide

information about the achieved performance per category, without identifying proposals

explicitly.

16 Internet Video Coding The breakout group on IVC was chaired by Euee S. Jang. It met from Monday through Thursday,

with meetings announced via the reflector.

The BoG reported its recommendations to the video plenary, where they were confirmed as

decisions of the Video SG.

During the opening plenary, the BoG was given the following tasks:

- Prepare reference software PDAM (new amendment of 14496-5)

- Study which are the slow parts of the software and set up work plan to develop faster

modules

- Prepare conformance a PDAM (or WD), as a new amendment of ISO/IEC 14496-4. Set

up a list of conformance test streams that will be developed (including responsibilities)

- Investigate ballot comments, prepare a DoC and report to the video plenary on

Wednesday about any critical issues

- Prepare new ITM, documentation of prior art and CE documents

16.1 Improvement of 14496-33

m37786 Information on how to improve Text of DIS 14496-33 IVC [Sang-hyo Park, Yousun Park, Euee S. Jang]

Some editorial comments are identified and reflected into the output study document (N16034).

16.2 New technical proposals

m37799 Extension of Prediction Modes in Chroma Intra Coding for Internet Video Coding [Anna Yang, Jae-Yung Lee, Jong-Ki Han, Jae-Gon Kim]

Two more prediction modes for chroma blocks are proposed, with minor coding gain. Further

EEs can be conducted till the next meeting on whether it is possible to match the prediction

modes between luma and chroma blocks. The proposed method is to be integrated into the

extension of IVC after checking the prior art information during the MPEG week. This work is

included in the on-going EE (N16036).

m38052 Cross-check of m37799 (Extension of Prediction Modes in Chroma Intra Coding for Internet Video Coding) [Sang-hyo Park, Won Chang Oh, Euee S. Jang]

m37969 Recursive CU structure for IVC+ [Kui Fan, Ronggang Wang, Zhenyu Wang, Ge Li, Tiejun Huang, Wen Gao]

A new software platform is proposed with recursive quadtree structure. The results on all Intra

(AI) case are provided with 1% gain. Results on Inter frames are to be generated and studied by

the next MPEG meeting. Some new methods, like block scan order, need more analysis on prior

Page: 165 Date Saved: 2016-06-03

art. Further EEs will be conducted till the next meeting. Some concern was raised on how to

manage new changes on top of the existing ITM. Making the new reference software as a

superset is suggested, which will also be a part of EE till the next meeting. The new EE

description (N16036) is issued on this issue.

16.3 ITM development

m37783 Report on the decoding complexity of IVC [Sang-hyo Park, Seungho Kuk, Haiyan Xu, Yousun Park, Euee S. Jang]

Throughout the experiment, interpolation filters are found to be critical in the computing time.

The complexity analysis of IVC reference software is provided as an information.

m37970 Speed optimization for IVC decoder [Shenghao Zhang, Kui Fan, Ronggang Wang, Ge Li, Tiejun Huang, Wen Gao]

A SIMD acceleration method on ITM 13.0 is proposed. For the class D (1280x720, 60 fps)

sequences, the decoding frame rate is accelerated up to 25 ~ 27 frames on different test cases.

The improvement is reportedly 35.8% on average. Optimization of the decoder as well as

encoder is a desirable objective of IVC. It is foreseen that activities both inside and outside of

MPEG will continue to achieve such goals.

16.4 New EE definition

The following (continuing) Exploration Experiments are defined in N16036, which was edited

by the BoG and approved in the video plenary. The EE experiments are intended to extend the

current IVC standard by including new tools in the future extensions. The following areas are the

primary fields of investigation:

- EE1: Encoder optimization

- EE2: Multiple reference frames

- EE3: B-frame coding

- EE4: Intra prediction

- EE5: Large block sizes with recursive quadtree structure

- EE6: OBMC

16.5 Output docs

The following output documents were created:

N16024 Disposition of Comments on ISO/IEC 14496-4:2004/PDAM46 (R. Wang)

N16025 Text of ISO/IEC 14496-4:2004/DAM46 Conformance Testing for Internet

Video Coding (R. Wang)

N16026 Disposition of Comments on ISO/IEC 14496-5:2001/PDAM41 (R. Wang)

N16027 Text of ISO/IEC 14496-1:2001/DAM41 Reference Software for Internet Video

Coding (R. Wang)

N16034 Study Text of ISO/IEC DIS 14496-33 Internet Video Coding (R. Wang)

N16035 Internet Video Coding Test Model (ITM) v 14.1 (S. Park)

Page: 166 Date Saved: 2016-06-03

N16036 Description of IVC Exploration Experiments (R. Wang)

N16038 Draft verification test plan for Internet Video Coding (R. Wang)

17 Reconfigurable Media Coding No specific input documents were received on RVC. It was, however, announced verbally that

further achievements on RVC implementation of HEVC Main 10 and scalable profiles, as well

as tools for VTL/CAL-based design support are expected towards the next meeting.

The following standard parts were progressed regularly:

- 23002-4:2014/DAM3 FU and FN descriptions for parser instantiation from BSD

(N16041/N16042)

- 23002-5:2013/DAM2 Reference Software for HEVC related VTL extensions

(N16043/N16044).

18 AVC

The following amendment actions took place for AVC:

- ISO/IEC 14496-10:2014/FDAM2 Additional Levels and Supplemental Enhancement

Information (N16031/N16031)

- Text of ISO/IEC 14496-10:2014/PDAM4 Progressive High 10 Profile, additional VUI

code points and SEI messages (N16032/N16033)

The latter newly defines the Progressive High 10 Profile, as decided by the joint meeting with

VCEG and MPEG Requirements SG (see the notes of the joint discussion above). It furthermore

includes new code points for HLG as defined by ITU-R, BT.HDR, and generalized CL/NCL

transfer, all of which are already included in HEVC. It also contains minor corrections on other

colour and transfer related metadata (see report of 113th meeting which contains relevant

discussion).

A new edition had been planned for June 2016, after finalization of Amd.2 and Amd.3, where

however it may need to be further discussed whether this should better be done along with the

finalization of Amd.4.

19 CICP For 23001-8, ISO/IEC 23001-8:201x/PDAM1 Additional code points for colour description

(N16039/N16040) was issued. This contains the corresponding extensions and corrections of

video related metada, as described above for ISO/IEC 14496-10/Amd.4.

20 Other issues Restructuring of ISO/IEC 14496-4 and ISO/IEC 14496-5 remains planned.

21 Wednesday Video plenary status review A Video subgroup plenary was held 11:15-12:30 on Wednesday. Reports of BoGs were given as

follows:

CDVA:

Page: 167 Date Saved: 2016-06-03

- Presentation of CXM 0.1.

- Extraction of CDVS, skipped when change is small; therefore variable rate (depending on

sequence characteristics)

- Elements for extraction, pairwise matching, retrieval, bitstream consisting of timestamp +

CDVS descriptor

- CE1: Temporal subsampling. Discuss whether it is mandatory to use same CDVS mode

- CE2: Keypoint locations, including temporally consistent keypoint locations

- Document on results: Performance per category,

- Other Docs: White paper, DoC, 15938-6 FDIS

IVC:

- Patent statement resolution

- Systems interfacing is looked into for the next meeting

- Verification test was already done by Vittorio; issue draft test plan?

- New ITM doc with improved encoder description, but no new technology as new

software version is expected towards next meeting

- new technology will be investigated in CE

- version control is aleady included

- Euee presents ideas of configurable extensions, requires further study.

22 Closing plenary topics A closing plenary of the Video subgroup was held Friday 9:00–11:45. Output docs were

approved, and AHGs were established. No specifically important issues were raised. All issues

regarding breakout activities are basically reflected in the respective subsections about BoG

activities above, or in the section about output docs below.

The Video plenary was closed on Friday 02-26 at 11:45.

22.1 Output docs

During the closing plenary, the following output documents were recommended for approval by

the Video subgroup (including information about publication status and editing periods, as well

as person in charge):

No. Title In charge TBP Available

ISO/IEC 14496-4 – Conformance testing

16024 Disposition of Comments on ISO/IEC 14496-

4:2004/PDAM46

R. Wang N 16/02/26

16025 Text of ISO/IEC 14496-4:2004/DAM46 Conformance

Testing for Internet Video Coding

R. Wang N 16/04/04

ISO/IEC 14496-5 – Reference software

16026 Disposition of Comments on ISO/IEC 14496-

5:2001/PDAM41

R. Wang N 16/02/26

16027 Text of ISO/IEC 14496-1:2001/DAM41 Reference

Software for Internet Video Coding

R. Wang N 16/04/04

ISO/IEC 14496-5 – Reference software

Page: 168 Date Saved: 2016-06-03

16028 Disposition of Comments on ISO/IEC 14496-

5:2001/PDAM42

T. Senoh N 16/02/26

16029 Text of ISO/IEC 14496-1:2001/DAM42 Reference

Software for Alternative Depth Information SEI message

T. Senoh N 16/04/04

ISO/IEC 14496-10 – Advanced Video Coding

16030 Disposition of Comments on ISO/IEC 14496-

10:2014/DAM2

A. Tourapis N 16/02/26

16031 Text of ISO/IEC 14496-10:2014/FDAM2 Additional

Levels and Supplemental Enhancement Information

A. Tourapis N 16/04/08

16032 Request for ISO/IEC 14496-10:2014/Amd.4 A. Tourapis N 16/02/26

16033 Text of ISO/IEC 14496-10:2014/PDAM4 Progressive

High 10 Profile, additional VUI code points and SEI

messages

A. Tourapis Y 16/03/11

ISO/IEC 14496-33 – Internet Video Coding

16034 Study Text of ISO/IEC DIS 14496-33 Internet Video

Coding

R. Wang N 16/03/31

16035 Internet Video Coding Test Model (ITM) v 14.1 S. Park Y 16/03/31

16036 Description of IVC Exploration Experiments R. Wang Y 16/02/26

16038 Draft verification test plan for Internet Video Coding R. Wang Y 16/03/31

ISO/IEC 23001-8 – Coding-independent code-points

16039 Request for ISO/IEC 23001-8:201x/Amd.1 A. Tourapis N 16/02/26

16040 Text of ISO/IEC 23001-8:201x/PDAM1 Additional code

points for colour description

A. Tourapis Y 16/03/11

ISO/IEC 23002-4 – Video tool library

16041 Disposition of Comments on ISO/IEC 23002-

4:2014/PDAM3

H. Kim N 16/02/26

16042 Text of ISO/IEC 23002-4:2014/DAM3 FU and FN

descriptions for parser instantiation from BSD

H. Kim N 16/04/04

ISO/IEC 23002-5 – Reconfigurable media coding

conformance and reference software

16043 Disposition of Comments on ISO/IEC 23002-

5:2013/PDAM3

H. Kim N 16/02/26

16044 Text of ISO/IEC 23002-5:2013/DAM3 Reference software

for parser instantiation from BSD

H. Kim N 16/04/04

ISO/IEC 23008-2 – High Efficiency Video Coding

16045 Disposition of Comments on DIS ISO/IEC 23008-

2:201x

R. Joshi N 16/02/26

16046 Text of ISO/IEC FDIS 23008-2:201x High Efficiency

Video Coding [3rd

ed.]

R. Joshi N 16/04/22

16047 WD of ISO/IEC 23008-2:201x/Amd.1 Additional

colour description indicators

P. Yin Y 16/03/11

16048 High Efficiency Video Coding (HEVC) Test Model 16

(HM16) Improved Encoder Description Update 5

C. Rosewarne Y 16/05/13

16049 HEVC Screen Content Coding Test Model 7 (SCM 7) R. Joshi Y 16/05/13

16050 MV-HEVC verification test report V. Baroncini Y 16/04/22

16051 SHVC verification test report Y. Ye Y 16/04/22

16052 Verification test plan for HDR/WCG coding using

HEVC Main 10 Profile

R. Sjöberg Y 16/03/11

ISO/IEC 23008-5 – HEVC Reference Software

Page: 169 Date Saved: 2016-06-03

16053 Disposition of Comments on ISO/IEC 23008-

5:2015/DAM3

T. Suzuki N 16/02/26

16054 Disposition of Comments on ISO/IEC 23008-

5:2015/DAM4

G. Tech N 16/02/26

16055 Text of ISO/IEC FDIS 23008-5:201x Reference Software

for High Efficiency Video Coding [2nd

ed.]

K. Suehring N 16/04/22

16056 Request for ISO/IEC 23008-5:201x/Amd.1 G. Sullivan N 16/02/26

16057 Text of ISO/IEC 23008-5:201x/PDAM1 Reference

Software for Screen Content Coding Profiles

K. Rapaka Y 16/03/11

ISO/IEC 23008-8 – HEVC Conformance Testing

16058 Disposition of Comments on ISO/IEC 23008-

8:2015/DAM1

K. Kawamura N 16/02/26

16059 Disposition of Comments on ISO/IEC 23008-

8:2015/DAM2

T. Suzuki N 16/02/26

16060 Disposition of Comments on ISO/IEC 23008-

8:2015/DAM3

T. Suzuki N 16/02/26

16061 Text of ISO/IEC FDIS 23008-8:201x HEVC

Conformance Testing [2nd

edition]

V. Seregin N 16/04/22

16062

Working Draft of ISO/IEC 23008-8:201x/Amd.1

Conformance Testing for Screen Content Coding

Profiles

R. Joshi N 16/04/08

ISO/IEC 23008-14 – Conversion and coding practices for

HDR/WCG video

16063 WD of ISO/IEC TR 23008-14 Conversion and coding

practices for HDR/WCG video

J. Samuelsson Y 16/02/26

Explorations – Compact descriptors for video analysis

15938 Results of the Call for Proposals on CDVA M. Bober Y 16/02/26

16064 CDVA Experimentation Model (CXM) 0.1 M. Balestri Y 16/03/25

16065 Description of Core Experiments in CDVA M. Bober N 16/02/26

Explorations – Future Video Coding

16066 Algorithm description of Joint Exploration Test Model 2

(JEM2)

J. Chen Y 16/03/25

16067 Description of Exploration Experiments on coding tools E. Alshina Y 16/03/11

16068 Call for test materials for future video coding

standardization

A. Norkin Y 16/03/05

Liaisons

16069 Liaison statement to ITU-T SG 16 on video coding

collaboration

G. Sullivan N 16/02/26

16070 Liaison statement to DVB on HDR G. Sullivan N 16/02/26

16071 Liaison statement to ATSC on HDR/WCG G. Sullivan N 16/02/26

16072 Liaison statement to ITU-R WP6C on HDR G. Sullivan N 16/02/26

16073 Liaison statement to ETSI ISG CCM on HDR G. Sullivan N 16/02/26

16074 Liaison statement to SMPTE on HDR/WCG G. Sullivan N 16/02/26

16075 Statement of benefit for establishing a liaison with

DICOM

G. Barroux N 16/02/26

22.2 AHGs established

The following AHGs were established by the Video subgroup, as detailed in N15905:

Page: 170 Date Saved: 2016-06-03

AHG on MPEG-7 Visual and CDVS

AHG on Compact Descriptors for Video Analysis

AHG on Internet Video Coding

AHG on Reconfigurable Media Coding

Page: 171 Date Saved: 2016-06-03

– JCT-VC report

Source: Jens Ohm and Gary Sullivan, Chairs

Summary The Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T WP3/16 and ISO/IEC

JTC 1/ SC 29/ WG 11 held its twenty-third meeting during 19–26 Feb 2016 at the San Diego

Marriott La Jolla in San Diego, US. The JCT-VC meeting was held under the chairmanship of Dr

Gary Sullivan (Microsoft/USA) and Dr Jens-Rainer Ohm (RWTH Aachen/Germany). For rapid

access to particular topics in this report, a subject categorization is found (with hyperlinks) in

section 1.14 of this document.

The JCT-VC meeting sessions began at approximately 0900 hours on Friday 19 February 2016.

Meeting sessions were held on all days (including weekend days) until the meeting was closed at

approximately 1240 hours on Friday 26 February 2016. Approximately 159 people attended the

JCT-VC meeting, and approximately 125 input documents were discussed. The meeting took

place in a collocated fashion with a meeting of WG11 – one of the two parent bodies of the JCT-

VC. The subject matter of the JCT-VC meeting activities consisted of work on the video coding

standardization project known as High Efficiency Video Coding (HEVC) and its extensions.

One primary goal of the meeting was to review the work that was performed in the interim

period since the twenty-second JCT-VC meeting in producing:

The HEVC test model (HM) 16 improved encoder description (including RExt

modifications) update 4;

For the format range extensions (RExt), the RExt reference software draft 4;

For the scalable extensions (SHVC), the SHVC reference software draft 3, conformance

testing draft 4, SHVC test model 11 (SHM 11), and verification test plan for SHVC;

For the HEVC screen content coding (SCC) extensions, the HEVC screen content coding

test model 6 (SCM 6) and SCC draft text 5.

The other most important goals were to review the results from eight Core Experiments on High

Dynamic Range (HDR) video coding (a topic of work that had been allocated to JCT-VC by the

parent bodies to be effective as of the beginning of the 23rd

meeting), and review other technical

input documents. Finalizing the specification of screen content coding tools (integrated in the

preparation for version 4 of the HEVC text specification) and making progress towards HDR

support in HEVC were the most important topics of the meeting. Advancing the work on

development of conformance and reference software for recently finalized HEVC extensions

(RExt and SHVC) was also a significant goal. Evaluating results of SHVC verification tests was

also conducted, and possible needs for corrections to the prior HEVC specification text were also

considered.

The JCT-VC produced 13 particularly important output documents from the meeting:

The HEVC test model (HM) 16 improved encoder description (including RExt

modifications) update 5;

For the format range extensions (RExt), conformance testing draft 6 (including improved

HEVC version 1 testing);

Page: 172 Date Saved: 2016-06-03

For the scalable extensions (SHVC), the SHVC reference software draft 4, conformance

testing draft 5, and a verification test report for SHVC;

For the HEVC screen content coding (SCC) extensions, a draft text for version 4 of

HEVC including draft text 6 of the text of SCC extensions, the HEVC screen content

coding test model 7 (SCM 7), reference software draft 1, and conformance testing draft 1.

For high dynamic range (HDR) and wide colour gamut (WCG) video coding extensions,

a text amendment for ICTCP colour representation support in HEVC draft 1, a technical

report text of conversion and coding practices for HDR/WCG video draft 1, a verification

test plan for HDR/WCG video coding using the HEVC Main 10 profile, and a description

of common test conditions (CTC) for HDR/WCG video coding experiments.

For the organization and planning of its future work, the JCT-VC established 14 "ad hoc groups"

(AHGs) to progress the work on particular subject areas. The next four JCT-VC meetings are

planned for Thu. 26 May – Wed. 1 June 2016 under ITU-T auspices in Geneva, CH, during Fri.

14 – Fri. 21 Oct. 2016 under WG 11 auspices in Chengdu, CN, during Thu. 12 – Wed. 18 Jan.

2017 under ITU-T auspices in Geneva, CH, and during Fri. 31 Mar. – Fri. 7 Apr. 2017 under

WG 11 auspices in Hobart, AU.

The document distribution site http://phenix.it-sudparis.eu/jct/ was used for distribution of all

documents.

The reflector to be used for discussions by the JCT-VC and all of its AHGs is the JCT-VC

reflector:

[email protected] hosted at RWTH Aachen University. For subscription to this list, see

https://mailman.rwth-aachen.de/mailman/listinfo/jct-vc.

1 Administrative topics

1.1 Organization

The ITU-T/ISO/IEC Joint Collaborative Team on Video Coding (JCT-VC) is a group of video

coding experts from the ITU-T Study Group 16 Visual Coding Experts Group (VCEG) and the

ISO/IEC JTC 1/ SC 29/ WG 11 Moving Picture Experts Group (MPEG). The parent bodies of

the JCT-VC are ITU-T WP3/16 and ISO/IEC JTC 1/SC 29/WG 11.

The Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T WP3/16 and ISO/IEC

JTC 1/ SC 29/ WG 11 held its twenty-third meeting during 19–26 Feb 2016 at the San Diego

Marriott La Jolla in San Diego, US. The JCT-VC meeting was held under the chairmanship of Dr

Gary Sullivan (Microsoft/USA) and Dr Jens-Rainer Ohm (RWTH Aachen/Germany).

1.2 Meeting logistics

The JCT-VC meeting sessions began at approximately 0900 hours on Friday 19 February 2016.

Meeting sessions were held on all days (including weekend days) until the meeting was closed at

approximately 1240 hours on Friday 26 February 2016. Approximately 159 people attended the

JCT-VC meeting, and approximately 125 input documents were discussed. The meeting took

place in a collocated fashion with a meeting of ISO/IEC JTC 1/ SC 29/ WG 11 (MPEG) – one of

the two parent bodies of the JCT-VC. The subject matter of the JCT-VC meeting activities

consisted of work on the video coding standardization project known as High Efficiency Video

Coding (HEVC) and its extensions.

Some statistics are provided below for historical reference purposes:

1st "A" meeting (Dresden, 2010-04): 188 people, 40 input documents

2nd "B" meeting (Geneva, 2010-07): 221 people, 120 input documents

3rd "C" meeting (Guangzhou, 2010-10): 244 people, 300 input documents

Page: 173 Date Saved: 2016-06-03

4th "D" meeting (Daegu, 2011-01): 248 people, 400 input documents

5th "E" meeting (Geneva, 2011-03): 226 people, 500 input documents

6th "F" meeting (Turin, 2011-07): 254 people, 700 input documents

7th "G" meeting (Geneva, 2011-11) 284 people, 1000 input documents

8th "H" meeting (San Jose, 2012-02) 255 people, 700 input documents

9th "I" meeting (Geneva, 2012-04/05) 241 people, 550 input documents

10th "J" meeting (Stockholm, 2012-07) 214 people, 550 input documents

11th "K" meeting (Shanghai, 2012-10) 235 people, 350 input documents

12th "L" meeting (Geneva, 2013-01) 262 people, 450 input documents

13th "M" meeting (Incheon, 2013-04) 183 people, 450 input documents

14th "N" meeting (Vienna, 2013-07/08) 162 people, 350 input documents

15th "O" meeting (Geneva, 2013-10/11) 195 people, 350 input documents

16th "P" meeting (San José, 2014-01) 152 people, 300 input documents

17th "Q" meeting (Valencia, 2014-03/04) 126 people, 250 input documents

18th "R" meeting (Sapporo, 2014-06/07) 150 people, 350 input documents

19th "S" meeting (Strasbourg, 2014-10) 125 people, 300 input documents

20th "T" meeting (Geneva, 2015-02) 120 people, 200 input documents

21st "U" meeting (Warsaw, 2015-06) 91 people, 150 input documents

22nd "V" meeting (Geneva, 2015-10) 155 people, 75 input documents

23rd "W" meeting (San Diego, 2016-02) 159 people, 125 input documents

Information regarding logistics arrangements for the meeting had been provided via the email

reflector [email protected] and at http://wftp3.itu.int/av-arch/jctvc-

site/2016_02_W_SanDiego/.

1.3 Primary goals

One primary goal of the meeting was to review the work that was performed in the interim

period since the twenty-second JCT-VC meeting in producing:

The HEVC test model (HM) 16 improved encoder description (including RExt

modifications) update 4;

For the format range extensions (RExt), the RExt reference software draft 4;

For the scalable extensions (SHVC), the SHVC reference software draft 3, conformance

testing draft 4, SHVC test model 11 (SHM 11), and verification test plan for SHVC;

For the HEVC screen content coding (SCC) extensions, the HEVC screen content coding

test model 6 (SCM 6) and SCC draft text 5.

The other most important goals were to review the results from eight Core Experiments on High

Dynamic Range (HDR) video coding (a topic of work that had been allocated to JCT-VC by the

parent bodies to be effective as of the beginning of the 23rd

meeting), and review other technical

input documents. Finalizing the specification of screen content coding tools (integrated in the

preparation for version 4 of the HEVC text specification) and making progress towards HDR

support in HEVC were the most important topics of the meeting. Advancing the work on

development of conformance and reference software for recently finalized HEVC extensions

(RExt and SHVC) was also a significant goal. Evaluating results of SHVC verification tests was

Page: 174 Date Saved: 2016-06-03

also conducted, and possible needs for corrections to the prior HEVC specification text were also

considered.

1.4 Documents and document handling considerations

1.4.1 General

The documents of the JCT-VC meeting are listed in Annex A of this report. The documents can

be found at http://phenix.it-sudparis.eu/jct/.

Registration timestamps, initial upload timestamps, and final upload timestamps are listed in

Annex A of this report.

The document registration and upload times and dates listed in Annex A and in headings for

documents in this report are in Paris/Geneva time. Dates mentioned for purposes of describing

events at the meeting (other than as contribution registration and upload times) follow the local

time at the meeting facility.

For this meeting, some difficulties were experienced with the operation of the document

handling web site. These included the following:

The initial registration record for JCTVC-W0033 was lost and replaced with a different

document; a version of the prior document was resubmitted as JCTVC-W0061.

The initial registration record for JCTVC-W0034 was lost and replaced with a different

document; a version of the prior document was resubmitted as JCTVC-W0026.

Highlighting of recorded decisions in this report:

Decisions made by the group that affect the normative content of the draft standard are

identified in this report by prefixing the description of the decision with the string

"Decision:".

Decisions that affect the reference software but have no normative effect on the text are

marked by the string "Decision (SW):".

Decisions that fix a "bug" in the specification (an error, oversight, or messiness) are

marked by the string "Decision (BF):".

Decisions regarding things that correct the text to properly reflect the design intent, add

supplemental remarks to the text, or clarify the text are marked by the string "Decision

(Ed.):".

Decisions regarding simplification or improvement of design consistency are marked by

the string "Decision (Simp.):".

Decisions regarding complexity reduction (in terms of processing cycles, memory

capacity, memory bandwidth, line buffers, number of entropy-coding contexts, number of

context-coded bins, etc.) … "Decision (Compl.):".

This meeting report is based primarily on notes taken by the chairs and projected for real-time

review by the participants during the meeting discussions. The preliminary notes were also

circulated publicly by ftp and http during the meeting on a daily basis. Considering the high

workload of this meeting and the large number of contributions, it should be understood by the

reader that 1) some notes may appear in abbreviated form, 2) summaries of the content of

contributions are often based on abstracts provided by contributing proponents without an intent

to imply endorsement of the views expressed therein, and 3) the depth of discussion of the

content of the various contributions in this report is not uniform. Generally, the report is written

to include as much information about the contributions and discussions as is feasible (in the

interest of aiding study), although this approach may not result in the most polished output report.

Page: 175 Date Saved: 2016-06-03

1.4.2 Late and incomplete document considerations

The formal deadline for registering and uploading non-administrative contributions had been

announced as Tuesday, 9 February 2016.

Non-administrative documents uploaded after 2359 hours in Paris/Geneva time Wednesday 10

February 2016 were considered "officially late".

Most documents in the "late" category were CE reports or cross-verification reports, which are

somewhat less problematic than late proposals for new action (and especially for new normative

standardization action).

At this meeting, we again had a substantial amount of late document activity, but in general the

early document deadline gave a significantly better chance for thorough study of documents that

were delivered in a timely fashion. The group strived to be conservative when discussing and

considering the content of late documents, although no objections were raised regarding allowing

some discussion in such cases.

All contribution documents with registration numbers JCTVC-W0108 and higher were registered

after the "officially late" deadline (and therefore were also uploaded late). No break-out activity

reports were generated during this meeting.

In many cases, contributions were also revised after the initial version was uploaded. The

contribution document archive website retains publicly-accessible prior versions in such cases.

The timing of late document availability for contributions is generally noted in the section

discussing each contribution in this report.

One suggestion to assist with the issue of late submissions was to require the submitters of late

contributions and late revisions to describe the characteristics of the late or revised (or missing)

material at the beginning of discussion of the contribution. This was agreed to be a helpful

approach to be followed at the meeting.

The following technical design proposal contributions were registered on time but were uploaded

late:

JCTVC-W0072 (a proposal of an alternative source format transfer function for video

representation) [uploaded 02-11]

JCTVC-W0085 (a proposal of a method for coding HDR video) [uploaded 02-16]

JCTVC-W0089 (a proposal of a method for coding HDR video) [uploaded 02-19]

The following technical design proposal contributions were both registered late and uploaded

late:

JCTVC-W0129 (a proposal document from Sharp Labs proposing changes to SCC

profile/level limits based on chroma format) [uploaded 02-18]

JCTVC-W0133 (a proposal document from Philips proposing text changes in the HEVC

specification to support metadata of SMPTE 2094-20 standard) [uploaded 02-22]

The following other documents were registered on time but were uploaded late:

JCTVC-W0045 (an information document with comments on the hybrid log-gamma

approach to HDR video) [uploaded 02-15]

JCTVC-W0050 (an information document about ICTCP colour representation) [uploaded

02-22]

JCTVC-W0090 (an information document containing subjective test results for HDR

video) [uploaded 02-15]

JCTVC-W0091 (an information document reporting on objective video quality metrics

for HDR video) [uploaded 02-15]

Page: 176 Date Saved: 2016-06-03

JCTVC-W0096 (proposed editorial improvements to the HEVC SCC draft text)

[uploaded 02-20]

JCTVC-W0105 (an information document reporting effects of 4:2:0 chroma subsampling

for HDR video) [uploaded 02-19]

JCTVC-W0106 (comments on the performance of two possible scenarios for distributing

HDR content employing a single layer) [uploaded 02-20]

JCTVC-W0134 (providing SHM software modifications for multi-view support)

[uploaded 02-23]

The following cross-verification reports were registered on time but were uploaded late: JCTVC-

W0064 [initial placeholder improved on 02-19], JCTVC-W0070 [initial placeholder improved

on 02-18], JCTVC-W0073 [uploaded 02-17], JCTVC-W0080 [uploaded 02-15], and JCTVC-

W0081 [uploaded 02-16].

(Documents that were both registered late and uploaded late, other than technical proposal

documents, are not listed in this section, in the interest of brevity.)

The following contribution registrations were later cancelled, withdrawn, never provided, were

cross-checks of a withdrawn contribution, or were registered in error: JCTVC-W0036, JCTVC-

W0049, JCTVC-W0065, JCTVC-W0082, JCTVC-W0083, JCTVC-W0102, JCTVC-W0124,

JCTVC-W0136, JCTVC-W0137, JCTVC-W0138.

Ad hoc group interim activity reports, CE summary results reports, break-out activity reports,

and information documents containing the results of experiments requested during the meeting

are not included in the above list, as these are considered administrative report documents to

which the uploading deadline is not applied.

As a general policy, missing documents were not to be presented, and late documents (and

substantial revisions) could only be presented when sufficient time for studying was given after

the upload. Again, an exception is applied for AHG reports, CE summaries, and other such

reports which can only be produced after the availability of other input documents. There were

no objections raised by the group regarding presentation of late contributions, although there was

some expression of annoyance and remarks on the difficulty of dealing with late contributions

and late revisions.

It was remarked that documents that are substantially revised after the initial upload are also a

problem, as this becomes confusing, interferes with study, and puts an extra burden on

synchronization of the discussion. This is especially a problem in cases where the initial upload

is clearly incomplete, and in cases where it is difficult to figure out what parts were changed in a

revision. For document contributions, revision marking is very helpful to indicate what has been

changed. Also, the "comments" field on the web site can be used to indicate what is different in a

revision.

"Placeholder" contribution documents that were basically empty of content, with perhaps only a

brief abstract and some expression of an intent to provide a more complete submission as a

revision, were considered unacceptable and were to be rejected in the document management

system, as has been agreed since the third meeting.

The initial uploads of the following contribution documents (both crosscheck reports) were

rejected as "placeholders" without any significant content and were not corrected until after the

upload deadline: JCTVC-W0064 [improved on 02-19] and JCTVC-W0070 [improved on 02-18].

A few contributions may have had some problems relating to IPR declarations in the initial

uploaded versions (missing declarations, declarations saying they were from the wrong

companies, etc.). Any such issues were corrected by later uploaded versions in a reasonably

timely fashion in all cases (to the extent of the awareness of the chairs).

Page: 177 Date Saved: 2016-06-03

Some other errors were noticed in other initial document uploads (wrong document numbers in

headers, etc.) which were generally sorted out in a reasonably timely fashion. The document web

site contains an archive of each upload, along with a record of uploading times.

1.4.3 Measures to facilitate the consideration of contributions

It was agreed that, due to the continuingly high workload for this meeting, the group would try to

rely extensively on summary CE reports. For other contributions, it was agreed that generally

presentations should not exceed 5 minutes to achieve a basic understanding of a proposal – with

further review only if requested by the group. For cross-verification contributions, it was agreed

that the group would ordinarily only review cross-checks for proposals that appear promising.

When considering cross-check contributions, it was agreed that, to the extent feasible, the

following data should be collected:

Subject (including document number).

Whether common conditions were followed.

Whether the results are complete.

Whether the results match those reported by the contributor (within reasonable limits,

such as minor compiler/platform differences).

Whether the contributor studied the algorithm and software closely and has demonstrated

adequate knowledge of the technology.

Whether the contributor independently implemented the proposed technology feature, or

at least compiled the software themselves.

Any special comments and observations made by a cross-check contributor.

1.4.4 Outputs of the preceding meeting

The output documents of the previous meeting, particularly including the meeting report

JCTVC-V1000, the improved HEVC Test Model 16 (HM16) JCTVC-V1002, the RExt

Reference Software Draft 4 JCTVC-V1011, the SHVC test model 11 (SHM11) JCTVC-V1007,

the SHVC Conformance Testing Draft 4 JCTVC-V1008, the SHVC Reference Software Draft 3

JCTVC-V1013, the SHVC Verification Test Plan JCTVC-V1004, the Screen Content Coding

(SCC) Draft Text 5 JCTVC-V1005 (integrated into a draft of HEVC version 4), and the SCC test

model 6 JCTVC-V1014, were approved. The HM reference software and its extensions for RExt,

SHVC and SCC were also approved.

The group was initially asked to review the prior meeting report for finalization. The meeting

report was later approved without modification.

All output documents of the previous meeting and the software had been made available in a

reasonably timely fashion.

The chairs asked if there were any issues regarding potential mismatches between perceived

technical content prior to adoption and later integration efforts. It was also asked whether there

was adequate clarity of precise description of the technology in the associated proposal

contributions.

It was remarked that, in regard to software development efforts – for cases where "code cleanup"

is a goal as well as integration of some intentional functional modification, it was emphasized

that these two efforts should be conducted in separate integrations, so that it is possible to

understand what is happening and to inspect the intentional functional modifications.

The need for establishing good communication with the software coordinators was also

emphasized.

Page: 178 Date Saved: 2016-06-03

At some previous meetings, it had been remarked that in some cases the software

implementation of adopted proposals revealed that the description that had been the basis of the

adoption apparently was not precise enough, so that the software unveiled details that were not

known before (except possibly for CE participants who had studied the software). Also, there

should be time to study combinations of different adopted tools with more detail prior to

adoption.

CE descriptions need to be fully precise – this is intended as a method of enabling full study and

testing of a specific technology.

Greater discipline in terms of what can be established as a CE may be an approach to helping

with such issues. CEs should be more focused on testing just a few specific things, and the

description should precisely define what is intended to be tested (available by the end of the

meeting when the CE plan is approved).

It was noted that sometimes there is a problem of needing to look up other referenced

documents, sometimes through multiple levels of linked references, to understand what

technology is being discussed in a contribution – and that this often seems to happen with CE

documents. It was emphasized that we need to have some reasonably understandable basic

description, within a document, of what it is talking about.

Software study can be a useful and important element of adequate study; however, software

availability is not a proper substitute for document clarity.

Software shared for CE purposes needs to be available with adequate time for study. Software of

CEs should be available early, to enable close study by cross-checkers (not just provided shortly

before the document upload deadline).

Issues of combinations between different features (e.g., different adopted features) also tend to

sometimes arise in the work.

1.5 Attendance

The list of participants in the JCT-VC meeting can be found in Annex B of this report.

The meeting was open to those qualified to participate either in ITU-T WP3/16 or ISO/IEC

JTC 1/SC 29/WG 11 (including experts who had been personally invited by the Chairs as

permitted by ITU-T or ISO/IEC policies).

Participants had been reminded of the need to be properly qualified to attend. Those seeking

further information regarding qualifications to attend future meetings may contact the Chairs.

1.6 Agenda

The agenda for the meeting was as follows:

IPR policy reminder and declarations

Contribution document allocation

Reports of ad hoc group activities

Reports of Core Experiment activities

Review of results of previous meeting

Consideration of contributions and communications on project guidance

Consideration of technology proposal contributions

Consideration of information contributions

Coordination activities

Page: 179 Date Saved: 2016-06-03

Future planning: Determination of next steps, discussion of working methods,

communication practices, establishment of coordinated experiments, establishment of

AHGs, meeting planning, refinement of expected standardization timeline, other planning

issues

Other business as appropriate for consideration

1.7 IPR policy reminder

Participants were reminded of the IPR policy established by the parent organizations of the JCT-

VC and were referred to the parent body websites for further information. The IPR policy was

summarized for the participants.

The ITU-T/ITU-R/ISO/IEC common patent policy shall apply. Participants were particularly

reminded that contributions proposing normative technical content shall contain a non-binding

informal notice of whether the submitter may have patent rights that would be necessary for

implementation of the resulting standard. The notice shall indicate the category of anticipated

licensing terms according to the ITU-T/ITU-R/ISO/IEC patent statement and licensing

declaration form.

This obligation is supplemental to, and does not replace, any existing obligations of parties to

submit formal IPR declarations to ITU-T/ITU-R/ISO/IEC.

Participants were also reminded of the need to formally report patent rights to the top-level

parent bodies (using the common reporting form found on the database listed below) and to

make verbal and/or document IPR reports within the JCT-VC as necessary in the event that they

are aware of unreported patents that are essential to implementation of a standard or of a draft

standard under development.

Some relevant links for organizational and IPR policy information are provided below:

http://www.itu.int/ITU-T/ipr/index.html (common patent policy for ITU-T, ITU-R, ISO,

and IEC, and guidelines and forms for formal reporting to the parent bodies)

http://ftp3.itu.int/av-arch/jctvc-site (JCT-VC contribution templates)

http://www.itu.int/ITU-T/studygroups/com16/jct-vc/index.html (JCT-VC general

information and founding charter)

http://www.itu.int/ITU-T/dbase/patent/index.html (ITU-T IPR database)

http://www.itscj.ipsj.or.jp/sc29/29w7proc.htm (JTC 1/SC 29 Procedures)

It is noted that the ITU TSB director's AHG on IPR had issued a clarification of the IPR

reporting process for ITU-T standards, as follows, per SG 16 TD 327 (GEN/16):

"TSB has reported to the TSB Director's IPR Ad Hoc Group that they are receiving Patent

Statement and Licensing Declaration forms regarding technology submitted in Contributions

that may not yet be incorporated in a draft new or revised Recommendation. The IPR Ad

Hoc Group observes that, while disclosure of patent information is strongly encouraged as

early as possible, the premature submission of Patent Statement and Licensing Declaration

forms is not an appropriate tool for such purpose.

In cases where a contributor wishes to disclose patents related to technology in Contributions,

this can be done in the Contributions themselves, or informed verbally or otherwise in

written form to the technical group (e.g. a Rapporteur's group), disclosure which should then

be duly noted in the meeting report for future reference and record keeping.

It should be noted that the TSB may not be able to meaningfully classify Patent Statement

and Licensing Declaration forms for technology in Contributions, since sometimes there are

no means to identify the exact work item to which the disclosure applies, or there is no way

Page: 180 Date Saved: 2016-06-03

to ascertain whether the proposal in a Contribution would be adopted into a draft

Recommendation.

Therefore, patent holders should submit the Patent Statement and Licensing Declaration form

at the time the patent holder believes that the patent is essential to the implementation of a

draft or approved Recommendation."

The chairs invited participants to make any necessary verbal reports of previously-unreported

IPR in draft standards under preparation, and opened the floor for such reports: No such verbal

reports were made.

1.8 Software copyright disclaimer header reminder

It was noted that, as had been agreed at the 5th meeting of the JCT-VC and approved by both

parent bodies at their collocated meetings at that time, the HEVC reference software copyright

license header language is the BSD license with preceding sentence declaring that contributor or

third party rights are not granted, as recorded in N10791 of the 89th meeting of ISO/IEC JTC 1/

SC 29/WG 11. Both ITU and ISO/IEC will be identified in the <OWNER> and

<ORGANIZATION> tags in the header. This software is used in the process of designing the

HEVC standard and its extensions, and for evaluating proposals for technology to be included in

the design. After finalization of the draft (current version JCTVC-M1010), the software will be

published by ITU-T and ISO/IEC as an example implementation of the HEVC standard and for

use as the basis of products to promote adoption of the technology.

Different copyright statements shall not be committed to the committee software repository (in

the absence of subsequent review and approval of any such actions). As noted previously, it must

be further understood that any initially-adopted such copyright header statement language could

further change in response to new information and guidance on the subject in the future.

1.9 Communication practices

The documents for the meeting can be found at http://phenix.it-sudparis.eu/jct/. For the first two

JCT-VC meetings, the JCT-VC documents had been made available at http://ftp3.itu.int/av-

arch/jctvc-site, and documents for the first two JCT-VC meetings remain archived there as well.

That site was also used for distribution of the contribution document template and circulation of

drafts of this meeting report.

JCT-VC email lists are managed through the site https://mailman.rwth-

aachen.de/mailman/options/jct-vc, and to send email to the reflector, the email address is jct-

[email protected]. Only members of the reflector can send email to the list. However,

membership of the reflector is not limited to qualified JCT-VC participants.

It was emphasized that reflector subscriptions and email sent to the reflector must use real names

when subscribing and sending messages, and subscribers must respond adequately to basic

inquiries regarding the nature of their interest in the work.

It was emphasized that usually discussions concerning CEs and AHGs should be performed

using the JCT-VC email reflector. CE internal discussions should primarily be concerned with

organizational issues. Substantial technical issues that are not reflected by the original CE plan

should be openly discussed on the reflector. Any new developments that are result of private

communication cannot be considered to be the result of the CE.

For the headers and registrations of CE documents and AHG reports, email addresses of

participants and contributors may be obscured or absent (and will be on request), although these

will be available (in human readable format – possibly with some "obscurification") for primary

CE coordinators and AHG chairs.

Page: 181 Date Saved: 2016-06-03

1.10 Terminology

Some terminology used in this report is explained below:

ACT: Adaptive colour transform.

Additional Review: The stage of the ITU-T "alternative approval process" that follows a

Last Call if substantial comments are received in the Last Call, during which a proposed

revised text is available on the ITU web site for consideration as a candidate for final

approval.

AHG: Ad hoc group.

AI: All-intra.

AIF: Adaptive interpolation filtering.

ALF: Adaptive loop filter.

AMP: Asymmetric motion partitioning – a motion prediction partitioning for which the

sub-regions of a region are not equal in size (in HEVC, being N/2x2N and 3N/2x2N or

2NxN/2 and 2Nx3N/2 with 2N equal to 16 or 32 for the luma component).

AMVP: Adaptive motion vector prediction.

APS: Active parameter sets.

ARC: Adaptive resolution conversion (synonymous with DRC, and a form of RPR).

AU: Access unit.

AUD: Access unit delimiter.

AVC: Advanced video coding – the video coding standard formally published as ITU-T

Recommendation H.264 and ISO/IEC 14496-10.

BA: Block adaptive.

BC: May refer either to block copy (see CPR or IBC) or backward compatibility. In the

case of backward compatibility, this often refers to what is more formally called forward

compatibility.

BD: Bjøntegaard-delta – a method for measuring percentage bit rate savings at equal

PSNR or decibels of PSNR benefit at equal bit rate (e.g., as described in document

VCEG-M33 of April 2001).

BL: Base layer.

BoG: Break-out group.

BR: Bit rate.

BV: Block vector (MV used for intra BC prediction, not a term used in the standard).

CABAC: Context-adaptive binary arithmetic coding.

CBF: Coded block flag(s).

CC: May refer to context-coded, common (test) conditions, or cross-component.

CCP: Cross-component prediction.

Page: 182 Date Saved: 2016-06-03

CD: Committee draft – a draft text of an international standard for the first formal ballot

stage of the approval process in ISO/IEC – corresponding to a PDAM for amendment

texts.

CE: Core experiment – a coordinated experiment conducted after the 3rd or subsequent

JCT-VC meeting and approved to be considered a CE by the group (see also SCE and

SCCE).

CGS: Colour gamut scalability (historically, coarse-grained scalability).

CL-RAS: Cross-layer random-access skip.

CPR: Current-picture referencing, also known as IBC – a technique by which sample

values are predicted from other samples in the same picture by means of a displacement

vector sometimes called a block vector, in a manner basically the same as motion-

compensated prediction.

Consent: A step taken in the ITU-T to formally move forward a text as a candidate for

final approval (the primary stage of the ITU-T "alternative approval process").

CTC: Common test conditions.

CVS: Coded video sequence.

DAM: Draft amendment – a draft text of an amendment to an international standard for

the second formal ballot stage of the approval process in ISO/IEC – corresponding to a

DIS for complete texts.

DCT: Discrete cosine transform (sometimes used loosely to refer to other transforms

with conceptually similar characteristics).

DCTIF: DCT-derived interpolation filter.

DoC / DoCR: Disposition of comments report – a document approved by the WG 11

parent body in response to comments from NBs.

DIS: Draft international standard – the second formal ballot stage of the approval process

in ISO/IEC – corresponding to a DAM for amendment texts.

DF: Deblocking filter.

DRC: Dynamic resolution conversion (synonymous with ARC, and a form of RPR).

DT: Decoding time.

ECS: Entropy coding synchronization (typically synonymous with WPP).

EOTF: Electro-optical transfer function – a function that converts a representation value

to a quantity of output light (e.g., light emitted by a display.

EPB: Emulation prevention byte (as in the emulation_prevention_byte syntax element of

AVC or HEVC).

EL: Enhancement layer.

ET: Encoding time.

ETM: Experimental test model (design and software used for prior HDR/WCG coding

experiments in MPEG).

Page: 183 Date Saved: 2016-06-03

FDAM: Final draft amendment – a draft text of an amendment to an international

standard for the third formal ballot stage of the approval process in ISO/IEC –

corresponding to an FDIS for complete texts.

FDIS: Final draft international standard – a draft text of an international standard for the

third formal ballot stage of the approval process in ISO/IEC – corresponding to an

FDAM for amendment texts.

HEVC: High Efficiency Video Coding – the video coding standard developed and

extended by the JCT-VC, formalized by ITU-T as Rec. ITU-T H.265 and by ISO/IEC as

ISO/IEC 23008-2.

HLS: High-level syntax.

HM: HEVC Test Model – a video coding design containing selected coding tools that

constitutes our draft standard design – now also used especially in reference to the (non-

normative) encoder algorithms (see WD and TM).

IBC (also Intra BC): Intra block copy, also known as CPR – a technique by which

sample values are predicted from other samples in the same picture by means of a

displacement vector called a block vector, in a manner conceptually similar to motion-

compensated prediction.

IBDI: Internal bit-depth increase – a technique by which lower bit-depth (esp. 8 bits per

sample) source video is encoded using higher bit-depth signal processing, ordinarily

including higher bit-depth reference picture storage (esp. 12 bits per sample).

IBF: Intra boundary filtering.

ILP: Inter-layer prediction (in scalable coding).

IPCM: Intra pulse-code modulation (similar in spirit to IPCM in AVC and HEVC).

JM: Joint model – the primary software codebase that has been developed for the AVC

standard.

JSVM: Joint scalable video model – another software codebase that has been developed

for the AVC standard, which includes support for scalable video coding extensions.

Last Call: The stage of the ITU-T "alternative approval process" that follows Consent,

during which a proposed text is available on the ITU web site for consideration as a

candidate for final approval.

LB or LDB: Low-delay B – the variant of the LD conditions that uses B pictures.

LD: Low delay – one of two sets of coding conditions designed to enable interactive real-

time communication, with less emphasis on ease of random access (contrast with RA).

Typically refers to LB, although also applies to LP.

LM: Linear model.

LP or LDP: Low-delay P – the variant of the LD conditions that uses P frames.

LUT: Look-up table.

LTRP: Long-term reference pictures.

MANE: Media-aware network elements.

MC: Motion compensation.

Page: 184 Date Saved: 2016-06-03

MOS: Mean opinion score.

MPEG: Moving picture experts group (WG 11, the parent body working group in

ISO/IEC JTC 1/SC 29, one of the two parent bodies of the JCT-VC).

MV: Motion vector.

NAL: Network abstraction layer (as in AVC and HEVC).

NB: National body (usually used in reference to NBs of the WG 11 parent body).

NSQT: Non-square quadtree.

NUH: NAL unit header.

NUT: NAL unit type (as in AVC and HEVC).

OBMC: Overlapped block motion compensation (e.g., as in H.263 Annex F).

OETF: Opto-electronic transfer function – a function that converts to input light (e.g.,

light input to a camera) to a representation value.

OLS: Output layer set.

OOTF: Optical-to-optical transfer function – a function that converts input light (e.g.

l,ight input to a camera) to output light (e.g., light emitted by a display).

PCP: Parallelization of context processing.

PDAM: Proposed draft amendment – a draft text of an amendment to an international

standard for the first formal ballot stage of the ISO/IEC approval process – corresponding

to a CD for complete texts.

POC: Picture order count.

PoR: Plan of record.

PPS: Picture parameter set (as in AVC and HEVC).

QM: Quantization matrix (as in AVC and HEVC).

QP: Quantization parameter (as in AVC and HEVC, sometimes confused with

quantization step size).

QT: Quadtree.

RA: Random access – a set of coding conditions designed to enable relatively-frequent

random access points in the coded video data, with less emphasis on minimization of

delay (contrast with LD).

RADL: Random-access decodable leading.

RASL: Random-access skipped leading.

R-D: Rate-distortion.

RDO: Rate-distortion optimization.

RDOQ: Rate-distortion optimized quantization.

ROT: Rotation operation for low-frequency transform coefficients.

RPLM: Reference picture list modification.

Page: 185 Date Saved: 2016-06-03

RPR: Reference picture resampling (e.g., as in H.263 Annex P), a special case of which

is also known as ARC or DRC.

RPS: Reference picture set.

RQT: Residual quadtree.

RRU: Reduced-resolution update (e.g. as in H.263 Annex Q).

RVM: Rate variation measure.

SAO: Sample-adaptive offset.

SCC: Screen content coding.

SCE: Scalability core experiment.

SCCE: Screen content core experiment.

SCM: Screen coding model.

SD: Slice data; alternatively, standard-definition.

SEI: Supplemental enhancement information (as in AVC and HEVC).

SH: Slice header.

SHM: Scalable HM.

SHVC: Scalable high efficiency video coding.

SIMD: Single instruction, multiple data.

SPS: Sequence parameter set (as in AVC and HEVC).

TBA/TBD/TBP: To be announced/determined/presented.

TE: Tool Experiment – a coordinated experiment conducted toward HEVC design

between the 1st and 2nd or 2nd and 3rd JCT-VC meetings, or a coordinated experiment

conducted toward SHVC design between the 11th and 12th JCT-VC meetings.

TGM: Text and graphics with motion – a category of content that primarily contains

rendered text and graphics with motion, mixed with a relatively small amount of camera-

captured content.

VCEG: Visual coding experts group (ITU-T Q.6/16, the relevant rapporteur group in

ITU-T WP3/16, which is one of the two parent bodies of the JCT-VC).

VPS: Video parameter set – a parameter set that describes the overall characteristics of a

coded video sequence – conceptually sitting above the SPS in the syntax hierarchy.

WD: Working draft – a term for a draft standard, especially one prior to its first ballot in

the ISO/IEC approval process, although the term is sometimes used loosely to refer to a

draft standard at any actual stage of parent-level approval processes.

WG: Working group, a group of technical experts (usually used to refer to WG 11, a.k.a.

MPEG).

WPP: Wavefront parallel processing (usually synonymous with ECS).

Block and unit names:

o CTB: Coding tree block (luma or chroma) – unless the format is monochrome,

there are three CTBs per CTU.

Page: 186 Date Saved: 2016-06-03

o CTU: Coding tree unit (containing both luma and chroma, synonymous with

LCU), with a size of 16x16, 32x32, or 64x64 for the luma component.

o CB: Coding block (luma or chroma), a luma or chroma block in a CU.

o CU: Coding unit (containing both luma and chroma), the level at which the

prediction mode, such as intra versus inter, is determined in HEVC, with a size of

2Nx2N for 2N equal to 8, 16, 32, or 64 for luma.

o LCU: (formerly LCTU) largest coding unit (name formerly used for CTU before

finalization of HEVC version 1).

o PB: Prediction block (luma or chroma), a luma or chroma block of a PU, the level

at which the prediction information is conveyed or the level at which the

prediction process is performed1 in HEVC.

o PU: Prediction unit (containing both luma and chroma), the level of the prediction

control syntax1 within a CU, with eight shape possibilities in HEVC:

2Nx2N: Having the full width and height of the CU.

2NxN (or Nx2N): Having two areas that each have the full width and half

the height of the CU (or having two areas that each have half the width

and the full height of the CU).

NxN: Having four areas that each have half the width and half the height

of the CU, with N equal to 4, 8, 16, or 32 for intra-predicted luma and N

equal to 8, 16, or 32 for inter-predicted luma – a case only used when

2N×2N is the minimum CU size.

N/2x2N paired with 3N/2x2N or 2NxN/2 paired with 2Nx3N/2: Having

two areas that are different in size – cases referred to as AMP, with 2N

equal to 16 or 32 for the luma component.

o TB: Transform block (luma or chroma), a luma or chroma block of a TU, with a

size of 4x4, 8x8, 16x16, or 32x32.

o TU: Transform unit (containing both luma and chroma), the level of the residual

transform (or transform skip or palette coding) segmentation within a CU (which,

when using inter prediction in HEVC, may sometimes span across multiple PU

regions).

1.11 Liaison activity

The JCT-VC did not directly send or receive formal liaison communications at this meeting.

However, the following information was conveyed in liaison communication at the parent-body

level:

[ TD 362-GEN ] / m37654 was received from DVB including remarks on BT.2020

colorimetry, both for HDR and for backward compatibility to SDR for "UHD-1 Phase 2"

(also interested in NBC). WG 11 responded in N 16070 to convey the conclusion reached on

not developing a new profile as recorded in section 7.1, to comment on further gap analysis

1 The definitions of PB and PU are tricky for a 64x64 intra luma CB when the prediction control

information is sent at the 64x64 level but the prediction operation is performed on 32x32 blocks.

The PB, PU, TB and TU definitions are also tricky in relation to chroma for the smallest block

sizes with the 4:2:0 and 4:2:2 chroma formats. Double-checking of these definitions is

encouraged.

Page: 187 Date Saved: 2016-06-03

to be done, to convey information about recent SHVC verificition testing and planned

guideline development and testing of single-layer coding using the HEVC Main 10 Profile,

and to list some existing possible approaches to backward compatibility for HDR/WCG

video coding.

M37752 was received by WG 11 from ATSC on HDR. WG 11 responded in N 16071 to

convey the conclusion reached on not developing a new profile as recorded in section 7.1, to

convey news of planned guideline development and testing of single-layer coding using the

HEVC Main 10 Profile, and of planned study for backward compatible use cases.

[ TD 385-GEN ] / M37788 was received from ITU-R WP 6C on BT.[HDR]. WG 11

responded in N 16072 to confirm plans to move forward toward support of BT.[HDR] in the

three most relevant standards: High Efficiency Video Coding (HEVC), Advanced Video

Coding (AVC), and Coding-Independent Code Points (CICP), and the expectation of the

completion of the approval process of associated amendments to be completed by mid-2017.

M38016 was received from ETSI. WG 11 responded in N 16073 to confirm that HDR/WCG

video services can be effectively enabled using the HEVC video coding standard (Main 10

profile) and describe plans to work to produce a technical report on conversion and coding

practices for HDR/WCG video, focused primarily on single-layer coding using the HEVC

Main 10 Profile, and related verification testing. Some available approaches for backward

compatible use cases were also surveyed for information.

[ TD 387-GEN ] / m38082 was received from SMPTE on ST 2094 HDR remapping

information requested support in HEVC for new supplemental information being developed

in SMPTE. WG 11 responded in N 16074 to convey the conclusion reached on not

developing a new profile as recorded in section 7.1, to suggest that the user data registered

SEI message approach be used by SMPTE for its new remapping information, and the plan to

produce a technical report on conversion and coding practices for HDR/WCG video, focused

primarily on single-layer coding using the HEVC Main 10 Profile, and is also conducting

related verification testing.

1.12 Opening remarks

Opening remarks included:

Meeting logistics, review of communication practices, attendance recording, and

registration and badge pick-up reminder

Primary topic areas were noted as follows:

Screen content coding

o Input from editors (incl. forgotten/open technical aspects such as combined

wavefronts & tiles)

o Input on WP with current picture referencing

o Input on DPB handling with CPR

o Non-SCC aspects (VUI/SEI, scalable RExt profiles, high-throughput profiles,

errata)

HDR: New work allocated to JCT-VC effective at this meeting

o There has been prior work on parent bodies (e.g., eight CEs of MPEG, AHGs of

MPEG & VCEG, and a January meeting of MPEG AHG)

Page: 188 Date Saved: 2016-06-03

o A significant development is the report of new non-normative techniques for

improved "anchor" encoding with ordinary HEVC (see esp. CE1 of MPEG)

o That can be part of the development of the planned "best practices" / "good

practices" document development, which is a planned deliverable (see CE1 of

MPEG and AHG report of VCEG)

o The top priority is to confirm whether an enhanced signal processing extension

can provide an adequate improvement over such an anchor to justify a new

extension

How to measure the benefit achieved?

Should organize some viewing during this meeting and discuss metrics.

Non-normative vs. normative for decoding post-processing also to be

considered

o There is new relevant liaison input (e.g. from ITU-R WP6C and SMPTE).

o Backward compatibility is an additional issue to consider.

Multiple dimensions to the issue

The highest priority is to have the best HDR quality (regardless of BC)

There have been liaison inputs requesting backward compatibility

Some ways to achieve BC that are already supported (or soon will be):

Simply coding HDR video (e.g. with HLG or PQ) and letting an

SDR decoder receive it and display it as SDR

Scalable coding

Perhaps using some existing SEI messages (tone mapping or CRI)

BC brings the need to consider relative importance of the SDR and HDR,

and which flavours of SDR and HDR can be supported

Two flavors of BC have been proposed:

Decoders that do not use new extension data, for "bitstream

backward compatibility"

Using new extension data for "display backward compatibility"

Potential for needing multiple profiles / multiple extensions depending on

the use case

We need to properly define requirement aspects and priorities

Prior expressions of requirements were sought: It was suggested to

look for an MPEG output, and for the VCEG output, to check

C.853 and to see if there was also another VCEG output (circa

February 2015 in both cases)

There are approaches that have been studied in CEs to address

improvement over existing BC solutions

Page: 189 Date Saved: 2016-06-03

Requirement issues need parent-level discussion, clarification, and

joint agreement for BC issues, before spending effort on that in

JCT-VC.

Corrigenda items for version 3 (see, e.g., the AHG2 and AHG7 reports and SCC editor

input JCTVC-W0096)

Verification testing for SHVC

Reference software and conformance testing for RExt & SHVC

o RExt reference software was forwarded for approval at the last meeting, and

conformance is scheduled for FDAM at this meeting

o SHVC conformance is scheduled for FDAM (and also for MV-HEVC and 3D-

HEVC from JCT-3V, but needed editorial improvement (a couple of bugs also

identified)

Test model texts and software manuals

Common test conditions for coding efficiency experiments (hasn't been under active

development here recently; being considered more elsewhere)

Status of deliverables (all delivered).

Key deliverables initially planned from this meeting:

SCC specification Draft 6 (FDIS)

FDAM for RExt conformance (draft 6)

Verification test report for SHVC

SHVC software Draft 4 (FDAM)

SHVC conformance Draft 5 (FDAM)

SCC Reference software

SCC Conformance

SCC verification testing plan (postponed)

HDR outputs

o Suggested practices draft

o CEs (none later planned)

o Test model (none later issued)

New HM, SHM (none later issued), SCM

A single meeting track was followed for most meeting discussions.

1.13 Scheduling of discussions

Scheduling: Generally, meeting time was scheduled during 0900–2000 hours, with coffee and

lunch breaks as convenient. The meeting had been announced to start with AHG reports and

continue with parallel review on Screen Content Coding CE work and related contributions

during the first few days. Ongoing scheduling refinements were announced on the group email

reflector as needed.

Some particular scheduling notes are shown below, although not necessarily 100% accurate or

complete:

Page: 190 Date Saved: 2016-06-03

Fri. 19 Feb., 1st day

o 0900–1400, 1530–2100 Opening remarks, status review, AHG report review, CE1,

CE2, CE3, CE4

Sat. 20 Feb., 2nd day

o Did not meet in the morning (except side activity for visual testing preparation).

o 1400–2000 CE1 further consideration & related contributions, CE5, CE6, CE7

Sun. 21 Feb., 3rd day

o 0900–1300 CE1 & related, CE2 further consideration & related contributions

o 1630 SCC with multiview &scalability, SCC profile/level definitions, SCC editorial,

SCC performance analysis, non-normative, encoder optimization

Mon. 22 Feb., 4th day

o Morning parent-body plenary

o 1630 Joint discussion on JCT-VC topics

o 1800 Joint discussion on other topics

Tue. 23 Feb., 5th day

o CE2 & related further consideration, CE6 & related, CE7 related, CE8 related

o 1400 Joint discussion on HDR

Wed. 24 Feb., 6th day

o Morning parent-body plenary

o Joint discussion on HDR

o 1400 Alternative colour spaces, encoding practices, SEI messages and VUI, CE7

related, CE8 related

Thu. 25 Feb., 7th day

o Remaining topics

Fri. 26 Feb., 8th day

o Remaining topics (SHVC verification test results)

o Meeting closing (1240)

1.14 Contribution topic overview

The approximate subject categories and quantity of contributions per category for the meeting

were summarized and categorized as follows. Some plenary sessions were chaired by both co-

chairmen, and others by only one. Chairing of other discussions is noted for particular topics.

AHG reports (12+2 HDR) (section 2)

Documents of HDR AHG in Vancouver (6) (for information) (section 3)

Project development status (6) (section 4)

HDR CE1: Optimization without HEVC specification change (1) (section 5.1)

HDR CE2: 4:2:0 YCbCr NCL fixed point (13) (section 5.2)

HDR CE3: Objective/subjective metrics (3) (section 5.3)

HDR CE4: Consumer monitor testing (1) (section 5.4)

HDR CE5: Colour transforms and sampling filters (6) (section 5.5)

HDR CE6: Non-normative post processing (10) (section 5.6)

HDR CE7: Hybrid Log Gamma investigation (4) (section 5.7)

HDR CE8: Viewable SDR testing (1) (section 5.8)

SCC coding tools (5) (section 6.1)

HDR coding (34) (section 6.2)

Page: 191 Date Saved: 2016-06-03

• CE1 related (11)

• CE2 related (7)

• CE3 related (1)

• CE6 related (1)

• CE7 related (6)

• Other (8)

High-level syntax (0) (section 6.3)

VUI and SEI messages (5) (section 6.4)

Non-normative encoder optimization (9) (section 6.5)

Plenary discussions (section 7)

Outputs & planning: AHG & CE plans, Conformance, Reference software, Verification

testing, Chroma format, CTC (sections 8, 9, and 10)

NOTE – The number of contributions in each category, as shown in parenthesis above, may

not be 100% precise.

1.15 Topics discussed in final wrap-up at the end of the meeting

Potential remaining issues reviewed near the end of the meeting (Thursday 25 February and

Friday 26 February) were as follows:

AHG report on HEVC conformance W0004

AHG report on test sequence material W0010

SCC open issues (discussed several times Thu & Fri GJS)

• DPB with CPR W0077 (an alternative solution involving a constraint was discussed,

which could also involve double bumping sometimes) – Decision: Adopt the JCTVC-

W0077 fix (and don't forget to implement it in the software).

• Alignment with multiview & scalable W0076 revisit – Decision: Approach agreed –

use the layer id

• Layer-related NB remarks: two technical comments, which were confirmed –

invocation of INBLD decoding for additional layer sets with more than one layer, and

layers not present issue related to pruning of layers – Decision: OK per NB

comments. See section 4.4 for further detail.

• Scalable RExt decoder conformance requirements – editorial, delegated to the editors

• 3V text bugs reported in JCT3V-N0002 (also found in editor's input V0031 and

W0096) – OK to resolve as suggested

• When DPB size is equal to 1 and CPR is enabled, the design intent is to allow all-

intra with filtering disabled (only) (i.e. with the TwoVersions flag equal to 0). Editors

were asked to check the text in this regard and add an expression of the constraint for

this use case if it is not already present.

SHVC verification test review W0095 – one sequence was discussed – see notes on that

contribution.

SHM software modifications for multiview W0134 – no concerns were expressed

HDR

• CE1-related viewing for modified QP handling W0039

• CE2 viewing results for W0097 chroma QP offset

Page: 192 Date Saved: 2016-06-03

CE2-related adaptive quantization W0068, adaptive PQ W0071, combination

of CE1&CE2 W0100

• CE3 subjective & objective inputs W0090, W0091

CE3-related VQM reference code

• CE4 viewing results for consumer monitor testing? – 1000 Thu viewing was done –

the JS9500 was used for some viewing of CE4 & CE5 – there were somewhat mixed

comments about the adequacy of using the consumer monitor for HDR test viewing –

efforts to use HDMI to play the video had not been successful, so re-encoding was

needed with playback of bitstreams

• CE5 viewing results for colour transforms & upsampling/downsampling filters? –

1000 Thu viewing was done – see notes above

• CE5 contributions – no need for further discussion was noted

• CE6 post-processing – no need for detailed presentation was noted

• CE7 viewing results for HLG? – some viewing was done to illustrate the

phenomenon reported in W0035 (Arris), and it was confirmed that the phenomenon

was shown

• CE7 1 – no need for further detailed review (see comment on viewing above)

CE7-related – no need for further discussion was noted

• Encoding practices – no need for further discussion was noted

• SEI/VUI – no need for further discussion was noted

General non-normative revisit W0062 GOP size and W0038 encoder optimizations - closed

HDR encoding conversion process W0046, HDRTools W0053 – no need for further

discussion was noted

Output preparations (see section 10 for full list of output documents)

• DoCRs were prepared (SCC, RExt conformance – issuing a new edition was

confirmed, SHVC conformance – note the impact of issuing a new edition, SHVC

software – new edition, to be coordinated with JCT-3V) [4 DoCRs total – one

handled by Rajan Joshi and 3 by Teruhiko Suzuki]

• Editorships were recorded for each output document

• Potential press release content (SCC, SHVC VT, New edition of reference software &

conformance)

• Request documents to be issued by WG 11 [Reference software for SCC, handled by

Teruhiko Suzuki]

• Resolutions for WG 11 parent body

• Draft suggested practices for HDR

• Liaison statements issued by WG 11 parent body

• Immediate deliverables

• Plenary summary

• HDR verification test plan

Page: 193 Date Saved: 2016-06-03

• SCC software (PDAM) & conformance (not verification test plan – that will be done

later)

Plans

• AHGs

• CEs

• Reflectors (jct-vc) & sites (test sequence location to be listed in CTC document) to be

used in future work

• Meeting dates of the next meeting (Thu - Wed)

• Document contribution deadline (Mon 10 days prior to the next meeting)

There were no requests to present any "TBP" contributions in the closing plenary.

2 AHG reports (12+2=14)

The activities of ad hoc groups (AHGs) that had been established at the prior meeting are

discussed in this section.

(Consideration of these reports was chaired by GJS & JRO on Friday 19th, 1145–14:00 and

1530–1800, except as noted.)

JCTVC-W0001 JCT-VC AHG report: Project management (AHG1) [G. J. Sullivan, J.-R.

Ohm]

This document reports on the work of the JCT-VC ad hoc group on Project Management,

including an overall status report on the project and the progress made during the interim period

since the preceding meeting.

In the interim period since the 22nd JCT-VC meeting, the following (8) documents had been

produced:

The HEVC test model (HM) 16 improved encoder description (including RExt

modifications) update 4;

For the format range extensions (RExt), the RExt reference software draft 4;

For the scalable extensions (SHVC), the SHVC reference software draft 3, conformance

testing draft 4, SHVC test model 11 (SHM 11), and verification test plan for SHVC;

For the HEVC screen content coding (SCC) extensions, the HEVC screen content coding

test model 6 (SCM 6) and SCC draft text 5.

Advancing the work on further development of conformance and reference software for HEVC

and its extensions was also a significant goal.

The work of the JCT-VC overall had proceeded well and actively in the interim period with a

considerable number of input documents to the current meeting. Active discussion had been

carried out on the group email reflector (which had 1649 subscribers as of 2016-02-18), and the

output documents from the preceding meeting had been produced.

Except as noted below, output documents from the preceding meeting had been made available

at the "Phenix" site (http://phenix.it-sudparis.eu/jct/) or the ITU-based JCT-VC site

(http://wftp3.itu.int/av-arch/jctvc-site/2016_02_W_SanDiego/), particularly including the

following:

The meeting report (JCTVC-V1000) [Posted 2016-02-19]

The HM 16 improved encoder description update 4 (JCTVC-V1002) [Posted 2016-02-12]

Verification test plan for scalable HEVC profiles (JCTVC-V1004) [Posted 2016-01-11]

Page: 194 Date Saved: 2016-06-03

HEVC screen content coding draft 5 (JCTVC-V1005) [Posted 2016-01-31]

SHVC Test Model 11 (JCTVC-V1007) [Posted 2016-02-15]

SHVC Conformance Testing Draft 4 (JCTVC-V1008) [Posted 2016-01-16]

HEVC Reference Software for Format Range Extensions Profiles Draft 4 (JCTVC-V1011)

[First posted 2015-12-02, last updated 2015-12-04]

Reference Software for HEVC scalable extensions Draft 3 (JCTVC-V1013) [Posted 2016-

01-21]

Screen Content Coding Test Model 6 Encoder Description (JCTVC-V1014) [Posted 2016-

02-10]

The twelve ad hoc groups had made progress, and various reports from those activities had been

submitted.

The different software modules (HM16.7/8, SHM11.0 and SCM6.0) had been prepared and

released with appropriate updates approximately as scheduled (HM16.8 to be released during the

23rd

meeting, SHM11.0 and SCM6.0 are based on HM16.7).

Since the approval of software copyright header language at the March 2011 parent-body

meetings, that topic seems to be resolved.

Released versions of the software are available on the SVN server at the following URL:

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/version_number,

where version_number corresponds to one of the versions described below – e.g., HM-16.7.

Intermediate code submissions can be found on a variety of branches available at:

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/branches/branch_name,

where branch_name corresponds to a branch (eg., HM-16.7-dev).

Various problem reports relating to asserted bugs in the software, draft specification text, and

reference encoder description had been submitted to an informal "bug tracking" system

(https://hevc.hhi.fraunhofer.de/trac/hevc). That system is not intended as a replacement of our

ordinary contribution submission process. However, the bug tracking system was considered to

have been helpful to the software coordinators and text editors. The bug tracker reports had been

automatically forwarded to the group email reflector, where the issues were discussed – and this

is reported to have been helpful. It was noted that contributions had generally been submitted

that were relevant to resolving the more difficult cases that might require further review.

The ftp site at ITU-T is used to exchange draft conformance testing bitstreams. The ftp site for

downloading bitstreams is http://wftp3.itu.int/av-arch/jctvc-site/bitstream_exchange/.

A spreadsheet to summarize the status of bitstream exchange, conformance bitstream generation

is available in the same directory. It includes the list of bitstreams, codec features and settings,

and status of verification.

Approximately 100 input contributions to the current meeting had been registered. The bulk of

these relates to coding of HDR video using HEVC, a work topic newly assigned to JCT-VC by

the parent bodies. A number of late-registered and late-uploaded contributions were noted, even

though most were cross-check documents.

A preliminary basis for the document subject allocation and meeting notes for the 23rd meeting

had been circulated to the participants by being announced in email, and was publicly available

on the ITU-hosted ftp site.

Page: 195 Date Saved: 2016-06-03

JCTVC-W0002 JCT-VC AHG report: HEVC test model editing and errata reporting

(AHG2) [B. Bross, C. Rosewarne, M. Naccari, J.-R. Ohm, K. Sharman,

G. Sullivan, Y.-K. Wang]

This document reports the work of the JCT-VC ad hoc group on HEVC test model editing and

errata reporting (AHG2) between the 22nd meeting in Geneva, CH (October 2015) and the 23rd

meeting in San Diego, USA (February 2016).

An issue tracker (https://hevc.hhi.fraunhofer.de/trac/hevc) was used in order to facilitate the

reporting of errata with the HEVC documents.

WD tickets in tracker for text specification

#1439 (IRAP constraint for Main 4:4:4 Intra profile)

#1440 (Wavefront+tiles) are noted. Also noted are WD tickets #1435-1437 (editorial in

nature).

Editor action item: These should be addressed in the SCC output.

The ‗High Efficiency Video Coding (HEVC) Test Model 16 (HM 16) Update 4 of Encoder

Description‘ was published as JCTVC-V1002. This document represented a refinement of the

previous HM16 Update 2 of the Encoder Description document (JCTVC-U1002). The resultant

document provides a source of general tutorial information on HEVC Edition 1 and Range

Extensions, together with an encoder-side description of the HM-16 software.

The recommendations of the HEVC test model editing and errata reporting AHG are for JCT-VC

to:

Encourage the use of the issue tracker to report issues with the text of both the HEVC

specification and the Encoder Description.

Review the list of bug fixes collected for HEVC Edition 2, and include all confirmed bug

fixes, including the outcome of the above items, if any, into a JCT-VC output document

for the purpose of HEVC Edition 2 defect reporting.

JCTVC-W0003 JCT-VC AHG report: HEVC HM software development and software technical evaluation (AHG3) [K. Suehring, K. Sharman]

This report summarizes the activities of the AhG on HEVC HM software development and

software technical evaluation that had taken place between the 22nd and 23rd JCT-VC meetings.

Activities focused on integration of software adoptions and software maintenance, i.e. code

tidying and fixing bugs.

The one proposal that was adopted at the last meeting regarding modifications to rate control

(JCTVC-V0078), and one proposal that was adopted at the 21st meeting on the Alternative

Transfer Characteristics SEI (JCTVC-U0033) were added to the HM development code base.

In addition, some minor bug fixes and cleanups were addressed. The distribution of the software

was made available through the SVN server set up at HHI, as announced on the JCT-VC email

reflector, and http://hevc.info has been updated.

Version 16.8 is due to be released during the meeting.

There were a number of reported software bugs that should be fixed.

HM16.8 was due to be released during the meeting. It includes:

JCTVC-V0078: modification of the rate control lower bounds. Rate control is not used in

common test conditions.

JCTVC-U0033: add support for Alternative Transfer Characteristics SEI message (with

syntax element naming taken from the current SCC draft text, V1005).

Bug reports were closed, although only one of these related to a bug within the code

(relating to the Mastering Display Colour Volume SEI).

Page: 196 Date Saved: 2016-06-03

None of the changes affect the coding results of the common test conditions set out in JCTVC-

L1100 or JCTVC-P1006, and therefore these have not been re-published.

The following are persistent bug reports where study is encouraged:

High level picture types: IRAP, RASL, RADL, STSA (Tickets #1096, #1101, #1333,

#1334, #1346)

Rate-control and QP selection – numerous problems with multiple slices (Tickets #1314,

#1338, #1339)

Field-coding (Tickets #1145, #1153)

Decoder picture buffer (Tickets #1277, #1286, #1287, #1304)

NoOutputOfPriorPicture processing (Tickets #1335, #1336, #1393)

Additional decoder checks (Tickets #1367, #1383)

However, a patch has been generated that adds some conformance checks. It is being considered

for potential inclusion in a future release.

As described to the community at the last three JCT-VC meetings, alterations to remove the

unused software hierarchy in the entropy coding sections of the code, and to remove terms such

as CAVLC, are being considered. However, this will now need to also consider the impact on the

JEM branch.

The possibility of merging branches has been considered, in particular merging of the SHM

(Scalable coding HEVC Model) into HM, although further discussions are required. Currently,

within the JCT-VC and JCT-3V, there are the HM, the SCM (for SCC), the SHM (for scalable)

and the HTM (3D and multi-view) software models. There is also the JVET‘s JEM branch for

exploration of future technologies. The biggest problem to merging these branches is the clash in

the overlapping functionality in SHM and HTM – for example, the handling of multiple layers is

not consistent between the two. By careful consideration of these two codebases, it would be

possible to incrementally modify the HM so that the SHM and HTM branches gradually aligned,

although it is also very important to minimize the impact on the core HM code base as this also

impacts the other branches. The work appears to be significant and would require close

coordination between the software coordinators.

Recommendations:

Continue to develop reference software based on HM version 16.7/8 and improve its

quality.

Test reference software more extensively outside of common test conditions

Add more conformance checks to the decoder to more easily identify non-conforming

bit-streams, especially for profile and level constraints.

Encourage people who are implementing HEVC based products to report all (potential)

bugs that they are finding in that process.

Encourage people to submit bit-streams that trigger bugs in the HM. Such bit-streams

may also be useful for the conformance specification.

Continue to investigate the merging of branches with the other software coordinators.

In discussion, it was suggested that harmonization of HM with SCM is probably the highest

priority, since SCC features should be included (or at least testable) in combination with future

video work.

Page: 197 Date Saved: 2016-06-03

JCTVC-W0004 JCT-VC AHG report: HEVC conformance test development (AHG4) [T. Suzuki, J. Boyce, R. Joshi, K. Kazui, A. Ramasubramonian, Y. Ye]

This was not reviewed in detail at the meeting, as its review was deferred due to AHG chair late

arrival and it was later suggested that detailed review seemed undesirable due to other prorities.

The ftp site at ITU-T is used to exchange bitstreams. The ftp site for downloading bitstreams is

http://wftp3.itu.int/av-arch/jctvc-site/bitstream_exchange/

A spreadsheet stored there is used to summarize the status of bitstream exchange, and

conformance bitstream data is available at this directory. It includes the list of bitstreams, codec

features and settings, and status of verification.

The guideline to generate the conformance bitstreams is summarized in JCTVC-O1010.

JCTVC-S1004 (an output document from Strasbourg meeting of October 2014) summarized the

defects of conformance bitstreams at that time. Since the Strasbourg meeting, all known

problems were resolved. The revised bitstreams were uploaded at the following site, separating

out the bitstreams under ballot.

http://wftp3.itu.int/av-arch/jctvc-site/bitstream_exchange/under_test/

There was an offer to provide one more stressful bitstream for HEVC v.1 conformance. Main

Concept (DivX) provided two stress-testing bitstreams (for in-loop filtering) and those are

included in DAM2 of HEVC conformance. File names were corrected.

SAODBLK_A_MainConcept_4

SAODBLK_B_MainConcept_4

They also proposed another bitstream to check the corner case of the combination of deblocking

and SAO.

VPSSPSPPS_A_MainConcept_1

It was suggested to discuss whether to add these new bitstreams for corner cases into the official

conformance test set.

Those bitstreams are available at

http://wftp3.itu.int/av-arch/jctvc-site/bitstream_exchange/under_test_new/

A table of bitstreams that were originally planned to be generated was provided in the report,

with yellow highlighting for bitstreams that were not generated yet.

Problems in the following bitstreams were reported. The revised bitstreams are available at the

ftp site.

http://wftp3.itu.int/av-arch/jctvc-site/bitstream_exchange/under_test_new/

TransformSkip constraint: TransformSkip size setting was over the limit. In the RExt spec, the

restriction was not specified, but the constraint had already defined in JCTVC-V1005.

PERSIST_RPARAM_A_RExt_Sony_3

TRAIL NAL: TRAIL NAL is not allowed to use in all-intra profiles, but was used in the

following bitstreams.

GENERAL_8b_444_RExt_Sony_2.zip

The constraint on TRAIL NAL for Main 444 Intra was not defined in the RExt spec. It was

suggested that this is a bug in the spec. (See Ticket #1439)

GENERAL_10b_444_RExt_Sony_2.zip

GENERAL_12b_444_RExt_Sony_2.zip

GENERAL_16b_444_RExt_Sony_2.zip

GENERAL_16b_444_highThroughput_RExt_Sony_2.zip

4:4:4 tools in 4:2:2 profile: Flags for 4:4:4 coding tools were turned on in a 4:2:2 profile.

Page: 198 Date Saved: 2016-06-03

ADJUST_IPRED_ANGLE_A_RExt_Mitsubishi_2.zip

Tile size: Tile size was under the limit.

WAVETILES_RExt_Sony_2.zip

The SHVC conformance document was available in JCTVC-V1008, which includes a

supplemental notes attachment that includes instructions for generation of bitstreams. Additional

editorial improvement of this document is expected before finalization.

New bitstreams were provided since the previous release. These include two previously

identified bitstreams that were made available: unaligned POC and 8-layer bitstream.

Additionally, six new bitstreams corresponding to the new scalable range extensions profiles

were provided.

Bitstreams had since been provided for all identified categories. However, an update in the SHM

software had exposed minor problems, requiring some of the earliest generated bitstreams to be

replaced. The bitstream contributors of the affected bitstreams had been notified, and several of

those bitstreams had already been replaced. Several bitstreams were still in need of replacement,

and were indicated in a bitstream status list in the report.

The AHG recommended to finalize RExt and SHVC conformance testing and to start to discuss

SCC conformance testing.

JCTVC-W0005 JCT-VC AHG report: SHVC verification testing (AHG5) [V. Baroncini, Y.-K. Wang, Y. Ye (co-chairs)]

The main activities of this AHG included the following:

Finalized all rate points, encoded all test sequences using SHM10.0 reference software,

and delivered all bitstreams, sequences, and MD5SUM values for subjective evaluations.

Conducted verification test following the finalized SHVC verification test plan.

Produced a preliminary report of the test for review and finalization in JCTVC-W0095.

The AHG recommended to review the preliminary verification test report JCTVC-W0095.

The test coordinator (V. Baroncini) remarked that the refinements of the selection of test content

proved beneficial, so the test was able to be effective and provide a good discrimination covering

a wide range of coded video quality.

JCTVC-W0006 JCT-VC AHG report: SCC coding performance analysis (AHG6) [H. Yu, R. Cohen, A. Duenas, K. Rapaka, J. Xu, X. Xu (AHG chairs)]

This report summarized the activities of the JCT-VC ad hoc group on SCC coding performance

analysis (AHG6) between the JCT-VC 22nd meeting in Geneva, Switzerland, and the 23rd

meeting in San Diego, USA.

A kick-off message for AHG 6 was sent out on Dec. 1, 2015.

As decided in the last meeting, the test conditions described in JCTVC-U1015 remained valid

during this meeting cycle. To facilitate new simulations that would be done with the new

reference software SCM-6.0, the new test-results reporting templates with SCM-6.0 anchor data

were uploaded in JCTVC-U1015-v4 on Dec. 2, 2015. These templates were also distributed via

the AHG6 kick-off email.

One relevant contribution was noted: JCTVC-W0104.

It was recommended to continue to evaluate the coding performance of the draft SCC coding

features in comparison with the existing HEVC tools in the Main profile and range extensions.

JCTVC-W0007 JCT-VC AHG report: SCC extensions text editing (AHG7) [R. Joshi, J. Xu (AHG co-chairs), Y. Ye, S. Liu, G. Sullivan, R. Cohen (AHG vice-chairs)]

Page: 199 Date Saved: 2016-06-03

This document reported on the work of the JCT-VC ad hoc group on SCC extensions text editing

(AHG7) between the 22nd JCT-VC meeting in Geneva, Switzerland (October 2015).and the

23nd JCT-VC meeting in San Diego, USA (February 2016).

The fifth specification text draft (JCTVC-V1005) for the High Efficiency Video Coding Screen

Content Coding (HEVC SCC) extensions was produced by the editing ad hoc group as an output

document following the decisions taken at the 22nd JCT-VC meeting in Geneva, Switzerland

(October 2015).

The text of JCTVC-V1005 was submitted to ISO/IEC JTC1/SC29 as an output document WG11

N15776 Study Text of ISO/IEC DIS 23008-2:201X 3rd Edition

The following is a list of changes with respect to JCTVC-U1005-v1:

Added constraints on the range of palette escape samples to disallow nonsense values

(JCTVC-V0041)

Allowed zero size for palette initialization in PPS, so palette initialization can be

explicitly disabled at the PPS level (JCTVC-V0042)

Integrated restriction for maximum palette predictor size (JCTVC-V0043)

Modified the formula for computing PaletteMaxRun including consideration of

copy_above_indices_for_final_run_flag (JCTVC-V0065)

Removed special treatments of IBC as different from inter (w.r.t. usage for predicting

intra regions and TMVP disabling) (JCTVC-V0066)

Moved the SPS level IBC mode check aspect to the PPS level; MV & referencing picture

based memory bandwidth constraint rather than AMVR based; if the decoder detects the

prohibited case, the decoding process will convert so that list 0 uniprediction is used (and

the converted motion data is stored) (JCTVC-V0048)

When the merge candidate references the current picture, round it to an integer value

(JCTVC-V0049)

When conversion to uniprediction is performed due to 8x8 biprediction, only do that

conversion if TwoVersionsOfCurrDecPicFlag is equal to 1 (JCTVC-V0056)

About sps_max_num_reorder_pics and sps_max_dec_pic_buffering_minus1 when IBC is

used (JCTVC-V0050)

About sps_max_dec_pic_buffering_minus1 when IBC is used (JCTVC-V0057)

Editorial improvements in palette run coding (JCTVC-V0060)

Decoding process for intra_boundary_filtering_disabled_flag (previously missing)

(HEVC_ERRATA): Added a constraint that the reference layer active SPS (specified by

sps_scaling_list_ref_layer_id or pps_scaling_list_ref_layer_id) shall have

scaling_list_enabled_flag = 1 (JCTVC-V0011)

Generalized Constant and Non-Constant Luminance Code Points (JCTVC-V0035)

Clarification of colour description semantics (especially for transfer_characteristics)

(JCTVC-V0036)

New High Throughput Profiles for HEVC (JCTVC-V0039)

HEVC corrigendum: On parsing of bitstream partition nesting SEI message (JCTVC-

V0062)

Page: 200 Date Saved: 2016-06-03

Fixes to colour remapping information SEI message (JCTVC-V0064)

New HEVC scalable format range extension profiles (JCTVC-V0098)

(HEVC_ERRATA): Replaced undefined variable "Log2MaxTrafoSize" with

"MaxTbLog2SizeY" (Ticket #1363)

The screen content coding test model 6 (SCM 6) (document JCTVC-V1014) was released on 10

February 2016. Its main changes were modification of the restriction on the use of 8×8 bi-

prediction with IBC, conversion of 8×8 bi-prediction to uni-prediction when the restriction is in

effect, removing special treatments of IBC as different from inter when using constrained intra

prediction, rounding merge candidates to integers when they reference the current picture, and

allowing zero size for palette predictor initialization in the PPS.

JCTVC-V0096 proposes editorial improvements to address the feedback and comments related

to the SCC draft text 5. It also summarizes known open issues.

The recommendations of the HEVC SCC extension draft text AHG were to:

Approve the documents JCTVC-V1005 and JCTVC-V1014 as JCT-VC outputs (agreed,

although it was noted that some issues remained, such as wavefront-tile combination)

Address the comments and feedback on SCC extensions text specification as appropriate

Compare the HEVC SCC extensions document with the HEVC SCC extensions software

and resolve any discrepancies that may exist, in collaboration with the SCC extension

software development (AHG8)

JCTVC-W0008 JCT-VC AHG report: SCC extensions software development (AHG8) [K. Rapaka, B. Li (AHG co-chairs), R. Cohen, T.-D. Chuang, X. Xiu, M. Xu (AHG vice-chairs)]

This report summarizes the activities of Ad Hoc Group 8 on screen content extensions software

(SCM) development that have taken place between the JCT-VC 22nd meeting in Geneva,

Switzerland, and the 23rd meeting in San Diego, USA.

Multiple versions of the HM SCM software were produced and announced on the JCT-VC email

reflector. The integration details and performance summary of these revisions are provided in the

next subsections. The performance results of software revisions were observed to be consistent

with the adopted techniques.

HM-16.7_SCM-6.0 was announced on the email reflector on November 23rd 2015. The software

was tagged as https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.7+SCM-6.0/ .

HM-16.7_SCM-6.0 incorporates following adoptions/bug fixes:

JCTVC-V0034: Palette encoder improvement for 4:2:0.

JCTVC-V0040: Enable by default the method in U0095 on fast encoder for ACT and

intra.

JCTVC-V0041: Constrain the range of escape values.

JCTVC-V0042: Allow zero size palette in PPS.

JCTVC-V0043: Restriction for maximum palette predictor size.

JCTVC-V0048: Relax 8x8 bi-bred restriction based on mv's and temporal referencing.

JCTVC-V0049: Round merge MVs when ref picture is curr pic.

JCTVC-V0056: Relax 8x8 bi-bred restriction based on the value of

TwoVersionsOfCurrDecPicFlag.

Page: 201 Date Saved: 2016-06-03

JCTVC-V0065: Modified formula for computing PaletteMaxRun including consideration

of copy_above_indices_for_final_run_flag.

JCTVC-V0066: Remove special treatments of IBC as different from inter in the case of

CIP.

Bug fix for delta QP for palette mode.

JCTVC-V0057/ JCTVC-U0181 (storage of unfiltered decoded picture in DPB) are disabled for

now in the SCM and are planned to be enabled in the future releases after software issues

involved are fixed. (These do not impact CTC).

The performance HM-16.7_SCM-6.0 compared to HM-16.6_SCM-5.2 was described according

to the common test conditions in JCTVC-U1015. For the lossy 4:4:4 configuration, it is reported

that this version provides BD-rate reduction of 0.0%, 0.2% and 0.3% for RGB 1080p & 720p

text and graphics category in AI/RA/LB configurations respectively and BD-rate reduction of

0.0%, 0.1% and 0.2% for YUV 1080p & 720p text and graphics category in AI/RA/LB

configuration, respectively.

For the lossy 4:2:0 configuration, it is reported that this version provides BD-rate reduction of

3.2%, 2.5% and 1.6% for YUV 1080p & 720p text and graphics category in AI/RA/LB

configurations, respectively.

The improved 4:2:0 performance was suggested to be due to non-normative palette mode

encoder improvement specifically for 4:2:0 (from document JCTVC-V0034, with better handling

of the fact that some chroma is coded but discarded in the 4:2:0 case).

HM-16.6_SCM-5.3, HM-16.6_SCM-5.4 were tagged on the HHI Server on November 2, 2015

and can be downloaded at https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/

The changes over HM-16.6_SCM5.2 are

Following tickets were fixed: #1411, #1417, #1418, #1419, #1420, #1421, #1422.

Macro Removals related to SCM 5.2

Merge to HM 16.7

Misc. Cleanups/ fixes for memory leaks

It was reported that there was no noticeable change in performance under common test

configuration due to above integrations.

The JCT-VC issue tracker at https://hevc.hhi.fraunhofer.de/trac/hevc/ has been updated to allow

bug reports to be entered for SCM, currently under milestone HM+SCC-7.0, version SCC-6.0

(HM16.7).

The following tickets were closed during the meeting cycle: #1411, #1417, #1418, #1419, #1420,

#1421, and #1422. As of the time of the report, there were no open tickets.

Recommendations

Continue to develop reference software based on HM16.7_SCM6.0 and improve its

quality.

Remove macros introduced in previous versions before starting integration towards

SCM-6.x/SCM-7.0 such as to make the software more readable.

Continue merging with later HM versions.

JCTVC-W0009 JCT-VC AHG report: Complexity of SCC extensions (AHG9) [A. Duenas, M. Budagavi, R. Joshi, S.-H. Kim, P. Lai, W. Wang, W. Xiu (co-chairs)]

This report summarized the activities of the JCT-VC ad hoc group on Complexity of SCC

extensions (AHG9)) between the JCT-VC 22nd meeting in Geneva, Switzerland, and the 23rd

meeting in San Diego, USA.

Page: 202 Date Saved: 2016-06-03

No coordinated AhG activity took place on the JCT-VC reflector between the 22nd JCT-VC

meeting in Geneva, Switzerland (October 2015). and the 23rd JCT-VC meeting in San Diego,

USA (February 2016).

Related contributions:

Encoder-only contributions

o JCTVC-W0042: SCC encoder improvement.

o JCTVC-W0075: Palette encoder improvements for the 4:2:0 chroma format and

lossless.

Aspects that affect normative requirements

o JCTVC-W0076: Comments on alignment of SCC text with multi-view and

scalable

o JCTVC-W0077: Bug fix for DPB operations when current picture is a reference

picture.

o JCTVC-W0129: SCC Level Limits Based on Chroma Format.

The AhG recommended to review the contributions related to this topic.

JCTVC-W0010 JCT-VC AHG report: Test sequence material (AHG10) [T. Suzuki, V. Baroncini, R. Cohen, T. K. Tan, S. Wenger, H. Yu]

This was not reviewed in detail at the meeting, as its review was deferred due to AHG chair late

arrival. and it was later suggested that detailed review seemed undesirable due to other prorities.

The following related contribution was submitted at this meeting.

JCTVC-W0087 "Description of Color Graded SDR content for HDR/WCG Test

Sequences", P. J. Warren, S. M. Ruggieri, W. Husak, T. Lu, P. Yin, F. Pu (Dolby)

The AHG report contained tabulated records of the available test sequences for various types of

testing.

The AHG recommended

To add HDR test sequences to the JCTVC test sequence list.

To continue to create the list of test sequences available for HEVC development

including licensing statement.

To continue to collect test materials.

JCTVC-W0011 JCT-VC AHG report: SHVC test model editing (AHG11) [G. Barroux, J. Boyce, J. Chen, M. Hannuksela, G. J. Sullivan, Y.-K. Wang, Y. Ye]

This document reports the work of the JCT-VC ad hoc group on SHVC text editing (AHG11)

between the 22th JCT-VC meeting in Geneva, Switzerland (15–21 October 2015) and the 23th

JCT-VC meeting in San Diego, USA (19–26 February 2016).

During this period, the editorial team worked on the Scalable HEVC (SHVC) Test Model text to

provide the corresponding text for the newly added profiles. Six related profiles were defined in

the draft SHVC specification:

Scalable Main (previously specified)

Scalable Main10 (previously specified)

Scalable Monochrome (newly added, planned to be final at this meeting)

Scalable Monochrome12 (newly added, planned to be final at this meeting)

Page: 203 Date Saved: 2016-06-03

Scalable Monochrome16 (newly added, planned to be final at this meeting)

Scalable Main 4:4:4 (newly added, planned to be final at this meeting)

JCTVC-W0012 JCT-VC AHG report: SHVC software development (AHG12) [V. Seregin, H. Yong, G. Barroux]

This report summarizes activities of the AHG12 on SHVC software development between 22th

and 23th JCT-VC meetings.

The latest software version was SHM-11.0.

SHM software can be downloaded at

https://hevc.hhi.fraunhofer.de/svn/svn_SHVCSoftware/tags/

The software issues can be reported using bug tracker https://hevc.hhi.fraunhofer.de/trac/shvc

The latest version was SHM-11.0 and it was released with JCTVC-V1013 for DAM ballot in

ISO/IEC.

SHM-11.0 is based on HM-16.7 and it includes newly adopted profiles for scalable monochrome

and 4:4:4 chroma colour format coding. The following software improvements had been

additionally made:

Fixes for tickets ## 90, 93, 94, 96, 97

Reduce amount of software changes relative to HM for potential software merging

After adoption of the new profiles, SHM software supports higher than 10 bit-depth input. For

such high bit-depth, macro RExt__HIGH_BIT_DEPTH_SUPPORT should be enabled for better

performance.

Anchor data and templates had been generated based on common test conditions JCTVC-Q1009

and attached to this report.

Development plan and recommendations

Continue to develop reference software based on SHM-11.0 and improve its quality.

Fix open tickets.

JCTVC-W0013 VCEG AHG report: HDR Video Coding (VCEG AHG5) [J. Boyce, E. Alshina, J. Samuelsson (AHG chairs)]

This document reports on the work of the VCEG ad hoc group on HDR Video Coding. The first

version of the document contained the mandates, a short introduction and the notes from the

teleconference meeting. In the second version of the document, text was added related to email

discussions, contributions and recommendations.

During 2015 there were several input contributions to VCEG and JCT-VC reporting on,

discussing and encouraging the experts to investigate coding of HDR video in a configuration

that is sometimes called HDR10 (meaning that the representation format is 10 bit, 4:2:0, non-

constant luminance, Y‘CbCr, SMPTE ST 2084 EOTF, ITU-R BT.2020 colour primaries and,

when compressed, is using the Main10 Profile of HEVC). Examples of such contributions are

COM-16 C.853, JCTVC-U0045, JCTVC-V0052, JCTVC-V0053 and COM-16 C.1031. In the

discussions related to COM-16-C.1031 it was agreed that VCEG would start working towards

documenting best practice techniques for using the existing HEVC standard for compression of

HDR video.

A kick-off message was sent on December 9, 2015, listing the mandates of ad hoc group 5 and

encouraging emails related to the ad hoc group to include both the VCEG reflector, vceg-

[email protected], and the JCT-VC reflector, [email protected].

In relation to software development, it was reported on December 9, 2015 that several

improvements and extensions to HDRTools had been included in the gitlab repository (see also

JCTVC-W0046).

Page: 204 Date Saved: 2016-06-03

A suggestion for a starting point for documenting best practice techniques was circulated on

December 10, 2015. The discussion on the email reflectors where primarily related to mandate 4,

the study of best practices techniques for pre-processing, encoding, post-processing, and

metadata for handling HDR video content using the existing HEVC standard, and the collection

of such information toward documenting such practices in a technical paper or supplement. In

total approximately 50 email messages were exchanged.

A teleconference was held on February 8, 22.00-23.59 CET with attendance of approximately 30

experts.

The purpose of the teleconference was to continue the work the request to "Study best practices

techniques for pre-processing, encoding, post-processing, and metadata for handling HDR video

content using the existing HEVC standard, and collect such information toward documenting

such practices in a technical paper or supplement" and to try to resolve some of the open issues

that had been discussed via email, in preparation for the upcoming JCT-VC meeting.

There was a question about whether other operating points besides "HDR10" should be included

in this work. In JCT-VC review, it was agreed to not necessarily limit the scope in that manner.

The agreement that VCEG‘s and MPEG's work on HDR should be performed jointly in JCT-VC

was noted.

Approximately 80 HDR related input contributions had been submitted to JCT-VC (including

CE reports and crosschecks) as of the time of preparation of the report.

A summary of issues discussed in the teleconference (see the report for details about the

discussion in the teleconference about each of these) is as follows:

Should we aim for one or multiple documents? The AHG conference call agreed to start

focusing on one document but with the different parts as separated as possible.

Is the scope clear and is the concept of a "generalized hypothetical reference viewing

environment" useful? The call agreed to use the generalized hypothetical reference

viewing environment for the time being and to further investigate the effect of the

reference viewing environment.

o In JCT-VC review, it was commented that we need better clarity of what such an

environment is, especially if we recommend certain practices that target the

viewing experience in that environment, and should make sure that a benefit is

provided in that environment with those practices.

o In JCT-VC review, it was noted that the new ITU-R BT.[HDR] document

describes a reference viewing environment for critical viewing

Should SEI messages be included? (Which ones? Only signalling, or also how to apply

them?) The call agreed to put SEI messages (the mastering display colour volume SEI

message and the content light level SEI message) and VUI parameters in an appendix.

o In JCT-VC review, it was suggested not to limit the scope to just two such SEI

messages, and just the ones most supported elsewhere (e.g. by HDMI), and to

survey what other SEI message might be appropriate for HDR.

At what level of detail should encoding and decoding processes be described? (Only

HEVC, or also AVC?) The call agreed to include recommendations for encoding with

HEVC and also with AVC (but with secondary priority).

Should pre- and/or post-filtering (such as denoising etc) be included/considered? The call

agreed that denoising filters, smoothing filters etc. should not be considered to be in

scope, but that colour transform and chroma resampling etc. should be considered to be in

Page: 205 Date Saved: 2016-06-03

scope. The type of filters that are in scope and the type of filters that are not in scope

should be explicitly defined in the document.

o In JCT-VC review, it was suggested to at least mention such processing and

describe why further information has not been provided, as a scope clarification,

and perhaps to provide cautionary remarks if some practice that has been used for

SDR needs special consideration because of HDR issues.

How to handle the multitude of different processing platforms and target applications?

The call agreed to consider creating categories and evaluate if the process should be

different for the different categories. For those processes where alternatives are motivated

these should be included and it should be described under what circumstances it might be

beneficial to use them.

Should there be insights and motivations for the processes? The call agreed to include

motivation and insights related to the described technologies.

o In JCT-VC review, it was commented that the proposed draft seems a bit too

much like a specification of a single prescribed thing to do rather than providing

general informative and educational comments, and this should be addressed.

What experiments would we like to perform?

o In JCT-VC review, it was said that this remained an open issue and various things

should be considered; tests should be used to verify that the suggestions in the

document are beneficial.

How to proceed with the document? The call agreed to include the circulated document

as an attachment to the AHG report.

o In JCT-VC review, it was agreed that additional information could and should be

included in the TR beyond what has been drafted.

Attached to this AHG report was the straw-man suggestion for the technical paper that was made

available on the VCEG email reflector and JCT-VC email reflector on December 10, 2015 with

modifications as suggested on December 17, 2015.

The ad hoc group recommended to create a break out group to continue the work and the

discussion related to developing the TR. Rather than using a break-out group, the work at the

JCT-VC meeting was dones in a "single track" fashion.

Topics identified for this meeting:

Review the draft of the TR

Consider relevant input contributions

JCTVC-W0014 MPEG AHG report: HDR and WCG Video Coding [C. Fogg, E. Francois, W. Husak, A. Luthra]

This document provides the report of the MPEG AHG on HDR and WCG Video Coding.

An email reflector [email protected] was set up and hosted by Alpen-Adria-Universität

Klagenfurt, and industry experts were invited to join via http://lists.uni-

klu.ac.at/mailman/listinfo/xyz and participate in this activity. As of February 3, 2016 there were

459 email addresses on this reflector‘s list. Several email messages were exchanged on various

topics related to the mandates. Eight separate sub-reflectors were also set up associated with

eight categories of the Core Experiments identified in Geneva (N15622).

It was agreed that we should clarify which reflectors will be used by JCT-VC in future

HDR/WCG work, and later clarified that the main JCT-VC reflector should be used.

Page: 206 Date Saved: 2016-06-03

The AHG had one face-to-face meeting in Vancouver from January 12–14, 2016, with

attendance of about 30 people (according to the registration record – there may have been

somewhat more that were not recorded). As this activity of HDR/WCG video coding was

planned to be made a part of JCTVC starting from February 19, 2016, the 2nd face to face

meeting of the AHG, tentatively planned to start on February 19, 2016, was not held.

Documents reviewed at the AHG F2F meeting

JCT-VC MPEG Source Title

W0032 m37539 InterDigital Encoder optimization for HDR/WCG

coding

W0031 m37536 CE2 chairs Description of the reshaper parameters

derivation process in ETM reference

software

W0024 m37537 CE4 chairs Report of HDR CE4

W0025 m37538 CE5 chairs Report of HDR CE5

Preliminary

draft for

W0026

Preliminary

draft for

m37738

Philips Report on CE6 (see notes regarding

document registration difficulties)

W0033 m37541 BBC Partial results for Core Experiment

W0101 m37535 BBC Hybrid Log-Gamma HDR

W0035 m37543 Arris Some observations on visual quality of

Hybrid Log-Gamma (HLG) TF processed

video (CE7)

Preliminary

draft for

W0061

Preliminary

draft for

m37695

BBC Partial results for Core Experiment 7(see

notes regarding document registration

difficulties)

Preliminary

draft for

W0110

Preliminary

draft for

m37771

Technicolor SDR quality evaluation of HLG

W0036 m37602 Philips Report on CE7 xCheck and Viewing (later

withdrawn)

A substantial of additional detail about the AHG activities and AHG meeting was provided in the

AHG report.

The CE topics were as follows:

HDR CE1: Optimization without HEVC specification change

HDR CE2: Post-decoding signal proc with 4:2:0 10 b YCbCr NCL fixed point output for

HDR video coding

o Setting 0: Improving HDR coding beyond what CE1 could do (may or may not be

BC), see W0084/W0085

o Setting 1: Backward compatibility by one method for chroma (may also improve

HDR)

o Setting 2: Backward compatibility by another method for chroma (may also improve

HDR)

HDR CE3: Objective/subjective metrics

HDR CE4: Consumer monitor testing

HDR CE5: Alternative colour transforms and 4:4:44:2:0 resampling filters

Page: 207 Date Saved: 2016-06-03

HDR CE6: Using other processing not included in CE2 (e.g. 4:4:4 domain processing)

HDR CE7: Hybrid log gamma investigation

HDR CE8: Viewable SDR testing (for single-layer BC)

CE2 experimental test model (ETM) experiments can be categorized as follows:

Mode Use case Luma Chroma mode Mode

0 Single-layer

HDR

8 piecewise

polynomial

segments.

Intra plane 1 piece-wise linear

segment each for

Cb, Cr.

1 Single-layer SDR

backward

compatible.

Cross plane 8 piece-wise linear

segments each for

Cb, Cr.

2 8 piece-wise linear

segments shared by

Cb, Cr.

(All modes are now completely automatic. This was not the case before.)

Setting 0 was said to be better performing for HDR quality than "setting 1".

It was agreed to first check "CE1 v3.2" versus one of the automatic "CE2 setting 0" variants.

3 Documents considered at the MPEG AHG meeting in Vancouver (4)

See JCTVC-W0014 for details of the prior AHG discussion of these contributions – their further

review was not considered necessary at the JCT-VC meeting.

Preliminary versions of JCTVC-W0061 and JCTVC-W0110 and at least one of the CE reports

(CE6, see JCTVC-W0026) were also reviewed at the Vancouver meeting.

JCTVC-W0031 Description of the reshaper parameters derivation process in ETM reference software [K. Minoo (Arris), T. Lu, P. Yin (Dolby), L. Kerofsky (InterDigital), D. Rusanovskyy (Qualcomm), E. Francois (Technicolor)]

JCTVC-W0032 Encoder optimization for HDR/WCG coding [Y. He, Y. Ye, L. Kerofsky (InterDigital)]

JCTVC-W0035 Some observations on visual quality of Hybrid Log-Gamma (HLG) TF processed video (CE7) [A. Luthra, D. Baylon, K. Minoo, Y. Yu, Z. Gu]

JCTVC-W0037 Hybrid Log-Gamma HDR [A. Cotton, M. Naccari (BBC)]

4 Project development, status, and guidance (6)

4.1 Corrigenda items (0)

See the AHG 2 report.

Page: 208 Date Saved: 2016-06-03

4.2 Profile/level definitions (1)

JCTVC-W0129 SCC Level Limits Based on Chroma Format [S. Deshpande, S.-H. Kim (Sharp)] [late]

Initially discussed Sunday 21st 1700 (chaired by GJS).

The current calculation in HEVC SCC Draft 5 for MaxDpbSize does not account for different

chroma subsampling. This proposal describes extending the current design to support using

higher MaxDpbSize for lower chroma format values. In this document MaxDpbSize calculation

which accounts for memory use due to chroma components is proposed for Screen-Extended

Main 10 4:4:4 profile.

A similar concept was previously proposed in V0037.

It was asked how common the use case might be.

It was remarked that the only SCC profiles that support monochrome are 4:4:4 profiles.

This was later considered in joint meeting discussions (see section 7.1).

4.3 Conformance test set development (0)

See the AHG report JCTVC-W0004 and outputs JCTVC-W1008 for SHVC, JCTVC-W1012 for

RExt and improved version 1 testing, and JCTVC-W1016 for SCC.

4.4 SCC text development (2)

Note also the E′ [0,1] versus [0, 12] scaling issue and the "full range" scaling issue and JCTVC-

W0044 and parent-level ILS from ITU-R ([ TD 385-GEN ]), and also the IPT colour space,

which were considered in the HDR category. See other notes on those topics.

Discussed Sunday 21st 1430 (chaired by GJS).

JCTVC-W0096 Proposed editorial improvements to HEVC Screen Content Coding Draft Text 5 [R. Joshi, G. Sullivan, J. Xu, Y. Ye, S. Liu, Y.-K. Wang, G. Tech] [late]

This document summarizes the proposed editorial improvements to HEVC Screen Context

Coding Draft Text 4. It also identifies known issues that should be addressed in version 6 of the

draft text. The accompanying documents, JCTVC-V1005-W0096.doc and JCTVC-

V0031_fixes_annexes_F_G_v2, contain the proposed changes with revision marks relative to

JCTVC-V1005-v1.

Proposed editorial improvements related to adaptive colour transform (editorial – OK)

Wavefronts & tiles should be allowed to be used together in Screen-Extended 4:4:4

profiles Decision (BF): OK (this was an overlooked item from the previous meeting) –

the editors were asked to check the wording of the CPR region constraint

Small editorial items – OK

o Ticket #1440 – editorial clarification

o Ticket #1435: Changed "residual_adaptive_colour_transform_flag" to

"residual_adaptive_colour_transform_enabled_flag" in subclause 8.4.1.

o Ticket #1434 and #1436: Introduced the variable ControlParaAct as an input to

subclause 8.4.4.1: General decoding for intra blocks.

o Ticket #1437 small luma/chroma copy-paste error

o In subclause I.7.4.3.3.7, "Picture parameter set 3D extension semantics", the

variable MaxNumLayersMinus1 is used without a definition.

o In subclauses G.11.2.1 and H.11.2.1, an equation number is missing.

Page: 209 Date Saved: 2016-06-03

o Ticket #1431: In subclause 7.3.6.3, pred_weight_table( ), which is invoked from

slice_segment_header( ), has dependencies on RefPicList0 and PicOrderCntVal,

variables that (according to the first sentence of subclause 8.3.2) are only

computed "after decoding of a slice header".

o Ticket #1433: Missing CABAC information.

o Ticket #1439: IRAP constraint for Main 4:4:4 Intra profile (forgotten mention of

one profile in a list)

Regarding support for 4:2:2 in the new High Throughput profiles (esp. the Screen-

Extended ones), it was tentatively agreed to not support 4:2:2 in the Screen-Extended

ones, but this plan was reversed after further discussion in a joint meeting session (see

section 7.1)

Monochrome is not supported in Screen-Extended Main and Screen-Extended Main 10

profiles - no action on that

Decoder conformance for Scalable Range Extensions – Editorial – delegated to the

editors, as the intent is clear.

Should an Annex A SCC decoder be required to have INBLD capability? That doesn't

really seem necessary or appropriate – no action on that.

Should the SCC HT profiles be called HT profiles? Editors have discretion to consider

some terminology restructuring, but no clear approach was identified in the discussion

that seemed better than the current text in that regard.

Multiview & SHVC aspects were noted.

NB comments & disposition

Two technical comments from Finland (bug fixes of prior scalability-related aspects) were

received and agreed.

Item 1: In F.8.1.3, When nuh_layer_id is greater than 0 and the general profile_idc signals a

single-layer profile (specified in Annex A), no decoding process is specified. This can happen

when the target output layer set is an additional output layer set (which, by definition, excludes

the base layer). In this case the layer with SmallestLayerId is an independent non-base layer that

is not decoded. In another example, this happens when an output layer set contains the base layer

and an independent non-base layer. In this case, the independent non-base layer is not decoded if

its profile_idc indicates a single-layer profile.

It was proposed to change the end of the decoding process invocation logic in F.8.1.3 as follows:

"– Otherwise, if general_profile_idc in the profile_tier_level( ) syntax structure

VpsProfileTierLevel[ profile_tier_level_idx[ TargetOlsIdx ][ lIdx ] ] is equal to 8, the

decoding process for the current picture takes as inputs the syntax elements and upper-case

variables from clause I.7 and the decoding process of clause I.8.1.2 is invoked.

– Otherwise (the current picture belongs to an independent non-base layer), the decoding

process for the current picture takes as inputs the syntax elements and upper-case variables

from clause F.7 and the decoding process of clause 8.1.3 is invoked by changing the

references to clauses 8.2, 8.3, 8.3.1, 8.3.2, 8.3.3, 8.3.4, 8.4, 8.5, 8.6, and 8.7 with clauses

F.8.2, F.8.3, F.8.3.1, F.8.3.2, F.8.3.3, F.8.3.4, F.8.4, F.8.5, F.8.6, and F.8.7, respectively."

The decoding process invocation for an independent non-base layer is hence identical to that of

the invocation for the base layer (also in F.8.1.3).

Page: 210 Date Saved: 2016-06-03

Item 2: F.14.3.3 includes the following constraint: "A layers not present SEI message shall not

be included in an SEI NAL unit with TemporalId greater than 0." This constraint unnecessarily

limits the signalling flexibility of an entity that prunes layers from a bitstream. Layer pruning

decisions may be made at any access unit, not just access units with TemporalId equal to 0.

Presumably the intent of the constraint has been to avoid the removal of layers not present SEI

message(s) as a consequence of removing the highest sub-layer(s) of the bitstream. However, it

is asserted the intent can be achieved by a differently phrased constraint without the loss of

flexibility and access unit wise preciseness of indicating layers not present. It was proposed to

replace the constraint with the following:

"When a layers not present SEI message is associated with coded picture with TemporalId

firstTid that is greater than 0 and that coded picture is followed, in decoding order, by any coded

picture with TemporalId less than firstTid in the same CVS, a layers not present SEI message

shall be present for the next coded picture, in decoding order, with TemporalId less than

firstTid."

Other NB comments seemed to be on issues that have been resolved.

4.5 HEVC coding performance, implementation demonstrations and design analysis

(1)

4.5.1 HM performance (0)

See JCTVC-W0104.

4.5.2 RExt performance (0)

See JCTVC-W0104.

4.5.3 SHVC performance/verification test (1)

JCTVC-W0095 SHVC verification test results [Y. He, Y. Ye (InterDigital), Hendry, Y. K. Wang (Qualcomm), V. Baroncini (FUB)]

Discussed Fri 26th 1145 (GJS)

This document reports the results for the SHVC verification test.

A subjective evaluation was conducted to compare the SHVC Scalable Main and Scalable Main

10 profiles to HEVC simulcast using the HEVC Main and Main 10 profiles, respectively. The

verification tests cover a range of video resolutions from 540p to 4K, and various scalability

cases, including spatial 1.5x, spatial 2x, SNR and color gamut scalabilities (CGS).

Average bitrate savings of SHVC vs. HEVC simulcast was reported as illustrated below:

Page: 211 Date Saved: 2016-06-03

The results confirmed that the SHVC Main and Main 10 profile can achieve the same subjective

quality as HEVC simulcast while requiring on average approximately 40~60% less bit rate.

The EL/BL ratio used was lower than previously planned for CGS since additional bit rate didn't

seem necessary. This change had been agreed in the interim, with email reflector confirmation.

The "Parakeet" sequence was tested and was in the plan for the test, but had been used in the

prior design work for SHVC. It actually had worse test result than other sequences used in that

part of the test, so any concern about that issue would seem unwarranted. Including that test

sequence in the final report thus seemed appropriate and was agreed.

4.5.4 SCC performance, design aspects and test conditions (1)

JCTVC-W0104 Comparison of Compression Performance of HEVC Screen Content Coding Extensions Test Model 6 with AVC High 4:4:4 Predictive profile [B. Li, J. Xu, G. J. Sullivan (Microsoft)]

Presented on Sunday 21st at 1730 (Rajan).

This contribution is a study of the relative objective (i.e. PSNR-based) compression performance

of HEVC Screen Content Coding (SCC) Test Model 6 (SCM 6) and AVC High 4:4:4 Predictive

Profile. It builds upon the prior work reported in JCTVC-G399, JCTVC-H0360, JCTVC-I0409,

JCTVC-J0236, JCTVC-K0279, JCTVC-L0322, JCTVC-M0329, JCTVC-O0184, JCTVC-P0213,

JCTVC-R0101, JCTVC-S0084, JCTVC-T0042, JCTVC-U0051, and JCTVC-V0033 – updating

the results by using the latest available reference software (JM-19.0, HM-16.7+SCM-6.0), profile

and test model designs, and SCC common test conditions (CTC) test sequences. The overall

results indicate that for screen content CTC sequences, the HEVC SCC Test Model 6 improves

quite substantially over JM-19.0. For example, for RGB text and graphics with motion (TGM)

1080p&720 sequences, HEVC SCC Test Model 6 saves 86%, 81%, and 78% bits for AI, RA and

LB lossy coding over JM-19.0, respectively (the corresponding numbers are also 86%, 81% and

78% in JCTVC-V0033, which compares HM-16.6+SCM-5.2 with JM-19.0).

Results were also provided for non-CTC sequences (used during RExt development). For some

simple sequences such as the waveform sequence, the BD-rate saving were over 90%.

4.6 Software development (1)

JCTVC-W0134 SHM software modifications for multi-view support [X. Huang (USTC), M. M. Hannuksela (Nokia)] [late]

Discussed Sat. 25th p.m. (GJS).

Page: 212 Date Saved: 2016-06-03

The contribution includes SHM source code that contains multiview support. It is asserted that

such software could be useful e.g. for creating and decoding MV-HEVC bitstreams with an

external base layer and for cross-verifying the HTM encoder (in its MV-HEVC mode) with SHM

decoder or vice versa. The operation of the software was reportedly verified by a simulation with

the JCT-3V test set with an IBP inter-view prediction hierarchy. It was proposed to include the

proposed software changes into the SHM.

In revision 1 of the contribution, a bug pointed out by Tomohiro Ikai was fixed.

Further discussed near the end of the meeting. See section 1.15.

Decision (SW): This was adopted subject to software quality check with the software

coordinator(s).

4.7 Source video test material (0)

No contributions were noted for JCT-VC on source video test sequence material. (See the JVET

report for video test material considered there.)

5 Core experiments in HDR (39)

5.1 HDR CE1: Optimization without HEVC specification change (2)

Initially discussed Fri 19th 1745 (GJS & JRO).

5.1.1 CE1 summary and general discussion (1)

JCTVC-W0021 Report on HDR CE1 [Jacob Ström, Joel Sole, Yuwen He]

This document provides a description of work done in Core Experiment (CE1). The goal of this

CE was to identify and investigate methods for the optimization of the HEVC Main 10 coding of

High Dynamic Range (HDR) and Wide Colour Gamut (WCG) content without any specification

changes. During the course of the CE1, several ways to improve the anchors have been found

and incorporated into the anchor generation process. At the interim meeting in Vancouver

meeting, anchor v3.2 was selected as the anchor to be used.

The anchor generation process has gone through a number of versions summarized in Table 1.

Final code

released

Version

number

Comment Date of decision to

use as current

anchor

v1.0 CfE anchor

Oct 30, 2015 v2.0 CE1.a + CE1.b + HM16.7 + VUI/SEI

parameter changes + chroma position change +

integer QP

Oct 30 2015

Nov 10,

2015

v2.1 New sequences, split sequences, new rate

points

Nov 21,

2015

v3.0 Average-luma controlled adaptive QP Dec 1, 2015

Dec 6, 2015 v3.1 Bugfix1 (luma dQP LUT metadata file reading)

Jan 5, 2016 v3.2 Bugfix2 (luma dQP signaling) + integer QP Jan 12, 2016

On Jan 5, 2016, Interdigital shared two anchor improvement proposals to the reflector based on

m37227. The software was based on v3.0 of the anchors and contained two tests; test1 was

Page: 213 Date Saved: 2016-06-03

anchor v3.0 with added deblocking optimization and chroma QP offset adjustment, and test 2

was anchor v3.0 with deblocking optimization only.

During the interim AHG meeting, anchors 3.2 were shown on the SIM2 display and compared

against v2.1. It was concluded that the new anchors (v3.2) were a substantial improvement over

v2.1.

A viewing was also held between Interdigital‘s test1 and anchor v3.2. The group decided to

select anchor v3.2, which became the current anchor.

It was commented that this QP control is deterministic; similar in spirit to fixed-QP, and

suggested not for the group get into the territory of full rate control for such experiments.

It was commented that reference software for "best practices", e.g. as a branch to the HM and the

HDRtools software package, should be developed (and probably approved as standard reference

software).

Further discussed Saturday GJS & JRO 1800

For software distribution:

The CE1 anchor will be made a branch of the HM

The HDRtools package will made accessible via a login available to all JCT-VC members

5.1.2 CE1 primary contributions (0)

5.1.3 CE1 cross checks (1)

JCTVC-W0108 Cross-check report on HDR/WCG CE1 new anchor generation [D. Jun, J. Lee, J. W. Kang] [late]

5.2 HDR CE2: HDR CE2: 4:2:0 YCbCr NCL fixed point for HDR video coding (13)

Initially discussed Fri 1800 GJS & JRO

5.2.1 CE2 summary and general discussion (1)

JCTVC-W0022 Report of HDR Core Experiment 2 [D. Rusanovskyy (Qualcomm), E. Francois (Technicolor), L. Kerofsky (InterDigital), T. Lu (Dolby), K. Minoo (Arris)]

The exploratory experiment 2 (CE2) was established at the 113th MPEG meeting (N15800) with

investigate HDR video coding technologies operating in 4:2:0 YCbCr NCL fixed point domain.

Detailed CE2 description and planned sub-tests was provided in ISO/IEC JTC1/SC29/WG11

document N15795. There were 6 cross-checked input contribution reporting results of 10 sub-

tests and 5 CE2 related contributions.

As a result of CE2 activity all given mandates were reportedly accomplished in time. The

Exploration Test Model (ETM) with automated encoder-side algorithms was released on 2015-

12-19, and the software description and simulation results were provided on on 2016-01-12.

A preliminary CE2 report was presented in the January 2016, F2F meeting of the MPEG AHG

on HDR. The CE2 description was updated based on the outcome of the F2F meeting. This

document reports CE2 activity which followed the F2F meeting.

Planned CE2 sub-tests

Planed sub-test Proponents

CE2.a-1 luma ATF with LCS (m37245) Qualcomm

CE2.a-2 reshaping (m37267) Dolby

Page: 214 Date Saved: 2016-06-03

CE2.a-3 adaptive transfer function (m37091) Arris

CE2.b-1 Cross-channel modulation (m37088 and m37285) Technicolor

CE2.b-2 SDR backward compatibility study (m37092) Arris

CE2.c Chroma QP offset (m37179) Qualcomm,

Arris

CE2.d DeltaQP adjustment for Luma Arris

CE2.e-1 Enhancement of ETM Qualcomm

CE2.e-2 harmonization of luma and chroma reshaping

(m37332)

Arris

CE2.e-3 automatic selection of ETM parameters Interdigital

A revised CE description was requested to be uploaded as part of the report.

JCTVC

doc

Title Source Sub-test

W0022 HDR CE2 report (This document) Coordinators

W0033 HDR CE2: report of CE2.b-1 experiment

(reshaper setting 1)

Technicolor CE2.b-1

W0084 HDR CE2: CE2.a-2, CE2.c, CE2.d and CE2.e-

3

Dolby,

InterDigital

CE2.a-2, CE2.c,

CE2.d, C2.e-3

W0093 HDR CE2: Report of CE2.a-3, CE2.c and

CE2.d experiments (for reshaping setting 2)

Arris CE2a-3, CE2.c,

CE2.d

W0094 HDR CE2: Report of CE2.b-2, CE2.c and

CE2.d experiments (for reshaping setting 2)

Arris CE2.b-2, CE2.c,

CE2.d

W0097 HDR CE2: CE2.c-Chroma QP offset study

report

Qualcomm CE2.c

W0101 HDR CE2: Report on CE2.a-1 LCS Qualcomm CE2.a

W0068 CE2-related: Adaptive Quantization-Based

HDR video Coding with HEVC Main 10

Profile

ZTE

W0071 CE2-related: Adaptive PQ: Adaptive

Perceptual Quantizer for HDR video Coding

with HEVC Main 10 Profile

ZTE

W0085 HDR CE2 related: Further Improvement of

JCTVC-W0084

Dolby,

InterDigital

W0089 HDR CE2-related: some experiments on

reshaping with input SDR

Technicolor

W0100 HDR CE2-related: Results for combination of

CE1 (anchor 3.2) and CE2

Qualcomm

W0112 HDR CE2: cross-check report of JCTVC-

W0084

Technicolor

W0113 HDR CE2: cross-check report of JCTVC-

W0101

Technicolor

W0093 HDR CE2: cross-check report of JCTVC-

W0033

Dolby

W0094 HDR CE2: cross-check report of JCTVC-

W0097

Dolby

Page: 215 Date Saved: 2016-06-03

W0101 HDR CE2 related: cross-check report of linear

luma re-shaper

Samsung

W0128 HDR CE2: Cross-check of JCTVC-W0084

(combines solution for CE2.a-2, CE2.c, CE2.d

and CE2.e-3)

Qualcomm

W0130 Crosscheck for further improvement of HDR

CE2 (JCTVC-W0085)

Intel

It was asked whether there were changes happening in CE2 after the stabilization of CE1 that

could have been applied to CE1, and whether there had been sufficient time to study what had

been happening. However, it was commented that some or all of the changes that took place

were not really the development of new ideas but rather the application of things that had taken

place in the CE1 context.

In principle, CE1 itself could be a moving target (e.g. further improvement of the table mapping

of brightness to QP) but its evolution was stopped by a desire to deliver it on a deadline.

It was agreed that we should do an initial test of CE2 vs. CE1 and that it should consider only

one of the two CE2 variants since they had been stabilized earlier: W0084 and W0097.

Some participants had received the Jan 27 software ETM r1 (which was not the W0084 software)

and had studied it and had it ready to use. Samsung had checked this.

Some proponents suggested using the Feb 1 W0084 CE2 software instead, as it was delivered as

the software to be used for the CE. This had been cross-checked by Technicolor (although they

had reported a rate allocation issue - see notes elsewhere).

It was agreed to use the Feb 1 software for the viewing test conducted during the meeting.

Some concern about the bit allocation was expressed – see notes elsewhere. We could investigate

that question afterwards as appropriate.

We have two codecs * 15 test sequences * 4 bit rates = 120 total possible encodings to review.

It was suggested to trim the number of test sequences to avoid ones that are too short - to select

about 6-8 total.

It was agreed to use the three lowest bit rates.

This results in 2*6*3=36 encodings to consider.

A dry run was requested fro Sat a.m.; with testing Sat 6 p.m. or by lunch Sunday.

See discussion of W0112.

It was noted that it is important to make sure the PC graphics card sync rate is 50 Hz if the

display is 50 Hz.

The selected sequences were:

Balloon [guy lines]

Market [walls, canopy, clothing]

EBU06Starting (play slowed to 50; source is 100) [lines of tracks, problems in dark]

Garage Exit [power line at the end]

Showgirl [face area, background dark region blocking & noise]

Sunrise [dark areas, clouds in sky, trees with blocking]

V. Baroncini was asked to coordinate the testing. See section 7.1 for the results reporting.

Tests previously performed in the CE were as follows.

Page: 216 Date Saved: 2016-06-03

Reported sub-tests Proponents Cross-

checker

Notes Report

Doc.

Cross-

check

report

CE2.a-1 luma ATF with LCS

(m37245)

Qualcomm Technicolor W0101 W0113

CE2.a-2 reshaping (m37267)

Jointly with CE2.a-2, CE2.c,

CE2.d, CE2.e-3

Dolby,

Interdigital

Qualcomm

Technicolor

CE2.e-3 automatic selection of

ETM parameters

Merged

with

CE2.a-2

W0084 W0128

W0112

CE2.c Chroma QP offset

(m37179)

Merged

with

CE2.a-2

CE2.d DeltaQP adjustment for

Luma

Merged

with

CE2.a-2

CE2.b-1 Cross-channel

modulation (m37088 and

m37285)

Technicolor Dolby W0033 W0093

CE2.a-3 adaptive transfer

function (m37091)

Arris Combined

with

CE2.c and

CE2.d

W0093

CE2.b-2 SDR backward

compatibility study (m37092)

Arris Combined

with

CE2.c and

CE2.d

W0094

CE2.c Chroma QP offset

(m37179)

Qualcomm Dolby W0097 W0094

CE2.e-1 Enhancement of ETM Qualcomm Arris Withdrawn W0130

CE2.e-2 harmonization of luma

and chroma reshaping

(m37332)

Arris Withdrawn

CE2 sub-tests summary:

W0033: CE2.b-1 experiment (reshaper setting 1)

Backward compatible configuration of ETM, reshaper setting 1 (cross component YCbCr

processing)

Algorithms of luma and chroma reshapers derivation

No changes to the syntax or decoding process of the ETM reported

These experiments relate to SDR backward compatible configuration, and focus on reshape

setting 1 that involves cross-plane colour reshaping. The experiments only involve the reshaping

algorithm, and do not require any change in the current ETM syntax and inverse reshaping

process. The modified reshaper tuning algorithm for reshape setting 1 was proposed to be

adopted in the ETM. It was reported that the proposed changes improve the reshaped SDR

content quality (in terms of visual rendering of contrast and colours), while preserving the

compression performance.

W0084: Combined solution for CE2.a-2, CE2.c, CE2.d and CE2.e-3, includes:

Page: 217 Date Saved: 2016-06-03

Non backward compatible configuration of ETM, reshaper setting 0 (independent

component YCbCr processing)

Algorithm for luma reshaper derivation and automatic update mechanism

HM encoder optimization

DeltaQP adjustment for luma and ChromaQP offset adjustment for chroma for local

control

Change to deblocking filter param derivation

No changes to the syntax or decoding process of the ETM reported

This proposal reports a combination of CE2 subtests: CE2.a-2 on luma forward reshaping

improvement, CE2.c on chromaQPOffset, CE2.d on DeltaQP adjustment for luma, and CE2.e-3

on automatic selection of ETM parameters. The experiment is to test non-normative luma

reshaping improvement as well as joint optimization of reshaper and encoder. The encoder

optimization methods include chromaQPOffset, luma DeltaQP adjustment, and deblocking filter

parameter selection.

W0093 HDR CE2: Report of CE2.a-3, CE2.c and CE2.d experiments (for reshaping setting 2),

includes:

Backward compatible configuration of ETM, reshaper setting 2 (cross component YCbCr

processing)

Algorithms for Adaptive Transfer Function (ATF) derivation for luma and chroma

HM encoder optimization

DeltaQP adjustment for luma

No changes to the syntax or decoding process of the ETM reported

This document reports the results of experiments for CE2.a-3 in conjunction with encoding

optimization techniques which have been studied under CE2.c and CE2.d categories. The

combined experiment was conducted to measure the performance of an alternative transfer

function (instead of conventional PQ TF) as well as joint optimization of the reshaper and

encoder, specifically when the reshaping setting is in "setting 2". Informal subjective evaluations

were conducted for both the reconstructed SDR and HDR sequences. It is asserted that compared

to the version 3.2 of anchor, the proposed approach provides similar perceptual quality of the

reconstructed HDR signal while supporting SDR backward compatibility.

W0094 HDR CE2: Report of CE2.b-2, CE2.c and CE2.d experiments (for reshaping setting 2),

includes

Backward compatible configuration of ETM, reshaper setting 2 (cross component YCbCr

processing)

Algorithms for Adaptive Transfer Function (ATF) derivation for luma and chroma

HM encoder optimization

DeltaQP adjustment for luma

ChromaQP offset adjustment for chroma

No changes to the syntax or decoding process of the ETM reported

Page: 218 Date Saved: 2016-06-03

This document reports a combination of CE2 subtests: CE2.b-2 on SDR backward compatibility,

CE2.c on chromaQPOffset, and CE2.d on DeltaQP adjustment for luma. The experiment was

conducted to study bitstream SDR backward compatibility as well as joint optimization of the

reshaper and encoder. Subjective evaluation was conducted on a SIM2. It is asserted that

compared to anchor v3.2, the proposed joint optimization of reshaper and encoder provides

similar perceptual quality while supporting SDR backward compatibility.

W0097 HDR CE2: CE2.c-Chroma QP offset study report, includes:

Non backward compatible configuration of ETM, reshaper setting 0 (independent

component YCbCr processing)

Algorithm for chroma ATF derivation

Tested in 2 frameworks:

Reference ETM software

Software of the W0084 (alternative luma reshaper)

HM encoder optimization:

CE1 anchor 3.2 default settings

No changes to the syntax or decoding process of the ETM reported

This document reports results of CE2.c sub-test which studies harmonization of chroma QP

offset utilized in CE1 anchor and CrCb processing of the ETM. As a result of the study,

modification of encoder side algorithm is proposed to the ETM. Proposed in this document

solution employs an independent multirange ATF (reshaper) for each colour component.

Proposed solution provides objective gain as well as improvement in visual quality over

reference ETM design as well as over the CE1 anchor. Proposed multirange ATF was also

integrated and tested in software of W0084.

W0101 HDR CE2: Report on CE2.a-1 Luma based Chroma Scaling, includes:

Non backward compatible configuration of ETM, reshaper setting 1 (cross-component

YCbCr processing)

Algorithm for chroma ATF derivation

No changes to the syntax or decoding process of the ETM reported

This document reports the results of the study of CE2.a-1 on luma-based chroma scaling (LCS).

The chroma sample values are scaled by values that are dependent on the co-sited luma sample

values, and the scale values are computed based on a function that increases with luma values.

The document reports objective evaluation on the tested configuration.

CE2 – related summary:

W0068 CE2-related: Adaptive Quantization-Based HDR video Coding with HEVC Main 10

Profile

Non-ETM framework

The perceptual quantization (PQ) for HDR video coding has perceptual uniformity in the

luminance range with the modest bit-depth. However, the dynamic range of HDR video is not

fully utilized in PQ, especially PQ for chrominance channels. Thus, there exist the wasted

dynamic ranges in PQ which cause detail loss and colour distortions. In this contribution,

adaptive quantization-based HDR video coding is proposed. Adaptive mapping of sample values

with bit depths of 16 bit and 10 bit is established to perform conversion based on cumulative

Page: 219 Date Saved: 2016-06-03

distribution function (CDF), i.e. adaptive quantization, instead of linear mapping. First, CDF is

derived from the histogram of each picture. Then, adaptive quantization is performed based on

CDF. The metadata for adaptive conversion are coded for performing the inverse conversion at

destination. Experimental results demonstrate that the proposed method achieves average 1.7 dB

gains in tPSNR XYZ and 2 dB gains in PSNR_DE over Anchor. Subjective comparisons show

that the proposed method preserves image details while reducing colour distortion.

W0071 CE2-related: Adaptive PQ: Adaptive Perceptual Quantizer for HDR video Coding with

HEVC Main 10 Profile

Non-ETM framework

Proposed is an adaptive transform function based perceptual quantizer (PQ) for HDR video,

called adaptive PQ. Adaptive PQ is to solve the problem that PQ is not adaptive to HDR content

because of its using a fixed mapping function from luminance to luma. By introducing a ratio

factor derived from the luminance information of HDR content, adaptive PQ maps luminance to

luma adaptively according to the content. Experimental results demonstrate that adaptive PQ

achieves average bit-rate reductions of 3.51% in tPSNR XYZ and 5.51% in PSNR_DE over PQ.

W0085 HDR CE2 related: Further Improvement of JCTVC-W0084

This proposal reports a further improvement of JCTVC-W0084. The improvement is solely on

luma DeltaQP adjustment.

W0089 HDR CE2-related: some experiments on reshaping with input SDR

Backward compatible configuration of ETM, reshaper setting 1 (cross component YCbCr

processing)

Algorithms of luma and chroma reshapers derivation

No changes to the syntax or decoding process of the ETM reported

This document reports preliminary experiments on ETM with dual SDR/HDR grading. In this

configuration, a graded SDR version as well as the usual graded HDR version are given as inputs

to the reshaper. The reshaping process uses the input SDR as reference and generates reshaping

data to match as much as possible the reshaped input HDR to the input SDR. In the experiments,

reshape setting 1 configuration is used (cross-plane chroma reshaping). It is reported that these

preliminary experiments tend to show that ETM models are able to properly reproduce an SDR

intent.

W0100 Results for combination of CE1 (anchor 3.2) and CE2

Non backward compatible configuration of ETM, reshaper setting 0 (independent

component YCbCr processing)

HM encoder optimization

CE1 default anchor settings

Additional DeltaQP adjustment for luma

Additional ChromaQP offset adjustment for chroma

No changes to the syntax or decoding process of the ETM reported

This document reports results of combining the software of anchor 3.2 that is the outcome of

CE1 and the ETM that is the outcome of CE2. Results for the direct combination of the CE1 and

CE2 software are provided. It is noted that CE1 and CE2 algorithms have some degree of

Page: 220 Date Saved: 2016-06-03

overlap, so the direct combination could be improved by a proper adjustment of the parameters.

Results obtained by adjusting the parameters are also provided.

5.2.2 CE2 primary contributions (6)

JCTVC-W0033 HDR CE2: report of CE2.b-1 experiment (reshaper setting 1) [E. Francois, Y. Olivier]

Tues 1415 (GJS & JRO).

Setting 1: This (as configured for the CE2 test) targets backward compatibility using cross-

component signal processing.

This document reports the results of experiments HDR CE2.b-1. These experiments relate to

SDR backward compatible configuration, and focus on reshape setting 1 that involves cross-

plane color reshaping. The experiments only involve the reshaping algorithm, and do not require

any change in the current ETM syntax and inverse reshaping process. The modified reshaper

tuning algorithm for reshape setting 1 is proposed to be adopted in the ETM. It was reported that

the proposed changes improve the reshaped SDR content quality (in terms of visual rendering of

contrast and colours), while preserving the compression performance.

This is in the category of "bitstream backward compatibility".

It is not in the category of "decoder-side content DR/CG adaptation within an HDR context.

The proponent was asked whether the proposed scheme could be configured to provide enhanced

HDR quality rather than SDR backward compatibility, and said it seemed possible.

The automatic adaptation of the reshaper is considering both SDR (at decoder output) and HDR

(after reshaper). It is claimed that due to the dependency between luma and chroma (hue control)

it is simpler to achieve this. 32 pieces of a piecewise linear transfer curve are used.

It is claimed that the multiplicative dependency of chroma from luma is doing something that is

not possible with CRI.

Basically, all three reshaper settings (as well as CRI) could be configured for non-backward

compatible as well as backward-compatible solution. Currently, no hard evidence exists which

benefit any of these solutions has for one or the other case.

JCTVC-W0084 HDR CE2: CE2.a-2, CE2.c, CE2.d and CE2.e-3 [T. Lu, F. Pu, P. Yin, T. Chen, W. Husak (Dolby), Y. He, L. Kerofsky, Y. Ye (InterDigital)]

Discussed Sunday 21st 1010–1130 (GJS & JRO).

This proposal reports a combination of CE2 subtests: CE2.a-2 on luma forward reshaping

improvement, CE2.c on chromaQPOffset, CE2.d on DeltaQP adjustment for luma, and CE2.e-3

on automatic selection of ETM parameters. The experiment is to test non-normative luma

reshaping improvement as well as joint optimization of reshaper and encoder. The encoder

optimization methods include chromaQPOffset, luma DeltaQP adjustment, and deblocking filter

parameter selection. Subjective evaluation was conducted on both Pulsar and SIM2. It is asserted

that compared to Anchor v3.2, the proposed joint optimization of reshaper and encoder provides

visible subjective quality improvements for many of the test clips, primarily in the form of more

texture details.

The ST 2084 luminance range is divided into a number of pieces and codewords are allocated

into each piece based on image statistics computed on the fly.

The remapper is determined automatically and without look-ahead. Updating is done when a

change of image content range or content characteristics is detected. It is sent with each IDR,

even when not changed.

For the version of Feb1 (used in visual comparison), one improvement is that no update is made

when unnecessary (the first fully automatic version ETMr1 made an update at least once per

second, based on the characteristics of the new IDR picture). This however only saves little data

rate. Other changes are more fundamental. The reshaper function of ETMr1 is a simple power

Page: 221 Date Saved: 2016-06-03

function, which is changed to become more flexible based on the alpha parameter in 0084. 0084

also uses adaptive chroma QP offset and luma QP adaptation similar to CE1. Furthermore,

deblocking is modified. The encoder selects tc and beta for minimum distortion between original

and reconstructed. This method is equivalent to the method that had been investigated in CE1

(but not used there per decision of the Vancouver meeting).

In the discussion, it was asked what would be done if two different image areas are included in

the same picture (e.g., by an editing operation, or different areas of the same scene having

different characteristics). The scheme applies only one remapper to the entire picture and would

thus need to apply a single remapping to all regions within a picture.

In principle, the same thing could be done to SDR video if desirable. However, the encoding

scheme used here is targeted for ST 2084.

One expert mentioned that similar adjustment as by the suggested reshaping curve could also be

used to further improve the QP adaptation of CE1.

The alpha parameter which adjusts the reshaper characteristics is determined based on

percentage of dark and bright areas. alpha equal 1 would retain the original PQ codeword. The

actual reshaping is done based on the representation of the ATM (piecewise linear etc.)

For the local QP adaptation, the change is less aggressive than in CE1, as it only compensates

locally what the globally optimized reshaper is not able to do. The subsequent contribution 0085

makes this further dependent on reshaper characteristics, whereas W0084 is reshaper agnostic.

Another modification is made by adjusting the QP offset over hierarchy layers that was made.

This explains the shift to first frame as observed by a crosschecker, but some concern was raised

about such strategy in visual comparison.

JCTVC-W0093 HDR CE2: Report of CE2.a-3, CE2.c and CE2.d experiments (for reshaping setting 2) [Y. Yu, Z. Gu, K. Minoo, D. Baylon, A. Luthra (Arris)]

Tues 1500 (GJS & JRO).

Setting 2: This (as configured for the CE2 test) targets backward compatibility.

This document reports the results of experiments for CE2.a-3 in conjunction with encoding

optimization techniques which have been studied under CE2.c and CE2.d categories. The

combined experiment was conducted to measure the performance of an alternative transfer

function (instead of conventional PQ TF) as well as joint optimization of the reshaper and

encoder, specifically when the reshaping setting is in mode 2. Informal subjective evaluations

were conducted for both the reconstructed SDR and HDR sequences. It is asserted that compared

to the version 3.2 of anchor, the proposed approach provides similar perceptual quality of the

reconstructed HDR signal while supporting SDR backward compatibility.

This is in the category of "bitstream backward compatibility".

It is not in the category of "decoder-side content DR/CG adaptation within an HDR context.

Decoder side is "mode 1", which is identical to the decoder used for "setting 1".

JCTVC-W0094 HDR CE2: Report of CE2.b-2, CE2.c and CE2.d experiments (for reshaping setting 2) [Z. Gu, K. Minoo, Y. Yu, D. Baylon, A. Luthra (Arris)]

Tues pm 1515 (GJS & JRO).

Setting 2: This (as configured for the CE2 test) targets backward compatibility.

This document reports a combination of CE2 subtests: CE2.b-2 on SDR backward compatibility,

CE2.c on chromaQPOffset, and CE2.d on DeltaQP adjustment for luma. The experiment was

conducted to study bitstream SDR backward compatibility as well as joint optimization of the

reshaper and encoder. Subjective evaluation was conducted on a SIM2. It is asserted that

compared to anchor v3.2, the proposed joint optimization of reshaper and encoder provides

similar perceptual quality while supporting SDR backward compatibility.

This is in the category of "bitstream backward compatibility".

It is not in the category of "decoder-side content DR/CG adaptation within an HDR context.

Page: 222 Date Saved: 2016-06-03

Decoder side is "mode 1", which is identical to the decoder used for "setting 1".

JCTVC-W0097 HDR CE2: CE2.c-Chroma QP offset study report [D. Rusanovskyy, J. Sole, A. K. Ramasubramonian, D. Bugdayci, M. Karczewicz (Qualcomm)]

Discussed Sunday 21st 1145–1230 (GJS & JRO).

This document reports results of CE2.c sub-test which studies modification of the chroma QP

offset proposed in m37179 and used in CrCb processing in the HDR/WCG ETM. As a result of

the study, of modification of the encoder side algorithm is proposed to the ETM. The proposal in

this document employs an independent multirange "adaptive transfer function" (ATF) (a.k.a.

reshaper, remapper) for each color component. It reportedly provides objective gain as well as

improvement in visual quality over the reference ETM design as well as over the CE1 anchor.

This is in "setting 0" of the ETM – i.e., it does not include cross-component processing and does

not have spatial effects. It uses a multi-segment TF, whereas the CE2 ETM encoder uses just a

single segment (one offset and scaling) for each chroma component. This uses 4 segments. The

ETM decoder software supports 32 segments.

Viewing was suggested to be needed after CE1 vs. CE2 testing.

The presentation deck was missing from the uploaded contribution, and was requested to be

provided in a revision of the contribution.

As of 2016-05-24, the requested new version of the contribution had not yet been provided.

JCTVC-W0101 HDR CE2: Report on CE2.a-1 LCS [A. K. Ramasubramonian, J. Sole, D. Rusanovskyy, D. Bugdayci, M. Karczewicz (Qualcomm)]

Discussed Sunday 21st 1230–1245 (GJS & JRO).

This document reports the results of the study of CE2.a-1 on luma-based chroma scaling (LCS).

The chroma sample values are scaled by values that are dependent on the co-sited luma sample

values, and the scale values are computed based on a function that increases with luma values.

The document reports objective evaluation on the tested configuration.

As used, when the luma value increases, the chroma gain increases.

The cross-checker reports that in regard of visual quality this is equivalent to W0084. This may

be explainable by the fact that W0101 uses the luma reshaper of ETMr1, whereas W0084 has an

improved method of determining the luma reshaper. Could potentially be combined on top of

0084.

The cross-checker said this did not seem visually better than W0084, although further study for a

future combination may be desirable.

The presentation deck was missing from the uploaded contribution, and was asked to be

provided in a revision.

As of 2016-05-24, the requested new version of the contribution had not yet been provided.

5.2.3 CE2 cross checks (6)

Discussed Fri 19:00 (GJS & JRO).

JCTVC-W0112 HDR CE2: crosscheck of CE2.a-2, CE2.c, CE2.d and CE2.e-3 (JCTVC-W0084) [C. Chevance, Y. Olivier (Technicolor)] [late]

This document reports on cross-checking of core experiment HDR CE2.a-2, CE2.c, CE2.d and

CE2.e-3, described in document JCTVC-W0084. It is reported that objective results are perfectly

matching. It is also reported that the overall visual quality compared to the (latest) anchors is

improved. Some comments on the differences of bitrate repartition compared to the anchors are

also made.

According to HDR CE2 plan, subjective viewing was conducted, on SIM2 display. The

evaluation was performed in priority in video mode, then in still picture mode to assess more

specific details.

Page: 223 Date Saved: 2016-06-03

Compared to the CE1 - V3.2 anchors, the visual quality is reportedly better on the following

sequences:

BalloonFestival : Sharper on mountain, better on rope

BikeSparklers (cut1, cut2) : Sharper everywhere (roof, ground)

Hurdles : Racetrack sharper

Starting : sharper on Grass, red line, roof, cameras, rope and pylon

Market : wall and tower

Compared to the CE1 - V3.2 anchors, the visual quality is reportedly slightly better on the

following sequences (mostly when viewing in still picture mode, the difference being rather

difficult to catch in video mode):

Showgirl (face)

Stem_MagicHour (cut1, cut2,cut3) : Slightly sharper

Stem_WramNight (cut1, cut2) : Slightly sharper

garageExit : faces and ropes

Finally, an equivalent quality with the anchors is reported on:

FireEater

SunRise

In conclusion the visual quality is reported to be globally better than HDR CE1 - v3.2 anchors.

An analysis of the bit rate repartition has also been made to check the differences compared to

the anchors.

In particular, it seems that more bits are spent on intra pictures with the proposal. One possible

explanation is that the proposed reshaping by itself results in distributing more bits in intra

pictures, because of a larger use of codewords range, which is then compensated by a lower cost

spent for inter pictures. The improvement of the intra frames quality generally leads to a quality

improvement on the entire sequence, especially for sequences with low amplitude global motion.

The bit rate repartition actually strongly depends on the automatic reshaping function and on the

way the codewords are redistributed by the reshaping.

More bits were devoted to the I picture than for the anchor. The bit cost difference with anchors,

per frame, is diagrammed below.

Page: 224 Date Saved: 2016-06-03

There was concern expressed about whether a visual improvement relative to the anchor might

be related to the bit allocation effect illustrated above.

JCTVC-W0113 HDR CE2: Crosscheck of CE2.a-1 LCS (JCTVC-W0101) [C. Chevance, Y. Olivier (Technicolor)] [late]

Page: 225 Date Saved: 2016-06-03

JCTVC-W0121 HDR CE2: Cross-check report of JCTVC-W0033 [T. Lu, F. Pu, P. Yin (Dolby)] [late]

JCTVC-W0122 HDR CE2: Cross-check report of JCTVC-W0097 [T. Lu, F. Pu, P. Yin (Dolby)] [late]

JCTVC-W0128 HDR CE2: Cross-check of JCTVC-W0084 (combines solution for CE2.a-2, CE2.c, CE2.d and CE2.e-3) [D. Rusanovskyy (Qualcomm)] [late]

JCTVC-W0131 HDR CE2: Cross-check report of CE2.a-3, CE2.c and CE2.d experiments (JCTVC-W0093) [C. Chevance, Y. Olivier (Technicolor)]

5.3 HDR CE3: Objective/subjective metrics (3)

Initially discussed Fri 1930 (GJS & JRO).

5.3.1 CE3 summary and general discussion (1)

JCTVC-W0023 Report of HDR Core Experiment 3 [V. Baroncini, L. Kerofsky, D. Rusanovskyy]

The exploratory experiment 3 (CE3) was established at the 113th MPEG meeting (N15800) with

the purpose of understanding various proposed objective video quality metrics. Two categories

of objective metrics were previously identified based on sensitivity to luma or colour distortions.

Software for additional objective metrics was collected. The details of the experiments that were

conducted is provided in ISO/IEC JTC1/SC29/WG11 N15457

Currently in MPEG, an objective metric for HDR/WCG coding which correlates well with

subjective results is absent. Separate classes of metrics corresponding to "luminance only" and

"colour" specific metrics have been proposed. This CE served to examine the performance of

these metrics. The lack of subjective data hiders the process of examining objective metrics. It

was realized the subjective data recorded along with the CfE responses could be leveraged to

help understand the objective metrics. The lab in Rome had access to the CfE response source

data as well as subjective evaluations. They graciously offered to assist with leveraging this data

understand the objective metrics.

Four luminance specific objective metrics and four colour specific objective metrics were

identified of interest. Software for these objective metric calculation was collected. The original

plan was for executables only to be provided for the HDR-VDP2 and HDR-VQM metrics.

Software for the other metrics was delivered as an extension to the HDRTools package. With

exception of the HDR-VDP2, software for these algorithms was distributed following the

process developed to share CE software via MPEG ftp site file exchange.

An update on progress with the generation of objective data and corresponding subjective results

was given at the interim meeting held January 12–14 in Vancouver Canada. Concern was raised

about both processing speed and exact details of the metics under examinatoin. Desire for

publicly available C code for metrics was an outcome of this discussion. Several highlights of the

discussion are repeated below.

Samsung has kindly publicly released C++ code for the HDR-VQM metric (for the

HDRtools software package).

Page: 226 Date Saved: 2016-06-03

The Dolby VDP2 implementation has been verified by Arris. A request was made to Dolby

to examine release of their C++ implementation ASAP.

EPFL has completed a subjective evaluation of the CFE anchors and will have an input

contribution for the San Diego meeting. EPFL will release the MOS scores for independent

cross correlation to the objective metrics.

UBC has indicated VIF C++ package would be released by the San Diego meeting.

UBC also has MOS scores that they are willing to release.

Based on discussion at this interim meeting, several contributions on objective metrics were

expected at the San Diego meeting. Review of these contributions was expected to be a major

source of discussion. The following contributions to the San Diego meeting were identified as of

interest to the objective metric topic of CE3:

JCTVC-W0041/ m37625 "HDR-VQM Reference Code and its Usage". Source: Samsung,

Describes structure and use of the SW provided for the HDR-VQM objective metric.

JCTVC-W0090 "HDR CE3: Results of subjective evaluations conducted with the DSIS

method". Source EPFL. Describes additional subjective testing done on HDR/WCG CfE

responses. Replaces previous paired comparison method with DSIS method. Notes results

may be used to evaluate objective metrics.

JCTVC-W0091 "HDR CE3: Benchmarking of objective metrics for HDR video quality

assessment". Source EPFL. Provides evaluation of sample set of objective metrics using

updated subjective test results. A subset of metrics listed in CE-3 were considered. Objective

luminance metrics examined include:: tPSNR-Y, HDR-VDP-2, HDR-VQM, avLumaPSNR.

Objective colour metrics examined include: avColourPSNR and PSNR-DE100. The VIF

metric was also included in this study.

JCTVC-W0115 "VIF Code for HDR Tools" (unavailable on document repository as of 2016-

02-18)

The following items were requested to be addressed in San Diego:

Examine the HDR-VQM metric C++ code kindly provided by Samsung, trying to fix the

problems encountered (cfg info for a correct execution; analysis of the speed and of the

results).

Ask the Proponents to the CfE to provide the decoded files in .exr format (the HDR-VQM

metric works on those). They could provide or the .exr files or the bitstreams and the scripts

to decode them (so headache for the CE3 people in decoding stuff, please!!).

Get bitstreams of the new Anchors and run subjective assessment and metric on those; FUB

is volunteering to assess the new Anchors; we need volunteers to run the other metrics.

Page: 227 Date Saved: 2016-06-03

VQM behaviour was reported as follows:

5.3.2 CE3 primary contributions (2)

JCTVC-W0090 HDR CE3: Results of subjective evaluations conducted with the DSIS method [M. Rerabek, P. Hanhart, T. Ebrahimi (EPFL)] [late]

(Not reviewed in detail.)

This contribution reports the details and results of a second subjective quality evaluation

conducted at EPFL to assess responses to the Call for Evidence (CfE) for HDR and WCG Video

Coding. Unlike the contributors' previous evaluations, the DSIS method was used for these

assessments instead of a paired comparison to an Anchor. The same test material as in our

previous evaluations was used in this subjective assessment. Results show similar trends as in

prior work, but less statistically significant differences are observed because of the lower

discrimination power of DSIS approach when compared to paired comparison, as well as the

color differences induced by the viewing angle dependency of the Sim2 monitor. These results

can also be used to evaluate the performance of objective quality metrics.

JCTVC-W0091 HDR CE3: Benchmarking of objective metrics for HDR video quality assessment [P. Hanhart, T. Ebrahimi (EPFL)] [late]

(Not reviewed in detail.)

This contribution reports the performance of several objective metrics for HDR quality

assessment. To benchmark the metrics, we used as ground truth the subjective scores collected in

two different evaluations conducted at EPFL. Three different analyses are performed to assess

the performance of the different metrics. Based on the results, the contributor recommended

using HDR-VDP-2 or PSNR-DE1000, which showed similar performance for a lower

computational complexity and considers colour differences.

Page: 228 Date Saved: 2016-06-03

5.3.3 CE3 cross checks (0)

5.4 HDR CE4: Consumer monitor testing (1)

Initially discussed Fri 2000 GJS & JRO

5.4.1 CE4 summary and general discussion (1)

JCTVC-W0024 Report of HDR CE4 [P. Topiwala (FastVDO), E. Alshina (Samsung), A. Smolic (Disney), S. Lee (Qualcomm)]

HDR CE4 had the mandate to investigate the potential suitability of consumer HDR televisions

for use in our investigations of HDR/WCG video compression. The CE4 Description is included

below as an Appendix for the convenience of the JCT-VC. It is remarked that this CE is not a

traditional contest between proposals, but rather an open and collaborative investigation, more

like an AHG. Moreover, due to device testing, most of the work of the CE can be performed

mainly at meetings.

Legacy receivers have been in the range of 100 nits of peak brightness, and supporting 8-bit

video with the BT.709 colour space. HDR can be viewed as video in the 1000+ nits range,

supporting 10+ bits/sample, and potentially supporting the BT.2020 colour space. The work in

the MPEG AhG on HDR/WCG has been exclusively using two monitors for all subjective

assessments: (1) the Dolby Pulsar monitor, which is a private model internal to Dolby and

unavailable; and (2) the Sim2, which at approximately $40K dollars is a reference monitor that is

unlikely to reach consumers soon. Nevertheless, the work of the AhG aimed to provide a coding

technology for consumer services to the home. The only way to assess the value of any design

for suitability for consumer services is therefore to actually test on devices that may be deployed

in the home. OLED reference monitors were included in this category for test purposes.

Volunteer Disney Research, using proprietary algorithmic methods developed at their labs,

created some 1k nit regraded version of a couple of test sequences. These sequences have been

uploaded to the MPEG Repository, under \Explorations\HDR\1k Nit grading directory location.

Volunteer Samsung produced some test output sequences by using the latest source codes

produced by CE1 and CE2, with a view to compare them, both on professional monitors and

consumer devices.

The interim meeting of the HDR activity in Vancouver afforded some viewing of both the

sequences produced by Samsung, as well as the 1k nit data produced by Disney. The devices

available at the Telus labs included the Samsung JS9500. A number of impressionistic

observations were made in Vancouver in a non-systematic, non-scientific way. It was noted that

the 1k nit data appeared not to be a close match to the 4k nit originals (they appeared more

washed out). In fact, Disney reports that it was part of the intent in the regrading to make the 1k

nit data paler, and somewhat less colourful, but closer to a cinematic look. If there are other

preferences on how the regraded data should appear, it would be meaningful to collect such

opinion if possible. It was also found that the original 4k nit data, as shown on the 1k nit max

JS9500 device, appeared somewhat washed out and "non-HDRish". These observations required

further review of the test setup. Upon investigation, E. Alshina concluded that the way the video

was fed to the device did not indicate how to perform the necessary display adaptation, resulting

in brightness clipping and therefore suboptimal performance. So these experiments would need

to be repeated before for adequate results could be obtained.

E. Alshina of Samsung brought coded sequences to Vancouver according to CE1 and CE2, using

the latest available source codes (e.g, v3.2 for CE1), for comparison on the consumer class

JS9500, and general impressions were gathered in a non-scientific viewing. It seemed to be

Page: 229 Date Saved: 2016-06-03

general opinion that on the whole both seemed to be about equal in quality, while there was some

opinion that CE1 was better (opinion the other way seemed less common).

It was anticipated that activities similar to those at the Vancouver meeting would be conducted in

San Diego, potentially as a breakout group. It was also anticipated to propose continuing this

activity beyond this San Diego meeting.

It was agreed to have a side activity (coordinated by P. Topiwala) to try to arrange a similar test

of CE1 and CE2 results using a consumer monitor to help determine the ability to test with a

consumer device. Some viewing results were later reported informally as noted in section 1.15.

It was suggested to try to measure and study the response characteristics of some consumer

monitor(s) and professional monitor(s) and determine what characteristics exist and how this

may effect viewing results.

5.4.2 CE4 primary contributions (0)

5.4.3 CE4 cross checks (0)

5.5 HDR CE5: Colour transforms and sampling filters (6)

Initially discussed Saturday 1400 GJS & JRO.

5.5.1 CE5 summary and general discussion (1)

JCTVC-W0025 Report of HDR CE5 [P. Topiwala (FastVDO), R. Brondijk (Philips), J. Sole (Qualcomm), A. Smolic (Disney)]

HDR CE5 had the mandate to investigate the impact of alternative colour transforms and

resampling filters as pre- and post-processing steps on the efficiency of HDR/WCG coding. In

addition, there was a mandatory transfer function, as well as an optional one, to incorporate in

the processing chain. Several proposals were submitted under this CE, investigating these

parameters.

A number of proposed tests were set up in this CE, stemming from the work presented at the

Geneva meeting. Three tests were performed – a Y′′u′′v′′ colour space proposed in W0069, a

Y′FbFr lifting-based colour space proposed in m37065, and constant-luminance colour space

from BT.2020 (see W0099) with different ordering of the application of the transformation

matrix and different scaling of the chroma – each tested with some alternative resampling filter.

The Y′FbFr proposal used a significantly different resampling filter than used in the anchor. The

source code for these experiments were released and uploaded to the MPEG repository, under

/Explorations/HDR/CE5/. As of the time of preparation of the CE5 report, the following

documents had been registered.

JCTVC-W0069, HDR CE5: Report of Core Experiment CE5.3.1, R. Brondijk et al

(Philips)

JCTVC-W0055, HDR CE5: Report of CE5.3.2, W. Dai et al (FastVDO)

JCTVC-W0070, CE5-related, xCheck of CE5.3.2

JCTVC-W0080, Crosscheck of HDR CE5.3.1 (JCTVC-W0069).

JCTVC-W0099, HDR CE5 test 3: Constant Luminance results.

The cross-checkers did not assess the proposals for visual improvement – only looked for serious

visual problems.

Page: 230 Date Saved: 2016-06-03

One point that was raised on the reflector was by Tomohiro Ikai of Sharp. It is stated in the CE5

description that the colour transforms and resampling filters are the only tools under test; no

other parameters were to be varied. That is, to follow CE1 directly in other matters. (One

exception was already envisioned… that the Transfer Function could optionally be allowed to be

different from the ST 2084 TF, as an additional test.) Tomohiro Ikai observed that as we vary the

colour space instead of the usual Y′CbCr, a certain QP offset value may also have to be modified

for optimal performance. So it was suggested to allow that adjustment. A decision among

participants in the CE was reached to allow for that variation, but as an additional test.

The suggestion was that if gain is shown, we might liaise with other organizations to determine

their degree of interest in an alternative colour space.

It was asked whether the upsampling after decoding would need to be designed to match the

downsampling.

It was suggested that we should be cautious about considering the idea of defining new colour

spaces.

No immediate action was expected from the outcome of the informal viewing. Visual testing was

suggested to be done. This was agreed, but to be lower priority than other visual testing for this

meeting.

It was planned that informal viewing should be performed later during week to demonstrate the

claimed benefit versus the new CE1 anchors; it would however not be possible to identify

whether benefit would be due to filters or other colour transforms. Sampling filters could also be

used with CE1 as optional pre-and post-processing.

5.5.2 CE5 primary contributions (3)

JCTVC-W0055 HDR CE5: Report of Experiment 5.3.2 [W. Dai, M. Krishnan, P. Topiwala (FastVDO)]

(Not reviewed in detail.)

This proposal presents two approaches to coding HDR video, by modifying certain components

of the anchor HDR video coding processing chain developed in CE1 (essentially an HDR10

compliant system). The following components are modified. The intermediate colour

representation is changed from Y‘CbCr, to Y‘FbFr, a proposed colour space. The resampling

filters used for 4:4:4->4:2:0->4:4:4 conversion in the anchor are replaced by a different proposed

set of fixed resampling filters. In addition to these changes, the two variants of the proposal,

herein called FastVDO_a, and FastVDO_b, arise from the use of two different transfer functions:

(a) ST.2084, and (b) a Philips-developed transfer function. It is asserted that both systems

perform well, with subjective visual quality equal to or superior to the output of either CE1

(anchor) or CE2 (reshaper). Moreover, by testing with two different transfer functions, it is

asserted that the tools proposed meet the criteria of modularity and adaptability, in addition to

providing performance value. The developed system reportedly constitutes a pre- and post-

processing system, which acts outside of an application of the core HEVC Main10 video coding

profile. Reported objective results for these systems include: (a) FV_a, Overall results for

DE100, MD100, PSNRL100 were +16.5%, +48.8%, +5.8% ; (b) FV_b, Overall results for

DE100, MD100, PSNRL100 were reportedly +6.1%, -28.3%, +28.6%, respectively. It is asserted

(and for which there is appears to be fairly broad agreement) that such objective metrics are not

very predictive of visual quality in HDR coding studies. It is furthermore asserted that the

proposed coding scheme in fact provides equal or superior visual quality to the output of both

CE1 and CE2.

JCTVC-W0069 HDR CE5: Report on Core Experiment CE5.3.1 [R. Brondijk, W. de Haan, J. Stessen (Philips)]

(Not reviewed in detail.)

Page: 231 Date Saved: 2016-06-03

This document describes the core experiment CE5.3.1. In this core experiment, the quality of

Y‖u‖v‖ is investigated when used with the ST.2084 instead of the Philips Transfer Function. The

purpose is to compare the results of this experiment to other pixel representations identified in

CE5.

JCTVC-W0099 HDR CE5 test 3: Constant Luminance results [J. Sole, D. Rusanovskyy, A. Ramasubramonian, D. Bugdayci, M. Karczewicz (Qualcomm)]

(Not reviewed in detail.)

This document reports results of the CE6 test 3 on a Constant Luminance (CL) approach

discussed in the MPEG contributions m36256 and m37067. The standard NCL chroma weights

and another set of weights are tested. There is no sequence or frame level optimization of the

proposed CL approach: identical CL coefficients are applied throughout all the test sequences.

5.5.3 CE5 cross checks (2)

JCTVC-W0070 CE5-related: xCheck of CE5.3.2 [R. Brondijk, R. Goris (Philips)] [late]

JCTVC-W0080 Crosscheck of HDR CE5.3.1 (JCTVC-W0069) [J. Samuelsson, M. Pettersson, J. Strom (Ericsson)] [late]

5.6 HDR CE6: Non-normative post processing (10)

Initially discussed Saturday 1500 GJS & JRO.

5.6.1 CE6 summary and general discussion (1)

JCTVC-W0026 Report of HDR Core Experiment 6 [R. Brondijk, S. Lasserre, D. Rusanovskyy, Y. He]

This CE was originally planned for processing that is performed, after decoding, in the 4:4:4

space. However, some proposals in the CE used output in the 4:2:0 space.

Page: 232 Date Saved: 2016-06-03

CE

Test

Contribution Summary Proponent Cross Checker

4.1 JCTVC-W0103 Technology based on m37064:

Study of reshaper in 4:4:4

Dynamic range adjustment with

signalling of parameters for HDR

reconstruction through SEI message

Has concept of decoder-side

content DR adaptation for the

coding space, re-expanded to

destination DR

Qualcomm Philips

JCTVC-

W0109

BBC

JCTVC-

W0125

4.2 JCTVC-W0034 Colour enhancement (m37072):

modifying decoded chroma (in

4:2:0 domain) based on luma signal

No SDR concept

InterDigital Samsung

JCTVC-

W0123

4.3 JCTVC-W0063 Dynamic range adaptation and re-

saturation (m36266) in 4:2:0

Version 1: HM 16.7 fixed QP

Version 2: Using CE1 adaptive QP

Has concept of decoder-side

content DR adaptation for the

coding space, re-expanded to

destination DR

Philips Technicolor

(version 1)

JCTVC-

W0114

Qualcom

(version 2)

4.6a JCTVC-W0063 Technologies based upon m37285:

m36266, using an SEI message

described in m37285.

Similar to 4.3, except signalling.

Dynamic range adaptation, based

on application of 1D-mapping

functions to the YCbCr and/or RGB

components, and colour correction

consisting of the modulation of the

CbCr and/or RGB components

samples by a 1D scaling function

depending on the Y component

sample and signalled as presented

in m37245.

Has concept of decoder-side

content DR adaptation for the

coding space, re-expanded to

destination DR

Philips FastVDO

JCTVC-

W0073

4.6b JCTVC-W0059 Technologies based upon m37285:

the test model, with usage of an SEI

message.

Has concept of decoder-side

content DR adaptation for the

coding space, re-expanded to

destination DR

Technicolor Philips

JCTVC-

W0064

Page: 233 Date Saved: 2016-06-03

The "concept of decoder-side content DR adaptation" is designed to be used for adapting the

content for display with a different HDR display DR, different environment light level, user-

adjusted light level, or SDR display DR.

The bitstream VUI could indicate an SDR space or some other space for default interpretation in

the absence of adaptation metadata.

It was asked how this capability could be demonstrated – and the coordinator responded that the

adaptation to a different display could be demonstrated using various displays.

SMPTE 2094 (see incoming SMPTE LS, m38082, TD 387-GEN for VCEG) is being developed

to provide some display adaptation metadata. The nominal purpose of SMPTE 2094 is, at least

primarily, to enable adaptation of a video signal to a smaller colour volume (e.g., lower dynamic

range).

W0063 is different.

5.6.2 CE6 primary contributions (4)

JCTVC-W0034 CE-6 test4.2: Colour enhancement [Y. He, L. Kerofsky, Y. Ye (InterDigital)]

(Not reviewed in detail.)

The document reports simulation results of test 4.2 defined in CE6. It investigated the

performance of applying a color enhancement process as post processing. Compared to the

HDR/WCG anchor v3.2, an average BD rate reduction of 6.4% based on the DE100 metric is

reported. BD rate reduction is also reported for other objective metrics that measure color fidelity.

A BD rate increase of 0.5% is reported for metrics that measure luma only.

JCTVC-W0059 HDR CE6: report of CE6-4.6b experiment (ETM using SEI message) [E. Francois, C. Chevance, Y. Olivier (Technicolor)]

(Not reviewed in detail.)

This document reports results from experiment HDR CE6-4.6b. The experiment aims at

replacing the SPS/PPS signalling used in ETM to convey the reshaper metadata by an SEI

container. The tests are made in reshape setting mode 1 focused on SDR backward compatibility,

with same algorithm as in CE2.b-1. It is reported that same performance are obtained as CE2.b-

1.

JCTVC-W0063 HDR CE6: Core Experiments 4.3 and 4.6a: Description of CE6 system in 4:2:0 and with automatic reshaper parameter derivation [W. de Haan, R. Brondijk, R. Goris, R. van der Vleuten (Philips)]

Discussed Tues 1520 GJS & JRO

This has a backward-compatible aspect, but is also intended to provide enhanced HDR quality

relative to "HDR10".

This document describes the operation of an adapted version of an earlier system as proposed for

the CfE by Philips (M36266). It now uses automatic reshaper parameter derivation, internal

processing in the 4:4:4 domain, with output in the 4:2:0 domain.

Two variants of the system are described in this contribution (W0063) depending on the transfer

of the reshaper curve. In version a) the curve shape is transferred using parameters (CE6 4.3). In

version b) the curve shape transferred using a piece wise linear approximation of the curve itself

(CE6 4.6a).

It is reported that the newly adapted system performs similar to the original CfE system, and it is

shown that both version a) and version b) of the proposal also perform similar quality-wise, but

that version a) is more efficient from a transmission bandwidth point of view.

This is about "bitstream backward compatibility".

It is also in the category of "decoder-side content DR/CG adaptation within an HDR context"

(but this is not described in the contribution).

Page: 234 Date Saved: 2016-06-03

The scheme involves decoder-side inverse tone mapping controlled by parameters sent by the

encoder. The output is in the 4:2:0 domain. This tone mapping is somewhat more complex than,

e.g., the schemes tested in CE1.

At the decoder end, the method determines for each pixel individual multiplication factors that

convert SDR to HDR inYUV 4:2:0. To determine these factors, the pixel is upconverted to 4:4:4

and RGB, where tone mapping and scaling is performed. Generally, more complex than a plain

mapping operation as in the CE2 methods.

Shown here was with an intent for backward compatibility, uses automatic determination of

mapping, but could also be used for HDR-only purposes.

JCTVC-W0103 HDR CE6: Test 4.1 Reshaper from m37064 [D. B. Sansli, A. K. Ramasubramonian, D. Rusanovskyy, J. Sole, M. Karczewicz (Qualcomm)]

Discussed Tues 1600 GJS & JRO

This has a backward-compatible aspect.

This document reports the results of CE6 sub-test 4.1 that studies the Backwards Compatible

configuration of the technology proposed in m37064. The technology is based on the dynamic

range adjustment (DRA) proposed in m37064 which is similar to mode 0 in ETM and provides a

method for a guided, end-user side dynamic range conversion. Parameters of the DRA are

proposed to be conveyed to the decoder through an SEI message. Objective and subjective test

results are provided for an example application of reconstructing an HDR signal from

compressed SDR bitstreams. It is proposed to adopt the technology described in this

contribution, to provide a guided, end-user side dynamic range conversion.

This has some aspect to support "bitstream backward compatibility".

It could be configured for other use cases.

It has a piecewise linear mapping of decoded colour components separately (e.g. like CRI with a

unity matrix).

Asserted to be possible to use for HDR to SDR conversion, SDR to HDR conversion, and other

conversions (guided by the metadata).

Uses two building blocks of dynamic range adaptation, and in YUV 4:2:0 after decoder output

and another one after RGB 4:4:4 conversion. A new SEI message is requested. Hypothetically,

this could be implemented using CRI.

5.6.3 CE6 cross checks (5)

JCTVC-W0064 HDR CE6-related: Cross Check of CE6.46b [R. Brondijk, W. de Haan (Philips)] [late]

JCTVC-W0073 HDR CE6: Cross-check of 6.46a [W. Dai, M. Krishnan, P. Topiwala (FastVDO)] [late]

JCTVC-W0109 CE6-related: xCheck of CE6 4.1 [Robert Brondijk (Philips)] [late]

JCTVC-W0114 HDR CE6: crosscheck of CE6.4.3 (JCTVC-W0063) [C. Chenvance, Y. Olivier (Technicolor)] [late]

JCTVC-W0123 HDR CE6: Cross-check report of test4.2: Colour enhancement (JCTVC-W0034) [E.Alshina (Samsung)] [late]

Page: 235 Date Saved: 2016-06-03

JCTVC-W0125 CE6-related: Cross check report for Test 4.1 Reshaper from m37064 [M. Naccari (BBC)] [late]

5.7 HDR CE7: Hybrid Log Gamma investigation (4)

Initially discussed Saturday 1645 GJS & JRO.

5.7.1 CE7 summary and general discussion (1)

JCTVC-W0027 Report of HDR/WCG CE 7 on investigating the visual quality of HLG generated HDR and SDR video [A. Luthra (Arris), E. Francois (Technicolor), L. van de Kerkhof (Philips)]

This document provides the report of the Core Experiment 7 investigating the visual quality of

Hybrid Log-Gamma (HLG) generated HDR and SDR video.

The exploratory experiment 7 (CE7) was established at the 113th MPEG meeting (N15800) with

the purpose of understanding various techniques used to generate video using Hybrid Log-

Gamma (HLG) transfer function and investigating the visual quality of the video.

Hybrid Log-Gamma (HLG) Transfer Function (TF) is designed to possibly provide backward

compatibility with the "legacy" SDR systems. At this stage, the "legacy" systems are taken to be

the SDR systems not needing colour gamut conversion (i.e., for example, not needing BT.2020

to BT.709 colour gamut conversion) but needing only the dynamic range conversion. If the

legacy SDR TV cannot process the BT.2020 "container" then it is assumed the BT.2020

container is removed externally and the video is provided with appropriate format. The details of

the experiments that were conducted is provided in ISO/IEC JTC1/SC29/WG11 N15800.

The initial version of N15800 lacked specific details. Those details were provided and uploaded

as the second version of N15800. Various issues associated with HLG were discussed on the

email reflector as well as during the HDR/WCG AHG's face-to-face meeting in Vancouver in

Jan 2016.

An overview of the motivation for development of HLG was given to the group by BBC during

the Vancouver meeting and uploaded as ISO/IEC JTC1/SC29/WG11 m37535 (JCTVC-W0037).

There was substantial discussion on the impact and interactions of various elements of the

OOTF. The utility of modifying the system gamma to change the peak brightness was discussed.

BBC reported on a subjective test where viewers modified the system gamma by a factor in order

to adapt the signal from one peak brightness to another. The value is dependent on the source and

target peak brightness values. It was observed that only 2–3% of TV programs go through a

reference display environment and only one of 24 in-house studios surveyed by BBC followed

BT.2035 lighting environment recommended practice.

BBC was requested to provide its ITU-R WP6C contribution on system gamma design for

monitors to the MPEG/JCT HDR ad hoc group (see notes below and JCTVC-W0110).

Arris presented a document during the Vancouver meeting on the backward compatibility of

HLG. The document was uploaded to the MPEG and JCT repositories as ISO/IEC

JTC1/SC29/WG11 m37543 (JCTVC-W0035) respectively. Arris presented images that showed

CE7.1b looked noticeably washed out and suggested focusing on CE7.1a. CE7.1a uses gamma

processing in the YUV domain and CE7.1b uses gamma processing in the RGB domain. It was

also reported that there was a change in hue when the HLG processed video is shown on a legacy

SDR TV. The amount of change in hue was observed to be a function of the brightness of the

object. Its impact was that as an object moved from less bright area to brighter area, the

displayed colour changed. It was further investigated. To be able to test it in more controllable

environment, Arris generated colour bars that showed the similar behavior of change in the hue

depending on the brightness of the object as seen in other video sequences. The EXR file

Page: 236 Date Saved: 2016-06-03

consisting of those colour bars were also provided on the CE7 reflector. The results are reported

in ISO/IEC JTC1/SC29/WG11 m37543 (JCTVC-W0035).

A demo for this was requested be arranged and announced on our email reflector (targeting 1100

Sunday if feasible).

Technicolor presented an informal document during the Vancouver meeting on the backward

compatibility of HLG – specifically whether the compatibility is content dependent. The

document was later completed and uploaded as document JCTVC-W0110. The test, done using

BT.709 container, was similar to BBC‘s where viewers were asked match SDR and HDR by

adjusting the system gamma. Technicolor showed selected ranges from gamma 1.2 to 1.6.

Technicolor reported that that the system gamma value for an optimal SDR rendering is content

dependent, and not only dependent on the peak brightness and viewing environment. Bright

content would require smaller gamma values (close to 1.2) while dark content would need large

gamma values (above 1.4). In the discussions, BBC stated that gamma 1.6 is no longer the

recommended value. The second round of test done using BT.2020 container confirmed the

previous observations.

Philips presented a document (JCTVC-W0036 / m37602, which was later withdrawn) during the

interim meeting describing their crosscheck of CE7.1 and CE7.2. The document confirmed the

work of Technicolor and Arris. For 7.1.b, the SDRs looked washed out and there are noticeable

colour tone changes. The 7.1.a SDRs look better than those of 7.1.b, however their colours are

often too saturated (reds are too red, greens too green and blues too blue). The compression

results vary: for some sequences, 7.1.b has fewer issues and for others 7.1.a have fewer issues.

At the lower gammas of CE 7.2 the oversaturation is less noticeable, and the errors in luminance

and colour are smaller. Cross-checking of 7.2 experiments are provided by BBC in JCTVC-

W0043.

It was also noted during the Vancouver meeting that the conversion from SDR BT.2020 to

BT.709 could be achieved by HDRTools with a two-step approach: conversion from SDR

BT.2020 to "EXR2020", then conversion of EXR2020 to SDR709. Philips made a fix to enable

direct conversion of SDR2020 to SDR709. There are still ongoing discussions on the reflector to

clarify how the conversion from SDR2020 to SDR709 has to be applied. An input document

(JCTVC-W0046) was provided as one of the suggested starting points, with the target of

providing a recommendation by the end of the JCTVC meeting, for further visual quality

evaluations of the SDR produced by the various studied solutions (see CE8 report for in-depth

coverage of the topic of SDR backward compatiblity systems evaluation).

Contributions:

Results report

o JCTVC-W0061/m37695 - CE7: Results Core Experiment 7.1 test a and b, M.

Naccari, A. Cotton, M. Pindoria

o JCTVC-W0079/m37717 - HDR CE7-related: Additional results for Experiment

7.2a, M. Naccari, M. Pindoria, A. Cotton (BBC)

Comments/Observations

o JCTVC-W0035/m37543 - Some observations on visual quality of Hybrid Log-

Gamma (HLG) TF processed video (CE7), A. Luthra, D. Baylon, K. Minoo, Y.

Yu, Z. Gu (Arris)

o JCTVC-W0110/m37771 - HDR CE7: Comments on visual quality and

compression performance of HLG for SDR backward compatible HDR coding

system, E. Francois, Y. Olivier, C. Chevance (Technicolor)

Page: 237 Date Saved: 2016-06-03

o JCTVC-W0119/m37979 - Some considerations on hue shifts observed in HLG

backward compatible video, M. Pindoria, M. Naccari, T. Borer, A. Cotton (BBC)

Cross-checking

o JCTVC-W0043/m37630 - CE7: Cross-check report for Experiment 7.2, M.

Naccari, M. Pindoria (BBC)

o JCTVC-W0067/m37702 - HDR CE7: xCheck 1a 1b and Core Experiment 2a and

2b, Robert Brondijk, Wiebe de Haan, Rene van der Vleuten, Rocco Goris

Others

o JCTVC-W0046 /m37680 - Recommended conversion process of YCbCr 4:2:0

10b SDR content from BT.709 to BT.2020 colour gamut, E. Francois, K. Minoo,

R. van de Vleuten, A. Tourapis

Full presentation of all related documents was suggested not to be necessary.

5.7.2 CE7 primary contributions (1)

JCTVC-W0061 CE7: Results Core Experiment 7.1 test a and b [M. Naccari, A. Cotton, M. Pindoria (BBC)]

(Not discussed in detail.)

This document summarizes results associated with Core Experiment 7 (CE7) which aims to

investigate on the generation of Hybrid Log-Gamma (HLG) signals with the WG11 test material.

Two groups of experiments were performed: Experiment 7.1 where HLG signals are generated

according to what described in m36249 and Experiment 7.2 where HLG signals are generated

using different values for the system gamma parameter. This document reports on the results and

experimental conditions used to generate the data for Experiment 7.1.

5.7.3 CE7 cross checks (2)

JCTVC-W0043 CE7: Cross-check report for Experiment 7.2 [M. Naccari, M. Pindoria (BBC)]

JCTVC-W0067 HDR CE7: xCheck 1a 1b and Core Experiment 2a and 2b [R. Brondijk, W. de Haan, R. van der Vleuten, R. Goris (Philips)]

5.8 HDR CE8: Viewable SDR testing (1)

5.8.1 CE8 summary and general discussion (1)

JCTVC-W0028 CE8 Report [W. Husak, V. Baroncini]

Discussed Wed 1740 (GJS)

This CE had worked on the following:

To develop a test methodology to evaluate the quality of SDR content generated from

HDR content, with the HDR content as reference;

To define the goal of the test and which should be the expected results;

To define a test plan to evaluate the performance of the candidate proposals for an ―SDR

Viewable‖ production;

Page: 238 Date Saved: 2016-06-03

Conduct a dry run and conclude about the relevancy of the proposed test methodologies.

The model illustrated below was used.

HDR analysis

and processing

HEVC

encoding

HEVC

decoding

HDR

reconstruction

input

HDR

video

output

HDR

video

output

SDR

video

metadata

HEVC 10 bits

SDR

A "single step approach" uses SDR and HDR displays in the same test session, asking viewers to

look for the ability of a tested SDR to approach the (original) HDR in quality.

A "two step approach" uses SDR display only

Selection of SDR examples by experts

Test with System-Under-Test by Naïve viewers

Test Method

Provide high example

Provide low example

SUT is tested with the two

The two step approach gives the viewers an easier cognitive test.

This is for testing SDR quality. Testing of HDR quality is conducted separately.

SDR grades of content were made – see M37726 / JCTVC-W0087.

Test sequences were selected as tabulated below.

Num Properties Sequence Fps Frames

S10

1920x1080

YUV 4:2:0

BT.709

10bit

EBU_04_Hurdles_CG_1920x1080p_50_10_709_420.yuv 50 0–499

S11 EBU_06_Starting_CG_1920x1080p_50_10_709_420.yuv 50 0–499

S12 SunriseClip4000r1_CG_1920x1080p_24_10_709_420.yuv 24 0–199

S13 GarageExitClip4000_CG_1920x1080p_24_10_709_420.yu

v 24 0–287

Open issues were reported as follows:

Selection of low example

Compressed or uncompressed tests

Test timeline and logistics

5.8.2 CE8 primary contributions (0)

Page: 239 Date Saved: 2016-06-03

5.8.3 CE8 cross checks (0)

6 Non-CE technical contributions (54)

6.1 SCC coding tools (2)

JCTVC-W0076 Comments on alignment of SCC text with multi-view and scalable [C. Gisquet, G. Laroche, P. Onno (Canon)]

Discussed Sunday 21st 1630 GJS.

At the 21st JCT-VC meeting in June 2015, disabling of weighted prediction parameters syntax

for CPR was adopted, by checking whether a reference picture has the same POC as the current

frame. It is asserted that the text specifications modifications have consequences outside of the

SCC extension.

The problem was confirmed. A suggested fix in the discussion was to check for equality of the

layer ID.

This was further discussed after offline drafting to check draft text for that. See section 1.15.

JCTVC-W0077 Bug fix for DPB operations when current picture is a reference picture [X. Xu, S. Liu, S. Lei (MediaTek)]

Initially discussed Sunday 21st 1645 GJS.

In the current HEVC SCC specification, the current decoded picture prior to the loop filtering

operations is used as a reference picture. This reference picture is also put and managed in the

decoded picture buffer (DPB), together with other decoded pictures. An asserted bug fix is

proposed in this contribution for the DPB operation such that before the start of decoding current

picture, one empty picture buffer is created when TwoVersionsOfCurrDecPicFlag is equal to 0;

alternatively, two empty picture buffers are created when TwoVersionsOfCurrDecPicFlag is

equal to 1.

Extensive discussion was conducted regarding whether the current draft text was really broken

and how to fix it. This was further discussed after offline study of the issue. See section 1.15.

6.2 HDR coding (35)

6.2.1 CE1 related (9)

JCTVC-W0039 Luma delta QP adjustment based on video statistical information [J. Kim, J. Lee, E. Alshina, Y. Park (Samsung)]

Initially discussed Saturday 1800 GJS & JRO.

This contribution is targeting to performance improvement of high dynamic range video

compression using existing HEVC tools. The contribution asserts that the performance can be

improved by adjusting the luma QP based on the video statistical properties. Depending on the

average of the luma components in a picture and the luma block average and variance, the

proposed algorithm adjusts the delta QP for each CTU. The performance of the algorithm was

evaluated with the same method of "SuperAnchor v3.2" and reportedly shows consistently better

compression performance.

Additional criteria included the brightness of entire picture and the variance of luma at the CTU

level. By this, in some cases the adjustment is disabled either at the frame or CTU level. It was

claimed that some improvement in dark areas is visible relative to the new anchors of CE1.

Several experts expressed the opinion that the idea is interesting.

Page: 240 Date Saved: 2016-06-03

It is also suggested by another expert that taking into account colour qp offset for dark areas

would be another option to give improvement. It was asked what scope of techniques we should

consider:

This looks at whole-frame luma, which seems fine (note that CE2 also includes whole-frame

analysis)

It also looks at local variance, which was previously discouraged. It was remarked that the

variance is only used to disable an adjustment that would otherwise be made based on a local

average. It was also commented that the spirit is to compensate for what is done by the colour

transfer function.

The presentation deck was uploaded in a -v2 version of the contribution.

It was initially agreed that we probably want to include this in a CE or go ahead and adopt it as

the new anchor. Viewing was also requested.

JCTVC-W0081 Crosscheck of Luma delta QP adjustment based on video statistical information (JCTVC-W0039) [J. Samuelsson, J. Ström, P. Hermansson (Ericsson)] [late]

JCTVC-W0054 AHG on HDR and WCG: Average Luma Controlled Adaptive dQP [A. Segall, J. Zhao (Sharp), J. Strom, M. Pettersson, K. Andersson (Ericsson)]

Initially discussed Saturday 1830 GJS & JRO.

This document describes the average luma-controlled adaptive dQP method that is part the

anchor generating process since anchor v3.0, as outlined in JCTVC-W0021/m37605. The main

idea behind the method has previously been described partly in m37439, but this document

provides implementation details that have previously only been communicated over email and/or

as part of the software packages associated with anchors v3.0, v3.1 and v3.2.

It was also commented that the spirit is to compensate for what is done by the colour transfer

function (in the way that its effect differs from that for SDR).

Some possible modifications discussed:

It was noted that lambda can also be used to provide some amount of intermediate points

between QP values.

It was noted that chroma is not considered in this technique.

Different block sizes for the adaptation

It was agreed that the information about the anchor encoding technique should be included in the

CTC encoding algorithm adjustment, and perhaps in the draft TR.

JCTVC-W0056 CE1-related: LUT-based luma sample adjustment [C. Rosewarne, V. Kolesnikov (Canon)]

Discussed Saturday 1900 GJS & JRO

The ‗Common test conditions for HDR/WCG video coding experiments‘ defines an HDR anchor

(at version 3.2) that includes a method known as ‗luma sample adjustment‘. This method

compensates for a shift in luminance that occurs e.g. when downsampling from 4:4:4 to 4:2:0

using non-constant luminance and YCbCr. The method performs an iterative search to determine

each luma sample values, which is asserted to be overly complex for real time implementations.

This contribution shows a method for performing ‗luma sample adjustment‘ that replaces an

iterative search with a LUT-based approximation whereby a second-order model is applied to

predict the adjusted luma sample, with the coefficients for the model obtained from the LUT.

tPSNR values when no luma sample adjustment is applied are 52.2 dB, 62.6 dB and 43.3 dB in

Page: 241 Date Saved: 2016-06-03

X, Y and Z channels, respectively. The corresponding values for the v3.2 anchor are 53.8 dB,

69.8 dB and 43.1 dB. With the LUT-based method, the values are 53.3 dB, 64.4 dB and 43.0 dB.

It was agreed to study this in an AHG on luma adjustment for chroma subsampling methods.

JCTVC-W0052 Enhanced Luma Adjustment Methods [A. M. Tourapis, Y. Su, D. Singer (Apple Inc)]

Discussed Saturday 1915 GJS & JRO

Changes are proposed for the luma adjustment method that is currently used for the creation of

the anchor video material used in the JCT-VC HDR/WCG video standardization development

process. These changes reportedly result in considerable speedups in the conversion process,

with little if any impact in quality. Alternative implementations that try to emphasize other video

quality aspects and not only luminance, are also presented.

The contribution also proposes changes to micrograding for XYZ and RGB accuracy

optimization by multi-component optimization.

It was agreed to replace the anchor generation process with the bounded luma micrograding

method using a LUT (10*106 elements).

It was agreed to study this in an AHG the RGB and XYZ aspects.

JCTVC-W0107 Closed form HDR 4:2:0 chroma subsampling (HDR CE1 and AHG5 related) [Andrey Norkin (Netflix)]

Discussed Saturday 2000 GJS & JRO

Two algorithms are proposed for removal of colour artefacts in saturated colours of HDR video

that appear in non-constant luminance Y′CbCr 4:2:0 colour subsampling. Both proposed

algorithms perform calculations in one step, which reportedly results in lower complexity

compared to the luma micro-grading algorithm that is currently used for HDR anchor generation.

Algorithm 1 is reported to produce higher average PSNR and DE1000 numbers than the current

HDR anchor, wheres showing smaller numbers on tPSNR and L0100 measures. The

performance of algorithm 2 across the studied metrics is claimed to resemble performance of the

current HDR anchor. It is also claimed that both algorithms improve the subjective quality of the

sequences with the described artefacts, whereas algorithm 1 avoids certain colour shifts possible

in the anchor.

Regarding the subjective quality comparison, a participant remarked that viewing the result using

tone mapping may cause artefacts that do not occur with viewing on an HDR monitor.

A participant suggested that since this message has a performance loss, it should be considered

as a complexity reduction method to document and study but not to replace the anchor method

with it.

It was also suggested that this could be used in an iterative method to speed it up.

It was agreed to study this in an AHG.

JCTVC-W0111 Cross-check of JCTVC-W0107: Closed form HDR 4:2:0 chroma subsampling [A. Tourapis (Apple)] [late]

JCTVC-W0051 Enhanced Filtering and Interpolation Methods for Video Signals [A. M. Tourapis, Y. Su, D. Singer (Apple Inc)]

Discussed Sunday 21st 0900 GJS & JRO

New adaptive filtering mechanisms for the 4:4:4 to 4:2:0 and 4:2:0 to 4:4:4 conversion processes

are introduced in HDRTools. Two classes of filters were introduced: a parallel multi-filter

scheme that tries to determine the "best" filter, given a criterion for each column/row/segment,

and schemes that adaptively select the length of the filters based on local colour variations/edges.

Page: 242 Date Saved: 2016-06-03

Currently, the JCT-VC HDR/WCG activity employs relatively simplistic filtering mechanisms

when converting 4:4:4 video signals to 4:2:0 and vice versa. In particular, a 3 tap linear filter,

with coefficients [1 6 1]/8, is employed for the down-conversion process, while for up-

conversion the Lanczos2 4 tap filter with coefficients [-1 9 9 -1]/16 is used. Both of these filters

and the down-conversion and up-conversion processes, were applied on fixed precision data.

In this contribution, several adaptive filtering mechanisms are presented that can reportedly

result in better performance, both objectively and subjectively, compared to the filters currently

used by the JCT-VC HDR/WCG activity. The implementation of these filters is also combinable

with other methods such as the luma adjustment method and its refinements.

Two schemes were described:

Filtering optimization using parallel filters: Instead of utilizing a single filter for filtering an

image, multiple filters could be used in parallel and the one determined as best, given a

particular criterion, could be selected for filtering an area during down-conversion.

Edge adaptive/colour variation adaptive filtering methods: This is done by performing a

neighborhood analysis and, using predefined classification conditions, selecting the most

appropriate filter for filtering this sample. HDRTools currently supports three different

schemes for neighborhood analysis. In the first scheme, starting from the longest filter and

for each filter that is eligible for selection, an analysis of the local neighborhood mean is

performed for each sample to be filtered. The local neighborhood is defined based on the

length of the filter. If the distance of any sample within this neighborhood from the local

neighborhood mean exceeds a certain tolerance value, then this filter is disallowed for this

sample, and the next filter is evaluated. At the last stage, and if all other earlier filters were

disallowed, a 3 tap filter is considered instead.

A "min/max" filtering scheme is also supported in the HDRtools.

A number of other techniques could certainly be studied in further work.

The degree to which the effect is preserved in visual quality through the encoding-decoding

process was discussed, and is not necessarily clear.

It was agreed to study this in an AHG.

JCTVC-W0066 CE1-related: Optimization of HEVC Main 10 coding in HDR video Based on Disorderly Concealment Effect [C. Jung, S. Yu, Q. Lin (Xidian Univ.), M. Li, P. Wu (ZTE)]

Discussed Sunday 21st 0945 GJS & JRO

Proposed is an optimization of coding HDR video based on the "disorderly concealment effect"

using an HEVC encoder. Perceptual block merging is implemented on HEVC Main 10 Profile-

based HDR video coding. Firstly, luminance adaptation (LA) for quantized HDR video is

calculated based on the Barten contrast sensitivity function (CSF) model. Then a "free-energy"-

based just-noticeable-difference (FEJND) map is derived to represent the disorderly concealment

effect for each picture. Finally, a perceptual Lagrange multiplier is derived using the average

FEJND values of the coding unit (CU) and picture. Experimental results reportedly demonstrate

that the proposed method achieves average bit-rate reductions of 5.23% in tPSNR XYZ and

8.02% in PSNR_DE over Anchor, while producing block partitioning merging results correlated

with human visual perception.

The method is compared to HM 16.2.

The technique has also been applied to SDR as well.

The encoder runtime effect is approximately 2–3x, and thus substantial.

This is viewed as a general encoding technique that could be applied in various contexts, not

necessarily related to the techniques.

The presented results were for LD configuration; study on RA seemed more desirable.

No immediate action was requested on this, and further study was encouraged.

Page: 243 Date Saved: 2016-06-03

6.2.2 CE2 related (9)

JCTVC-W0040 Adaptive Gamut Expansion for Chroma Components [A. Dsouza, A. Aishwarya, K. Pachauri (Samsung)]

Discussed Sunday 21st 1245–1300 GJS & JRO.

This proposal describes a method for content adaptive gamut expansion of chroma components

before quantization in order to minimize the noise. The document also proposes the addition of

an additional SEI message to be used for post processing. Objective gains of 14% at scaling

factor of 1.4 in deltaE BD-Rate is reported for the HDR anchor sequences.

It was unclear why this is not equivalent with adjusting chroma QP (since the scaling is linear,

this should be the case), and why additional signalling & scaling steps would be needed.

This could also be seen as a simplified (chroma only) reshaper.

The contribution raises the question of, if a reshaper is used, how complicated of a reshaping

function should be supported (number of segments, nonlinearity, etc.) It was agreed that this

should be studied in any further reshaping study e.g., in CE or AHG.

JCTVC-W0068 CE2-related: Adaptive Quantization-Based HDR video Coding with HEVC Main 10 Profile [C. Jung, Q. Fu, G. Yang (Xidian Univ.), M. Li, P. Wu (ZTE)]

(Not discussed in detail.)

The perceptual quantization (PQ) transfer function for HDR video coding reportedly has

perceptual uniformity in the luminance range with a modest bit depth. However, the contribution

asserts that the dynamic range of HDR video is not fully utilized in PQ, especially for chroma

channels. Thus, there is asserted to exist some wasted dynamic range in PQ which causes detail

loss and color distortions. In this contribution, adaptive quantization-based HDR video coding is

proposed. Adaptive mapping of sample values with bit depths of 16 bit and 10 bit is established

to perform conversion based on cumulative distribution function (CDF), i.e. adaptive

quantization, instead of linear mapping. First, CDF is derived from the histogram of each picture.

Then, adaptive quantization is performed based on CDF. The metadata for adaptive conversion

are coded for performing the inverse conversion at destination. Experimental results reportedly

demonstrate that the proposed method achieves average 1.7 dB gains in tPSNR XYZ and 2 dB

gains in PSNR_DE over the anchor. Subjective comparisons reportedly show that the proposed

method preserves image details while reducing color distortion.

JCTVC-W0071 CE2-related : Adaptive PQ: Adaptive Perceptual Quantizer for HDR video Coding with HEVC Main 10 Profile [C. Jung, S. Yu, P. Ke (Xidian Univ.), M. Li, P. Wu (ZTE)]

(Not discussed in detail.)

Proposed is an adaptive transform function based perceptual quantizer (PQ) for HDR video,

called adaptive PQ. Adaptive PQ is said to solve an asserted problem that PQ is not adaptive to

HDR content because of its using a fixed mapping function from luminance to luma. By

introducing a ratio factor derived from the luminance information of HDR content, the proposed

adaptive PQ maps luminance to luma adaptively according to the content. Experimental results

reportedly demonstrate that the proposed adaptive PQ scheme achieves average bit-rate

reductions of 3.51% in tPSNR XYZ and 5.51% in PSNR_DE over PQ.

JCTVC-W0085 HDR CE2 related: Further Improvement of JCTVC-W0084 [T. Lu, F. Pu, P. Yin, T. Chen, W. Husak (Dolby), Y. He, L. Kerofsky, Y. Ye (InterDigital)] [late]

See summary in section 5.2.1. This was further discussed Sunday 21st 1010 (GJS & JRO). See

notes under W0084. Further study was suggested.

JCTVC-W0120 Cross-check of JCTVC-W0085 [J. Lee, J. W. Kang, D. Jun, H. Ko (ETRI)] [late]

Page: 244 Date Saved: 2016-06-03

JCTVC-W0130 Crosscheck for further improvement of HDR CE2 (JCTVC-W0085) [Y. Wang, W. Zhang, Y. Chiu (Intel)] [late]

JCTVC-W0089 HDR CE2-related: some experiments on reshaping with input SDR [Y. Olivier, E. Francois, C. Chevance (Technicolor)] [late]

Tues pm 1520 (GJS & JRO).

This (as configured for the proposal) targets backward compatibility.

This document reports preliminary experiments on ETM with dual SDR/HDR grading. In this

configuration, a graded SDR version as well as the usual graded HDR version are given as inputs

to the reshaper. The reshaping process uses the input SDR as reference and generates reshaping

data to match as much as possible the reshaped input HDR to the input SDR. In the experiments,

reshape setting 1 configuration is used (cross-plane chroma reshaping). It is reported that these

preliminary experiments tend to show that ETM models are able to properly reproduce an SDR

intent.

This is in the category of "bitstream backward compatibility".

It is not in the category of "decoder-side content DR/CG adaptation within an HDR context.

Decoder side is "mode 1", which is identical to the decoder used for "setting 1" and "setting 2".

JCTVC-W0092 Description of the Exploratory Test Model (ETM) for HDR/WCG extension of HEVC [K. Minoo (Arris), T. Lu, P. Yin (Dolby), L. Kerofsky (InterDigital), D. Rusanovskyy (Qualcomm), E. François (Technicolor)]

This was a description of ETMr0, and there was no need for its detailed presentation.

JCTVC-W0100 HDR CE2-related: Results for combination of CE1 (anchor 3.2) and CE2 [J. Sole, A. K. Ramasubramonian, D. Rusanovskyy, D. Bugdayci, M. Karczewicz (Qualcomm)]

(Not presented in detail.)

This document reports results of combining the software of anchor 3.2 that is the outcome of

CE1 and the ETM that is the outcome of CE2. Results for the direct combination of the CE1 and

CE2 software are provided. It is noted that CE1 and CE2 algorithms have some degree of

overlap, so the direct combination could reportedly be improved by a proper adjustment of the

parameters. Results obtained by adjusting the parameters are also provided.

6.2.3 CE3 related (2)

JCTVC-W0041 HDR-VQM Reference Code and its Usage [K. Pachauri, S. Sahota (Samsung)]

Discussed Thu 0830 (GJS).

At the 113th meeting of MPEG in Geneva, Oct. 2015, a metric, HDR-VQM, for HDR quality

estimation was introduced. This contribution provides a description of HDR-VQM software and

its parameters and its usage. Source code is made available to members for use.

This contribution provides the location of the software. The coordinator A. Tourapis was asked

to incorporate this into SDTRools, pending timely resolution of any software quality issues, such

as use of a platform-dependent external library.

JCTVC-W0115 VIF Code for HDR Tools [H. Tohidypour, M. Azimi, M. T. Pourazad,

P. Nasiopoulos (UBC)] [late]

Discussed Wed 1725 (GJS).

The "Visual Information Fidelity" (VIF) measure (developed by Bovik et al.) is a full reference

quality assessment method. In this contribution, an implementation of VIF for HDRTools is

presented.

Page: 245 Date Saved: 2016-06-03

It uses a wavelet decomposition (selectable between two types) and operates only on luma.

Temporal differences are not analyzed.

The luma channel for the metric measurement is converted to the PQ transfer characteristic

domain without rounding to an integer.

It was noted that J.341 is an objective quality metric, but was remarked that it is not for HDR

video.

The software was initially provided in the contribution. However, this software has not generally

been made publicly available, so a new version was requested to be uploaded without it.

It was agreed to include the new measure into HDRtools for further testing of quality metric

usage.

The presentation deck was requested to be uploaded.

As of 2016-05-24, the requested new version of the contribution had not yet been provided.

6.2.4 CE4 related (0)

6.2.5 CE5 related (0)

6.2.6 CE6 related (1)

JCTVC-W0060 Re-shaper syntax extension for HDR CE6 [H. M. Oh, J.-Y. Suh (LGE)]

Tues 1630 GJS & JRO

This has a backward compatibility aspect.

In the extension of exploratory test model (ETM) framework which is comprised of decoder and

HDR post-processing, the HDR post-processing block could be considered as video format

conversion process when ETM is used for SDR backward compatible mode. To support the

process of different input and output picture, it is proposed to extend the HDR reshaping syntax

in ETM syntax structure.

This proposes to create a modified ETM that would include HDR processing with output in non-

4:2:0 domains and with different bit depths, and proposes syntax for that.

The amount of syntax proposed was significant. It was remarked that some of the proposed

aspects may be redundant (e.g., with VUI) or undefined (e.g., the meaning of RGB/YCbCr) or

defined in an unnecessarily different way than what is done elsewhere. It was also commented

that including things in the PPS that do not appear to need to change on a picture-to-picture

basis.

The presentation deck had not been uploaded and was requested to be provided in a revision.

As of 2016-05-24, the requested new version of the contribution had not yet been provided.

It was remarked that the status of "ETM" work remains to be determined for future work.

For further study.

6.2.7 CE7 related (7)

JCTVC-W0088 SDR backward compatibility requirements for HEVC HDR extension [L. van de Kerkhof, W. de Haan (Philips), E. Francois (Technicolor)]

This was a requirements contribution. (Not discussed in JCT-VC.)

JCTVC-W0119 Some considerations on hue shifts observed in HLG backward compatible video [M. Pindoria, M. Naccari, T. Borer, A. Cotton (BBC)] [late]

Tues 1700 (GJS & JRO)

Page: 246 Date Saved: 2016-06-03

This document reports on an initial analysis conducted by the BBC in response to the hue shifts

reported by Arris in contribution m37543. In their document, Arris reported seeing hue shifts

when viewing the HDR video on a legacy SDR screen. This contribution outlines the BBC tests

to recreate the observations, and also some further analysis of hue shift occurring in a purely

SDR workflow.

This report acknowledges that hue distortions are present when comparing the image achieved

from an HDR image directly against the SDR compatible image. Other participants in the

meeting confirmed that they have also seen this phenomenon. However, the contribution asserts

that this task is inappropriate without the context of the legacy SDR image.

The contribution asserts that when the SDR legacy system images are compared to the SDR

compatible images, the level of distortion between the compatible image and that derived from

SDR is comparable. The contribution thus asserts that the colour distortions reported by Arris

primarily illustrate the limitations of SDR TV rather than a lack of compatibility of the HLG

signal.

JCTVC-W0045 Hybrid Log Gamma observations [C. Fogg (Movielabs)] [late]

Information document. Not presented in detail in JCT-VC.

This input contribution document examines the impact of conversion between HLG and PQ

signals, and tries to identify the operating sweet spot range of each. While the HLG coded video

signal is scene referred, the non-linear slope of the non-linear output of HLG by definition does

not uniformly quantize linear input level levels, thus implying some perceptual-bias towards

darker pixels. One goal of this study is to find the perceptually optimal display range of HLG

graded video signals, or confirm that the display gamma adjustment renders any perceptual

quantization effect irrelevant within a range of concern, such as 400 to 4000 nits. To test this, the

BT.HDR DNR formulae for mapping scene relative linear light to display linear light are applied.

Although is expected to be less optimal than tone mapping provided in ACES and proprietary

tools, proponents of HLG state the Note 5e display gamma to be a reasonable proxy for display-

embedded tone mapping (OOTF). By contrast, PQ signals are display referred, but in practice

displays most also tone map PQ signals if the display characteristics differ significantly from the

mastering monitor characteristics that the PQ signal was originally graded upon, or if the PQ

signal utilizes code level combinations outside those that can be directly displayed. Observations

are noted of these converted video clips, sent to the Samsung JS9500 as HLG and PQ 10-bit

integer signals in BT.2020 primaries color space (4:4:4 R'G'B' or 4:2:2 Y'C'BC'R). Observations

noted from viewing on Sony BVM-X300 professional OLED studio reference monitor may be

provided later. A reported emerging explanation of the observations is that HLG behaves like a

display-referred transfer system within an operating sweet-spot near 1000 nits, and superior

performance to PQ in the 10 to 40 nits sub-rage.

JCTVC-W0079 HDR CE7-related: Additional results for Experiment 7.2a [M. Naccari, M. Pindoria, A. Cotton (BBC)]

Information document. Not presented in detail in JCT-VC.

This contribution presents additional results for Experiment 7.2a as defined in Core Experiment

7 (CE7, see N15800). In Experiment 7.2a two values of the so-called system gamma are tested:

1.2 and 1.4 as described in W0067 and associated cross-check report W0043. In this document,

the system gamma is set to 1.45 which is the suggested value reported in m37535 and discussed

during the ad-hoc group interim meeting in Vancouver. AVI files for the SIM2 display have been

generated for SDR and HDR and was offered to be shown in viewing sessions held during the

meeting.

Page: 247 Date Saved: 2016-06-03

JCTVC-W0110 HDR CE7: Comments on visual quality and compression performance of HLG for SDR backward compatible HDR coding system [E. Francois, Y. Olivier, C. Chevance (Technicolor)] [late]

Information document. Not presented in detail in JCT-VC.

This document reports the visual tests performed by Technicolor on the HLG-based HDR coding

system in context of SDR backward compatibility. The evaluation aims at evaluating the

performance of HLG for different settings. The tests are done both on the quality of SDR

obtained after applying HLG to the input HDR content and on the HDR obtained after

compression and reconstruction. They have been performed on a sub-set of CTCs HDR test

sequences, with different settings (parameter system gamma), and using either BT.709 or

BT.2020 as a container. One of the main reported observations is that it seems the system gamma

value has to be adjusted per content, and not only based on the grading monitor peak luminance.

It is reported that for some of the considered test sequences, some color shift is observed

between HDR and SDR, this shift being much more noticeable when using a BT.709 than a

BT.2020 container. The shift mostly appears in saturated red/orange and green colors. It is also

reported that the optimal system gamma for HDR compression performance also seems to be

content dependent.

JCTVC-W0132 Information and Comments on Hybrid Log Gamma [J. Holm] [late]

Information document. Not presented in detail in JCT-VC.

This contribution consisted of a PowerPoint deck commenting on various aspects of the HLG

scheme, and is available for study.

JCTVC-W0135 Some Elementary Thoughts on HDR Backward Compatibility

[P. Topiwala (FastVDO)] [late]

Information document. Not presented in detail in JCT-VC.

One suggested requirement going forward in the HDR activity is to somehow test proposed

technologies for backward compatibility. That is, study the capability of an HDR coding

approach that can also produce a ―usable‖ SDR HEVC Main 10 stream as an intermediate

product. It has been suggested that this is not a well-defined problem, so it is difficult to know

how to approach it. Some remarks are hereby offered to find a way forward.

6.2.8 CE8 related (0)

JCTVC-W0087 Description of Colour Graded SDR content for HDR/WCG Test Sequences [P. J. Warren, S. M. Ruggieri, W. Husak, T. Lu, P. Yin, F. Pu (Dolby)]

(Not reviewed in detail.)

To satisfy the need in testing SDR backward compatibility, Dolby has made available color

graded SDR content for the corresponding HDR content inside MPEG HDR/WCG AHG

activity. The SDR content is color graded by a professional colorist using DaVinci Resolve and

professional reference displays. An onsite expert viewing session is planned to review the SDR

versions on a PRM-4200 reference display during the La Jolla meeting.

This relates to the testing of BC capability.

JCTVC-W0106 Evaluation of Backward-compatible HDR Transmission Pipelines [M. Azimi, R. Boitard, M. T. Pourazad, P. Nasiopoulos (UBC)] [late]

Tues 1730 (GJS & JRO)

This relates to backward compatibility, both in regard to "bitstream compatibility" and "display

compatibility" – especially the latter, suggesting that the SDR & HDR quality produced by the

latter approach can be high.

Page: 248 Date Saved: 2016-06-03

This contribution comments on the performance of two possible scenarios for distributing HDR

content employing a single layer. One of them compresses HDR content (HDR10), with color

conversion and tone mapping performed at the decoding stage to generate SDR, while the other

scenario compresses tone-mapped SDR content with inverse tone-mapping and colour

conversion at the decoding side to generate HDR. The contributor performed subjective tests to

evaluate the viewing quality of the SDR video on an SDR display. Some reported aspects:

Note that previous work had reported that the HDR10 approach had resulted in better

HDR visual quality.

The results reportedly showed that chroma subsampling is playing a very important role

in determining the final visual quality of the SDR content.

Several tone mapping operators (TMOs) were tested. A non-invertible TMO, which was

reported to yield very high quality SDR, was reported to produce very good SDR results

for the HDR10 pipeline.

No metadata was used.

The luma adjustment scheme for subsampling improvement was not used in this test.

It was commented that testing the tone mapping approaches can be done without compression to

determine how much distortion is coming from compression and how much is coming from other

elements of the processing.

6.2.9 Alternative colour spaces (4)

These contributions were discussed Wed 1400–1700 (GJS & JRO, later GJS)

JCTVC-W0072 Highly efficient HDR video compression [A. Chalmers, J. Hatchett, T. B. Rogers, K. Debattista (Univ. Warwick)] [late]

The two current standards for HDR video source formats, SMPTE ST 2084 (PQ) and ARIB

STD-B67 (HLG), are said to be computationally complex for applying the transfer function. A

scheme called a power transfer functions (PTF) is said to be straightforward and well suited to

implementation on GPUs. This contribution describes PTF4, a transfer function that is said to

offer improved computational performance, even when compared with LUTs, without loss in

quality.

Some improvement in compressed video quality was also suggested in the contribution.

It was remarked that our usual approach for transfer function would be to expect some other

organization (ITU-R or SMPTE) to standardize the transfer function and then just indicate it.

The contribution seemed interesting but did not seem to need action by us at this time.

JCTVC-W0050 Overview of ICtCp [J. Pytlarz (Dolby)]

(A web site problem was noted regarding the document number for this contribution. This

corresponds to m38148.)

This informational contribution presents an overview of Constant Intensity ICTCP signal format

of Draft Rec. ITU-R BT.[HDR-TV].

The familiar Y′C′BC′R non-constant luminance format is a colour-opponent based encoding

scheme (in which signals are interpreted based on colour differences in an opposing manner)

intended to separate luma from chroma information for the purposes of chroma subsampling (i.e.,

4:2:2 and 4:2:0). High dynamic range and wide colour gamut content are asserted to show

limitations of existing colour encoding methods. Errors that were previously small with standard

dynamic range can reportedly become magnified. BT.2020 provides an alternative to Y′C′BC′R,

i.e., the Y′CC′BCC′RC constant luminance format. This format reportedly resolves the issue of

chroma leakage into the Y′ luma signal, but does not solve the problem of luminance

Page: 249 Date Saved: 2016-06-03

contamination of the C′BC and C′RC components. Draft Recommendation ITU-R BT.[HDR-TV]

provides an alternative method for colour difference encoding called constant intensity, which is

based on the IPT colour space developed by Ebner and Fairchild.

See also W0047 and W0044.

Differences in this colour space are reported to be more perceptually uniform than in traditional

Y′C′BC′R, roughly 1.5 bits better in visual perceptual colour distortion effects with th PQ transfer

function.

This space is reportedly the same as what was used in Dolby's prior response to the MPEG CfE

on HDR/WCG.

It was asked what the coding efficiency effect of this was. A participant said there was a

significant improvement from it. There had been a previous CE in which this was studied along

with other technical changes. There had been a plan to include this in the prior CE5, but that had

not been followed through due to resourcing issues and the higher prioritization of standardizing

this in ITU-R, which has had progress reported in incoming LSs.

A participant asked about whether comparison had minimized subsampling effects of chroma on

luma in the comparison, and this had not been done – the subsampling used a simple [1 6 1]/8

filter (with both colour domains).

Another participant questioned whether the details of the scheme were fully stable and were

assured to be approved in ITU-R. Some assurances were made in that regard, saying that it was

technically stable and unlikely to change, although some reservation had been expressed within

ITU-R and further study is being conducted there. It is a candidate for approval by

correspondence in ITU-R as a Draft New Recommendation (and there is a closely related

Technical Report).

Supporting ICTCP would involve adding a new value of matrix_coeffs. A participant commented

that some additional or somewhat different specification method could be used, involving adding

another set of colour primaries to represent the equivalent of the transformation of the RGB

primaries into a space known as LMS.

JCTVC-W0047 ICtCp testing [C. Fogg (Movielabs)]

Example image patches comparing 4:4:4 to 4:2:0 chroma sampling in the Y′CbCr NCL and

ICTCP domain options of BT.HDR are included in this document. From the image patches

provided in this document, the authors report that ICTCP space appears to exhibit less correlated

error on natural video content, compared to Y′CbCr NCL. It was reported that a test on the

Samsung JS9500 display could be shown at the meeting. Matlab code was also provided to

recreate the test patterns and process the CfE video clips used in HDR/WCG experiments.

Luma adjustment for the 4:2:0 conversion was not applied – just simple down- and up-sampling.

See also W0050 and W0044.

Constant-luminance YCbCr was not tested.

The contributor suggested further study in a CE and liaison communication with ITU-R WP6C

(mentioning our study plans and noting that our study would consider compression effects). This

should also be considered in the work on suggested practices for HDR.

A participant asked about the precision necessary to perform forward and inverse matrix

transformation, and remarked that high precision appeared necessary.

JCTVC-W0074 CIECAM02 based Orthogonal Colour Space Transformation for HDR/WCG Video [Y. Kwak, Y. Baek (UNIST), J. Lee, J. W. Kang, H.-Y. Kim (ETRI)]

This document proposes a wide color gamut/high dynamic range encoding scheme that uses an

orthogonal color space based on the international color appearance model, CIECAM02, and

separates the orthogonal color encoding part and the high dynamic range signal encoding part.

It was commented that the scheme is quite similar to ICTCP, in terms of its use of LMS prior to

the transfer function.

Page: 250 Date Saved: 2016-06-03

The contribution seemed interesting but did not seem to need action by us at this time.

6.2.10 Encoding practices (3)

JCTVC-W0048 HDR-10 status update [C. Fogg (Movielabs)]

(Not presented in detail.)

This document lists the industry forums and standards that have included the HDR-10 definition

created over one year ago. (See also the prior contribution JCTVC-V0050.)

JCTVC-W0105 Evaluation of Chroma Subsampling for High Dynamic Range Video Compression [R. Boitard, M. T. Pourazad, P. Nasiopoulos (UBC)] [late]

Discussed Wed 1700 (GJS)

This contribution evaluates the impact of chroma subsampling using two different downsampling

filters using an objective metric. Objective results reportedly show that distributing 4:4:4 is more

efficient than its 4:2:0 counterpart for medium to high bit rates. For low bit rates, this increase in

efficiency is reportedly reduced and in some cases even reversed.

Using chroma subsampling reportedly always decreases the accuracy of color reproduction.

Results obtained from the tPSNR-XYZ metric indicated that using chroma subsampling reduces

the compression efficiency at medium to high bit-rates, while some gain can be achieved at low

bit-rates. The results also indicated that using a longer filter does not seem to increase

compression efficiency.

The comparison was done after upconversion back to 4:4:4 domain.

Producing corresponding bit rates for subjective quality evaluation had not been completed.

The downsampling tested used [1 6 1]/8 and Lanczos 3, without luma adjustment.

It was commented that "micrograding" with consideration of the transfer function and chroma

quantization to the bit depth can be used to produce higher quality even when working in the

4:4:4 domain.

It was commented that a distortion metric that operates across the three colour components might

be better to use than the tPSNR-XYZ metric, as it can measure distortion of three-component

colours.

JCTVC-W0126 Preliminary study of filtering performance in HDR10 pipeline [K. Pachauri, Aishwarya Samsung [late]

This contribution presents a study of different filtering effects for HDR10 pipelines. Objective

and Subjective results are presented in this contribution. The contribution was not requested to

be presented in detail.

6.3 HL syntax (0)

No contributions on general matters of high-level syntax were specifically noted, although

various contributions include consideration of high-level syntax issues relating to specific

features.

6.4 SEI messages and VUI (6)

JCTVC-W0044 BT.HDR and its implications for VUI [C. Fogg, J. Helman (Movielabs) G. Reitmeier (NBC Universal), P. Yin, W. Husak, S. Miller (Dolby), T. Borer, M. Naccari (BBC)]

Discussed Wed 1530 (GJS)

At the February 2016 meeting of ITU-R WP6C, the document ―Draft new Recommendation

ITU-R BT.[HDR-TV]: Image parameter values for high dynamic range television for use in

production and international programme exchange‖ was put forward for approval that combines

color primaries identical to BT.2020 with independent selections in each aspect of : transfer

Page: 251 Date Saved: 2016-06-03

function (PQ or Hybrid Log Gamma); color formats (Y'C'BC'R Non-constant luminance (NCL),

ICTCP Constant Intensity, or R'G'B'); integer code level range ("full" or "narrow") and bit depth

(10 or 12 bits). "BT.HDR" is a temporary name for this recommendation: it will be assigned a

BT. series number upon final approval. This contribution suggests text changes to HEVC Annex

E (VUI) that provides BT.HDR indicators as per WP6C liaison to MPEG and VCEG at this

meeting in San Diego.

Aspects noted: An E′ scaling issue for "full range" (scaling by 1024) and [0,1] versus [0, 12], and

also the IPT colour space.

For SCC FDIS purposes, the following was discussed and agreed:

Not to mention the ITU-R BT.[HDR] draft new Recommendation since it is not yet fully

approved in ITU-R (unless this can be included in the publication process after approval

by ITU-R)

Not to include ICTCP since it is not yet fully approved in ITU-R

The editors may editorially express this with a scaling factor adjustment of 1/12 in the

range and formulas and add a note (this is editorial only)

"Full" scaling by 1024 / 4096 rather than 1023 / 4095 (see the contribution). This should

only be done for HLG, since SMPTE 2084 was already included in an approved version

of HEVC that has the other scaling and the ITU-R spec that differs is not yet approved.

Some future correction may be needed, depending on future events.

It was also agreed to issue a WD for the ICTCP aspect.

The way the EOTF vs. OETF was handled in the prior V1005 was agreed to be adequate (one

subscript needed correction, for the value 16).

Further study was encouraged for whether we should take some action on aspects such as the

OOTF issues.

See also W0050 and W0047.

JCTVC-W0057 Content colour gamut SEI message [H. M. Oh, J. Choi, J.-Y. Suh (LGE)]

(Not discussed in detail.)

In this proposal, an SEI message is proposed to signal content colour gamut which describes

actual colour distribution of a video content. This information is asserted to mostly be useful

when the content colour is partially distributed in the possible colour area within the container

colour gamut. Given the content colour gamut information, the performance of colour gamut

mapping reportedly could be improved in terms of colour saturation.

JCTVC-W0058 Video usability information signalling for SDR backward compatibility [H. M. Oh, J.-Y. Suh (LGE)]

(Not discussed in detail.)

In the developing of high dynamic range (HDR) extension of HEVC, two different output points

are defined in standard dynamic range (SDR) backward compatible mode. Although the output

SDR and HDR video has different video features in terms of transfer function and/or color

gamut, the video characteristics of reconstructed HDR output is asserted to not be sufficiently

described in current syntax. This contribution proposes to define additional VUI parameters to

describe the video characteristics of one output point while the other output point uses the

current VUI.

JCTVC-W0086 Indication of SMPTE 2094-10 metadata in HEVC [R. Yeung, S. Qu, P. Yin, T. Lu, T. Chen, W. Husak (Dolby)]

(Not discussed in detail.)

Page: 252 Date Saved: 2016-06-03

This contribution proposes text changes in the HEVC specification to support metadata of

SMPTE 2094-10 standard: Dynamic Metadata for Color Volume Transform - Application #1.

Specifically, in Annex D, a new SEI message is proposed for carriage of such metadata.

JCTVC-W0098 Effective Colour Volume SEI message [A. Tourapis, Y. Su, D. Singer (Apple)]

(Not discussed in detail.)

This contribution proposes the ―Effective Colour Volume‖ SEI message that was first proposed

in JCTVC-V0038. This SEI message can reportedly indicate the effective colour volume

occupied by the current layer of a coded video stream (CVS). This SEI message can reportedly

be seen as an extension of the ―Content Light Level Information‖ (CLL) SEI message that is

already supported by these two standards, and can provide additional information to a decoder

about the characteristics and limitations of the video signal. This information can then be used to

appropriately process the content for display or other types of processing, e.g. to assist in

processes such as colour conversion, clipping, colour gamut tailoring, and tone mapping, among

others.

JCTVC-W0133 Indication of SMPTE 2094-20 metadata in HEVC [W. de Haan, L. van de

Kerkhof, R. Nijland, R. Brondijk (Philips)] [late]

(Not discussed in detail.)

This contribution proposes text changes in the HEVC specification to support metadata of

SMPTE 2094-20 standard: Dynamic Metadata for Color Volume Transform - Application #2.

Specifically, in Annex D, a new SEI message is proposed for carriage of such metadata.

6.5 Non-normative: Encoder optimization, decoder speed improvement and

cleanup, post filtering, loss concealment, rate control, other information (11)

6.5.1 General (3)

JCTVC-W0062 Non-normative HM encoder improvements [K. Andersson, P. Wennersten, R. Sjöberg, J. Samuelsson, J. Ström, P. Hermansson, M. Pettersson (Ericsson)]

Initially presented on Sunday 21st at 1850 (with Rajan Joshi chairing).

This contribution reports that a fix to an asserted misalignment between QP and lambda

improves the BD rate for luma by 1.8% on average for RA and 1.7% for LD using the common

test conditions. This change, in combination with extension to a hierarchy of length 16 for

random access, is reported to improve the BD rate for luma by 7.1% on average using the

common test conditions. To verify that a longer hierarchy does not decrease the performance for

difficult-to-encode content, four difficult sequences were also tested. An average improvement in

luma BD rate of 4.8% is reported for this additional test set. Results for HDR content are also

presented. It is also reported that subjective quality improvements have been seen by the authors.

The contribution proposes that both the change of the relationship between QP and lambda and

the extension to a hierarchy of 16 pictures be included in the reference software for HEVC and

used in the common test conditions. Software is provided in the contribution.

A subjective viewing using Samsung TV was planned at this meeting. A related document is

JVET B0039.

It is proposed to adjust the alignment between lambda and QP. This would be an encoder-only

change.

Decision (SW): Adopt the QP and lambda alignment change to the HM encoder software.

The proposed increase in the hierarchy length would require a larger DPB size than HEVC

currently supports if the picture resolution is at the maximum for the level and would

substantially increase the algorithmic delay. It was commented that most encoders might not

Page: 253 Date Saved: 2016-06-03

actually use the larger hierarchy, so that proposed change might not represent expected real-

world conditions.

The proponent mentioned that the GOP size could be extended to 32 to provide even higher

gains.

This was further discussed Thu 0900 (GJS).

The current CTC config files use a period of 8 for temporal level 0. V0075 reported visual

improvement for SDR content for increased GOP size (less intra pulsing and better prediction

relating to occlusions). The intra period would be affected in cases where the GOP size is not a

multiple of 16 or 32 (e.g. for 24 Hz, the intra period would need to increase to 32). Some concern

was expressed about potential quality fluctuation artefacts, esp. on HDR. Appropriate intra

period adjustment would be necessary for both GOP sizes of 16 and 32.

It was noted that we haven't updated the CTC in quite a while (the basic CTC is defined in an

"L" document, with the RExt CTC in a "P" document) and suggested that we should be

conservative about changes to that. The random access functionality would be affected for the 24

Hz sequences. Thus, it was agreed not to change the GOP period at this time.

Further study was encouraged. Config files were provided in a revision of the contribution.

JCTVC-W0117 Cross-check of Non-normative HM encoder improvements (JCTVC-W0062) [B. Li, J. Xu (Microsoft)] [late]

JCTVC-W0038 HEVC encoder optimization [Y. He, Y. Ye, L. Kerofsky (InterDigital)]

Initially presented on Sunday 21st at 1900 (with Rajan Joshi chairing).

This proposal proposes two non-normative encoder optimization methods for HEVC encoders:

1) deblocking filter parameter selection, and 2) chroma quantization parameter adjustment

support at the slice level (providing config file support for different offsets depending on the

temporal level).

Compared to HEVC HM-16.7 anchor, the average luma BD rate saving of the deblocking filter

parameter selection method is reported to be 0.2% for AI, 0.4% for RA, 0.3% for LDB, and 0.5%

for LDP. The average chroma BD rate saving of the chroma QP offset adjustment method is

reported to be 11.6% for RA, 14.2% for LDB, and 13.9% for LDP (as measured in the usual

manner), with a small loss for the luma component.

These two optimization methods are also applicable to HDR/WCG coding. It is asserted that on a

SIM2 display, compared to the HDR/WCG anchors, quality improvements can be observed for

low to medium bit rates for a range of HDR video content, mainly in the form of more details

and fewer blocking artefacts.

For the 2nd aspect: For setting 1, there were some losses for luma (0.8% – 0.9%) with large

improvements for chroma. A participant commented that for setting 1, you could shift some bits

from luma to chroma to get such results. The proponent commented that setting 2 had no loss for

luma and >3% gains for chroma. Another participant asked whether similar gains would be

possible by redistributing bits by changing the QP hierarchy. This may not be possible at this

granularity.

Another participant asked whether the methods were for subjective quality improvement. The

proponent commented that with aspect 1 they observed some blocking artefact improvement at

low bit-rates.

Informal subjective study was encouraged to verify that there were subjective gains (or no

artefacts).

Further discussed Thu 0900 (GJS & JRO).

This was not suggested to be put into CTC.

It was reported that informal visual viewing did not show additional artefacts.

Page: 254 Date Saved: 2016-06-03

Decision (SW): It was agreed to include these two capabilities in the HM (with config file

options, disabled by default), pending consideration of any software quality issues with the

software coordinator.

Further study, including consideration of the interaction with Lambda control, was encouraged.

6.5.2 SCC (6)

JCTVC-W0075 Palette encoder improvements for the 4:2:0 chroma format and lossless [C. Gisquet, G. Laroche, P. Onno (Canon)]

Discussed Sunday 1615 GJS.

At the 22nd JCT-VC meeting in October 2015, the proponents' non-normative modification for

palette lossy coding of non-4:4:4 content was adopted. It was asserted then that the fact that

superfluous chroma samples are coded was not properly taken into account, resulting in

suboptimal coding. This contribution asserted that similar considerations affect lossless encoding.

In addition, it was proposed for the encoder to track whether an entry is only associated with

pixels with superfluous chroma samples. Finally, it is asserted that various palette evaluations

need not be run, the removal of which is asserted to result in encoder runtime improvements. It is

reported that the non-normative changes provide, for 4:2:0 content, up to 1.1%, 0.5% and 0.5%

BDR gains, for runtimes of 90%, 94% and 95%, for the AI, RA and LDB lossless configurations,

respectively.

Substantial speed-up was shown, and some coding efficiency improvement for lossless coding.

In terms of software impact, one main function is modified (perhaps 50 lines modified), and the

proponent said the impact was not so large.

Decision (SW): Adopt.

JCTVC-W0127 Cross-check of JCTVC-W0075 on palette encoder improvements for lossless mode [V. Seregin (Qualcomm)] [late]

No problem was identified by the cross-checker.

JCTVC-W0078 Bottom-up hash value calculation and validity check for SCC [W. Xiao (Xidian Univ.), B. Li, J. Xu (Microsoft)]

Presented on Sunday 21st at 1750 (with Rajan Joshi chairing).

This document presents a bottom-up hash value calculation and validity check method in hash

table generation, where large blocks' results can reuse measurements from small blocks. Such a

design can reduce the redundant computation and decrease encoding time in the SCM.

Experimental results show that the encoding time is reduced by 7% and 12% on average for RA

and LB, respectively, while the BD-rate performance almost same as the anchor.

The hash calculation was changed. Now the higher block size hash value can be derived from the

lower block size hash values. This results in the 2/3 reduction in computations. For validity

testing, no change in the formula was made but hierarchical implementation was used.

It was asked whether the breakdown of the run-time savings was known between has calculation

and validity testing. That was not tested separately.

Currently, this was applied only to 2Nx2N cases. A participant commented that this could be

extended to asymmetric motion partitions.

A participant asked whether the hash used in current picture referencing could be improved in a

similar manner. The hash functions for current picture referencing and inter prediction are

different. It is not clear whether this could be extended to the current picture reference hash. The

presenter commented that they may investigate this further.

The software patch was released in a revision. The crosschecker was not present to comment in

further detail about their cross-checking activity.

Decision (SW): Adopt.

Page: 255 Date Saved: 2016-06-03

JCTVC-W0118 Crosscheck for bottom-up hash value calculation and validity check for SCC (JCTVC-W0078) [W. Zhang (Intel)] [late]

JCTVC-W0042 SCC encoder improvement [Y.-J. Chang, P.-H. Lin, C.-L. Lin, J.-S. Tu, C.-C. Lin (ITRI)]

Presented on Sunday 21st at 1815 (with Rajan Joshi chairing).

To reduce the SCM encoding time for 4:4:4 chroma format, JCTVC-U0095 proposed to disallow

the TU splitting processes for the intra prediction mode enabling adaptive colour transform when

the CU sizes are 64x64 and 32x32. The proposed method was adopted into SCM anchor in the

last (Geneva) meeting for substantial encoder improvement in 4:4:4 chroma format. However,

the TU splitting processes for the intra prediction mode in non-4:4:4 chroma formats are also a

huge computational cost. This contribution proposes to apply the same method which disallows

TU splitting processes to the intra prediction mode in non-4:4:4 chroma formats. Compared to

the SCM6.0 anchor, it is reported that the proposed encoder can save 3% encoding time on

average with 0.1% BDR gain on the AI-lossy conditions in 4:2:0 chroma format. This

contribution also re-tests the performance of the adopted method in JCTVC-U0095 when it is

applied to different sizes of CUs for the intra prediction mode enabling adaptive colour transform

in 4:4:4 chroma format.

The speedup discussed in the contribution is applied only to non-4:4:4 chroma formats. If the CU

size is 32x32 or higher, checking of RQT is disabled (no TU split). A participant commented if

this method is adopted, the SCM would behave differently than the HM for 4:2:0 cases when all

the SCC and RExt tools are disabled, which was thought to be undesirable. Another participant

commented that this method would need to be tested on variety of camera-captured content.

Supplemental results were presented for the method in U0095 for other block sizes (16x16 and

8x8). There were some losses: 0.1% for 16x16 for some classes, 0.2% for 8x8 for some classes.

The encoding time reduction was 1–3% for 16x16 and ~5% for 8x8.

The proponent suggested that a config parameter be added to control the block size at which the

U0095 method is applied.

No action was taken on this.

JCTVC-W0116 Cross-check of SCC encoder improvement (JCTVC-W0042) [B. Li, J. Xu (Microsoft)] [late]

6.5.3 HDR (2)

JCTVC-W0046 Recommended conversion process of YCbCr 4:2:0 10b SDR content from BT.709 to BT.2020 colour gamut [E. Francois, K. Minoo, R. van de Vleuten, A. Tourapis]

(Not discussed in detail.)

This document describes recommended processes for the following conversions, in the context

of the JCT-VC experiments on HDR with SDR backward compatibility:

Conversion of SDR BT.709 YCbCr 4:2:0 to SDR BT.709 R′G′B′

Conversion of SDR BT.709 R′G′B′ to SDR BT.709 YCbCr 4:2:0

Conversion of SDR BT.709 R′G′B′ to SDR BT.2020 R′G′B′

Conversion of SDR BT.2020 YCbCr 4:2:0 to SDR BT.2020 R′G′B′

Conversion of SDR BT.2020 R′G′B′ to SDR BT.2020 YCbCr 4:2:0

Conversion of SDR BT.2020 R′G′B′ to SDR BT.709 R′G′B′

Page: 256 Date Saved: 2016-06-03

JCTVC-W0053 HDRTools: Extensions and Improvements [A. M. Tourapis, Y. Su, D. Singer (Apple Inc), C. Fogg (Movielabs)]

(Not discussed in detail.)

This document provides a short report about the various enhancements and extensions that had

been recently introduced in the HDRTools package.

The following enhancements had been made to the HDRTools package since its last release in

SG16 document C.886, Geneva, SW, Oct. 2015:

Six (6) new variants of the luma adjustment method, including improved boundary and

look-up table considerations. Improvements result in considerable speed improvements as

well as in the ability to evaluate different optimization target variants.

Three (3) new adaptive downsampling filters based on parallel optimization or

edge/sample variation analysis.

Initial implementation for NLMeans video denoising.

Addition of a modified Wiener filter (Wiener2DDark) that accounts for brightness.

Support of additional transfer functions (i.e. Hybrid PQ).

Support for Y4M video files (input only currently; output will be added later).

RAW and AVI format support for three (3) 4:4:4 10 bit video formats, i.e. V410, R210,

and R10K. V210 (a 4:2:2 10 bit format) and R210 formats are currently also supported on

Blackmagic cards.

Improved conversion support from YCbCr raw signals to other formats, including

formats that use different color primaries, or require additional format conversion steps.

For example, conversion from a YCbCr 4:2:0 BT.709 signal to a YCbCr 4:2:0 or 4:2:2

BT.2020 signal is now fully supported in a single pass.

Additional filter support for 4:4:4 to 4:2:2 conversion.

7 Plenary discussions, joint meetings, BoG reports, and summary of actions

taken

7.1 Project development

Joint meetings are discussed in this section of this report. Additional notes on the same topics

may appear elsewhere in this report. Joint discussions were held on Monday 22 Feb., Tuesday 23

Feb., and Wednesday 24 Feb., as recorded below.

Joint discussion Monday 1630 on JCT-VC related topics (esp. HDR and SCC)

HDR

o HDR CE1 vs. CE2

Expert testing was suggested to be conducted at the Geneva meeting (fixing

intra bit allocation, etc.)

It was also planned to define restrictions to be imposed on the encoders

Restrictions were to be imposed before the meeting

A testing plan was expected to be established during the current meeting (see

notes on later joint discussions in which this plan was changed).

Page: 257 Date Saved: 2016-06-03

o For HDR backward compatibility: Two flavours have been proposed

Decoders that do not use new extension data, for "bitstream backward

compatibility"

Using new extension data for "display backward compatibility"

Also there is a concept of "decoder-side content dynamic range adaptation"

within the HDR context

Note that colour gamut / colour volume as well as dynamic range is a related

issue

Requirements were asked to be reviewed (it was suggested to check SG16

C.853 and the Feb 2015 report for VCEG, and the MPEG requirements doc

for HDR of around the same time)

[ TD 362-GEN ] from DVB on BT.2020 colorimetry, both for HDR and for

backward compatibility to SDR for "UHD-1 Phase 2" (also interested in NBC)

This LS requests a list of approaches

o For BC: VCEG suggested mentioning HLG (possibly with

alternative transfer characteristics SEI message or colour

remapping information SEI message) or SHVC

o For NBC or not-necessarily BC: VCEG noted HLG or ST 2084

"PQ"

o These are not suggestions or tested selections - just lists of

possible approaches

Info on verification testing was requested

There had been previous Cablelabs input on BC for BT.709, and ATSC has an

interest in BT.709 BC

How to test the effectiveness of a BC approach was discussed (e.g. reference /

no reference)

Tuesday 2-6pm further discussion was planned

o [ TD 387-GEN ] / m38082 SMPTE ST 2094 HDR remapping info (also JCTVC-

W0086 for 2094-10, JCTVC-W0133 for 2094-20; more planned) – it was agreed to

suggest that the user data registered SEI message approach be used by SMPTE.

o Issues affecting the SCC text:

CRI SEI message semantics (2094-30) clarification – Decision: It was agreed

to clarify the text in the other direction than previously planned, so the ID may

affect the domain in which the transformation is applied

[ TD 385-GEN ] ITU-R WP 6C on BT.[HDR] (equation details, ICtCp) (also

JCTVC-W0044)

It was remarked that there may be slightly different values or formulas

for some equations than found in prior study of the HLG and PQ

schemes - and asked whether we need two code points in such cases. It

was agreed that this does not seem needed.

Page: 258 Date Saved: 2016-06-03

It was asked whether there is an interpretation for out-of-range values

that may representable in colour component values.

ICtCp was agreed not to be put into the SCC text currently being

finalized at this meeting as an ISO/IEC FDIS, as the BT.[HDR]

Recommendation was not yet fully final and some aspects may benefit

from further study.

o HDR10 verification testing was suggested and planned

o The "good practices" text development was discussed and continued to be of interest

o Other SEI message and VUI contributions under consideration were highlighted for

potential parent-level discussion

JCTVC-W0057 Content colour gamut SEI message [H. M. Oh, J. Choi, J.-Y.

Suh]

JCTVC-W0058 Video usability information signalling for SDR backward

compatibility [H. M. Oh, J.-Y. Suh (LGE)]

JCTVC-W0098 Effective colour volume SEI [A. Tourapis, Y. Su, D. Singer

(Apple Inc.)]

SCC

o JCTVC-W0129 Requiring support for more reference pictures in 4:4:4 profiles when

using 4:2:0 video (note the MV & mode storage requirements) – no action taken

o Combined wavefronts & tiles in 4:4:4 SCC (editorial expression) - OK to allow this

combination, correcting a prior oversight in text editing

o It was noted that the SCC High Throughput 4:4:4 profiles, as drafted, require support

for 4:2:2. In the discussion, it was noted that 4:2:2 has a memory bandwidth savings

and there's a corresponding non-SCC profile with 4:2:2, so it was agreed to keep

these profiles as drafted (no action). It was asked if we should add a 4:2:2 support

requirement to others profiles in which the draft does not currently require it, but it

was agreed not to do that. (No action.)

o JCTVC-W0077 Bug fix for DPB operations with CPR (no technical change intended).

o It was noted that monochrome is not supported in Screen-Extended Main and Screen-

Extended Main 10 profiles – and no action was taken on this observation.

Other topics noted of joint interest, which should proceed as planned and feasible:

o SHVC verification testing

o RExt conformance

o SHVC conformance

o SHVC software

Joint discussion Monday 1800 on other topics (primarily outside scope of JCT-VC - recorded

here for information only)

General [ TD 349-GEN ] from MPEG, m37578 from VCEG

Page: 259 Date Saved: 2016-06-03

AVC

o VCEG-BA09 Progressive High 10 profile m37952 (significant support at previous

meeting) - OK.

o [ TD 385-GEN ] ITU-R WP 6C on BT.[HDR] / m37733 (for non-B67 aspects, further

study was suggested and it was also agreed to issue a PDAM for HEVC and a

working draft for AVC and also to move forward on this for CICP and also to put

support into HDRTools software)

o VCEG-BA08 / m37675 High level syntax support for ARIB STD-B67

o VCEG-BA10 / m37954 Generalized constant and non-Constant luminance matrix

coefficient code points

o Include corrections of colour transfer characteristics that have been agreed (as

necessary, as this may have already been in DAM2) and V0036 changes (i.e., display

light versus captured light clarification).

JCT-3V wrapping up final work

Future video

o JVET exploration

JVET is tasked with exploring potential compression improvement technology,

regardless of whether it differs substantially from HEVC or not; discussions

of converting that work into a formal standardization project, whether that's a

new standard or not, timelines for standardization, profiles, etc., belong in the

parent bodies rather than in JVET

o VCEG-BA07 / m37709 on video for virtual reality systems

A plan for an LS reply to ITU-R was noted.

CICP remains a coordination topic and should be kept aligned with HEVC and AVC (and

has been planned for twin text in ITU-T for quite some time)

Tuesday joint session (Salon D, 1400–1800)

This session was considered a joint meeting of MPEG Requirements and Video, VCEG, and

JCT-VC. Some outcomes and discussions of this session may be recorded in integrated form in

other sections of this report.

Below is an overview of topic areas of HDR that had been deferred so far and were pending

discussion that were suggested to be desirable to discuss in this session, with counts of JCT-VC

contributions in each category, in the order suggested for discussion (not necessarily exhaustive

and sequential):

CE2 and CE2 related post-decoding signal processing in 4:2:0 domain that may involve

backward compatibility issues (6 primary contributions)

CE6 post-processing that may reach outside the 4:2:0 domain (further discussion of

summary report, 4 primary contributions, 1 related syntax proposal)

SEI/VUI (~5 contributions that might need some review, but not all in full depth)

Future CE planning and CE1 vs. CE2 testing

Alternative colour spaces and transfer functions (~3)

Page: 260 Date Saved: 2016-06-03

CE7 study of HLG (~6 docs that might need review, although they mostly did not seem

high priority or to need action)

Best practices for encoding guidelines (~6, not especially needing joint requirements

consideration)

CE3 video quality metric contribution (1, not especially urgent to review early in the

meeting, although did not seem lengthy to discuss)

Technical BC related review on Tuesday included W0033, W0093, W0094, W0089, W0063,

W0103, W0060, W0119, W0106.

It was discussed whether "CE1" could include use of the CRI SEI message (e.g. with a unity

transformation matrix so it could be applied in the 4:2:0 domain just as a per-component LUT

with up to 33 piece-wise linear segments in the mapping).

Potential CE planning was mentioned (with BC testing).

It was reported that MPEG requirements had concluded on Monday that BC is important (but it

was yet to be clarified which types of BC are needed and how to test it).

Wed joint discussion 1115-1200 (GJS, JRO, JO)

This session began with a review of the previous status and an update on review of

technical contributions.

The results of the BoG activity to test CE2 vs. CE1 were reviewed. The test, which was

described as a relatively informal "quick and dirty" test, had been conducted as follows

(with each test session being 15 minutes long)

o 36 test points were obtained using "expert viewing" with 1.5H viewing distance

and an 11-point MOS scoring (ranging from 0 to 10), with

6 video sequences: Balloon, EBU, Cars, Market, ShowGirl, and Sunrise

balloon

3 bit rates, two codecs, eight sessions with two viewers per session

Each "basic test cell" was as illustrated below

Illustrated preliminary results of the test with rough "error bars" were shown as follows:

Page: 261 Date Saved: 2016-06-03

It was noted that satisfactorily reliable results were only obtained for three or four of the

test sequences, and particularly that the results for sequences S04 and S06 had

undesirable bit rate discrimination between the MOS quality measured at different bit

rates, and that therefore those results should be discounted. Further testing would be

needed if more reliable results are to be obtained.

It was concluded that the amount of benefit for HDR/WCG quality that was demonstrated

by the post-processing techniques of CE2 (as tested) was not so clear or large

It was also noted that the CRI SEI message can already do similar processing to some of

what was tested

o CE2 mode 0 was the use of a per-component LUT

o The CRI SEI message supports a per-component LUT, and a matrix multiply,

followed by another per-component LUT (each LUT piecewise linear having up

to 33 segments)

o There are also other things that can be done for HDR handling using previously

designed technology (e.g., the existing tone mapping SEI message and alternative

transfer characteristics SEI message)

It was thus agreed not to plan to create a new profile (or any other "normative" or

implicitly required specification that would imply that something new is needed to

properly enable HDR service)

Further SEI/VUI work may be desirable, but not a new profile, and we have a clear

indication that nothing (not even some SEI message) is necessary to properly deliver

HDR (for an HDR-specific service)

We will focus more further work on guidelines and verification testing

Study of potential enhancement techniques (e.g. for possible additional SEI messages) is

still planned

Guidelines could include how to use some SEI message(s)

Longer-term coding exploration is under way (e.g., in JVET).

The following meeting resolution was thus prepared for reporting to the parent bodies:

In consultation with the parent bodies, the JCT-VC reports the conclusion reached at

the 114th meeting of WG 11 that the creation of a new HEVC profile or other new

normative specification is not necessary to properly enable HDR/WCG video

compression using the current edition of HEVC (3rd edition for ISO/IEC). No

Page: 262 Date Saved: 2016-06-03

technology has been identified that would justify the creation of such a new

specification. Future work on HDR/WCG in JCT-VC will focus primarily on formal

verification testing and guidelines for encoding practices.

7.2 BoGs

The results of the BoG work on CE2 vs. CE1 testing are reported in section 7.1. The results of

HDR viewing using a consumer monitor for some viewing of CE4 & CE5 are reported in section

1.15. Some viewing was also done to illustrate the phenomenon reported in JCTVC-W0035 by

Arris, and it was confirmed that the phenomenon was shown, as noted in section 1.15.

Some plans for additional viewing or other follow-up activities that were recorded in the meeting

notes were not followed up after other decisions were made (e.g., as recorded in section 7.1).

7.3 List of actions taken affecting the draft HEVC specification

The following is a summary, in the form of a brief list, of the actions taken at the meeting that

affect the draft text of the HEVC specification. Both technical and editorial issues are included

(although some relatively minor editorial / bug-fix matters may not be listed). This list is

provided only as a summary – details of specific actions are noted elsewhere in this report and

the list provided here may not be complete and correct. The listing of a document number here

only indicates that the document is related, not that what it proposes was adopted (in whole or in

part).

A bug fix for DPB operation with CPR was agreed (see JCTVC-W0077).

Combining wavefronts and tiles in the 4:4:4 SCC profiles was agreed to be allowed (as

previously planned but forgotten in the text drafting)

For the CRI SEI message semantics clarification – It was agreed to clarify the text in the

other direction than previously planned, so the ID may affect the domain in which the

transformation is applied.

It was agreed to start work on a new amendment/revision of HEVC (as well as AVC and

CICP) to include support for ICTCP colour representation.

Post-meeting note: two issues arose in post-meeting editing preparation regarding SEI messages

in the SCC text and an email notification was sent to the email reflector about them by Gary

Sullivan on May 10, 2016, as follows:

The coded region completion SEI message was intended to be allowed to be a suffix SEI

message as well as a prefix SEI message. This is clear from prior proposals and meeting

notes, but the drafts had it in the syntax table only as a prefix SEI message. The editors

said they would correct this by adding it in the suffix part of the syntax table as well.

In prior work, some payloadType values have been given numbers above 180. The intent

of this was to put SEI messages that are for layered coding extensions (Annexes F, G, H,

I) in the higher numbered range and leave a gap below the value 160 where additional

new SEI messages could go that are not for layered extensions, so that the numbers could

have logical groupings. The highest numbered value defined in 3D work was 181, for an

SEI message added in Annex I. When the text was drafted for two new ones, it was

apparently not noticed that they should go in that gap, and instead they were just given

numbers higher than 181, but those numbers shouldn‘t have been used since those SEI

messages are not related to layered coding extensions. This affects two SEI messages:

alternative transfer characteristics and ambient viewing environment. It was reported that

Page: 263 Date Saved: 2016-06-03

these should have given payloadType values 147 and 148 instead of 182 and 183, and the

editors said they would correct that.

8 Project planning

8.1 Text drafting and software quality

The following agreement has been established: the editorial team has the discretion to not

integrate recorded adoptions for which the available text is grossly inadequate (and cannot be

fixed with a reasonable degree of effort), if such a situation hypothetically arises. In such an

event, the text would record the intent expressed by the committee without including a full

integration of the available inadequate text. Similarly, software coordinators have the discretion

to evaluate contributed software for suitability in regard to proper code style, bugginess, etc., and

to not integrate code that is determined inadequate in software quality.

8.2 Plans for improved efficiency and contribution consideration

The group considered it important to have the full design of proposals documented to enable

proper study.

Adoptions need to be based on properly drafted working draft text (on normative elements) and

HM encoder algorithm descriptions – relative to the existing drafts. Proposal contributions

should also provide a software implementation (or at least such software should be made

available for study and testing by other participants at the meeting, and software must be made

available to cross-checkers in CEs).

Suggestions for future meetings included the following generally-supported principles:

No review of normative contributions without draft specification text

HM text is strongly encouraged for non-normative contributions

Early upload deadline to enable substantial study prior to the meeting

Using a clock timer to ensure efficient proposal presentations (5 min) and discussions

The document upload deadline for the next meeting was planned to be the Monday of the week

preceding the meeting (16 May 2016).

As general guidance, it was suggested to avoid usage of company names in document titles,

software modules etc., and not to describe a technology by using a company name. Also, core

experiment responsibility descriptions should name individuals, not companies. AHG reports and

CE descriptions/summaries are considered to be the contributions of individuals, not companies.

8.3 General issues for CEs and TEs

Group coordinated experiments have been planned in previous work, although none were

established at the current meeting. These may generally fall into one of two categories:

"Core experiments" (CEs) are the experiments for which there is a draft design and

associated test model software that have been established.

"Tool experiments" (TEs) are the coordinated experiments on coding tools at a more

preliminary stage of work than those of "core experiments".

A preliminary description of each experiment is to be approved at the meeting at which the

experiment plan is established.

It is possible to define sub-experiments within particular CEs and TEs, for example designated as

CEX.a, CEX.b, etc., for a CEX, where X is the basic CE number.

As a general rule, it was agreed that each CE should be run under the same testing conditions

using one software codebase, which should be based on the HM software codebase. An

Page: 264 Date Saved: 2016-06-03

experiment is not to be established as a CE unless there is access given to the participants in (any

part of) the CE to the software used to perform the experiments.

The general agreed common conditions for single-layer coding efficiency experiments were as

described in the prior output document JCTVC-L1100.

The general timeline agreed for CEs was expected to be as follows: 3 weeks to obtain the

software to be used as the basis of experimental feature integration, 1 more week to finalize the

description and participation, 2 more weeks to finalize the software.

A deadline of four weeks after the meeting would be established for organizations to express

their interest in participating in a CE to the CE coordinators and for finalization of the CE

descriptions by the CE coordinator with the assistance and consensus of the CE participants.

Any change in the scope of what technology will be tested in a CE, beyond what is recorded in

the meeting notes, requires discussion on the general JCT-VC reflector.

As a general rule, all CEs are expected to include software available to all participants of the CE,

with software to be provided within two (calendar) weeks after the release of the relevant

software basis (e.g. the SCM). Exceptions must be justified, discussed on the general JCT-VC

reflector, and recorded in the abstract of the summary report.

Final CE descriptions shall clearly describe specific tests to be performed, not describe vague

activities. Activities of a less specific nature are delegated to Ad Hoc Groups rather than

designated as CEs.

Experiment descriptions should be written in a way such that it is understood as a JCT-VC

output document (written from an objective "third party perspective", not a company proponent

perspective – e.g. referring to methods as "improved", "optimized" etc.). The experiment

descriptions should generally not express opinions or suggest conclusions – rather, they should

just describe what technology will be tested, how it will be tested, who will participate, etc.

Responsibilities for contributions to CE work should identify individuals in addition to company

names.

CE descriptions should not contain excessively verbose descriptions of a technology (at least not

unless the technology is not adequately documented elsewhere). Instead, the CE descriptions

should refer to the relevant proposal contributions for any necessary further detail. However, the

complete detail of what technology will be tested must be available – either in the CE description

itself or in referenced documents that are also available in the JCT-VC document archive.

Those who proposed technology in the respective context (by this or the previous meeting) can

propose a CE or CE sub-experiment. Harmonizations of multiple such proposals and minor

refinements of proposed technology may also be considered. Other subjects would not be

designated as CEs.

Any technology must have at least one cross-check partner to establish a CE – a single proponent

is not enough. It is highly desirable have more than just one proponent and one cross-checker.

It is strongly recommended to plan resources carefully and not waste time on CE work on

technology that may have little or no apparent benefit – it is also within the responsibility of the

CE coordinator to take care of this.

A summary report written by the coordinator (with the assistance of the participants) is expected

to be provided to the subsequent meeting. The review of the status of the work on the CE at the

meeting is expected to rely heavily on the summary report, so it is important for that report to be

well-prepared, thorough, and objective.

A non-final CE plan document would be reviewed and given tentative approval during the

meeting (with guidance expressed to suggest modifications to be made in a subsequent revision).

The CE description for each planned CE would be described in an associated output document

numbered as, for example, JCTVC-W11xx for CExx, where "xx" is the CE number (xx = 01, 02,

etc.). Final CE plans would be recorded as revisions of these documents.

It must be understood that the JCT-VC is not obligated to consider the test methodology or

outcome of a CE as being adequate. Good results from a CE do not impose an obligation on the

Page: 265 Date Saved: 2016-06-03

group to accept the result (e.g., if the expert judgment of the group is that further data is needed

or that the test methodology was flawed).

Some agreements relating to CE activities have been established as follows:

Only qualified JCT-VC members can participate in a CE.

Participation in a CE is possible without a commitment of submitting an input document

to the next meeting.

All software, results, documents produced in the CE should be announced and made

available to all CE participants in a timely manner.

If combinations of proposals are intended to be tested in a CE, the precise description

shall be available with the final CE description; otherwise it cannot be claimed to be part

of the CE.

8.4 Alternative procedure for handling complicated feature adoptions

The following alternative procedure had been approved at a preceding meeting as a method to be

applied for more complicated feature adoptions:

1. Run CE + provide software + text, then, if successful,

2. Adopt into HM, including refinements of software and text (both normative & non-

normative); then, if successful,

3. Adopt into WD and common conditions.

Of course, we have the freedom (e.g. for simple things) to skip step 2.

8.5 Common test conditions for HEVC Coding Experiments

An output document for common test conditions for HDR/WCG video coding experiments was

issued.

No particular changes were noted w.r.t. the prior CTC for work within the current scope of JCT-

VC particularly for the SCC extensions development, as that work is at such a late stage of

development that such changes would seem necessary to consider.

8.6 Software development planning

Software coordinators were asked to work out the scheduling of needed software modifications,

together with the proponents of adopted changes as appropriate (for HDRTools, HM, SCM, and

SHM).

Any adopted proposals where necessary software is not delivered by the scheduled date in a

timely manner may be rejected.

At a previous meeting (Sapporo, July 2014), it was noted that it should be relatively easy to add

MV-HEVC capability to the SHVC software, and it was strongly suggested that this should be

done. This remains desirable. Further study was encouraged to determine the appropriate

approach to future software maintenance, especially in regard to alignment of 3D video software

with the SHM software.

9 Establishment of ad hoc groups

The ad hoc groups established to progress work on particular subject areas until the next meeting

are described in the table below. The discussion list for all of these ad hoc groups was agreed to

be the main JCT-VC reflector ([email protected]).

Page: 266 Date Saved: 2016-06-03

Title and Email Reflector Chairs Mtg

JCT-VC project management (AHG1)

([email protected])

Coordinate overall JCT-VC interim efforts.

Report on project status to JCT-VC reflector.

Provide a report to next meeting on project

coordination status.

G. J. Sullivan, J.-R. Ohm

(co-chairs)

N

HEVC test model editing and errata reporting

(AHG2)

([email protected])

Produce and finalize JCTVC-W1002 HEVC

Test Model 16 (HM 16) Update 5 of Encoder

Description

Collect reports of errata for HEVC

Gather and address comments for refinement of

these documents.

Coordinate with AHG3 on software

development and HM software technical

evaluation to address issues relating to

mismatches between software and text.

B. Bross, C. Rosewarne

(co-chairs), M. Naccari,

J.-R. Ohm, K. Sharman,

G. J. Sullivan,

Y.-K. Wang (vice-chairs)

N

HEVC HM software development and software

technical evaluation (AHG3)

([email protected])

Coordinate development of the HM software

and its distribution.

Produce documentation of software usage for

distribution with the software.

Prepare and deliver HM 16.x software versions

and the reference configuration encodings

according to JCTVC-L1100 and JCTVC-P1006

common conditions.

Suggest configuration files for additional testing

of tools.

Investigate how to minimize the number of

separate codebases maintained for group

reference software.

Coordinate with AHG2 on HEVC test model

editing and errata reporting to identify any

mismatches between software and text.

K. Sühring (chair),

K. Sharman (vice-chair)

N

Page: 267 Date Saved: 2016-06-03

HEVC conformance test development (AHG4)

([email protected])

Study the requirements of HEVC conformance

testing to ensure interoperability.

Prepare and deliver the JCTVC-W1008 SHVC

conformance draft 5 specification.

Develop proposed improvements to the SCC

conformance testing draft JCTVC-W1016.

Discuss work plans and testing methodology to

develop and improve HEVC v.1, RExt, SHVC,

and SCC conformance testing.

Establish and coordinate bitstream exchange

activities for HEVC.

Identify needs for HEVC conformance

bitstreams with particular characteristics.

Collect, distribute, and maintain bitstream

exchange database and draft HEVC

conformance bitstream test set.

T. Suzuki (chair),

J. Boyce, R. Joshi,

K. Kazui,

A. K. Ramasubramonian,

W. Wan, Y. Ye

(vice-chairs)

N

SHVC verification test reporting (AHG5)

([email protected])

Edit and produce the final SHVC verification

test report.

V. Baroncini, Y.-K.

Wang, Y. Ye (co-chairs)

N

SCC extensions verification testing (AHG6)

([email protected])

Study test conditions and coding performance

analysis methods for verification of SCC coding

performance.

Prepare a proposed draft verification test plan

for SCC.

H. Yu (chair), R. Cohen,

A. Duenas, K. Rapaka,

X. Xu, J. Xu (vice-chairs)

N

SCC extensions text editing (AHG7)

([email protected])

Produce and finalize HEVC screen content

coding extensions draft 6 and test model 7 text.

Gather and address comments for refinement of

the test model text.

Coordinate with AHG8 to address issues relating

to mismatches between software and text.

R. Joshi, J. Xu (co-chairs),

R. Cohen, S. Liu,

G. Sullivan, Y.-K. Wang,

Y. Ye (vice-chairs)

N

Page: 268 Date Saved: 2016-06-03

SCC extensions software development (AHG8)

([email protected])

Coordinate development of the SCM software

and its distribution.

Prepare and deliver HM 16.x-SCM-7.0 software

version and the reference configuration

encodings according to JCTVC-U1015.

Prepare and deliver additional "dot" version

software releases and software branches as

appropriate.

Perform analysis and reconfirmation checks of

the behaviour of the draft design, and report the

results of such analysis.

Suggest configuration files for additional testing

of tools.

Coordinate with AHG7 to address any identified

issues regarding text and software relationship.

B. Li, K. Rapaka (chairs),

P. Chuang, R. Cohen,

X. Xiu (vice-chairs)

N

SHVC software development (AHG9)

([email protected])

Prepare and deliver the SHM 11.x software

(based on HM 16.x) for scalable HEVC

extensions draft 4 JCTVC-W1013.

Generate anchors and templates based on

common test conditions.

Discuss and identify additional issues related to

SHVC software.

G. Barroux, Y. He,

V. Seregin (co-chairs)

N

Page: 269 Date Saved: 2016-06-03

Test sequence material (AHG10)

([email protected])

Maintain the video sequence test material

database for development of HEVC and its

RExt, SHVC and SCC extensions.

Identify, collect, and make available a variety of

video sequence test material, especially focusing

on new needs for HDR test material and

corresponding SDR test material.

Study coding performance and characteristics in

relation to video test materials.

Identify and recommend appropriate test

materials and corresponding test conditions for

use in development of HEVC and its extensions.

Coordinate with the activities in AHG6

regarding screen content coding testing, with

AHG11 regarding HDR/WCG visual content

testing, and with AHG12 regarding HDR/WCG

verification test planning

T. Suzuki, V. Baroncini,

R. Cohen (co-chairs),

E. Francois, T. K. Tan,

P. Topiwala, S. Wenger,

H. Yu (vice-chairs)

N

HDR/WCG visual testing (AHG11)

([email protected])

Study content characteristics and identify

appropriate HDR/WCG test sequences for visual

testing.

Identify and develop test methodologies for

HDR/WCG visual testing including

consideration and characterization of test

equipment.

V. Baroncini,

P. Topiwala, E. Alshina

(co-chairs)

N

HDR/WCG verification test planning (AHG12)

([email protected])

Finalize the verification test plan JCTVC-

W1018

Generate and collect the encoded bitstreams for

the HDR/WCG verification test.

Identify and coordinate arrangements toward the

preparation of test sites for subjective testing.

Perform the subjective testing as described in

JCTVC-W1018.

Analyze the test results and prepare a draft

report of the subjective testing.

A. K. Ramasubramonian,

R. Sjöberg (co-chairs)

N

Page: 270 Date Saved: 2016-06-03

HDR/WCG coding practices guideline

development (AHG13)

([email protected])

Identify and study tech approaches to single-

layer HDR coding using the existing HEVC

standard (up to SCC-extended edition) with ST

2084 transfer characteristics, including potential

use of SEI messages

Study and consider potential guidelines for use

of the ICTCP colour representation with the

HEVC standard

Study and propose improvements of draft

guidelines W10xx for HEVC single-layer

coding using ST 2084 with YCbCr NCL narrow

range

Conduct one or more teleconferences to discuss

these matters, with appropriate advance notice.

J. Samuelsson (chair),

C. Fogg, A. Norkin,

J. Strom, J. Sole,

A. Tourapis, P. Yin

(vice-chairs)

Tel.

HDR/WCG technology for backward

compatibility and display adaptivity (AHG14)

([email protected])

Study the technical characteristics of single-

layer coding with HEVC using existing SEI and

VUI indicators for backward compatibility and

display adaptivity.

Study the technical characteristics of two-layer

coding with SHVC for backward compatibility

and display adaptivity.

Identify and study the technical characteristics

of proposed approaches to backward

compatibility and display adaptivity with

potential additional new SEI messages.

Study and propose test conditions for associated

experiments.

E. Francois, W. Husak,

D. Rusanovskyy

(co-chairs)

N

10 Output documents

The following documents were agreed to be produced or endorsed as outputs of the meeting.

Names recorded below indicate the editors responsible for the document production.

JCTVC-W1000 Meeting Report of the 23rd JCT-VC Meeting [G. J. Sullivan, J.-R. Ohm (chairs)] [2016-05-13] (near next meeting)

Remains valid – not updated: JCTVC-H1001 HEVC software guidelines [K. Sühring, D. Flynn, F. Bossen (software coordinators)]

Page: 271 Date Saved: 2016-06-03

JCTVC-W1002 High Efficiency Video Coding (HEVC) Test Model 16 (HM 16) Update 5 of Encoder Description [C. Rosewarne (primary editor), B. Bross, M. Naccari, K. Sharman, G. J. Sullivan (co-editors)] (WG 11 N 16048) [2016-05-13] (near next meeting)

JCTVC-W1003 Draft text for ICTCP support in HEVC (Draft 1) [P. Yin, C. Fogg, G. J. Sullivan, A. Tourapis (editors)] (WG 11 N 16047) [2016-03-11] (2 weeks)

JCTVC-W1004 SHVC Verification Test Report [Y. Ye, V. Baroncini, Y.-K. Wang (editors)] (WG 11 N 16051) [2016-03-18] (3 weeks)

JCTVC-W1005 HEVC Screen Content Coding Draft Text 6 [R. Joshi, S. Liu, G. J. Sullivan, Y.-K. Wang, J. Xu, Y. Ye (editors)] (WG 11 N 16046 Text of ISO/IEC FDIS 23008-2:201X 3rd Edition) [2016-04-22] (8 weeks)

Basic elements (no changes of features at the current meeting):

IBC

Adaptive colour transform

Palette mode

Adaptive MV resolution

Intra boundary filtering disabling

Remains valid – not reissued: JCTVC-P1006 Common test conditions and software reference configurations for HEVC range extensions [D. Flynn, C. Rosewarne, K. Sharman (editors)]

Remains valid – not reissued: JCTVC-V1007 SHVC Test Model 11 (SHM 11) Introduction and Encoder Description [G. Barroux, J. Boyce, J. Chen, M. M. Hannuksela, Y. Ye (editors)] (WG 11 N 15778)

JCTVC-W1008 Conformance Testing for SHVC Draft 5 [J. Boyce, A. K. Ramasubramonian (editors)] (Included in WG 11 N 16061 Text of ISO/IEC FDIS 23008-8:201x 2nd Edition) [2016-04-22] (8 weeks)

(Merged into a new edition)

Remains valid – not updated JCTVC-Q1009 Common SHM Test Conditions and Software Reference Configurations [V. Seregin, Y. He (editors)]

Remains valid – not updated JCTVC-O1010 Guidelines for Conformance Testing Bitstream Preparation [T. Suzuki, W. Wan (editors)]

JCTVC-W1011 Reference Software for Screen Content Coding Draft 1 (WG 11 N 16057 Text of ISO/IEC 23008-5:201x/PDAM1) [K. Rapaka, B. Li, X. Xiu (editors)] [2016-03-11] (2.5 months prior to next meeting)

Page: 272 Date Saved: 2016-06-03

JCTVC-W1012 Conformance Testing for Improved HEVC Version 1 Testing and Format Range Extensions Profiles Draft 6 (Included in WG 11 N 16061 Text of ISO/IEC FDIS 23008-8:201x 2nd Edition) [T. Suzuki, K. Kazui (editors)] [2016-04-22] (8 weeks)

(Merged into a new edition)

JCTVC-W1013 Reference software for Scalable HEVC (SHVC) Extensions Draft 4 (Merged into WG 11 N 16055 Text of ISO/IEC FDIS 23008-5:201x Reference Software for High Efficiency Video Coding [2nd ed.]) [Y. He, V. Seregin (editors)] [2016-04-22] (8 weeks)

(Merged into a new edition)

JCTVC-V1014 Screen Content Coding Test Model 7 Encoder Description (SCM 7) [R. Joshi, J. Xu, R. Cohen, S. Liu, Y. Ye (editors)] (WG 11 N 16049) [2016-04-30] (near next meeting)

Remains valid – not updated: JCTVC-U1015 Common Test Conditions for Screen Content Coding [H. Yu, R. Cohen, K. Rapaka, J. Xu (editors)]

JCTVC-W1016 Conformance Testing for HEVC Screen Content Coding (SCC) Extensions Draft 1 (MPEG WD) [R. Joshi, J. Xu] (6 weeks)

JCTVC-W1017 Conversion and Coding Practices for HDR/WCG Video [J. Samuelsson] (now)

(Using local activity for QP setting as well as luma)

JCTVC-W1018 Verification Test Plan for HDR/WCG Video Coding Using HEVC Main 10 Profile [R. Sjöberg, V. Baroncini, A. K. Ramasubramonian] [2016-03-09] (2 weeks)

(with the existing HEVC standard)

JCTVC-W1020 CTC for HDR/WCG video coding experiments [E. François, J. Sole, J. Strom, P. Yin] (now)

Remains valid – not updated: JCTVC-L1100 Common Test Conditions and Software Reference Configurations for HM [F. Bossen (editor)]

11 Future meeting plans, expressions of thanks, and closing of the meeting

Future meeting plans were established according to the following guidelines:

Meeting under ITU-T SG 16 auspices when it meets (starting meetings on the Thursday

of the first week and closing it on the Tuesday or Wednesday of the second week of the

SG 16 meeting – a total of 6–6.5 meeting days), and

Otherwise meeting under ISO/IEC JTC 1/SC 29/WG 11 auspices when it meets (starting

meetings on the Friday prior to such meetings and closing it on the last day of the WG 11

meeting – a total of 7.5 meeting days).

Some specific future meeting plans (to be confirmed) were established as follows:

Thu. 26 May – Wed. 1 June 2016, 24th meeting under ITU-T auspices in Geneva, CH.

Fri. 14 – Fri. 21 Oct. 2016, 25th meeting under WG 11 auspices in Chengdu, CN.

Page: 273 Date Saved: 2016-06-03

Thu. 12 – Wed. 18 Jan. 2017, 26th meeting under ITU-T auspices in Geneva, CH.

Fri. 31 Mar. – Fri. 7 Apr. 2017, 27th meeting under WG 11 auspices in Hobart, AU.

The agreed document deadline for the 24th JCT-VC meeting is Monday 16 May 2016. Plans for

scheduling of agenda items within that meeting remained TBA.

The JCT-VC thanked all the organizations and individuals who contributed to the SHVC

verification test, including:

Cable Television Laboratories, Netflix, NTIA (The National Telecommunications and

Information Administration), Technicolor, and Vidyo for providing the test sequences.

InterDigital Communications Inc., Microsoft Corporation, Nokia Corporation,

Qualcomm Inc., Technicolor, and Vidyo for providing financial support for this activity.

InterDigital Communications Inc. and Qualcomm Inc. for providing the resources to

prepare the test material.

Giacomo Baroncini of GBTech for conducting the subjective test.

Dr. Vittorio Baroncini (MPEG Test Chairman) for his guidance and coordination of the

subjective test.

The USNB of WG11 and the companies that financially sponsored the meeting and associated

social event – Apple, CableLabs, Google, Huawei, InterDigital, Microsoft, Mitsubishi Electric,

Netflix and Qualcomm – were thanked for the excellent hosting of the 23rd meeting of the JCT-

VC.

Companies that provided equipment that was used for subjective viewing of video – Dolby,

InterDigital, Qualcomm, Samsung and Sony, were also thanked.

The JCT-VC meeting was closed at approximately 1240 hours on Friday, 26 February 2016.

Page: 274 Date Saved: 2016-06-03

Annex A to JCT-VC report:

List of documents

JCT-VC number

MPEG

number Created First upload Last upload Title Authors

JCTVC-W0001 m38086 2016-02-19

17:15:46

2016-02-19

18:07:39

2016-02-19

21:58:14

JCT-VC AHG report:

Project management

(AHG1)

G. J. Sullivan, J.-R.

Ohm

JCTVC-W0002 m38071 2016-02-18

23:53:05

2016-02-19

18:03:47

2016-02-19

18:03:47

JCT-VC AHG report:

HEVC test model editing

and errata reporting (AHG2)

B. Bross, C. Rosewarne,

M. Naccari, J.-R. Ohm,

K. Sharman,

G. Sullivan, Y.-K.

Wang

JCTVC-W0003 m38058 2016-02-18

11:40:11

2016-02-19

19:57:30

2016-02-19

21:24:56

JCT-VC AHG report:

HEVC HM software

development and software

technical evaluation

(AHG3)

K. Suehring,

K. Sharman

JCTVC-W0004 m38059 2016-02-18

12:29:55

2016-02-20

21:13:56

2016-02-20

21:13:56

JCT-VC AHG report:

HEVC conformance test

development (AHG4)

T. Suzuki, J. Boyce,

R. Joshi, K. Kazui,

A. Ramasubramonian,

Y. Ye

JCTVC-W0005 m38072 2016-02-19

00:09:08

2016-02-19

00:10:17

2016-02-19

00:10:17

JCT-VC AHG report:

SHVC verification testing

(AHG5)

V. Baroncini, Y.-K.

Wang, Y. Ye

JCTVC-W0006 m38066 2016-02-18

20:15:33

2016-02-18

20:16:18

2016-02-18

20:16:18

JCT-VC AHG report: SCC

coding performance analysis

(AHG6)

H. Yu, R. Cohen,

A. Duenas, K. Rapaka,

J. Xu, X. Xu (AHG

chairs)

JCTVC-W0007 m38076 2016-02-19

04:03:19

2016-02-19

04:04:39

2016-02-19

04:04:39

JCT-VC AHG report: SCC

extensions text editing

(AHG7)

R. Joshi, J. Xu (AHG

co-chairs), Y. Ye,

S. Liu, G. Sullivan,

R. Cohen (AHG vice-

chairs)

JCTVC-W0008 m38080 2016-02-19

07:48:25

2016-02-19

07:52:15

2016-02-19

07:52:15

JCT-VC AHG report: SCC

extensions software

development (AHG8)

K. Rapaka, B. Li (AHG

co-chairs), R. Cohen,

T.-D. Chuang, X. Xiu,

M. Xu (AHG vice-

chairs)

JCTVC-W0009 m38089 2016-02-19

18:11:55

2016-02-19

18:25:15

2016-02-19

18:32:04

JCT-VC AHG report:

Complexity of SCC

extensions (AHG9)

A. Duenas (AHG chair),

M. Budagavi, R. Joshi,

S.-H. Kim, P. Lai,

W. Wang, W. Xiu (co-

chairs)

JCTVC-W0010 m38060 2016-02-18

12:44:38

2016-02-21

03:28:34

2016-02-21

03:28:34

JCT-VC AHG report: Test

sequence material (AHG10)

T. Suzuki, V. Baroncini,

R. Cohen, T. K. Tan,

S. Wenger, H. Yu

JCTVC-W0011 m38088 2016-02-19

17:41:43

2016-02-19

17:42:35

2016-02-19

22:13:21

JCT-VC AHG report:

SHVC test model editing

(AHG11)`

G. Barroux, J. Boyce,

J. Chen, M. Hannuksela,

G. J. Sullivan, Y.-K.

Wang, Y. Ye

JCTVC-W0012 m38087 2016-02-19

17:30:13

2016-02-19

17:34:03

2016-02-19

17:34:03

JCT-VC AHG report:

SHVC software

development (AHG12)

V. Seregin, H. Yong,

G. Barroux

JCTVC-W0013 m37728 2016-02-09

21:52:34

2016-02-09

21:53:11

2016-02-19

18:14:08

VCEG AHG report: HDR

Video Coding (VCEG

AHG5)

J. Boyce, E. Alshina,

J. Samuelsson (AHG

chairs)

JCTVC-W0014 m38093 2016-02-19

23:24:40

2016-02-19

23:28:04

2016-02-19

23:28:04

MPEG AHG report: HDR

and WCG Video Coding

C. Fogg, E. Francois,

W. Husak, A. Luthra

Page: 275 Date Saved: 2016-06-03

JCTVC-W0021 m37605 2016-01-27

15:20:27

2016-01-27

15:22:15

2016-01-27

15:22:15

Report of HDR Core

Experiment 1 J. Strom, J. Sole, Y. He

JCTVC-W0022 m37739 2016-02-10

00:29:58

2016-02-10

07:33:50

2016-02-20

08:23:30

Report of HDR Core

Experiment 2

D. Rusanovskyy(Qualco

mm), E. Francois

(Technicolor),

L. Kerofsky

(InterDigital),

T. Lu( Dolby),

K. Minoo(Arris)

JCTVC-W0023 m37753 2016-02-10

17:49:05

2016-02-10

17:52:40

2016-02-19

22:22:57

Report of HDR Core

Experiment 3

V. Baroncini,

L. Kerofsky,

D. Rusanovskyy

JCTVC-W0024 m37537 2016-01-10

21:01:49

2016-01-10

21:13:08

2016-02-11

02:12:52

Report of HDR Core

Experiment 4

P. Topiwala (FastVDO),

E. Alshina (Samsung),

A. Smolic (Disney),

S. Lee (Qualcomm)

JCTVC-W0025 m37538 2016-01-10

21:05:36

2016-01-10

21:12:29

2016-02-11

02:14:47

Report of HDR Core

Experiment 5

P. Topiwala (FastVDO),

R. Brondijk (Philips),

J. Sole (Qualcomm),

A. Smolic (Disney),

JCTVC-W0026 m37738 2016-02-10

00:03:57

2016-02-10

00:04:26

2016-02-21

00:34:58

Report of HDR Core

Experiment 6

Robert Brondijk,

Sebastien Lasserre,

Dmytro Rusanovskyy,

yuwen he

JCTVC-W0027 m37681 2016-02-08

21:09:52

2016-02-10

23:01:03

2016-02-20

20:10:22

Report of HDR Core

Experiment 7: On the visual

quality of HLG generated

HDR and SDR video

A. Luthra (Arris),

E. Francois

(Technicolor), L. van de

Kerkhof (Philips)

JCTVC-W0028 m38181 2016-02-24

23:36:18

2016-02-24

23:36:38

2016-02-24

23:42:31

Report of HDR Core

Experiment 8

JCTVC-W0031 m37536 2016-01-10

20:36:57

2016-01-11

05:49:15

2016-01-11

05:49:15

Description of the reshaper

parameters derivation

process in ETM reference

software

K. Minoo (Arris), T. Lu,

P. Yin (Dolby),

L. Kerofsky

(InterDigital),

D. Rusanovskyy

(Qualcomm),

E. Francois

(Technicolor)

JCTVC-W0032 m37539 2016-01-11

06:23:48

2016-01-11

06:27:23

2016-01-12

08:36:13

Encoder optimization for

HDR/WCG coding

Y. He, Y. Ye,

L. Kerofsky

(InterDigital)

JCTVC-W0033 m37691 2016-02-09

08:58:26

2016-02-09

23:00:12

2016-02-21

20:48:34

HDR CE2: report of CE2.b-

1 experiment (reshaper

setting 1)

E. Francois, Y. Olivier,

C. Chevance

(Technicolor)

JCTVC-W0034 m37614 2016-02-03

20:34:39

2016-02-09

21:50:15

2016-02-09

21:50:15

CE-6 test4.2: Color

enhancement

Y. He, L. Kerofsky,

Y. Ye (InterDigital)

JCTVC-W0035 m37543 2016-01-12

01:35:54

2016-01-12

17:28:26

2016-02-15

18:42:09

Some observations on visual

quality of Hybrid Log-

Gamma (HLG) TF

processed video (CE7)

A. Luthra, D. Baylon,

K. Minoo, Y. Yu, Z. Gu

JCTVC-W0036 m37602 2016-01-14

19:29:53

2016-01-14

20:43:35

2016-02-09

23:21:15 Withdrawn

JCTVC-W0037 m37535 2016-01-08

17:01:05

2016-01-08

17:05:06

2016-01-14

22:15:30 Hybrid Log-Gamma HDR

A. Cotton, M. Naccari

(BBC)

JCTVC-W0038 m37615 2016-02-03

20:41:01

2016-02-09

21:50:50

2016-02-22

02:44:36 HEVC encoder optimization

Y. He, Y. Ye,

L. Kerofsky

(InterDigital)

JCTVC-W0039 m37619 2016-02-04

07:32:39

2016-02-04

07:34:57

2016-02-21

04:32:53

Luma delta QP adjustment

based on video statistical

information

J. Kim, J. Lee,

E. Alshina,

Y. Park(Samsung)

JCTVC-W0040 m37624 2016-02-04 2016-02-08 2016-02-10 Adaptive Gamut Expansion A. Dsouza, Aishwarya,

Page: 276 Date Saved: 2016-06-03

11:28:39 07:23:05 05:52:06 for Chroma Components K. Pachauri (Samsung)

JCTVC-W0041 m37625 2016-02-04

11:32:18

2016-02-08

07:24:08

2016-02-08

07:24:08

HDR-VQM Reference Code

and its Usage

K. Pachauri, S. Sahota

(Samsung)

JCTVC-W0042 m37627 2016-02-05

04:05:38

2016-02-07

03:28:45

2016-02-22

02:16:56 SCC encoder improvement

Y.-J. Chang, P.-H. Lin,

C.-L. Lin, J.-S. Tu, C.-

C. Lin (ITRI)

JCTVC-W0043 m37630 2016-02-05

09:46:17

2016-02-05

18:38:29

2016-02-05

18:38:29

CE7: Cross-check report for

Experiment 7.2

M. Naccari, M. Pindoria

(BBC)

JCTVC-W0044 m37664 2016-02-08

04:17:39

2016-02-09

23:27:23

2016-02-22

18:08:02

BT.HDR and its

implications for VUI C. Fogg

JCTVC-W0045 m37666 2016-02-08

04:22:05

2016-02-15

08:52:10

2016-02-15

08:52:10

Hybrid Log Gamma

observations C. Fogg

JCTVC-W0046 m37680 2016-02-08

18:42:33

2016-02-09

20:04:05

2016-02-09

20:04:05

Recommended conversion

process of YCbCr 4:2:0 10b

SDR content from BT.709

to BT.2020 color gamut

E. Francois, K. Minoo,

R. van de Vleuten,

A. Tourapis

JCTVC-W0047 m37668 2016-02-08

04:30:41

2016-02-10

18:29:07

2016-02-10

18:29:07 ICtCp testing C. Fogg

JCTVC-W0048 m37669 2016-02-08

04:33:09

2016-02-10

19:56:22

2016-02-10

19:56:22 HDR-10 status update C. Fogg

JCTVC-W0049 m37670 2016-02-08

04:34:37 Withdrawn

JCTVC-W0050 m38148 2016-02-22

19:29:37

2016-02-22

22:39:26

2016-02-25

02:53:15 Overview of ICtCp J. Pytlarz (Dolby)

JCTVC-W0051 m37682 2016-02-08

21:49:54

2016-02-10

02:35:57

2016-02-21

16:43:32

Enhanced Filtering and

Interpolation Methods for

Video Signals

A. M. Tourapis, Y. Su,

D. Singer (Apple Inc)

JCTVC-W0052 m37683 2016-02-08

21:51:56

2016-02-09

23:17:08

2016-02-15

19:12:40

Enhanced Luma Adjustment

Methods

A. M. Tourapis, Y. Su,

D. Singer (Apple Inc)

JCTVC-W0053 m37684 2016-02-08

21:54:05

2016-02-10

03:25:22

2016-02-10

03:25:22

HDRTools: Extensions and

Improvements

A. M. Tourapis, Y. Su,

D. Singer (Apple Inc),

C. Fogg (Movielabs)

JCTVC-W0054 m37687 2016-02-09

03:02:20

2016-02-09

18:35:38

2016-02-09

18:35:38

AHG on HDR and WCG:

Average Luma Controlled

Adaptive dQP

A. Segall, J. Zhao

(Sharp), J. Strom,

M. Pettersson,

K. Andersson (Ericsson)

JCTVC-W0055 m37688 2016-02-09

04:46:46

2016-02-10

00:02:31

2016-02-10

00:02:31

HDR CE5: Report of

Experiment 5.3.2

W. Dai, M. Krishnan,

P. Topiwala (FastVDO)

JCTVC-W0056 m37689 2016-02-09

05:51:41

2016-02-09

05:54:41

2016-02-17

06:44:06

CE1-related: LUT-based

luma sample adjustment

C. Rosewarne,

V. Kolesnikov (Canon)

JCTVC-W0057 m37690 2016-02-09

08:29:08

2016-02-09

10:21:23

2016-02-09

10:21:23

Content colour gamut SEI

message

H. Mook Oh, J. Choi, J.-

Y. Suh

JCTVC-W0058 m37692 2016-02-09

09:07:07

2016-02-09

10:23:20

2016-02-09

10:23:20

Video usability information

signaling for SDR backward

compatibility

H. M. Oh, J.-Y. Suh

JCTVC-W0059 m37693 2016-02-09

09:13:38

2016-02-10

18:57:43

2016-02-16

22:55:39

HDR CE6: report of CE6-

4.6b experiment (ETM

using SEI message)

E. Francois,

C. Chevance, Y. Olivier

(Technicolor)

JCTVC-W0060 m37694 2016-02-09

09:28:36

2016-02-09

10:25:19

2016-02-09

10:25:19

Re-shaper syntax extension

for HDR CE6

Hyun Mook Oh, Jong-

Yeul Suh

JCTVC-W0061 m37695 2016-02-09

09:55:25

2016-02-09

10:01:27

2016-02-09

10:01:27

CE7: Results Core

Experiment 7.1 test a and b

M. Naccari, A. Cotton,

M. Pindoria

JCTVC-W0062 m37696 2016-02-09

10:55:18

2016-02-09

22:57:16

2016-02-25

20:13:22

Non-normative HM encoder

improvements

K. Andersson,

P. Wennersten,

R. Sjöberg,

J. Samuelsson, J. Ström,

P. Hermansson,

M. Pettersson (Ericsson)

JCTVC-W0063 m37698 2016-02-09 2016-02-09 2016-02-20 HDR CE6: Core Wiebe de Haan, Robert

Page: 277 Date Saved: 2016-06-03

12:42:40 22:04:01 04:58:32 Experiments 4.3 and 4.6a:

Description of the Philips

CE system in 4:2:0 and with

automatic reshaper

parameter derivation

Brondijk, Rocco Goris,

Rene van der Vleuten

JCTVC-W0064 m37699 2016-02-09

12:51:14

2016-02-09

14:58:17

2016-02-19

18:29:15

HDR CE6-related: Cross

Check of CE6.46b

Robert Brondijk, Wiebe

de Haan

JCTVC-W0065 m37700 2016-02-09

12:57:24 Withdrawn

JCTVC-W0066 m37701 2016-02-09

13:01:26

2016-02-09

13:07:10

2016-02-09

13:07:10

CE1-related: Optimization

of HEVC Main 10 coding in

HDR videos Based on

Disorderly Concealment

Effect

C. Jung, S. Yu, Q. Lin

(Xidian Univ.), M. Li,

P. Wu (ZTE)

JCTVC-W0067 m37702 2016-02-09

13:04:24

2016-02-10

00:10:46

2016-02-20

03:45:29

HDR CE7: xCheck 1a 1b

and Core Experiement 2a

and 2b

Robert Brondijk, Wiebe

de Haan, Rene van der

Vleuten, Rocco Goris

JCTVC-W0068 m37703 2016-02-09

13:09:44

2016-02-09

13:14:47

2016-02-09

13:14:47

CE2-related: Adaptive

Quantization-Based HDR

video Coding with HEVC

Main 10 Profile

C. Jung, Q. Fu, G. Yang

(Xidian Univ.), M. Li,

P. Wu (ZTE)

JCTVC-W0069 m37704 2016-02-09

13:12:16

2016-02-09

14:55:35

2016-02-21

02:37:38

HDR CE5: Report on Core

Experiment CE5.3.1

Robert Brondijk, Wiebe

de Haan, Jeroen Stessen

JCTVC-W0070 m37705 2016-02-09

13:15:09

2016-02-09

14:56:42

2016-02-20

14:13:10

CE5-related: xCheck of

CE5.3.2

Robert Brondijk, Rocco

Goris

JCTVC-W0071 m37706 2016-02-09

13:16:50

2016-02-09

13:21:14

2016-02-09

13:21:14

CE2-related: Adaptive PQ:

Adaptive Perceptual

Quantizer for HDR video

Coding with HEVC Main 10

Profile

C. Jung, S. Yu, P. Ke

(Xidian Univ.), M. Li,

P. Wu (ZTE)

JCTVC-W0072 m37707 2016-02-09

13:46:12

2016-02-11

16:21:08

2016-02-11

16:21:08

Highly efficient HDR video

compression

Alan Chalmers,

Jonathan Hatchett, Tom

Bashford Rogers, Kurt

Debattista

JCTVC-W0073 m37708 2016-02-09

14:22:29

2016-02-17

18:21:13

2016-02-19

18:30:15

HDR CE6: Cross-check of

6.46a

W. Dai, M. Krishnan,

P. Topiwala (FastVDO)

JCTVC-W0074 m37710 2016-02-09

15:07:13

2016-02-09

15:30:36

2016-02-24

01:09:20

CIECAM02 based

Orthogonal Color Space

Transformation for

HDR/WCG Video

Y. Kwak,

Y. Baek(UNIST),

J. Lee, J. W. Kang, H.-

Y. Kim(ETRI)

JCTVC-W0075 m37712 2016-02-09

16:01:37

2016-02-09

16:17:23

2016-02-21

21:32:25

Palette encoder

improvements for the 4:2:0

chroma format and lossless

C. Gisquet, G. Laroche,

P. Onno (Canon)

JCTVC-W0076 m37713 2016-02-09

16:01:50

2016-02-09

16:18:35

2016-02-09

16:18:35

Comments on alignment of

SCC text with multi-view

and scalable

C. Gisquet, G. Laroche,

P. Onno (Canon)

JCTVC-W0077 m37714 2016-02-09

16:24:24

2016-02-09

22:20:28

2016-02-25

16:30:23

Bug fix for DPB operations

when current picture is a

reference picture

X. Xu, S. Liu, S. Lei

(MediaTek)

JCTVC-W0078 m37716 2016-02-09

17:35:32

2016-02-09

17:46:31

2016-02-21

19:23:26

Bottom-up hash value

calculation and validity

check for SCC

W. Xiao (Xidian Univ.),

B. Li, J. Xu (Microsoft)

JCTVC-W0079 m37717 2016-02-09

18:23:13

2016-02-09

18:26:07

2016-02-09

18:26:07

HDR CE7-related:

Additional results for

Experiment 7.2a

M. Naccari,

M. Pindoria, A. Cotton

(BBC)

JCTVC-W0080 m37718 2016-02-09

18:33:14

2016-02-15

15:15:59

2016-02-15

15:15:59

Crosscheck of HDR CE5.3.1

(JCTVC-W0069)

J. Samuelsson,

M. Pettersson, J. Strom

(Ericsson)

JCTVC-W0081 m37719 2016-02-09

18:39:58

2016-02-16

11:25:29

2016-02-16

11:25:29

Crosscheck of Luma delta

QP adjustment based on

video statistical information

J. Samuelsson, J. Ström,

P. Hermansson

(Ericsson)

Page: 278 Date Saved: 2016-06-03

(JCTVC-W0039)

JCTVC-W0082 m37720 2016-02-09

19:33:24

2016-02-09

19:39:31

2016-02-09

19:39:31 Withdrawn

JCTVC-W0083 m37722 2016-02-09

20:36:32

2016-02-20

14:35:38

2016-02-20

14:35:38 Withdrawn

JCTVC-W0084 m37723 2016-02-09

21:05:09

2016-02-09

21:57:17

2016-02-20

08:58:01

HDR CE2: CE2.a-2, CE2.c,

CE2.d and CE2.e-3

T. Lu, F. Pu, P. Yin,

T. Chen, W. Husak

(Dolby), Y. He,

L. Kerofsky, Y. Ye

(InterDigital)

JCTVC-W0085 m37724 2016-02-09

21:08:38

2016-02-16

21:35:50

2016-02-19

07:47:20

HDR CE2 related: Further

Improvement of JCTVC-

W0084

T. Lu, F. Pu, P. Yin,

T. Chen, W. Husak

(Dolby), Y. He,

L. Kerofsky, Y. Ye

(InterDigital)

JCTVC-W0086 m37725 2016-02-09

21:10:04

2016-02-09

21:58:24

2016-02-25

16:32:33

Indication of SMPTE 2094-

10 metadata in HEVC

R. Yeung, S. Qu, P. Yin,

T. Lu, T. Chen,

W. Husak (Dolby)

JCTVC-W0087 m37726 2016-02-09

21:13:29

2016-02-09

21:59:16

2016-02-09

21:59:16

Description of Color Graded

SDR content for HDR/WCG

Test Sequences

P. J. Warren,

S. M. Ruggieri,

W. Husak, T. Lu,

P. Yin, F. Pu (Dolby)

JCTVC-W0088 m37727 2016-02-09

21:46:55

2016-02-09

21:51:42

2016-02-09

21:51:42

SDR backward

compatibility requirements

for HEVC HDR extension

L. van de Kerkhof,

W. de Haan (Philips),

E. Francois

(Technicolor)

JCTVC-W0089 m37729 2016-02-09

22:02:39

2016-02-15

17:37:18

2016-02-19

19:19:40

HDR CE2-related: some

experiments on reshaping

with input SDR

Y. Olivier, E. Francois,

C. Chevance

JCTVC-W0090 m37730 2016-02-09

22:22:53

2016-02-15

14:58:41

2016-02-15

14:58:41

HDR CE3: Results of

subjective evaluations

conducted with the DSIS

method

Martin Rerabek,

Philippe Hanhart,

Touradj Ebrahimi

JCTVC-W0091 m37731 2016-02-09

22:29:10

2016-02-15

14:58:53

2016-02-15

14:58:53

HDR CE3: Benchmarking

of objective metrics for

HDR video quality

assessment

Philippe Hanhart,

Touradj Ebrahimi

JCTVC-W0092 m37732 2016-02-09

23:05:53

2016-02-09

23:12:09

2016-02-10

15:39:18

Description of the

Exploratory Test Model

(ETM) for HDR/WCG

extension of HEVC

K. Minoo (Arris), T. Lu,

P. Yin (Dolby),

L. Kerofsky

(InterDigital),

D. Rusanovskyy

(Qualcomm),

E. Francois

(Technicolor)

JCTVC-W0093 m37734 2016-02-09

23:24:49

2016-02-10

09:34:25

2016-02-21

07:54:13

HDR CE2: Report of CE2.a-

3, CE2.c and CE2.d

experiments (for reshaping

setting 2)

Yue Yu, Zhouye Gu

Koohyar Mino, David

Baylon, Ajay Luthra

JCTVC-W0094 m37735 2016-02-09

23:30:23

2016-02-10

09:35:55

2016-02-21

07:55:13

HDR CE2: Report of CE2.b-

2, CE2.c and CE2.d

experiments (for reshaping

setting 2)

Zhouye Gu, Koohyar

Minoo, Yue Yu, David

Baylon, Ajay Luthra

JCTVC-W0095 m37736 2016-02-09

23:38:58

2016-02-10

05:16:13

2016-02-27

00:57:10

SHVC verification test

results

Y. He, Y. Ye

(InterDigital), Hendry,

Y.-K Wang

(Qualcomm),

V. Baroncini (FUB)

JCTVC-W0096 m37737 2016-02-09

23:58:28

2016-02-20

19:06:01

2016-02-20

19:06:01

Proposed editorial

improvements to HEVC

Screen Content Coding

Draft Text 5

R. Joshi, G. Sullivan,

J. Xu, Y. Ye, S. Liu, Y.-

K. Wang, G. Tech

Page: 279 Date Saved: 2016-06-03

JCTVC-W0097 m37740 2016-02-10

00:41:24

2016-02-10

07:49:18

2016-02-21

00:15:50

HDR CE2: CE2.c-Chroma

QP offset study report

D.Rusanovskyy, J.Sole,

A.K.Ramasubramonian,

D. B. Sansli,

M. Karczewicz

(Qualcomm)

JCTVC-W0098 m37741 2016-02-10

03:33:39

2016-02-10

03:44:15

2016-02-10

03:44:15

Effective Colour Volume

SEI

A. Tourapis, Y. Su,

D. Singer (Apple Inc.)

JCTVC-W0099 m37742 2016-02-10

04:19:52

2016-02-10

07:36:09

2016-02-21

19:23:20

HDR CE5 test 3: Constant

Luminance results

J. Sole,

D. Rusanovskyy,

A. Ramasubramonian,

D. Bugdayci,

M. Karczewicz

(Qualcomm)

JCTVC-W0100 m37743 2016-02-10

04:21:59

2016-02-10

09:48:12

2016-02-21

21:05:21

HDR CE2-related: Results

for combination of CE1

(anchor 3.2) and CE2

J. Sole,

A. Ramasubramonian,

D. Rusanovskyy,

D. Bugdayci,

M. Karczewicz

(Qualcomm)

JCTVC-W0101 m37744 2016-02-10

07:08:41

2016-02-10

10:48:46

2016-02-21

22:00:00

HDR CE2: Report on

CE2.a-1 LCS

A. K. Ramasubramonian

, J. Sole,

D. Rusanovskyy,

D. Bugdayci,

M. Karczewicz

JCTVC-W0102 m37745 2016-02-10

08:06:18 Withdrawn

JCTVC-W0103 m37746 2016-02-10

08:22:29

2016-02-10

10:11:34

2016-02-23

19:53:45

HDR CE6: Test 4.1

Reshaper from m37064

D. B. Sansli,

A. K. Ramasubramonian

, D. Rusanovskyy,

J. Sole, M. Karczewicz

(Qualcomm)

JCTVC-W0104 m37747 2016-02-10

08:55:26

2016-02-10

08:58:13

2016-02-10

08:58:13

Comparison of Compression

Performance of HEVC

Screen Content Coding

Extensions Test Model 6

with AVC High 4:4:4

Predictive profile

B. Li, J. Xu,

G. J. Sullivan

(Microsoft)

JCTVC-W0105 m37748 2016-02-10

09:32:56

2016-02-19

15:04:38

2016-02-19

15:04:38

Evaluation of Chroma

Subsampling for High

Dynamic Range Video

Compression

R. Boitard,

M. T. Pourazad,

P. Nasiopoulos

JCTVC-W0106 m37749 2016-02-10

09:36:36

2016-02-20

16:35:32

2016-02-20

16:35:32

Evaluation of Backward-

compatible HDR

Transmission Pipelines

M. Azimi, R. Boitard,

M. T. Pourazad,

P. Nasiopoulos

JCTVC-W0107 m37758 2016-02-10

23:54:29

2016-02-10

23:57:42

2016-02-18

08:05:29

Closed form HDR 4:2:0

chroma subsampling (HDR

CE1 and AHG5 related)

Andrey Norkin (Netflix)

JCTVC-W0108 m37759 2016-02-11

02:18:23

2016-02-11

14:53:04

2016-02-11

14:53:04

Cross-check report on

HDR/WCG CE1 new

anchor generation

D. Jun, J. Lee,

J. W. Kang (ETRI)

JCTVC-W0109 m37765 2016-02-11

09:12:58

2016-02-19

18:29:56

2016-02-19

18:29:56

CE6-related: xCheck of CE6

4.1 Robert Brondijk

JCTVC-W0110 m37771 2016-02-11

17:05:32

2016-02-11

17:23:41

2016-02-11

18:45:31

HDR CE7: Comments on

visual quality and

compression performance of

HLG for SDR backward

compatible HDR coding

system

E. Francois, Y. Olivier,

C. Chevance

(Technicolor)

JCTVC-W0111 m37795 2016-02-13

00:50:28

2016-02-17

00:23:06

2016-02-17

00:23:06

Cross-check of JCTVC-

W0107: Closed form HDR

4:2:0 chroma subsampling

A. Tourapis

JCTVC-W0112 m37857 2016-02-15 2016-02-19 2016-02-19 HDR CE2: crosscheck of C. Chevance, Y. Olivier

Page: 280 Date Saved: 2016-06-03

14:59:17 11:22:36 11:22:36 CE2.a-2, CE2.c, CE2.d and

CE2.e-3 (JCTVC-W0084)

(Technicolor)

JCTVC-W0113 m37858 2016-02-15

14:59:43

2016-02-19

18:20:55

2016-02-19

18:20:55

HDR CE2: crosscheck of

CE2.a-1 LCS (JCTVC-

W0101)

C. Chevance, Y. Olivier

(Technicolor)

JCTVC-W0114 m37859 2016-02-15

14:59:56

2016-02-19

15:47:00

2016-02-19

15:47:00

HDR CE6: crosscheck of

CE6.4.3 (JCTVC-W0063)

C. Chevance, Y. Olivier

(Technicolor)

JCTVC-W0115 m37950 2016-02-16

00:52:50

2016-02-19

15:30:20

2016-02-20

16:45:28

Software implementation of

visual information fidelity

(VIF) for HDRTools

H. R. Tohidypour,

M. Azimi,

M. T. Pourazad,

P. Nasiopoulos

JCTVC-W0116 m37967 2016-02-16

07:57:02

2016-02-16

08:14:41

2016-02-16

08:14:41

Cross-check of SCC encoder

improvement (JCTVC-

W0042)

B. Li, J. Xu (Microsoft)

JCTVC-W0117 m37968 2016-02-16

07:57:56

2016-02-17

04:17:14

2016-02-19

07:21:34

Cross-check of Non-

normative HM encoder

improvements (JCTVC-

W0062)

B. Li, J. Xu (Microsoft)

JCTVC-W0118 m37971 2016-02-16

08:39:06

2016-02-19

10:45:11

2016-02-19

10:45:11

Crosscheck for bottom-up

hash value calculation and

validity check for SCC

(JCTVC-W0078)

W. Zhang (Intel)

JCTVC-W0119 m37979 2016-02-16

10:45:26

2016-02-16

10:55:36

2016-02-19

07:40:40

Some considerations on hue

shifts observed in HLG

backward compatible video

M. Pindoria,

M. Naccari, T. Borer,

A. Cotton (BBC)

JCTVC-W0120 m37982 2016-02-16

11:19:39

2016-02-17

06:50:37

2016-02-17

06:50:37

Cross-check of JCTVC-

W0085

J. Lee, J. W. Kang,

D. Jun, H. Ko (ETRI)

JCTVC-W0121 m37995 2016-02-17

02:01:27

2016-02-19

07:22:24

2016-02-19

07:22:24

HDR CE2: cross-check

report of JCTVC-W0033 T. Lu, F. Pu, P. Yin

JCTVC-W0122 m37996 2016-02-17

02:09:23

2016-02-20

01:24:50

2016-02-20

01:24:50

HDR CE2: cross-check

report of JCTVC-W0097 T. Lu, F. Pu, P. Yin

JCTVC-W0123 m38008 2016-02-17

06:58:56

2016-02-17

10:50:39

2016-02-17

10:50:39

HDR CE6: cross-check

report of test4.2: Color

enhancement (JCTVC-

W0034)

E. Alshina(Samsung)

JCTVC-W0124 m38009 2016-02-17

06:58:58 Withdrawn

JCTVC-W0125 m38039 2016-02-17

19:56:41

2016-02-17

19:59:11

2016-02-21

21:14:35

CE6-related: Cross check

report for Test 4.1 Reshaper

from m37064

M. Naccari (BBC)

JCTVC-W0126 m38061 2016-02-18

13:20:40

2016-02-18

13:22:16

2016-02-19

05:25:30

Preliminary study of

filtering performance in

HDR10 pipeline

K. Pachauri, Aishwarya

JCTVC-W0127 m38065 2016-02-18

18:26:04

2016-02-19

17:37:39

2016-02-19

17:37:39

Cross-check of JCTVC-

W0075 on palette encoder

improvements for lossless

mode

V. Seregin (Qualcomm)

JCTVC-W0128 m38067 2016-02-18

20:30:49

2016-02-19

20:23:08

2016-02-21

09:51:35

HDR CE2: Cross-check of

JCTVC-W0084 (combines

solution for CE2.a-2, CE2.c,

CE2.d and CE2.e-3)

D. Rusanovskyy

JCTVC-W0129 m38069 2016-02-18

22:55:36

2016-02-18

22:58:20

2016-02-19

18:35:23

SCC Level Limits Based on

Chroma Format

S. Deshpande, S.-H.

Kim

JCTVC-W0130 m38081 2016-02-19

09:23:25

2016-02-20

00:45:24

2016-02-20

00:45:24

Crosscheck for further

improvement of HDR CE2

(JCTVC-W0085)

Y. Wang, W. Zhang,

Y. Chiu (Intel)

JCTVC-W0131 m38091 2016-02-19

18:33:32

2016-02-19

18:38:04

2016-02-19

21:29:28

HDR CE2: cross-check

report of CE2.b-2, CE2.c

and CE2.d experiments

(JCTVC-W0094)

C. Chevance, Y. Olivier

(Technicolor)

Page: 281 Date Saved: 2016-06-03

JCTVC-W0132 m38118 2016-02-21

21:44:08

2016-02-21

21:46:38

2016-02-21

21:46:38

Information and Comments

on Hybrid Log Gamma J. Holm

JCTVC-W0133 m38127 2016-02-22

02:27:58

2016-02-22

02:32:32

2016-02-26

16:47:23

Indication of SMPTE 2094-

20 metadata in HEVC

Wiebe de Haan, Leon

van de Kerkhof, Rutger

Nijland

JCTVC-W0134 m38157 2016-02-23

04:08:33

2016-02-23

04:22:30

2016-02-24

04:46:38

SHM software

modifications for multi-view

support

X. Huang (USTC),

M. M. Hannuksela

(Nokia)

JCTVC-W0135 m38159 2016-02-23

06:34:55

2016-02-23

18:57:49

2016-02-23

18:57:49

Some Elementary Thoughts

on HDR Backward

Compatibility

P. Topiwala (FastVDO)

JCTVC-W0136 m37671 2016-02-08

04:36:30 Withdrawn

JCTVC-W0138 m38177 2016-02-24

20:24:58

2016-02-24

20:26:31

2016-02-24

20:26:31 Withdrawn

JCTVC-W1000 m38208 2016-03-04

21:22:49

Meeting Report of the 23rd

JCT-VC Meeting (19â€―26

February 2016, San Diego,

USA)

G. J. Sullivan, J.-R.

Ohm (chairs)

JCTVC-W1002 m38212 2016-03-04

22:21:45

2016-05-18

15:27:23

2016-05-18

15:27:23

High Efficiency Video

Coding (HEVC) Test Model

16 (HM 16) Update 5 of

Encoder Description

C. Rosewarne, B. Bross,

M. Naccari,

K. Sharman,

G. J. Sullivan (editors)

JCTVC-W1003 m38210 2016-03-04

21:36:52

2016-03-19

06:06:22

2016-03-19

06:06:22

Draft text for ICtCp support

in HEVC (Draft 1)

P. Yin, C. Fogg,

G. J. Sullivan,

A. Tourapis (editors)

JCTVC-W1004 m38213 2016-03-04

22:25:26

2016-03-19

02:02:35

2016-03-19

02:02:35

Verification Test Report for

Scalable HEVC (SHVC)

Y. Ye, V. Baroncini, Y.-

K. Wang (editors)

JCTVC-W1005 m38214 2016-03-04

22:30:44

2016-03-24

06:50:38

2016-05-14

04:00:14

HEVC Screen Content

Coding Draft Text 6

R. Joshi, S. Liu,

G. J. Sullivan, Y.-K.

Wang, J. Xu, Y. Ye

(editors)

JCTVC-W1008 m38215 2016-03-04

22:34:16

2016-05-21

10:06:24

2016-05-21

10:06:24

Conformance Testing for

SHVC Draft 5

J. Boyce,

A. K. Ramasubramonian

(editors)

JCTVC-W1011 m38209 2016-03-04

21:33:14

Reference Software for

Screen Content Coding

Draft 1

K. Rapaka, B. Li,

X. Xiu (editors)

JCTVC-W1012 m38217 2016-03-04

22:42:50

Conformance Testing for

Improved HEVC Version 1

Testing and Format Range

Extensions Profiles Draft 6

T. Suzuki, K. Kazui

(editors)

JCTVC-W1013 m38216 2016-03-04

22:38:40

2016-05-03

20:43:32

2016-05-03

20:43:32

Reference software for

Scalable HEVC (SHVC)

Extensions Draft 4

Y. He, V. Seregin

(editors)

JCTVC-W1014 m38218 2016-03-04

22:45:07

2016-05-23

07:12:07

2016-05-23

07:12:07

Screen Content Coding Test

Model 7 Encoder

Description (SCM 7)

R. Joshi, J. Xu,

R. Cohen, S. Liu, Y. Ye

(editors)

JCTVC-W1016 m38219 2016-03-04

22:46:53

2016-05-24

08:09:20

2016-05-24

08:09:20

Conformance Testing for

HEVC Screen Content

Coding (SCC) Extensions

Draft 1

R. Joshi, J. Xu (editors)

JCTVC-W1017 m38176 2016-02-24

20:02:57

2016-02-24

20:04:25

2016-02-27

03:43:32

Conversion and Coding

Practices for HDR/WCG

Video, Draft 1

J. Samuelsson (editor)

JCTVC-W1018 m38193 2016-02-26

03:49:05

2016-02-26

19:38:33

2016-03-11

15:39:16

Verification Test Plan for

HDR/WCG Video Coding

Using HEVC Main 10

Profile

R. Sjöberg,

V. Baroncini,

A. K. Ramasubramonian

(editors)

JCTVC-W1020 m38220 2016-03-04 2016-03-05 2016-03-05 Common Test Conditions E. Francois, J. Sole,

Page: 282 Date Saved: 2016-06-03

22:57:00 02:36:50 02:36:50 for HDR/WCG Video

Coding Experiments

J. Ström, P. Yin

(editors)

Page: 283 Date Saved: 2016-06-03

Annex B to JCT-VC report:

List of meeting participants

The participants of the twenty-third meeting of the JCT-VC, according to a sign-in sheet

circulated during the meeting sessions (approximately 159 people in total), were as follows:

Page: 284 Date Saved: 2016-06-03

1. Anne Aaron (Netflix)

2. Massimiliano Agostinelli (Trellis Management)

3. Yong-Jo Ahn (Kwangwoon Univ. (KWU))

4. Elena Alshina (Samsung Electronics)

5. Peter Amon (Siemens AG)

6. Alessandro Artusi (Trellis)

7. Maryam Azimi (Univ. British Columbia)

8. Giovanni Ballocca (Sisvel Tech)

9. Yukihiro Bandoh (NTT)

10. Vittorio Baroncini (Fondazione Ugo Bordoni)

11. Guillaume Barroux (Fujitsu Labs)

12. David Baylon (Arris)

13. Ronan Boitard (Univ. British Columbia)

14. Jill Boyce (Intel)

15. Robert Brondijk (Philips)

16. Madhukar Budagavi (Samsung Research)

17. Done Bugdayci Sansli (Qualcomm Tech.)

18. Eric (Chi W.) Chai (Real Commun.)

19. Alan Chalmers (Univ. Warwick)

20. Yao-Jen Chang (ITRI Intl.)

21. Chun-Chi Chen (NCTU/ITRI)

22. Jianle Chen (Qualcomm)

23. Peisong Chen (Broadcom)

24. Weizhong Chen (Huawei)

25. Yi-Jen Chiu (Intel)

26. Hae Chul Choi (Hanbat Nat. Univ.)

27. Jangwan Choi (LG Electronics)

28. Kiho Choi (Samsung Electronics)

29. Takeshi Chujoh (Toshiba)

30. Gordon Clare (Orange Labs FT)

31. David Daniels (Sky)

32. Wiebe De Haan (Philips)

33. Andre Dias (BBC)

34. Alberto Duenas (NGCodec)

35. Alexey Filippov (Huawei)

36. Chad Fogg (MovieLabs)

37. Edouard François (Technicolor)

38. Wen Gao (Harmonic)

39. Christophe Gisquet (Canon Research France)

40. Dan Grois (Fraunhofer HHI)

41. Zhouye Gu (Arris)

42. Miska Hannuksela (Nokia)

43. Ryoji Hashimoto (Renesas)

44. Shinobu Hattori (Fox)

45. Yuwen He (InterDigital Commun.)

46. Fnu Hendry (Qualcomm)

47. Dzung Hoang (Freescale Semiconductor)

48. Seungwook Hong (Arris)

49. Yu-Wen Huang (MediaTek)

50. Walt Husak (Dolby Labs)

51. Roberto Iacoviello (RAI)

52. Atsuro Ichigaya (NHK (Japan Broadcasting Corp.))

Page: 285 Date Saved: 2016-06-03

53. Tomohiro Ikai (Sharp)

54. Masaru Ikeda (Sony)

55. Shunsuke Iwamura (NHK (Japan Broadcasting Corp.))

56. Wonkap Jang (Vidyo)

57. Rajan Joshi (Qualcomm)

58. Dongsan Jun (ETRI)

59. Cheolkon Jung (Xi'dian Univ.)

60. Jung Won Kang (Electronics and Telecom Research Institute (ETRI))

61. Kei Kawamura (KDDI)

62. Louis Kerofsky (Interdigital)

63. Dae Yeon Kim (Chips & Media)

64. Ilseung Kim (Hanyang Univ.)

65. Jungsun Kim (MediaTek USA)

66. Namuk Kim (Sungkyunkwan Univ. (SKKU))

67. Seung-Hwan Kim (Sharp)

68. Hyunsuk Ko (Electronics and Telecom Research Institute (ETRI))

69. Konstantinos Konstantinides (Dolby Labs)

70. Patrick Ladd (Comcast Cable)

71. PoLin (Wang) Lai (Mediatek USA)

72. Jani Lainema (Nokia)

73. Fabrice Le Léannec (Technicolor)

74. Dongkyu Lee (Kwangwoon Univ.)

75. Jinho Lee (Electronics and Telecom Research Institute (ETRI))

76. Junghyun Lee (Hanyang Univ.)

77. Yung-Lyul Lee (Sejong Univ.)

78. Shawmin Lei (MediaTek)

79. Min Li (Qualcomm)

80. Ming Li (ZTE)

81. Chongsoon Lim (Panasonic)

82. Sung-Chang Lim (Electronics and Telecom Research Institute (ETRI))

83. Ching-Chieh Lin (ITRI Intl.)

84. Shan Liu (MediaTek)

85. Ang Lu (Zhejiang Univ.)

86. Taoran Lu (Dolby)

87. Ajay Luthra (Arris)

88. Xiang Ma (Huawei)

89. Dimitrie Margarit (Sigma Designs)

90. Detlev Marpe (Fraunhofer HHI)

91. Akira Minezawa (Mitsubishi Electric)

92. Koohyar Minoo (Arris)

93. Matteo Naccari (BBC R&D)

94. Ohji Nakagami (Sony)

95. Tung Nguyen (Fraunhofer HHI)

96. Andrey Norkin (Netflix)

97. Hyun Mook Oh (LG Electronics)

98. Jens-Rainer Ohm (RWTH Aachen Univ.)

99. Peshela Pahelawatta (DirecTV)

100. Hao Pan (Apple)

101. Manindra Parhy (Nvidia)

102. Tom Paridaens (Ghent Univ. - iMinds)

103. Nidhish Parikh (Nokia)

104. Min Woo Park (Samsung Electronics)

Page: 286 Date Saved: 2016-06-03

105. Youngo Park (Samsung Electronics)

106. Pierrick Philippe (Orange Labs FT)

107. Tangi Poirier (Technicolor)

108. Mahsa T. Pourazad (Telus Commun. & UBC)

109. Fangjun Pu (Dolby Labs)

110. Adarsh Krishnan Ramasubramonian (Qualcomm Tech.)

111. Krishnakanth Rapaka (Qualcomm Tech.)

112. Justin Ridge (Nokia)

113. Christopher Rosewarne (CiSRA / Canon)

114. Dmytro Rusanovskyy (Qualcomm)

115. Jonatan Samuelsson (LM Ericsson)

116. Chris Seeger (NBC Universal)

117. Andrew Segall (Sharp)

118. Vadim Seregin (Qualcomm)

119. Masato Shima (Canon)

120. Robert Skupin (Fraunhofer HHI)

121. Joel Sole Rojals (Qualcomm)

122. Ranga Ramanujam Srinivasan (Texas Inst.)

123. Alan Stein (Technicolor)

124. Jacob Ström (Ericsson)

125. Yeping Su (Apple)

126. Karsten Sühring (Fraunhofer HHI)

127. Gary Sullivan (Microsoft)

128. Haiwei Sun (Panasonic)

129. Teruhiko Suzuki (Sony)

130. Maxim Sychev (Huawei Tech.)

131. Yasser Syed (Comcast Cable)

132. Han Boon Teo (Panasonic)

133. Herbert Thoma (Fraunhofer IIS)

134. Emmanuel Thomas (TNO)

135. Pankaj Topiwala (FastVDO)

136. Alexandros Tourapis (Apple)

137. Jih-Sheng Tu (ITRI international)

138. Yi-Shin Tung (ITRI USA / MStar Semi.)

139. Rahul Vanam (InterDigital Commun.)

140. Wade Wan (Broadcom)

141. Ye-Kui Wang (Qualcomm)

142. James Welch (Ineoquest)

143. Stephan Wenger (Vidyo)

144. Ping Wu (ZTE UK)

145. Xiangjian Wu (Kwangwoon Univ.)

146. Xiaoyu Xiu (InterDigital Commun.)

147. Jizheng Xu (Microsoft)

148. Xiaozhong Xu (MediaTek)

149. Haitao Yang (Huawei Tech.)

150. Yan Ye (InterDigital Commun.)

151. Peng Yin (Dolby Labs)

152. Lu Yu (Zhejiang Univ.)

153. Yue Yu (Arris)

154. Wenhao Zhang (Intel)

155. Xin Zhao (Qualcomm)

156. Zhijie Zhao (Huawei Tech.)

Page: 287 Date Saved: 2016-06-03

157. Jiantong Zhou (Huawei Tech.)

158. Minhua Zhou (Broadcom)

159. Feng Zou (Qualcomm Tech.)

Page: 288 Date Saved: 2016-06-03

– JCT-3V report

Source: Jens Ohm and Gary Sullivan, Chairs

Summary The Joint Collaborative Team on 3D Video Coding Extension Development (JCT-3V) of ITU-T

WP3/16 and ISO/IEC JTC 1/ SC 29/ WG 11 held its fourteenth meeting during 22–26 Feb 2016

at the San Diego Marriott La Jolla in San Diego, US. The JCT-3V meeting was held under the

chairmanship of Dr Jens-Rainer Ohm (RWTH Aachen/Germany) and Dr Gary Sullivan

(Microsoft/USA). For rapid access to particular topics in this report, a subject categorization is

found (with hyperlinks) in section 1.14 of this document.

The meeting was mainly held in a ―single track‖ fashion, with few breakout activities (as

documented in this report) held in parallel. All relevant decisions were made in plenaries when

one of the chairs was present.

The JCT-3V meeting sessions began at approximately 1900 hours on Monday 22 Feb 2016.

Meeting sessions were held as documented in the sections below until the meeting was closed at

approximately 1758 hours on Thursday 25 Feb 2016. Approximately 9 people attended the JCT-

3V meeting, and approximately 6 input documents and 5 AHG reports were discussed (for one

document, JCT3V-N0027, no presenter was available). The meeting took place in a collocated

fashion with a meeting of WG11 – one of the two parent bodies of the JCT-3V. The subject

matter of the JCT-3V meeting activities consisted of work on 3D extensions of the Advanced

Video Coding (AVC) and the High Efficiency Video Coding (HEVC) standards.

The primary goals of the meeting were to review the work that was performed in the interim

period since the thirteenth JCT-3V meeting in producing

Draft 4 of Alternative Depth Info SEI Message (ISO/IEC 14496-10:2014/DAM3, for

ballot)

Software of Alternative Depth Info SEI (ISO/IEC 14496-5:2001/PDAM42, for ballot)

MV-HEVC Software Draft 5 (ISO/IEC 23008-5:2015 FDAM4, for ballot)

3D-HEVC Software Draft 3

3D-HEVC Verification Test Report

MV-HEVC Verification Test Plan

Furthermore, the JCT-3V reviewed technical input documents. The JCT-3V produced 4

particularly important output documents from the meeting:

Draft 2 of Software of Alternative Depth Info SEI (ISO/IEC 14496-5:2001/DAM42, for

ballot)

MV-HEVC and 3D-HEVC Conformance Draft 4 (to be integrated in ISO/IEC FDIS

23008-8:201x 2nd ed., for ballot)

3D-HEVC Software Draft 4 (to be integrated in ISO/IEC FDIS 23008-5:201x 2nd ed., for

ballot)

MV-HEVC Verification Test Report

Page: 289 Date Saved: 2016-06-03

For the organization and planning of its future work, the JCT-3V established 3 "Ad Hoc Groups"

(AHGs) to progress the work on particular subject areas. The next JCT-3V meeting is planned

during 27–31 May 2016 under ITU-T auspices in Geneva, CH.

The document distribution site http://phenix.it-sudparis.eu/jct3v/ was used for distribution of all

documents.

The reflector to be used for discussions by the JCT-3V and all of its AHGs is [email protected]

aachen.de.

1 Administrative topics

1.1 Organization

The ITU-T/ISO/IEC Joint Collaborative Team on 3D Video Coding Extension Development

(JCT-3V) is a group of video coding experts from the ITU-T Study Group 16 Visual Coding

Experts Group (VCEG) and the ISO/IEC JTC 1/ SC 29/ WG 11 Moving Picture Experts Group

(MPEG). The parent bodies of the JCT-3V are ITU-T WP3/16 and ISO/IEC

JTC 1/SC 29/WG 11.

1.2 Meeting logistics

The JCT-3V meeting sessions began at approximately 1400 hours on Monday 22 Feb 2016.

Meeting sessions were held as documented in the sections below until the meeting was closed at

approximately 1758 hours on Thursday 25 Feb 2016. Approximately 9 people attended the JCT-

3V meeting, and approximately 6 input documents and 5 AHG reports were discussed (for one

document, JCT3V-N0027, no presenter was available). The meeting took place in a collocated

fashion with a meeting of WG11 – one of the two parent bodies of the JCT-3V. The subject

matter of the JCT-3V meeting activities consisted of work on 3D extensions of the Advanced

Video Coding (AVC) and the High Efficiency Video Coding (HEVC) standards.

Information regarding preparation and logistics arrangements for the meeting had been provided

via the email reflector [email protected] and at http://wftp3.itu.int/av-arch/jct3v-

site/2016_02_N_SanDiego/.

1.3 Documents and document handling considerations

1.3.1 General

The documents of the JCT-3V meeting are listed in Annex A of this report. The documents can

be found at http://phenix.it-sudparis.eu/jct3v/.

Registration timestamps, initial upload timestamps, and final upload timestamps are listed in

Annex A of this report (as of the time of preparation of this report).

Document registration and upload times and dates listed in Annex A and in headings for

documents in this report are in Paris/Geneva time. Dates mentioned for purposes of describing

events at the meeting (rather than as contribution registration and upload times) follow the local

time at the meeting facility.

Highlighting of recorded decisions in this report:

Decisions made by the group that affect the normative content of the draft standard are

identified in this report by prefixing the description of the decision with the string

"Decision:".

Decisions that affect the reference software but have no normative effect on the text are

marked by the string "Decision (SW):".

Page: 290 Date Saved: 2016-06-03

Decisions that fix a bug in the specification (an error, oversight, or messiness) are marked

by the string "Decision (BF):".

Decisions regarding things that correct the text to properly reflect the design intent, add

supplemental remarks to the text, or clarify the text are marked by the string "Decision

(Ed.):".

Decisions regarding simplification or improvement of design consistency are marked by

the string "Decision (Simp.):".

Decisions regarding complexity reduction (in terms of processing cycles, memory

capacity, memory bandwidth, line buffers, number of contexts, number of context-coded

bins, etc.) … "Decision (Compl.):"

This meeting report is based primarily on notes taken by the chairs and projected (if possible) for

real-time review by the participants during the meeting discussions. The preliminary notes were

also circulated publicly by ftp (http://wftp3.itu.int/av-arch/jct3v-site/) during the meeting on a

daily basis. Considering the high workload of this meeting and the large number of contributions,

it should be understood by the reader that 1) some notes may appear in abbreviated form, 2)

summaries of the content of contributions are often based on abstracts provided by contributing

proponents without an intent to imply endorsement of the views expressed therein, and 3) the

depth of discussion of the content of the various contributions in this report is not uniform.

Generally, the report is written to include as much discussion of the contributions and

discussions as is feasible in the interest of aiding study, although this approach may not result in

the most polished output report.

1.3.2 Late and incomplete document considerations

The formal deadline for registering and uploading non-administrative contributions had been

announced as Monday, 15 Feb 2016. Non-administrative documents uploaded after 2359 hours

in Paris/Geneva time Tuesday 16 Feb 2016 were considered "officially late". One late

contribution (JCT3V-N0027) was observed, which however was not presented as no owner was

available when it was called to be discussed.

1.3.3 Outputs of the preceding meeting

The report documents of the previous meeting, particularly the meeting report (JCT3V-M1000),

the 3D-HEVC verification test report (JCT3V-M1001), the MV-HEVC verification test plan v4

(JCT3V-M1002), the Draft 4 of Texture/Depth packing SEI (JCT3V-M1006) and associated

software draft 1 (JCT3V-M1005), MV-HEVC Software Draft 5 (JCT3V-M1009), and the 3D-

HEVC Software Draft 3 (JCT3V-M1012), which had been produced in the interim period, were

approved. The HTM reference software package produced by AHG3 on software development,

and the software technical evaluations were also approved.

All output documents of the previous meeting and the software had been made available in a

reasonably timely fashion.

The chairs asked if there were any issues regarding potential mismatches between perceived

technical content prior to adoption and later integration efforts. It was also asked whether there

was adequate clarity of precise description of the technology in the associated proposal

contributions.

1.4 Attendance

The list of participants in the JCT-3V meeting can be found in Annex B of this report.

Page: 291 Date Saved: 2016-06-03

The meeting was open to those qualified to participate either in ITU-T WP3/16 or ISO/IEC

JTC 1/ SC 29/ WG 11 (including experts who had been personally invited by the Chairs as

permitted by ITU-T or ISO/IEC policies).

Participants had been reminded of the need to be properly qualified to attend. Those seeking

further information regarding qualifications to attend future meetings may contact the Chairs.

1.5 Agenda

The agenda for the meeting was as follows:

IPR policy reminder and declarations

Opening remarks

Contribution document allocation

Reports of ad hoc group activities

Review of results of previous meeting

Consideration of contributions and communications on 3D video coding projects

guidance

Consideration of 3D video coding technology proposal contributions

Consideration of information contributions

Coordination activities

Future planning: Determination of next steps, discussion of working methods,

communication practices, establishment of coordinated experiments, establishment of

AHGs, meeting planning, refinement of expected standardization timeline, other planning

issues

Other business as appropriate for consideration

1.6 IPR policy reminder

Participants were reminded of the IPR policy established by the parent organizations of the JCT-

3V and were referred to the parent body websites for further information. The IPR policy was

summarized for the participants.

The ITU-T/ITU-R/ISO/IEC common patent policy shall apply. Participants were particularly

reminded that contributions proposing normative technical content shall contain a non-binding

informal notice of whether the submitter may have patent rights that would be necessary for

implementation of the resulting standard. The notice shall indicate the category of anticipated

licensing terms according to the ITU-T/ITU-R/ISO/IEC patent statement and licensing

declaration form.

This obligation is supplemental to, and does not replace, any existing obligations of parties to

submit formal IPR declarations to ITU-T/ITU-R/ISO/IEC.

Participants were also reminded of the need to formally report patent rights to the top-level

parent bodies (using the common reporting form found on the database listed below) and to

make verbal and/or document IPR reports within the JCT-3V as necessary in the event that they

are aware of unreported patents that are essential to implementation of a standard or of a draft

standard under development.

Some relevant links for organizational and IPR policy information are provided below:

http://www.itu.int/ITU-T/ipr/index.html (common patent policy for ITU-T, ITU-R, ISO,

and IEC, and guidelines and forms for formal reporting to the parent bodies)

Page: 292 Date Saved: 2016-06-03

http://ftp3.itu.int/av-arch/jct3v-site (JCT-3V contribution templates)

http://www.itu.int/ITU-T/studygroups/com16/jct-3v/index.html (JCT-3V general

information and founding charter)

http://www.itu.int/ITU-T/dbase/patent/index.html (ITU-T IPR database)

http://www.itscj.ipsj.or.jp/sc29/29w7proc.htm (JTC 1/ SC 29 Procedures)

It is noted that the ITU TSB director's AHG on IPR had issued a clarification of the IPR

reporting process for ITU-T standards, as follows, per SG 16 TD 327 (GEN/16):

"TSB has reported to the TSB Director‘s IPR Ad Hoc Group that they are receiving Patent

Statement and Licensing Declaration forms regarding technology submitted in Contributions

that may not yet be incorporated in a draft new or revised Recommendation. The IPR Ad

Hoc Group observes that, while disclosure of patent information is strongly encouraged as

early as possible, the premature submission of Patent Statement and Licensing Declaration

forms is not an appropriate tool for such purpose.

In cases where a contributor wishes to disclose patents related to technology in Contributions,

this can be done in the Contributions themselves, or informed verbally or otherwise in

written form to the technical group (e.g. a Rapporteur‘s group), disclosure which should then

be duly noted in the meeting report for future reference and record keeping.

It should be noted that the TSB may not be able to meaningfully classify Patent Statement

and Licensing Declaration forms for technology in Contributions, since sometimes there are

no means to identify the exact work item to which the disclosure applies, or there is no way

to ascertain whether the proposal in a Contribution would be adopted into a draft

Recommendation.

Therefore, patent holders should submit the Patent Statement and Licensing Declaration form

at the time the patent holder believes that the patent is essential to the implementation of a

draft or approved Recommendation."

The chairs invited participants to make any necessary verbal reports of previously-unreported

IPR in draft standards under preparation, and opened the floor for such reports: No such verbal

reports were made.

1.7 Software copyright disclaimer header reminder

It was noted that it is our understanding according to the practices of the parent bodies to make

reference software available under copyright license header language which is the BSD license

with preceding sentence declaring that contributor or third party rights are not granted, as e.g.

recorded in N10791 of the 89th meeting of ISO/IEC JTC 1/ SC 29/ WG 11. Both ITU and

ISO/IEC will be identified in the <OWNER> and <ORGANIZATION> tags in the header. This

software header is currently used in the process of designing the new HEVC standard and for

evaluating proposals for technology to be included in this design. Additionally, after

development of the coding technology, the software will be published by ITU-T and ISO/IEC as

an example implementation of the 3D video standard(s) and for use as the basis of products to

promote adoption of the technology. This is likely to require further communication with and

between the parent organizations.

The ATM, HTM and MFC software packages that are used in JCT-3V follow these principles.

The view synthesis software used for non-normative post processing is included in the HTM

package and also has the BSD header.

1.8 Communication practices

The documents for the meeting can be found at http://phenix.it-sudparis.eu/jct3v/. Furthermore,

the site http://ftp3.itu.int/av-arch/jct3v-site was used for distribution of the contribution

document template and circulation of drafts of this meeting report.

Page: 293 Date Saved: 2016-06-03

Communication of JCT-3V is performed via the list [email protected] (to subscribe or

unsubscribe, go to https://mailman.rwth-aachen.de/mailman/listinfo/jct-3v).

It was emphasized that reflector subscriptions and email sent to the reflector must use their real

names when subscribing and sending messages and must respond to inquiries regarding their

type of interest in the work.

It was emphasized that usually discussions concerning CEs and AHGs should be performed

using the reflector. CE internal discussions should primarily be concerned with organizational

issues. Substantial technical issues that are not reflected by the original CE plan should be openly

discussed on the reflector. Any new developments that are result of private communication

cannot be considered to be the result of the CE.

For the case of CE documents and AHG reports, email addresses of participants and contributors

may be obscured or absent (and will be on request), although these will be available (in human

readable format – possibly with some "obscurification") for primary CE coordinators and AHG

chairs.

1.9 Terminology

Note: Acronyms should be used consistently. For example, ―IV‖ is sometimes used for ―inter-

view‖ and sometimes for ―intra-view‖.

Some terminology used in this report is explained below:

AHG: Ad hoc group.

AMVP: Advanced motion vector prediction.

ARP: Advanced residual prediction.

ATM: AVC based 3D test model

AU: Access unit.

AUD: Access unit delimiter.

AVC: Advanced video coding – the video coding standard formally published as ITU-T

Recommendation H.264 and ISO/IEC 14496-10.

BD: Bjøntegaard-delta – a method for measuring percentage bit rate savings at equal

PSNR or decibels of PSNR benefit at equal bit rate (e.g., as described in document

VCEG-M33 of April 2001).

BoG: Break-out group.

BR: Bit rate.

B-VSP: Backward view synthesis prediction.

CABAC: Context-adaptive binary arithmetic coding.

CD: Committee draft – the first formal ballot stage of the approval process in ISO/IEC.

CE: Core experiment – a coordinated experiment conducted between two subsequent

JCT-3V meetings and approved to be considered a CE by the group.

Consent: A step taken in ITU-T to formally consider a text as a candidate for final

approval (the primary stage of the ITU-T "alternative approval process").

CPB: Coded picture buffer.

CTC: Common test conditions.

DBBP: Depth based block partitioning.

Page: 294 Date Saved: 2016-06-03

DC: Disparity compensation

DDD: Disparity derived depth (which uses the motion disparity vector to reconstruct a

certain block (PU) of the depth map)

DIS: Draft international standard – the second formal ballot stage of the approval process

in ISO/IEC.

DF: Deblocking filter.

DLT: Depth lookup table.

DMC: Depth based motion competition.

DMM: Depth modeling mode.

DPB: Decoded picture buffer.

DRPS: Depth-range parameter set.

DRWP: Depth-range based weighted prediction.

DT: Decoding time.

DV: Disparity vector

ET: Encoding time.

HEVC: High Efficiency Video Coding – the video coding standardization initiative

under way in the JCT-VC.

HLS: High-level syntax.

HM: HEVC Test Model – a video coding design containing selected coding tools that

constitutes our draft standard design – now also used especially in reference to the (non-

normative) encoder algorithms (see WD and TM).

HRD: Hypothetical reference decoder.

HTM: HEVC based 3D test model

IC: Illumination compensation

IDV: Implicit disparity vector

IVMP: Inside-view motion prediction (which means motion for depth component is

inherited from texture component motion)

IVRC: Inter-view residual prediction.

MC: Motion compensation.

MPEG: Moving picture experts group (WG 11, the parent body working group in

ISO/IEC JTC 1/ SC 29, one of the two parent bodies of the JCT-3V).

MPI: Motion parameter inheritance.

MV: Motion vector.

NAL: Network abstraction layer (HEVC/AVC).

NBDV: Neighboured block disparity vector (used to derive unavailable depth data from

reference view‘s depth map) and DoNBDV = depth oriented NBDV

NB: National body (usually used in reference to NBs of the WG 11 parent body).

Page: 295 Date Saved: 2016-06-03

NUT: NAL unit type (HEVC/AVC).

PDM: Predicted Depth Map

POC: Picture order count.

PPS: Picture parameter set (HEVC/AVC).

QP: Quantization parameter (as in AVC, sometimes confused with quantization step

size).

QT: Quadtree.

RA: Random access – a set of coding conditions designed to enable relatively-frequent

random access points in the coded video data, with less emphasis on minimization of

delay (contrast with LD). Often loosely associated with HE.

RAP: Random access picture.

R-D: Rate-distortion.

RDO: Rate-distortion optimization.

RDOQ: Rate-distortion optimized quantization.

REXT: Range extensions (of HEVC).

RPS: Reference picture set.

RQT: Residual quadtree.

SAO: Sample-adaptive offset.

SEI: Supplemental enhancement information (as in AVC).

SD: Slice data; alternatively, standard-definition.

SDC: Segment-wise DC coding.

SH: Slice header.

SHVC: Scalable HEVC.

SPS: Sequence parameter set (HEVC/AVC).

TSA: Temporal sublayer access.

Unit types:

o CTB: Coding tree block (luma or chroma) – unless the format is monochrome,

there are three CTBs per CTU.

o CTU: Coding tree unit (containing both luma and chroma, previously called

LCU)

o CB: Coding block (luma or chroma).

o CU: Coding unit (containing both luma and chroma).

o LCU: (formerly LCTU) largest coding unit (name formerly used for CTU before

finalization of HEVC version 1).

o PB: Prediction block (luma or chroma)

Page: 296 Date Saved: 2016-06-03

o PU: Prediction unit (containing both luma and chroma), with eight shape

possibilities.

2Nx2N: Having the full width and height of the CU.

2NxN (or Nx2N): Having two areas that each have the full width and half

the height of the CU (or having two areas that each have half the width

and the full height of the CU).

NxN: Having four areas that each have half the width and half the height

of the CU.

N/2x2N paired with 3N/2x2N or 2NxN/2 paired with 2Nx3N/2: Having

two areas that are different in size – cases referred to as AMP.

o TB: Transform block (luma or chroma).

o TU: Transform unit (containing both luma and chroma).

VCEG: Visual coding experts group (ITU-T Q.6/16, the relevant rapporteur group in

ITU-T WP3/16, which is one of the two parent bodies of the JCT-3V).

VPS: Video parameter set.

VS: View synthesis.

VSO: View synthesis optimization (RDO tool for depth maps).

VSP: View synthesis prediction.

WD: Working draft – the draft HEVC standard corresponding to the HM.

WG: Working group (usually used in reference to WG 11, a.k.a. MPEG).

1.10 Liaison activity

The JCT-3V did not send or receive formal liaison communications at this meeting.

1.11 Opening remarks

Common code base for MV/3D software (currently based on HM 16.5) / coordination

with RExt / SHVC which may establish a single codebase after the February 2016

meeting?

3D-HEVC Software/Conformance timelines

Status of conformance and reference software in the different amending activities: 3D-

HEVC Reference Software under DAM ballot; 3D/MV-HEVC conformance: DAM

closed 11-25.

MV-HEVC verification testing – unlike planned, was not performed prior to next

meeting. It was later decided to perform it until the14th meeting.

Expected output docs:

o Draft 5 of Alternative Depth Info SEI Message (Study ISO/IEC 14496-

10:2014/DAM3, not for ballot)

o 3D-HEVC Reference Software FDAM

o MV-/3D-HEVC Conformance FDAM

o Draft 2 of Software for ADI SEI (DAM in ISO/IEC)

Page: 297 Date Saved: 2016-06-03

o Dispositions of comments on the above

o MV-HEVC verification test report

o (no update of HTM text, HTM11 stays valid) –

1.12 Contribution topic overview

The approximate subject categories and quantity of contributions per category for the meeting

were summarized as follows.

AHG reports (section 2) (7)

Project development and status (section 3) (0)

SEI messages (section 4) (2)

Non-normative Contributions (section 5) (0)

NOTE – The number of contributions noted in each category, as shown in parenthesis above,

may not be 100% precise.

1.13 Scheduling

Generally meeting time was planned to be scheduled during 0900–2000, with coffee and lunch

breaks as convenient. Ongoing refinements were announced on the group email reflector as

needed.

Some particular scheduling notes are shown below, although not necessarily 100% accurate:

Monday, first day

o 1900–2030: Opening and AHG report review

o 2030–2130: Review SEI messages

Thursday, second day

o 0830 Viewing for centralized depth SEI message

o 1600–1800 Closing plenary

2 AHG reports (5)

(Review of these AHG reports was chaired by JRO & GJS, Monday 02/22 1930–2030.)

The activities of ad hoc groups that had been established at the prior meeting are discussed in

this section.

JCT3V-N0001 JCT-3V AHG report: Project management (AHG1) [J.-R. Ohm, G. J. Sullivan]

All documents from the preceding meeting had been made available at the document site

(http://phenix.it-sudparis.eu/jct3v/) or the ITU-based JCT-3V site (http://wftp3.itu.int/av-

arch/jct3v-site/2015_10_M_Geneva/), particularly including the following:

Draft 4 of Alternative Depth Info SEI Message (ISO/IEC 14496-10:2014/DAM3, for

ballot)

Software of Alternative Depth Info SEI (ISO/IEC 14496-5:2001/PDAM42, for ballot)

MV-HEVC Software Draft 5 (ISO/IEC 23008-5:2015 FDAM4, for ballot)

3D-HEVC Software Draft 3

3D-HEVC Verification Test Report

Page: 298 Date Saved: 2016-06-03

MV-HEVC Verification Test Plan

The 5 ad hoc groups had made some progress, and reports from their activities had been

submitted.

With regard to the software, coordination with JCT-VC should be conducted to avoid divergence

in cases of future bug fixing. Ideally, one common software code base should be established for

all parts of HEVC.

"Bug tracking" systems for software and text specifications had been installed previously. The

sites are https://hevc.hhi.fraunhofer.de/trac/3d-hevc and https://hevc.hhi.fraunhofer.de/trac/3d-

avc/. The bug tracker reports were automatically forwarded to the group email reflector, where

the issues could be further discussed.

MV-HEVC verification tests had been conducted in the interim period, such that the test report is

expected to be issued from the current meeting.

Approximately 7 input contributions to the current meeting had been registered. One late-

registered or late-uploaded contribution was observed.

The meeting announcement had been made available from the aforementioned document site and

http://wftp3.itu.int/av-arch/jct3v-site/2016_02_N_SanDiego/JCT3V-N_Logistics.doc.

A preliminary basis for the document subject allocation and meeting notes had been circulated to

the participants as http://wftp3.itu.int/av-arch/jct3v-site/2016_02_N_SanDiego/JCT3V-

N_Notes_d0.doc.

JCT3V-N0002 JCT-3V AHG Report: 3D-HEVC Draft and MV-HEVC / 3D-HEVC Test Model editing (AHG2) [G. Tech, J. Boyce, Y. Chen, M. Hannuksela, T. Suzuki, S. Yea, J.-R. Ohm, G. Sullivan]

Several editorial defects in particular in Annex F of the HEVC specification have been reported

already to the last meeting in Geneva. A summary including fixes can be found in document

JCT3V-M1002_defects. The defects have also been reported (among others) to JCT-VC in

document JCTVC-V0031. However, a review and confirmation of suggested fixes is still

pending and required before integration to the current HEVC draft text.

Further clarification was obtained through Gerhard Tech by email communication.

Whereas, in the first version of the report, the mentioned document of defects was not included,

a new version was later provided which fixed that deficiency.

JCT3V-N0003 JCT-3V AHG Report: MV-HEVC and 3D-HEVC Software Integration (AHG3) [G. Tech, H. Liu, Y. Chen]

Development of the software was coordinated with the parties needing to integrate changes.

The distribution of the software was announced on the JCT-3V e-mail reflector and the software

was made available through the SVN server:

https://hevc.hhi.fraunhofer.de/svn/svn_3DVCSoftware/tags/

Anchor bitstreams have been created and uploaded to:

ftp.hhi.fraunhofer.de; path: /HTM-Anchors/

Note that the username and password have changed. To obtain them, please send a mail to

[email protected].

One update version of the HTM software was produced and announced on the JCT-3V email

reflector. A second version will be released during the meeting. The following sections give a

brief summary of the integrations.

HTM-16.0 was developed by integrating changes between HM-16.6 and HM-16.7 to HTM-15.2.

Moreover, minor bug fixes and clean-ups have been integrated. The coding performance

compared to HTM-15.2 changes insignificantly.

Version 16.1 was planned to be be released during the meeting. It contains further fixes for non-

CTC conditions and clean-ups. The coding performance under CTC conditions is identical to

HTM-16.0.

Page: 299 Date Saved: 2016-06-03

The MV-HEVC software draft 5 (JCT3V-M1009) had been released. The software had been

generated by removing 3D-HEVC related source code and configuration files from HTM-16.0.

The software can also be accessed using the svn:

https://hevc.hhi.fraunhofer.de/svn/svn_3DVCSoftware/branches/HTM-16.0-MV-draft-5

The related document has been submitted as FDAM text.

The 3D-HEVC software draft 3 (JCT3V-M1012) had been released. The software corresponds to

HTM-16.0. The software can also be accessed using the svn:

https://hevc.hhi.fraunhofer.de/svn/svn_3DVCSoftware/tags/HTM-16.0

The related document had been submitted as DAM study text. Note that, although it was missing

in the MPEG document system until January, the AHG provided this document in time.

Gerhard Tech provided the disposition of NB comments.

JCT3V-N0004 JCT-3V AHG Report: 3D Coding Verification Testing (AHG4) [V. Baroncini, K. Müller, S. Shimizu]

Presented Thursday 1600–1800.

Several e-mails were exchanged among co-chairs; the status on the test plan of the MV-HEVC

verification and availability of the test materials were discussed.

Mandate 1: Finalize the report of 3D-HEVC verification testing

The report of 3D-HEVC verification testing were finalized and delivered on November 18th

2015

as JCT3V-M1001 (version 2).

Mandate 2: Implement the MV-HEVC verification test plan JCT3V-M1002 and prepare a test

report

The MV-HEVC verification test was successfully conducted. Some work is still necessary to

organize the test results, but the results seem fine though the quick checking. The report will be

prepared after the careful checks and take more works.

Mandate 3: Prepare viewing logistics for 14th

JCT-3V meeting.

No viewing was necessary during the meeting since the subjective viewing for the MV-HEVC

verification testing were already performed. The viewing logistics, however, will be available

and shared with MPEG FTV AHG.

JCT3V-N0005 JCT-3V AHG Report: HEVC Conformance testing development (AHG5) [Y. Chen, T. Ikai, K. Kawamura, S. Shimizu, T. Suzuki]

The draft conformance text was revised as an input contribution of JCT3V-N0023 with the

following improvements:

Added the information on Resolution and Number of Frames in the bitstream description

Added the information on output layer set in the MV-HEVC bitstream description

Fixed level information

Fixed some editorial issues (i.e. typoes, missing definitions, …)

Note: the revision also provided a response to the NB comments on voting on ISO/IEC 23008-

8:201x/DAM 1, which were reviewed by the editors.

At the last meeting, the following timeline was established.

Generate all revision 3 bitstreams (target date 2015/11/27)

Confirmed the generated bitstreams with the latest HTM (HTM16.0) two weeks after the

release of the HTM-16.0

Page: 300 Date Saved: 2016-06-03

In the confirmation process, the following issues were found:

[3DHC_TD_C] The tested tool (QTL) was disabled (QTL should be enabled)

[MVHEVCS-I] The inbld_flag was set equal to 0 in the PTL(profle tier level) indications for

the independent layer (inbld_flag should be equal to 1)

[MVHEVCS-J] the bitstream (hybrid scalability) was missing.

The former two bitstreams have been regenerated and the issues have been resolved.

However, MVHEVCS-J is still missing.

Nokia did not provide the bitstream for Hybrid Multiview Coding. The specification of the

bitstream was removed from the conformance spec. Though the functionality is basically

identical with hybrid scalability in SHVC, it is worthwhile to investigate whether the

functionality of hybrid multiview coding is broken and might be needed to be removed from the

standard.

The ftp site at ITU-T is used to exchange bitstreams. The ftp site for downloading bitstreams is,

http://wftp3.itu.int/av-arch/jct3v-site/bitstream_exchange/

Two folders are created in this ftp site for MV-HEVC bitstreams and 3D-HEVC bitstreams

respectively:

http://wftp3.itu.int/av-arch/jct3v-site/bitstream_exchange/under_test/MV-HEVC/

http://wftp3.itu.int/av-arch/jct3v-site/bitstream_exchange/under_test/3D-HEVC/

The following drop box folder is used for uploading the bitstreams that are pending for moved to

any of the above folders. It is suggested the provider of a bitstream do not use it for sharing it to

those who will perform the verification.

http://wftp3.itu.int/av-arch/jct3v-site/dropbox/

It was expected that it will not be necessary to re-generate conformance bitstreams upon the

availability of HTM 16.1 software, since this only adds SEI messages related to layered coding

which are not used in the regular decoding process.

T. Ikai and K. Kawamura were to perform a check after availability of HTM 16.1 software to

confirm that there is no problem with the set of conformance streams before they are submitted

as FDAM (submission for ITU consent by the next meeting in Geneva). If problems are found,

the responsible parties need to be tasked to re-generate the streams.

3 Standards development, bug fixing (5)

JCT3V-N0023 Proposed editorial improvements to MV-HEVC and 3D-HEVC Conformance Draft [Y. Chen, T. Ikai, K. Kawamura, S. Shimizu, T. Suzuki]

This was reviewed Monday evening.

The editors should align the editorial style with editors of SHVC conformance. For example, one

issue is the capitalization of some words which is not compliant with ITU-T and ISO/IEC

convention.

The disposition of NB comments report was prepared by K. Kawamura and T. Ikai.

JCT3V-N0024 Draft 2 of Reference Software for Alternative Depth Info SEI Message Extension of AVC [T. Senoh (NICT)]

This was reviewed Monday evening.

The disposition of NB comments report was prepared by T. Senoh.

Page: 301 Date Saved: 2016-06-03

JCT3V-N0025 [AHG 5] Further confirmation on MV-HEVC conformance streams [K. Kawamura, S. Naito (KDDI)]

This contribution reports a cross-check results of test bitstreams for MV-HEVC conformance by

an alternative decoder. The decoder was implemented independently with the reference software.

It was reported that all conformance streams can be decoded correctly, and the hash values

produced by the decoder were matched with those in the conformance stream.

JCT3V-N0026 Bug report (#114) on MV-HEVC Reference Software [K. Kawamura, S. Naito (KDDI)]

This contribution reports a mismatch between a text and a reference software on DPB size syntax.

The ticket is #114 and was already fixed on HTM-16.0-dev1.

This refers to a ballot comment, which will be resolved when HTM 16.0 or 16.1 is promoted to

FDAM.

JCT3V-N0027 SHM software modifications for multi-view support [X. Huang (USTC), M. M. Hannuksela (Nokia)] [late]

Contribution noted (for information only). No presenter was available Thursday afternoon when

it was on the agenda to be discussed. No action was taken by JCT-3V on this. (See also the JCT-

VC report.)

It was unclear whether the availability of this software would finally allow to enable hybrid

scalability.

4 SEI messages (2)

Discussed Monday 1900–2100 and Thursday 16:00–17:00.

JCT3V-N0021 Centralized Texture-Depth Packing SEI Message for H.264/AVC [J.-F. Yang, H.-M. Wang, C.-Y. Chen, T.-A. Chang]

This contribution modifies the prior contribution, JCT3V-M0021 ―Centralized Texture-Depth

Packing (CTDP) SEI Message for H.264/AVC‖, by removing unprecise syntax terms, and

polishing the descriptions of syntax structures. In the syntax of H.264/AVC SEI message,

quarter_reduced_depth_line_number, which can precisely specify the downsampling factors of

depth and texture, is replaced of all the unprecise syntax terms. The selections of

quarter_reduced_depth_line_numbers for HD (1920x1080) and UHD (3840x2160) formats are

also enlisted as examples. Although the prior study and experiments are conducted based on the

HEVC kernel, it can still be applicable to H.264/AVC. Before the available of 3D broadcasting

systems, the contributor said that that the proposed CTDP formats with SEI Message could help

to deliver 3D videos in the current 2D broadcasting systems simply and efficiently.

JCT3V-N0022 Centralized Texture-Depth Packing SEI Message for HEVC [J.-F. Yang, H.-M. Wang, C.-Y. Chen, T.-A. Chang]

This contribution modifies the prior contribution, JCT3V-M0022 ―Centralized Texture-Depth

Packing (CTDP) SEI Message for HEVC‖, by removing unprecise syntax terms, polishing the

descriptions of syntax structures and conducting the simulation for CG contents, which have

higher quality depth maps. In the syntax of CTDP SEI message,

quarter_reduced_depth_line_number, which can precisely specify the downsampling factors of

depth and texture, is replaced of all the unprecise syntax terms. The selections of

quarter_reduced_depth_line_numbers for HD (1920x1080) and UHD (3840x2160) formats are

also enlisted as examples. Besides, in addition of YUV calibration, the contributor also further

suggested the use of depth enhancement and a rolling guidance filter before the DIBR process to

improve the performance of virtual view syntheses. In simulations, in addition of VSRS, the

adaptive temporal view synthesis (ATVS) system was also used in the simulations. To test the

Page: 302 Date Saved: 2016-06-03

down and up sampling filters, Lanczos4 filtering was used for texture resizing in CTDP packing

and depacking processes. The results reportedly show that Lanczos4 helps to improve the CTDP

performances in BDBR about 5-6%.

The new proposal includes numerous elements of non-normative processing for further

optimization.

A depth enhancement process based on bilateral filter is included to compensate for the artefacts

in depth map that are caused by the rgb/yuv conversion in depth map packing.

Compared to 3D HEVC, the bit rate increase is 5-10% for 1view+1depth, 175% for

2view/2depth.

The proponent reports that problems may occur at depth edges due to the RGB444->YUV420

conversion.

Viewing was performed on Thursday 8:30-9:00. The proponent and three experts participated in

the viewing. Examples were demonstrated for Shark and Undo Dancer, One-Video-plus depth

and Two-Video-plus-depth cases were shown for 3D-HEVC and the packing scheme with equal

QP, and approximately similar data rates (usually slightly lower for the packing scheme in one

view cases, and slightly higher in the two view cases). The following observations were made

the texture in the packing scheme was more blurred, naturally caused due to the subsampling

the packing scheme had significantly more visible artefacts at object boundaries, which is

likely due to distortion of the depth maps.

The experts suggested that this could be explainable due to the fact that the packing in RGB

4:4:4 and downconversion to YUV 4:2:0 causes some uncontrollable defects in the reconstructed

depth map (the artefacts were clearly visible also in the case of QP27, where usually the

compression would not introduce large errors). The proponents are asked to consider packing the

depth data only into the Y component to prevent that the packing scheme itself distorts the depth

map.

The results demonstrated were already using texture-dependent bilateral depth filtering, but

artefacts were still visible. The SEI message should be capable to be used without complicated

post processing and still deliver sufficient quality of the depth maps. (Note: from previous

experiments that had been conducted in JCT-3V in the context of 3D-AVC, the observation was

that downsampling of depth maps is not critical with regard to subjective quality of synthesis.)

It was also mentioned that due to the RGB444 to YUV420 conversion, high spatial frequencies

may appear in the UV components, which unnecessarily increases the data rate.

Further study was recommended.

5 Non-normative contributions (0)

No contributions noted.

6 Project planning

6.1 Software and Conformance development

HTM software: Version 16.1 was requested to be released within one week after the meeting

Conformance development

- After availability of HTM 16.1 software, the conformance streams are to be finally

checked and provided for integration in new edition

6.2 Software repositories

HTM software for 3D-HEVC can be checked in

https://hevc.hhi.fraunhofer.de/svn/svn_3DVCSoftware/

Page: 303 Date Saved: 2016-06-03

Therefore, for each integrator a separate software branch will be created by the software

coordinator containing the current anchor version or the version of the previous integrator:

e.g., branches/0.7-mycompany

The branch of the last integrator will become the new release candidate tag.

e.g., tags/0.8rc1

This tag can be cross-checked by the group for correctness. If no problems occur the release

candidate will become the new tag after 7 days:

e.g., tags/0.8

If reasonable, intermediate release candidate tags can be created by the software coordinator.

7 Establishment of ad hoc groups

The ad hoc groups established to progress work on particular subject areas until the next meeting

are described in the table below. The discussion list for all of these ad hoc groups will be the

main JCT-3V reflector ([email protected]).

Title and Email Reflector Chairs Mtg

JCT-3V project management (AHG1)

([email protected])

Coordinate overall JCT-3V interim efforts.

Report on project status to JCT-3V reflector.

Provide report to next meeting on project

coordination status.

G. J. Sullivan, J.-R. Ohm

(co-chairs)

N

MV-HEVC / 3D-HEVC Software Integration

(AHG2)

([email protected])

Coordinate development of the HTM software

and its distribution to JCT-3V members.

Produce documentation of software usage for

distribution with the software.

Prepare and deliver HTM-16.1 software

version .

Prepare and deliver Draft 4 of 3D-HEVC

software JCT3V-N1012.

Coordinate with AHG3 to identify any possible

bugs in software and conformance.

Identify any mismatches between software and

text.

G. Tech, H. Liu, Y. W.

Chen (co-chairs)

N

Page: 304 Date Saved: 2016-06-03

HEVC Conformance testing development (AHG

3)

([email protected])

Further improve the conformance draft JCT3V-

N1008.

Coordinate with AHG3 to identify any possible

bugs in software and conformance.

T. Ikai, K. Kawamura, T.

Suzuki (co-chairs)

N

8 Output documents

The following documents were agreed to be produced or endorsed as outputs of the meeting.

Names recorded below indicate those responsible for document production.

JCT3V-N1000 Meeting Report of 14th JCT-3V Meeting [J.-R. Ohm, G. J. Sullivan] (before next meeting)

(Note: Initial versions of the subsequent draft documents were requested to be uploaded by the

end of the meeting, with continually updating to be performed until the final the version was

released.)

JCT3V-N1001 MV-HEVC Verification Test Report [V. Baroncini, K. Müller, S. Shimizu] (WG11 N16050) [2016-03-31]

JCT3V-K1003 Test Model 11 of 3D-HEVC and MV-HEVC [Y. Chen, G. Tech, K. Wegner, S. Yea]

Remains valid (although from a prior meeting).

JCT3V-N1005 Draft 2 of Reference Software for Alternative Depth Info SEI in 3D-AVC [T. Senoh] (ISO/IEC 14496-5:2001 DAM42, WG11 N16029) [2016-04-15]

The disposition of NB comments for ISO/IEC JTC 1/SC 29/WG 11 (N16028) was also reviewed.

JCT3V-M1006 Draft 4 of Alternative Depth Info SEI Message [T. Senoh, Y. Chen, J.-R. Ohm, G. J. Sullivan] (ISO/IEC 14496-10:2014 DAM3, WG11 N15755) [2015-11-30]

Remains valid (although from a prior meeting).

JCT3V-N1008 MV-HEVC and 3D-HEVC Conformance Draft 4 [T. Ikai, K. Kawamura, T. Suzuki] (to be integrated in ISO/IEC 23008-8:201X, WG11 N16061) [2016-03-18]

The disposition of NB comments for ISO/IEC JTC 1/SC 29/WG 11 (N16058) was reviewed, and

a meeting resolution was issued by WG 11 to progress into final spec.

JCT3V-M1009 MV-HEVC Software Draft 5 [G. Tech] [ISO/IEC 23008-5:201X FDAM2, WG11 N15786) [2015-11-30]

Remains valid (although from a prior meeting).

JCT3V-N1012 3D-HEVC Software Draft 4 [G. Tech, H. Liu, Y. W. Chen] (to be integrated into ISO/IEC 23008-5:201X, WG11 N16055) [2016-03-18]

The disposition of NB comments for ISO/IEC JTC 1/SC 29/WG 11 (N16054) was reviewed, and

a meeting resolution was issued by WG 11 to progress into final spec.

JCT3V-G1100 Common Test Conditions of 3DV Core Experiments

Remains valid (although from a prior meeting).

Page: 305 Date Saved: 2016-06-03

9 Future meeting plans, expressions of thanks, and closing of the meeting

The document upload deadline for the 15th meeting of the JCT-3V will be May 23, 2016, 2359

MET (Geneva/Paris time zone). Future meeting plans were established according to the

following guidelines:

Meeting under ITU-T SG 16 auspices when it meets (starting meetings on the Saturday of

the first week and closing it on the Tuesday or Wednesday of the second week of the

SG 16 meeting);

Otherwise meeting under ISO/IEC JTC 1/SC 29/WG 11 auspices when it meets (starting

meetings on the first day and closing it on the last day of the WG 11 meeting);

In cases where JCT-3V meets during the first week of the SG16 meeting under ITU-T

auspices, and co-located with an MPEG meeting at a nearby meeting place, the meeting

dates could also be approximately aligned with the MPEG meeting.

Some specific future meeting plans were established as follows:

during 27-31 May 2016 under ITU-T auspices in Geneva, CH.

It is suggested to discontinue activities of JCT-3V after its 15th

meeting.

Prof. Naeem Ramzan was thanked for conducting the MV HEVC Verification test at his

laboratory at the Western Scotland University.

The USNB of WG11 and the companies that financially sponsored the meeting and associated

social event – Apple, CableLabs, Google, Huawei, InterDigital, Microsoft, Mitsubishi Electric,

Netflix and Qualcomm – were thanked for the excellent hosting of the 14th

meeting of the JCT-

3V. Interdigital and Sony were thanked for providing the 3D viewing equipment that was used

during the meeting.

It was also reminded that final output documents (if also registered under a WG11 output doc

number) have to be uploaded separately with a WG11 header. To do this in a timely fashion is

particularly important for standards submitted for ballot, which should be sent to the chairs by

the due date.

The JCT-3V meeting was closed at approximately 1758 hours on Thursday 25 Feb 2016.

Page: 306 Date Saved: 2016-06-03

Annex A to JCT-3V report:

List of documents

JCT3V-VC

number

MPEG

number Created First upload Last upload Title Authors

JCT3V-N0001 m38134 2016-02-22

06:53:41

2016-02-22

20:51:20

2016-02-22

20:51:20

JCT-3V AHG report: Project

management (AHG1)

J.-R. Ohm,

G. J. Sullivan

JCT3V-N0002 m38138 2016-02-22

15:31:47

2016-02-22

15:54:49

2016-02-27

18:43:45

JCT-3V AHG Report: 3D-

HEVC Draft and MV-HEVC /

3D-HEVC Test Model editing

(AHG2)

G. Tech, J. Boyce,

Y. Chen,

M. Hannuksela,

T. Suzuki, S. Yea,

J.-R. Ohm,

G. Sullivan

JCT3V-N0003 m38139 2016-02-22

15:33:49

2016-02-22

15:51:22

2016-02-22

15:51:22

JCT-3V AHG Report: MV-

HEVC and 3D-HEVC

Software Integration (AHG3)

G. Tech, H. Liu,

Y. Chen

JCT3V-N0004 m38180 2016-02-24

22:25:25

2016-02-24

22:25:47

2016-02-24

22:25:47

JCT-3V AHG Report: 3D

Coding Verification Testing

(AHG4)

V. Baroncini,

K. Müller,

S. Shimizu

JCT3V-N0005 m37784 2016-02-12

09:04:08

2016-02-22

23:12:22

2016-02-22

23:12:22

JCT-3V AHG Report: HEVC

Conformance testing

development (AHG5)

Y. Chen, T. Ikai,

K. Kawamura,

S. Shimizu,

T. Suzuki

JCT3V-N0021 m37662 2016-02-08

02:53:24

2016-02-09

04:03:57

2016-02-09

04:03:57

Centralized Texture-Depth

Packing SEI Message for

H.264/AVC

J.-F.r Yang, H.-M.

Wang, C.-Y. Chen,

T.-A. Chang,

JCT3V-N0022 m37663 2016-02-08

03:04:48

2016-02-09

04:04:37

2016-02-22

01:21:57

Centralized Texture-Depth

Packing SEI Message for

HEVC

J.-F.r Yang, H.-M.

Wang, C.-Y. Chen,

T.-A. Chang,

JCT3V-N0023 m37785 2016-02-12

09:09:41

2016-02-16

01:22:16

2016-02-22

23:12:56

Proposed editorial

improvements to MV-HEVC

and 3D-HEVC Conformance

Draft

Y. Chen, T. Ikai,

K. Kawamura,

S. Shimizu,

T. Suzuki

JCT3V-N0024 m37789 2016-02-12

12:04:15

2016-02-12

12:10:11

2016-02-23

18:19:45

Proposed Draft 2 of Reference

Software for Alternative

Depth Info SEI Message

Extension of AVC

T. Senoh (NICT)

JCT3V-N0025 m38074 2016-02-19

02:46:16

2016-02-19

02:50:06

2016-02-19

02:50:06

[AHG 5] Further confirmation

on MV-HEVC conformance

streams

K. Kawamura,

S. Naito (KDDI)

JCT3V-N0026 m38075 2016-02-19

02:51:06

2016-02-19

02:52:42

2016-02-19

02:52:42

Bug report (#114) on MV-

HEVC Reference Software

K. Kawamura,

S. Naito (KDDI)

JCT3V-N0027 m38156 2016-02-23

04:07:37

2016-02-23

04:23:35

2016-02-24

04:46:09

SHM software modifications

for multi-view support

X. Huang (USTC),

M. M. Hannuksela

(Nokia)

JCT3V-N0028 m38163 2016-02-23

18:30:10

2016-02-23

18:32:25

2016-02-23

18:32:25 Withdrawn

JCT3V-N1000 m38203 2016-02-27

22:01:59

Meeting Report of 14th JCT-

3V Meeting

J.-R. Ohm,

G. J. Sullivan

JCT3V-N1001 m38204 2016-02-27

22:03:30

2016-05-17

08:14:11

2016-05-17

08:33:34

MV-HEVC Verification Test

Report

V. Baroncini,

K. Müller,

S. Shimizu

JCT3V-N1005 m38205 2016-02-27

22:04:35

2016-03-03

01:39:22

2016-03-03

01:39:22

Draft 2 of Reference Software

for Alternative Depth Info SEI

in 3D-AVC

T. Senoh

JCT3V-N1008 m38206 2016-02-27

22:06:22

2016-03-18

09:01:03

2016-03-18

09:01:03

MV-HEVC and 3D-HEVC

Conformance Draft 4

T. Ikai,

K. Kawamura,

Page: 307 Date Saved: 2016-06-03

T. Suzuki

JCT3V-N1012 m38207 2016-02-27

22:09:58

2016-03-18

10:37:15

2016-03-18

10:37:15 3D-HEVC Software Draft 4

G. Tech, H. Liu,

Y. W. Chen

Page: 308 Date Saved: 2016-06-03

Annex B to JCT-3V report:

List of meeting participants

The participants of the fourteenth meeting of the JCT-3V, according to an attendance sheet

circulated during sessions (approximately 9 in total), were as follows:

Page: 309 Date Saved: 2016-06-03

1. Vittorio Baroncini (FUB, IT)

2. Marek Domanski (Poznan U, PL)

3. Tomohiro Ikai (Sharp, JP)

4. Kei Kawamura (KDDI, JP)

5. Jens-Rainer Ohm (RWTH, DE)

6. Justin Ridge (Nokia, FI)

7. Takanori Senoh (NICT, JP)

8. Gary Sullivan (Microsoft, US)

9. Jar-Ferr Yang (NCKU, TW)

Page: 310 Date Saved: 2016-06-03

– JVET report

Source: Jens Ohm and Gary Sullivan, Chairs

Summary The Joint Video Exploration Team (JVET) of ITU-T WP3/16 and ISO/IEC JTC 1/ SC 29/

WG 11 held its second meeting during 20–26 February 2016 at the San Diego Marriott La Jolla

in San Diego, US. The JVET meeting was held under the leadership of Dr Gary Sullivan

(Microsoft/USA) and Dr Jens-Rainer Ohm (RWTH Aachen/Germany) as responsible

coordinators of the two organizations, assisted substantially by Dr Jill Boyce (Intel/USA). For

rapid access to particular topics in this report, a subject categorization is found (with hyperlinks)

in section 1.14 of this document.

The JVET meeting sessions began at approximately 0900 hours on Saturday 20 February 2016.

Meeting sessions were held on all days (including weekend days) until the meeting was closed at

approximately 1555 hours on Thursday 25 February 2016. Approximately 161 people attended

the JVET meeting, and approximately 50 input documents were discussed. The meeting took

place in a collocated fashion with a meeting of ISO/IEC JTC 1/SC 29/WG 11 – one of the two

parent bodies of the JVET. The subject matter of the JVET meeting activities consisted of

studying future video coding technology with a potential compression capability that

significantly exceeds that of the current HEVC standard and evaluating compression technology

designs proposed in this area.

One primary goal of the meeting was to review the work that was performed in the interim

period since the first JVET meeting (in October 2015) in producing the Joint Exploration Test

Model 1 (JEM1). Another important goal was to review the work that had been conducted for

investigating the characteristics of new test material in the assessment of video compression

technology. Furthermore, technical input documents were reviewed, and proposed modifications

towards development of an improved test model as JEM2 were considered.

The JVET produced 4 output documents from the meeting:

Algorithm description of Joint Exploration Test Model 2 (JEM2)

Call for test materials for future video coding standardization

JVET common test conditions and software reference configurations

Description of Exploration Experiments on coding tools

For the organization and planning of its future work, the JCT-VC established 5 "ad hoc groups"

(AHGs) to progress the work on particular subject areas. Seven Exploration Experiments (EE)

were defined on particular subject areas of coding tool testing. The next four JVET meetings are

planned to be held during Thu. 26 May – Wed. 1 June 2016 under ITU-T auspices in Geneva,

CH, during Sat. 15 – Fri. 21 Oct. 2016 under WG 11 auspices in Chengdu, CN, during Thu. 12 –

Wed. 18 Jan. 2017 under ITU-T auspices in Geneva, CH, and during Sat. 1 – Fri. 7 Apr. 2017

under WG 11 auspices in Hobart, AU.

The document distribution site http://phenix.it-sudparis.eu/jvet/ was used for distribution of all

documents.

The reflector to be used for discussions by the JVET and all its AHGs is the JVET reflector:

[email protected] hosted at RWTH Aachen University. For subscription to this list, see

https://mailman.rwth-aachen.de/mailman/listinfo/jvet.

Page: 311 Date Saved: 2016-06-03

1 Administrative topics

1.1 Organization

The ITU-T/ISO/IEC Joint Video Exploration Team (JVET) is a collaboration group of video

coding experts from the ITU-T Study Group 16 Visual Coding Experts Group (VCEG) and the

ISO/IEC JTC 1/ SC 29/ WG 11 Moving Picture Experts Group (MPEG). The parent bodies of

the JVET are ITU-T WP3/16 and ISO/IEC JTC 1/SC 29/WG 11.

The Joint Video Exploration Team (JVET) of ITU-T WP3/16 and ISO/IEC JTC 1/ SC 29/

WG 11 held its second meeting during 20–26 February 2016 at the San Diego Marriott La Jolla

in San Diego, US. The JVET meeting was held under the leadership of Dr Gary Sullivan

(Microsoft/USA) and Dr Jens-Rainer Ohm (RWTH Aachen/Germany) as responsible

coordinators of the two organizations. Dr Jill Boyce (Intel/USA) assisted substantially with the

chairing of this meeting.

1.2 Meeting logistics

The JVET meeting sessions began at approximately 0900 hours on Saturday 20 Feb 2016.

Meeting sessions were held on all days (including weekend days) until the meeting was closed at

approximately 1555 hours on Thursday 26 Feb 2016. Approximately 161 people attended the

JVET meeting, and approximately 50 input documents were discussed. The meeting took place

in a collocated fashion with a meeting of ISO/IEC JTC 1/SC 29/WG 11 – one of the two parent

bodies of the JVET. The subject matter of the JVET meeting activities consisted of studying

future video coding technology with a potential compression capability that significantly exceeds

that of the current HEVC standard and evaluating compression technology designs proposed in

this area.

Information regarding logistics arrangements for the meeting had been provided via the email

reflector [email protected] and at http://wftp3.itu.int/av-arch/jvet-

site/2016_02_B_SanDiego/.

1.3 Primary goals

One primary goal of the meeting was to review the work that was performed in the interim

period since the first JVET meeting (in October 2015) in producing the Joint Exploration Test

Model 1 (JEM1). Another important goal was to review the work that had been conducted for

investigating the characteristics of new test material in the assessment of video compression

technology. Furthermore, technical input documents were reviewed, and proposed modifications

towards development of an improved test model as JEM2 were considered.

1.4 Documents and document handling considerations

1.4.1 General

The documents of the JVET meeting are listed in Annex A of this report. The documents can be

found at http://phenix.it-sudparis.eu/jvet/.

Registration timestamps, initial upload timestamps, and final upload timestamps are listed in

Annex A of this report.

The document registration and upload times and dates listed in Annex A and in headings for

documents in this report are in Paris/Geneva time. Dates mentioned for purposes of describing

events at the meeting (other than as contribution registration and upload times) follow the local

time at the meeting facility.

Highlighting of recorded decisions in this report:

Page: 312 Date Saved: 2016-06-03

Decisions made by the group that might affect the normative content of a future standard

are identified in this report by prefixing the description of the decision with the string

"Decision:".

Decisions that affect the JEM software but have no normative effect are marked by the

string "Decision (SW):".

Decisions that fix a "bug" in the JEM description (an error, oversight, or messiness) or in

the software are marked by the string "Decision (BF):".

This meeting report is based primarily on notes taken by the responsible leaders. The preliminary

notes were also circulated publicly by ftp during the meeting on a daily basis. It should be

understood by the reader that 1) some notes may appear in abbreviated form, 2) summaries of the

content of contributions are often based on abstracts provided by contributing proponents

without an intent to imply endorsement of the views expressed therein, and 3) the depth of

discussion of the content of the various contributions in this report is not uniform. Generally, the

report is written to include as much information about the contributions and discussions as is

feasible (in the interest of aiding study), although this approach may not result in the most

polished output report.

1.4.2 Late and incomplete document considerations

The formal deadline for registering and uploading non-administrative contributions had been

announced as Monday, 15 February 2016. Any documents uploaded after 2359 hours

Paris/Geneva time on that day were considered "officially late".

All contribution documents with registration numbers JVET-B0045 and higher were registered

after the "officially late" deadline (and therefore were also uploaded late). However, some

documents in the "B0045+" range include break-out activity reports that were generated during

the meeting, and are therefore better considered as report documents rather than as late

contributions.

In many cases, contributions were also revised after the initial version was uploaded. The

contribution document archive website retains publicly-accessible prior versions in such cases.

The timing of late document availability for contributions is generally noted in the section

discussing each contribution in this report.

One suggestion to assist with the issue of late submissions was to require the submitters of late

contributions and late revisions to describe the characteristics of the late or revised (or missing)

material at the beginning of discussion of the contribution. This was agreed to be a helpful

approach to be followed at the meeting.

The following technical design proposal contributions were registered on time but were uploaded

late:

JVET-B0033 (a proposal on adaptive multiple transform for chroma),

JVET-B0041 (a proposal on adaptive reference sample smoothing simplification).

The following technical design proposal contributions were both registered late and uploaded

late:

JVET-B0047 (a proposal on non square TU partitioning),

JVET-B0048 (a proposal on universal string matching for screen content coding),

JVET-B0051 (a proposal on improvement of intra coding tools),

JVET-B0054 (a proposal on de-quantization and scaling for next generation containers),

JVET-B0058 (a proposal on modification of merge candidate derivation),

Page: 313 Date Saved: 2016-06-03

JVET-B0059 (a proposal on TU-level non-separable secondary transform),

JVET-B0060 (a proposal on improvements for adaptive loop filter).

The following other documents not proposing normative technical content were registered on

time but were uploaded late:

JVET-B0021 (proposed improvements to algorithm description of joint exploration test

model 1),

JVET-B0031 (An evaluation report of test sequences),

JVET, B0034 (a cross-check of JVET-B0023),

JVET-B0035 (An evaluation report of test sequences for future video coding).

The following other documents not proposing normative technical content, other than cross-

check documents, were both registered late and uploaded late:

JVET-B0049 (a contribution offering test sequences for video coding testing)

JVET-B0073 (a contribution suggesting modification of the low-delay common test

conditions for video coding experiments)

The following performance evaluation and cross-check documents were both registered late and

uploaded late: JVET-B0045, JVET-B0046, JVET-B0050, JVET-B0052, JVET-B0053, JVET-

B0055, JVET-B0056, JVET-B0057, JVET-B0061, JVET-B0062, JVET-B0063, JVET-B0065,

JVET-B0066, JVET-B0067, JVET-B0068, JVET-B0069, JVET-B0070, and JVET-B0072.

The following contribution registrations were later cancelled, withdrawn, never provided, were

cross-checks of a withdrawn contribution, or were registered in error: JVET-B0032, JVET-

B0064, JVET-B0071.

As a general policy, missing documents were not to be presented, and late documents (and

substantial revisions) could only be presented when sufficient time for studying was given after

the upload. Again, an exception is applied for AHG reports, CE/EE summaries, and other such

reports which can only be produced after the availability of other input documents. There were

no objections raised by the group regarding presentation of late contributions, although there was

some expression of annoyance and remarks on the difficulty of dealing with late contributions

and late revisions.

It was remarked that documents that are substantially revised after the initial upload are also a

problem, as this becomes confusing, interferes with study, and puts an extra burden on

synchronization of the discussion. This is especially a problem in cases where the initial upload

is clearly incomplete, and in cases where it is difficult to figure out what parts were changed in a

revision. For document contributions, revision marking is very helpful to indicate what has been

changed. Also, the "comments" field on the web site can be used to indicate what is different in a

revision.

A few contributions may have had some problems relating to IPR declarations in the initial

uploaded versions (missing declarations, declarations saying they were from the wrong

companies, etc.). In any such cases, these issues were corrected by later uploaded versions in a

reasonably timely fashion in all cases (to the extent of the awareness of the responsible

coordinators).

Some other errors were noticed in other initial document uploads (wrong document numbers in

headers, etc.) which were generally sorted out in a reasonably timely fashion. The document web

site contains an archive of each upload.

1.4.3 Outputs of the preceding meeting

The output documents of the previous meeting, particularly the JEM1 JVET-A1001, and the

work plan for test sequence investigation JVET-A1002, were approved. The JEM1 software

Page: 314 Date Saved: 2016-06-03

implementation was also approved. Documents of the prior meeting had been handled separately

using the document archive site of the two parent bodies and some minor differences in the

documents had resulted from this (e.g. due to differences in delivery deadlines), whereas a new

document repository was set up to be used for the current and future meetings.

For the first JVET meeting, the meeting report information had been included in the reports of

the parent body meetings (a section of video subgroup of the WG 11 113th

meeting report, and a

report of Q6/16 activities in the meeting of ITU-T SG 16). No complaints were made about the

correctness of the content of these reports.

All output documents of the previous meeting and the software had been made available in a

reasonably timely fashion.

1.5 Attendance

The list of participants in the JVET meeting can be found in Annex B of this report.

The meeting was open to those qualified to participate either in ITU-T WP3/16 or ISO/IEC

JTC 1/SC 29/WG 11 (including experts who had been personally invited as permitted by ITU-T

or ISO/IEC policies).

Participants had been reminded of the need to be properly qualified to attend. Those seeking

further information regarding qualifications to attend future meetings may contact the

responsible coordinators.

1.6 Agenda

The agenda for the meeting was as follows:

IPR policy reminder and declarations

Contribution document allocation

Review of results of previous meeting

Consideration of contributions and communications on project guidance

Consideration of technology proposal contributions

Consideration of information contributions

Coordination activities

Future planning: Determination of next steps, discussion of working methods,

communication practices, establishment of coordinated experiments, establishment of

AHGs, meeting planning, refinement of expected standardization timeline, other planning

issues

Other business as appropriate for consideration

1.7 IPR policy reminder

Participants were reminded of the IPR policy established by the parent organizations of the JVET

and were referred to the parent body websites for further information. The IPR policy was

summarized for the participants.

The ITU-T/ITU-R/ISO/IEC common patent policy shall apply. Participants were particularly

reminded that contributions proposing normative technical content shall contain a non-binding

informal notice of whether the submitter may have patent rights that would be necessary for

implementation of the resulting standard. The notice shall indicate the category of anticipated

licensing terms according to the ITU-T/ITU-R/ISO/IEC patent statement and licensing

declaration form.

Page: 315 Date Saved: 2016-06-03

This obligation is supplemental to, and does not replace, any existing obligations of parties to

submit formal IPR declarations to ITU-T/ITU-R/ISO/IEC.

Participants were also reminded of the need to formally report patent rights to the top-level

parent bodies (using the common reporting form found on the database listed below) and to

make verbal and/or document IPR reports within the JVET necessary in the event that they are

aware of unreported patents that are essential to implementation of a standard or of a draft

standard under development.

Some relevant links for organizational and IPR policy information are provided below:

http://www.itu.int/ITU-T/ipr/index.html (common patent policy for ITU-T, ITU-R, ISO,

and IEC, and guidelines and forms for formal reporting to the parent bodies)

http://ftp3.itu.int/av-arch/jvet-site (JVET contribution templates)

http://www.itu.int/ITU-T/dbase/patent/index.html (ITU-T IPR database)

http://www.itscj.ipsj.or.jp/sc29/29w7proc.htm (JTC 1/SC 29 Procedures)

It is noted that the ITU TSB director's AHG on IPR had issued a clarification of the IPR

reporting process for ITU-T standards, as follows, per SG 16 TD 327 (GEN/16):

"TSB has reported to the TSB Director's IPR Ad Hoc Group that they are receiving Patent

Statement and Licensing Declaration forms regarding technology submitted in Contributions

that may not yet be incorporated in a draft new or revised Recommendation. The IPR Ad

Hoc Group observes that, while disclosure of patent information is strongly encouraged as

early as possible, the premature submission of Patent Statement and Licensing Declaration

forms is not an appropriate tool for such purpose.

In cases where a contributor wishes to disclose patents related to technology in Contributions,

this can be done in the Contributions themselves, or informed verbally or otherwise in

written form to the technical group (e.g. a Rapporteur's group), disclosure which should then

be duly noted in the meeting report for future reference and record keeping.

It should be noted that the TSB may not be able to meaningfully classify Patent Statement

and Licensing Declaration forms for technology in Contributions, since sometimes there are

no means to identify the exact work item to which the disclosure applies, or there is no way

to ascertain whether the proposal in a Contribution would be adopted into a draft

Recommendation.

Therefore, patent holders should submit the Patent Statement and Licensing Declaration form

at the time the patent holder believes that the patent is essential to the implementation of a

draft or approved Recommendation."

The responsible coordinators invited participants to make any necessary verbal reports of

previously-unreported IPR in draft standards under preparation, and opened the floor for such

reports: No such verbal reports were made.

1.8 Software copyright disclaimer header reminder

It was noted that, as had been agreed at the 5th meeting of the JCT-VC and approved by both

parent bodies at their collocated meetings at that time, the JEM software uses the HEVC

reference software copyright license header language, which is the BSD license with preceding

sentence declaring that contributor or third party rights are not granted, as recorded in N10791 of

the 89th meeting of ISO/IEC JTC 1/SC 29/WG 11. Both ITU and ISO/IEC will be identified in

the <OWNER> and <ORGANIZATION> tags in the header. This software is used in the process

of designing the JEM software, and for evaluating proposals for technology to be included in the

design. This software or parts thereof might be published by ITU-T and ISO/IEC as an example

implementation of a future video coding standard and for use as the basis of products to promote

adoption of such technology.

Page: 316 Date Saved: 2016-06-03

Different copyright statements shall not be committed to the committee software repository (in

the absence of subsequent review and approval of any such actions). As noted previously, it must

be further understood that any initially-adopted such copyright header statement language could

further change in response to new information and guidance on the subject in the future.

1.9 Communication practices

The documents for the meeting can be found at http://phenix.it-sudparis.eu/jvet/.

JVET email lists are managed through the site https://mailman.rwth-

aachen.de/mailman/options/jvet, and to send email to the reflector, the email address is

[email protected]. Only members of the reflector can send email to the list. However,

membership of the reflector is not limited to qualified JVET participants.

It was emphasized that reflector subscriptions and email sent to the reflector must use real names

when subscribing and sending messages and subscribers must respond to inquiries regarding the

nature of their interest in the work.

For distribution of test sequences, a password protected ftp site had been set up at RWTH

Aachen University, with a mirror site at FhG-HHI. Qualified JVET participants may contact the

responsible coordinators of JVET to obtain access to these sites.

1.10 Terminology

Some terminology used in this report is explained below:

ACT: Adaptive colour transform.

AI: All-intra.

AIF: Adaptive interpolation filtering.

ALF: Adaptive loop filter.

AMP: Asymmetric motion partitioning – a motion prediction partitioning for which the

sub-regions of a region are not equal in size (in HEVC, being N/2x2N and 3N/2x2N or

2NxN/2 and 2Nx3N/2 with 2N equal to 16 or 32 for the luma component).

AMVP: Adaptive motion vector prediction.

AMT: Adaptive multi-core transform.

AMVR: (Locally) adaptive motion vector resolution.

APS: Active parameter sets.

ARC: Adaptive resolution conversion (synonymous with DRC, and a form of RPR).

ARSS: Adaptive reference sample smoothing.

ATMVP: Advanced temporal motion vector prediction.

AU: Access unit.

AUD: Access unit delimiter.

AVC: Advanced video coding – the video coding standard formally published as ITU-T

Recommendation H.264 and ISO/IEC 14496-10.

BA: Block adaptive.

BC: See CPR or IBC.

Page: 317 Date Saved: 2016-06-03

BD: Bjøntegaard-delta – a method for measuring percentage bit rate savings at equal

PSNR or decibels of PSNR benefit at equal bit rate (e.g., as described in document

VCEG-M33 of April 2001).

BIO: Bi-directional optical flow.

BL: Base layer.

BoG: Break-out group.

BR: Bit rate.

BV: Block vector (MV used for intra BC prediction, not a term used in the standard).

CABAC: Context-adaptive binary arithmetic coding.

CBF: Coded block flag(s).

CC: May refer to context-coded, common (test) conditions, or cross-component.

CCLM: Cross-component linear model.

CCP: Cross-component prediction.

CG: Coefficient group.

CGS: Colour gamut scalability (historically, coarse-grained scalability).

CL-RAS: Cross-layer random-access skip.

CPMVP: Contol-point motion vector prediction (used in affine motion model).

CPR: Current-picture referencing, also known as IBC – a technique by which sample

values are predicted from other samples in the same picture by means of a displacement

vector sometimes called a block vector, in a manner basically the same as motion-

compensated prediction.

CTC: Common test conditions.

CVS: Coded video sequence.

DCT: Discrete cosine transform (sometimes used loosely to refer to other transforms

with conceptually similar characteristics).

DCTIF: DCT-derived interpolation filter.

DF: Deblocking filter.

DRC: Dynamic resolution conversion (synonymous with ARC, and a form of RPR).

DT: Decoding time.

ECS: Entropy coding synchronization (typically synonymous with WPP).

EE: Exploration Experiment – a coordinated experiment conducted toward assessment of

coding technology.

EOTF: Electro-optical transfer function – a function that converts a representation value

to a quantity of output light (e.g., light emitted by a display.

EPB: Emulation prevention byte (as in the emulation_prevention_byte syntax element of

AVC or HEVC).

EL: Enhancement layer.

Page: 318 Date Saved: 2016-06-03

ET: Encoding time.

FRUC: Frame rate up conversion.

HEVC: High Efficiency Video Coding – the video coding standard developed and

extended by the JCT-VC, formalized by ITU-T as Rec. ITU-T H.265 and by ISO/IEC as

ISO/IEC 23008-2.

HLS: High-level syntax.

HM: HEVC Test Model – a video coding design containing selected coding tools that

constitutes our draft standard design – now also used especially in reference to the (non-

normative) encoder algorithms (see WD and TM).

IBC (also Intra BC): Intra block copy, also known as CPR – a technique by which

sample values are predicted from other samples in the same picture by means of a

displacement vector called a block vector, in a manner conceptually similar to motion-

compensated prediction.

IBDI: Internal bit-depth increase – a technique by which lower bit-depth (esp. 8 bits per

sample) source video is encoded using higher bit-depth signal processing, ordinarily

including higher bit-depth reference picture storage (esp. 12 bits per sample).

IBF: Intra boundary filtering.

ILP: Inter-layer prediction (in scalable coding).

IPCM: Intra pulse-code modulation (similar in spirit to IPCM in AVC and HEVC).

JEM: Joint exploration model – the software codebase for future video coding

exploration.

JM: Joint model – the primary software codebase that has been developed for the AVC

standard.

JSVM: Joint scalable video model – another software codebase that has been developed

for the AVC standard, which includes support for scalable video coding extensions.

KLT: Karhunen-Loève transform.

LB or LDB: Low-delay B – the variant of the LD conditions that uses B pictures.

LD: Low delay – one of two sets of coding conditions designed to enable interactive real-

time communication, with less emphasis on ease of random access (contrast with RA).

Typically refers to LB, although also applies to LP.

LIC: Local illumination compensation.

LM: Linear model.

LP or LDP: Low-delay P – the variant of the LD conditions that uses P frames.

LUT: Look-up table.

LTRP: Long-term reference pictures.

MANE: Media-aware network elements.

MC: Motion compensation.

MDNSST: Mode dependent non-separable secondary transform.

MOS: Mean opinion score.

Page: 319 Date Saved: 2016-06-03

MPEG: Moving picture experts group (WG 11, the parent body working group in

ISO/IEC JTC 1/SC 29, one of the two parent bodies of the JVET).

MV: Motion vector.

NAL: Network abstraction layer (as in AVC and HEVC).

NSQT: Non-square quadtree.

NSST: Non-separable secondary transform.

NUH: NAL unit header.

NUT: NAL unit type (as in AVC and HEVC).

OBMC: Overlapped block motion compensation (e.g., as in H.263 Annex F).

OETF: Opto-electronic transfer function – a function that converts to input light (e.g.,

light input to a camera) to a representation value.

OOTF: Optical-to-optical transfer function – a function that converts input light (e.g.

l,ight input to a camera) to output light (e.g., light emitted by a display).

PDPC: Position dependent (intra) prediction combination.

POC: Picture order count.

PoR: Plan of record.

PPS: Picture parameter set (as in AVC and HEVC).

QM: Quantization matrix (as in AVC and HEVC).

QP: Quantization parameter (as in AVC and HEVC, sometimes confused with

quantization step size).

QT: Quadtree.

QTBT: Quadtree plus binary tree.

RA: Random access – a set of coding conditions designed to enable relatively-frequent

random access points in the coded video data, with less emphasis on minimization of

delay (contrast with LD).

RADL: Random-access decodable leading.

RASL: Random-access skipped leading.

R-D: Rate-distortion.

RDO: Rate-distortion optimization.

RDOQ: Rate-distortion optimized quantization.

ROT: Rotation operation for low-frequency transform coefficients.

RPLM: Reference picture list modification.

RPR: Reference picture resampling (e.g., as in H.263 Annex P), a special case of which

is also known as ARC or DRC.

RPS: Reference picture set.

RQT: Residual quadtree.

Page: 320 Date Saved: 2016-06-03

RRU: Reduced-resolution update (e.g. as in H.263 Annex Q).

RVM: Rate variation measure.

SAO: Sample-adaptive offset.

SD: Slice data; alternatively, standard-definition.

SDT: Signal dependent transform.

SEI: Supplemental enhancement information (as in AVC and HEVC).

SH: Slice header.

SHM: Scalable HM.

SHVC: Scalable high efficiency video coding.

SIMD: Single instruction, multiple data.

SPS: Sequence parameter set (as in AVC and HEVC).

STMVP: Spatio-temporal motion vector prediction.

SW: Software.

TBA/TBD/TBP: To be announced/determined/presented.

TGM: Text and graphics with motion – a category of content that primarily contains

rendered text and graphics with motion, mixed with a relatively small amount of camera-

captured content.

VCEG: Visual coding experts group (ITU-T Q.6/16, the relevant rapporteur group in

ITU-T WP3/16, which is one of the two parent bodies of the JVET).

VPS: Video parameter set – a parameter set that describes the overall characteristics of a

coded video sequence – conceptually sitting above the SPS in the syntax hierarchy.

WG: Working group, a group of technical experts (usually used to refer to WG 11, a.k.a.

MPEG).

WPP: Wavefront parallel processing (usually synonymous with ECS).

Block and unit names:

o CTB: Coding tree block (luma or chroma) – unless the format is monochrome,

there are three CTBs per CTU.

o CTU: Coding tree unit (containing both luma and chroma, synonymous with

LCU), with a size of 16x16, 32x32, or 64x64 for the luma component.

o CB: Coding block (luma or chroma), a luma or chroma block in a CU.

o CU: Coding unit (containing both luma and chroma), the level at which the

prediction mode, such as intra versus inter, is determined in HEVC, with a size of

2Nx2N for 2N equal to 8, 16, 32, or 64 for luma.

o PB: Prediction block (luma or chroma), a luma or chroma block of a PU, the level

at which the prediction information is conveyed or the level at which the

prediction process is performed2 in HEVC.

2 The definitions of PB and PU are tricky for a 64x64 intra luma CB when the prediction control

information is sent at the 64x64 level but the prediction operation is performed on 32x32 blocks.

Page: 321 Date Saved: 2016-06-03

o PU: Prediction unit (containing both luma and chroma), the level of the prediction

control syntax2 within a CU, with eight shape possibilities in HEVC:

2Nx2N: Having the full width and height of the CU.

2NxN (or Nx2N): Having two areas that each have the full width and half

the height of the CU (or having two areas that each have half the width

and the full height of the CU).

NxN: Having four areas that each have half the width and half the height

of the CU, with N equal to 4, 8, 16, or 32 for intra-predicted luma and N

equal to 8, 16, or 32 for inter-predicted luma – a case only used when

2N×2N is the minimum CU size.

N/2x2N paired with 3N/2x2N or 2NxN/2 paired with 2Nx3N/2: Having

two areas that are different in size – cases referred to as AMP, with 2N

equal to 16 or 32 for the luma component.

o TB: Transform block (luma or chroma), a luma or chroma block of a TU, with a

size of 4x4, 8x8, 16x16, or 32x32.

o TU: Transform unit (containing both luma and chroma), the level of the residual

transform (or transform skip or palette coding) segmentation within a CU (which,

when using inter prediction in HEVC, may sometimes span across multiple PU

regions).

1.11 Opening remarks

Reviewed logistics, agenda, working practices

Results of previous meeting: JEM, web site, software, etc.

1.12 Scheduling of discussions

Scheduling: Generally meeting time was scheduled during 0800–2000 hours, with coffee and

lunch breaks as convenient. Ongoing scheduling refinements were announced on the group email

reflector as needed. Some particular scheduling notes are shown below, although not necessarily

100% accurate or complete:

(Meeting sessions were chaired by J.-R. Ohm, G. J. Sullivan, and/or J. Boyce)

Sat. 20 Feb., 1st day

o 0900–1300 AHG reports and JEM analysis (chaired by JRO and GJS)

o 1430–1900 JEM analysis, technology proposals (chaired by JB)

Sun. 21 Feb., 2nd day

o 0900–1300 Technology proposals (chaired by JB)

o 1400–1600 BoG on independent segment coding (K. Sühring)

o 1600–1800 Technology proposals (chaired by JRO and JB)

o 1800– BoG on test material selection (T. Suzuki)

Mon. 22 Feb., 3rd day

o 1600– BoG on test material selection (T. Suzuki)

The PB, PU, TB and TU definitions are also tricky in relation to chroma for the smallest block

sizes with the 4:2:0 and 4:2:2 chroma formats. Double-checking of these definitions is

encouraged.

Page: 322 Date Saved: 2016-06-03

o 1800– BoG on B0039 viewing (K. Andersson)

Tue. 23 Feb., 4th day

o 1000–1330 Technology proposals, EE principles (chaired by JRO and JB)

o 1530–1800 Viewing of test material (T. Suzuki)

o 1600–1800 BoG on parallel coding and cross-RAP dependencies (K. Sühring)

Wed. 24 Feb., 5th day

o Breakout work on test material

o 1400–1800 common test conditions, EE review, revisits, setup AHGs (chaired by JB

and later JRO)

Thu. 25 Feb., 6th day

o 0900–1200 BoG on call for test materials (A. Norkin)

o 1430–1600 closing plenary, approval of documents (chaired by JRO and GJS)

1.13 Contribution topic overview

The approximate subject categories and quantity of contributions per category for the meeting

were summarized

Status and guidance (3) (section 3)

Analysis and improvement of JEM (11) (section 0)

Test material investigation (18) (section 4)

Technology proposals (16) (section 5)

2 Status and guidance by parent bodies (3)

JVET-B0001 Report of VCEG AHG1 on Coding Efficiency Improvements [M. Karczewicz, M. Budagavi]

The following summarizes the Coding Efficiency Improvements AHG activities between Q.6/16

VCEG meeting in Geneva, Switzerland (October 2015) and the current meeting in San Diego,

USA.

The first version of the Joint Exploration Test Model Software (HM-16.6-JEM-1.0) was released

17th of December, 2016. The software can be downloaded at:

https://vceg.hhi.fraunhofer.de/svn/svn_HMJEMSoftware/tags/HM-16.6-JEM-1.0

The following tools were included on top of HM-14.0-KTA-2.0 software:

Position dependent intra prediction combination (PDPC).

Harmonization and improvements for Bi-Directional Optical Flow (BIO).

Non-separable secondary transform.

Affine motion prediction.

Adaptive reference sample smoothing.

Signal dependent transform (SDT) is still being integrated. In addition configuration files were

updated to reflect modifications to chroma QP offset.

The table below shows the BD-Rate reduction of JEM1 comparing to HM-14.0 for JCT-VC

common test condition for random access configuration.

Page: 323 Date Saved: 2016-06-03

Random Access Main 10

Y U V

Class A −20.81% −29.93% −23.77%

Class B −21.27% −13.17% −9.24%

Class C −20.65% −14.78% −18.20%

Class D −20.55% −9.84% −12.06%

Class E

Overall −20.84% −16.71% −15.43%

This does not yet include the signal dependent transform, which had not been sufficiently

integrated soon enough.

The following contributions proposing new tools or the modifications of the existing tools had

been registered for this meeting:

Generic

o JVET-B0023: Quadtree plus binary tree structure integration with JEM tools

o JVET-B0028: Direction-dependent sub-TU scan order on intra prediction

o JVET-B0033: Adaptive Multiple Transform for Chroma

o JVET-B0038: Harmonization of AFFINE, OBMC and DBF

o JVET-B0047: Non Square TU Partitioning

o JVET-B0051: Further improvement of intra coding tools

o JVET-B0058: Modification of merge candidate derivation

o JVET-B0058: TU-level non-separable secondary transform

o JVET-B0059: Improvements on adaptive loop filter

Screen content

o JVET-B0048: Universal string matching for ultra high quality and ultra high

efficiency SCC

HDR

o JVET-B0054: De-quantization and scaling for next generation containers

Scalability

o JVET-B0043: Polyphase subsampled signal for spatial scalability

In addition, there were two contributions proposing encoder-only modifications to JEM:

JVET-B0039: Non-normative JEM encoder improvements.

JVET-B0041: Adaptive reference sample smoothing simplification.

There were also a number of contributions analyzing performance of tools already included in

JEM1:

JVET-B0022: Performance of JEM 1 tools analysis by Samsung.

JVET-B0037: Performance analysis of affine inter prediction in JEM1.0.

JVET-B0044: Coding Efficiency / Complexity Analysis of JEM 1.0 coding tools for the

Random Access Configuration.

JVET-B0045: Performance evaluation of JEM 1 tools by Qualcomm.

Page: 324 Date Saved: 2016-06-03

JVET-B0057: Evaluation of some intra-coding tools of JEM1.

Three of the contributions provide analysis of all the tools currently included in JEM software

(JVET-B0022, JVET-B0044 and JVET-B0045). Documents JVET-B0022 and JVET-B0045

include both tool-on and tool-off results, while the document JVET-B0044 only includes tool-on

results. Tool-on results in documents JVET-B0022 and JVET-B0045 are the same for all the

tools except for cross-component linear model (COM16_C806_LMCHROMA) prediction,

secondary transform (COM16_C1044_NSST) and adaptive reference sample smoothing

(COM16_C983_RSAF). For cross-component linear model prediction and secondary transform

the mismatch is limited to single Class A sequence. The tool-off results in JVET-B0022 and

JVET-B0045 differ for larger number of tools: sub-PU level motion vector prediction

(COM16_C806_VCEG_AZ10_SUB_PU_TMVP), pattern matched motion vector derivation

(VCEG_AZ07_FRUC_MERGE), position dependent intra prediction combination

(COM16_C1044_PDPC), cross-component linear model prediction

(COM16_C806_LMCHROMA), adaptive reference sample smoothing (COM16_C983_RSAF)

and adaptive loop filter (ALF_HM3_REFACTOR).

The AHG recommended

To review all the related contribution

Discuss possibility of an extension/annex to HEVC based on the tool analysis

submissions

JVET-B0002 VCEG AHG report on Subjective Distortion Measurement (AHG2 of VCEG) [T. K. Tan]

A report of this AHG was submitted, although there was no substantial activity reported. The

report recommended to discontinue the AHG; however, several experts expressed their view that

the topic is important and merits further AHG study.

JVET-B0004 Report of VCEG AHG on test sequences selection (AHG4 of VCEG) [T. Suzuki, J. Boyce, A. Norkin]

Reviewed Sunday.

Available UGC sequences have too much hand shaking. It would be preferable to have

sequences that don't have hand shaking. Stabilizing pre-processing can be applied, and the

stabilized version could be the new source.

Sequences chosen for evaluation at the last meeting are available at the Aachen university ftp site.

There has been a number of input contributions studying the selecting sequences. Four new SCC

test sequences have been proposed. Parts of the Chimera and El Fuente test sequences chosen at

the last meeting have been made available by Netflix under the "creative commons-attribution-

no commercial use-no derivative 4.0" license.

The sequences offered by the following parties had been uploaded and were available from the

Aachen university ftp ftp.ient.rwth-aachen.de.

Bcom

Huawei

Netflix (chosen parts of Chimera and ElFuente)

University of Bristol.

Full ElFuente and Chimera sequences were available at www.cdvl.org under the CDVL license.

Four new screen content coding sequences had been proposed by Tongii university. There are

four such sequences, 1920x1080, 30 fps, 300 frames, both RGB and YCbCr versions of which

were available.

Page: 325 Date Saved: 2016-06-03

A BoG (coordinated by T. Suzuki and J. Chen) was formed for selection of test material with the

following requested activities

Review input contributions, sort out sequences which are assessed to be inappropriate for

codec testing (as per assessment of the testers)

Establish categories per application domain/characteristics, e.g. movie streaming,

surveillance, …

Identify categories (including resolutions besides 4K) where we would like to have

content, e.g. user generated content available so far seems inappropriate; also consider

whether subsampling could be performed on some of the sequences to generate lower

resolution material

Pre-select around 8+ per category for viewing at compressed results, clarify how many

QP points to look at (looking at more rate points should be better to identify the

characteristics of the sequences with regard to codec testing, because different degrees of

quality should be visible at different rates)

Also consider the RD behaviour that is reported for selecting the sequences and the QP

points to look at

In the end, we should select around 4 per category (towards a subjective viewing effort as

would be performed in context of a CfP)

As a target, at the end of the meeting, new sequences could be identified to replace class

A.

Discuss whether it would be appropriate for objective testing to use more shorter

sequences (for RA/LD) or subsampled (for AI)

Also noisy sequences should be included if they are typical for content captured by

cameras

JVET-B0006 Report of VCEG AHG on JEM software development [X. Li, K. Suehring]

This report summarizes the activities of the AhG on JEM software development that had taken

place between the 1st and 2nd JVET meetings.

The mandates given to the AhG were as follows:

Coordinate the development and availability of the "Joint Exploration Model" (JEM)

software for future video coding investigation

Update the software as necessary for bug fixes and new adoptions

Coordinate with AHG1 on analysis of the behaviour and capabilities of the new proposed

features that are integrated into this software

A brief summary of activities is given below.

Software development was continued based on the HM-16.6-KTA-2.0 version. A branch was

created in the software repository to implement the JEM 1 tools based on the decisions noted in

document TD-WP3-0215. All integrated tools were included in macros to highlight the changes

in the software related to that specific tool.

HM-16.6-JEM-1.0 was released on Dec. 17th, 2015.

A few minor fixes were added to the trunk after the release of HM-16.6-JEM-1.0. Those fixes

will be included in the next release of JEM.

A branch was created based on HM-16.6-JEM-1.0 for the integration of VCEG-AZ08, which

was decided to be reimplemented in HM-16.6-JEM-1.1.

Page: 326 Date Saved: 2016-06-03

The integration of VCEG-AZ08 was not finalized before the start of the 2nd JVET meeting, thus

also no performance report is available. The contributors reported, they are still working on bug

fixes. Due to the high complexity in addition to the already complex tools, running full anchors

takes more than a week, even with full parallel coding. This makes verification complicated. As

encoding time becomes a big burden, fast algorithms which do not degrade software quality

should be encouraged.

As decided on the last meeting, another branch was created for COM16-C966, which was based

on HM-13.0.

Software repository and versions are summarized below:

The JEM software is developed using a Subversion repository located at:

o https://jvet.hhi.fraunhofer.de/svn/svn_HMJEMSoftware/

The implementation of JEM 1 tools has been performed on the branch

o https://jvet.hhi.fraunhofer.de/svn/svn_HMJEMSoftware/branches/HM-16.6-KTA-

2.0-dev

The reimplementation of VCEG-AZ08 is performed on the branch

o https://jvet.hhi.fraunhofer.de/svn/svn_HMJEMSoftware/branches/HM-16.6-JEM-

1.0-dev

The branch for COM16-C966

o https://jvet.hhi.fraunhofer.de/svn/svn_HMJEMSoftware/branches/HM-13.0-

QTBT

Released versions of HM-16.6-JEM-1.0 can be found at

o https://jvet.hhi.fraunhofer.de/svn/svn_HMJEMSoftware/tags/HM-16.6-JEM-1.0

As decided at the last meeting and on the JVET email reflector, the Main 10 settings of HM test

conditions with chroma QP adjustment for AI and RA configurations were used for the tests.

The performance of HM-16.6-JEM-1.0 over HM-16.6-KTA-2.0 and HM-16.6 is summarized as

follows.

Page: 327 Date Saved: 2016-06-03

Y U V EncT DecT Y U V EncT DecT

Class A -2.90% 11.53% 10.71% 196% 100% -15.38% -23.49% -20.05% 2080% 174%

Class B -3.54% 12.86% 12.65% 186% 102% -13.82% -8.76% -6.20% 1991% 172%

Class C -4.54% 8.42% 8.02% 187% 104% -14.84% -11.77% -14.91% 2288% 163%

Class D -3.65% 8.43% 8.18% 187% 103% -11.79% -7.95% -9.36% 2624% 165%

Class E -3.91% 8.28% 7.69% 180% 103% -15.75% -11.97% -14.40% 1464% 175%

Overall -3.69% 10.13% 9.70% 187% 102% -14.22% -12.63% -12.57% 2084% 169%

Class F (optional) -2.86% 7.00% 7.06% 176% 103% -12.85% -11.56% -11.59% 1599% 147%

Y U V EncT DecT Y U V EncT DecT

Class A -1.80% 21.70% 22.36% 139% 138% -20.81% -29.93% -23.77% 541% 712%

Class B -2.94% 19.34% 19.11% 138% 143% -21.27% -13.17% -9.24% 510% 814%

Class C -3.20% 12.02% 11.76% 133% 152% -20.65% -14.78% -18.20% 547% 847%

Class D -2.86% 12.90% 11.61% 133% 156% -20.55% -9.84% -12.06% 551% 933%

Class E

Overall (Ref) -2.72% 16.66% 16.38% 136% 147% -20.84% -16.71% -15.43% 535% 822%

Class F (optional) -2.86% 8.97% 8.61% 130% 128% -16.45% -14.81% -14.54% 414% 432%

Y U V EncT DecT Y U V EncT DecT

Class A

Class B -1.58% -2.50% -2.84% 134% 130% -15.57% -22.32% -20.66% 374% 461%

Class C -1.68% -3.06% -3.36% 133% 129% -16.10% -20.24% -22.31% 423% 507%

Class D -2.55% -3.54% -4.36% 135% 139% -15.66% -17.64% -17.12% 427% 586%

Class E -2.82% -5.34% -3.91% 135% 149% -20.72% -28.11% -32.11% 238% 525%

Overall (Ref) -2.08% -3.43% -3.55% 134% 135% -16.69% -21.71% -22.34% 367% 514%

Class F (optional) -1.64% -2.23% -2.02% 125% 113% -16.34% -23.54% -23.51% 301% 317%

Y U V EncT DecT Y U V EncT DecT

Class A

Class B -1.57% -2.35% -2.85% 131% 109% -21.01% -25.93% -23.71% 358% 271%

Class C -1.54% -2.84% -2.71% 129% 105% -18.19% -21.38% -23.12% 400% 276%

Class D -1.96% -3.26% -4.22% 132% 114% -17.47% -19.05% -17.91% 399% 309%

Class E -2.19% -3.44% -3.77% 124% 111% -23.42% -31.52% -35.36% 224% 242%

Overall (Ref) -1.78% -2.90% -3.33% 129% 110% -19.87% -24.12% -24.30% 346% 276%

Class F (optional) -1.64% -2.38% -2.20% 123% 105% -17.11% -24.05% -23.80% 285% 219%

Over HM-16.6-gcc-5.2-NoSIMD

All Intra Main10

Over HM-16.6-gcc-5.2-NoSIMD

Random Access Main 10

Over HM-16.6-KTA-2.0

Over HM-16.6-KTA-2.0

Over HM-16.6-KTA-2.0

Over HM-16.6-KTA-2.0

Low delay B Main10

Over HM-16.6-gcc-5.2-NoSIMD

Low delay P Main10

Over HM-16.6-gcc-5.2-NoSIMD

The JEM bug tracker is located at

https://hevc.hhi.fraunhofer.de/trac/jem

It uses the same accounts as the HM software bug tracker. For spam fighting reasons, account

registration is only possible at the HM software bug tracker at

https://hevc.hhi.fraunhofer.de/trac/hevc

Contributors were asked to please file all issues related to JEM into the bug tracker and to try to

provide all the details, which are necessary to reproduce the issue. Patches for solving issues and

improving the software are always appreciated.

The AHG recommended

to continue software development on the HM-16.6 based version

to formalize test conditions with an output document

to provide software decisions in written form during or shortly after the meeting, e.g. as a

BoG report or draft meeting report

It was commented that having an extreme runtime means that integration testing of new tools

becomes difficult since they must be tested with other tools.

Decoding time is influenced by advanced motion techniques (BIO and FRUC), and it was noted

that the percentage increases for decoding are affected by the relatively fast basis speed. The

times also depend on the degree of compiler optimization. Encoding for intra is influenced by

Page: 328 Date Saved: 2016-06-03

several things. The effect of the increased number of intra modes is mitigated by fast search

techniques.

It was remarked that joint decisions could be used in the anchor to obtain some of the gain of

things like increased block size.

The luma/chroma imbalance and the use of chroma delta QP to adjust for that was discussed. It

was noted that the offset fixed the imbalance that was previously evident in the overall results.

It was commented that the nonlinear relationship between luma QP and chroma QP means that

the offset has a different amount of effect for large QP and for smaller QP (and can be a problem

for encoders trying to adjust the QP in a customized way).

It might be valuable to use a QP offset for chroma that is specific to the QP value for luma

(which depends on the hierarchy position). However, this is not currently supported in the

software and doing the tests necessary to determine the appropriate value would take a

substantial amount of time and effort.

Integration of the JEM with the SCM (SCC) software and updating to a more recent version are

desirable. The runtime and memory usage increase associated with SCC tools was noted as a

concern.

It was remarked that the Locomotive and Nebuta test sequences have unusual characteristics and

that using only picture resolution as the categorization of test sequences for CTC may not be

sufficient.

At least as a supplemental test, we should run the SCM on the JVET CTC and see how much of

an effect may be missing from our tests because of the lack of SCC feature capability in the JEM

software.

3 Analysis and improvement of JEM (11)

JVET-B0021 An improved description of Joint Exploration Test Model 1 (JEM1) [J. Chen, E. Alshina, G. J. Sullivan, J.-R. Ohm, J. Boyce] [late]

Discussed Sat 11:00 GJS & JRO

This document provided ans summarizes proposed improvements to Algorithm Description of

Joint Exploration Test Model 1 (w15790 and T13-SG16-151012-TD-WP3-0213). The main

changes are adding the description of encoding strategies used in experiments for the study of the

new technology in JEM as well as improvement of algorithm description.

JVET-B0022 Performance of JEM 1 tools analysis by Samsung [E. Alshina, A. Alshin, K. Choi, M. Park (Samsung)]

This contribution presents performance tests for each tool in JEM 1.0 in the absence as well as in

the presence of other tools. The goal of this testing was to give better understanding for

efficiency and complexity of individual tool; identify pain-points and suggest rules to follow

during further JEM development. It also could be considered as a cross-check for all tools

previously added to the JEM.

It was reported that almost every tool in JEM has variations and supplementary modifications.

Sometimes those modifications were not mentioned in the original contribution and so are not

properly described in the JEM algorithms description document.

In total, the JEM description includes 22 tools. Two of them were not integrated into the main

S/W branch by the start time of this testing (and so were tested separately).

Below is a summary of each of the JEM tool's performance in the absence of other tools, as

reported in the contribution:

Page: 329 Date Saved: 2016-06-03

Part 1: all-intra and random access.

Tool name

All Intra RA

Y U V Enc Dec Y U V Enc Dec

Larger CTB and Larger TU −0.4 −2.1 −2.5 93% 100% −1.1 −2.4 −2.4 102% 107%

Quadtree plus binary tree structure −4.2 −9.6 −9.4 523% 105% −5.9 −11.3 −12.7 155% 102%

67 intra prediction modes −0.7 −0.4 −0.4 100% 98% −0.2 0.1 0.1 98% 99%

Four-tap intra interpolation filter −0.4 −0.3 −0.3 101% 96% −0.2 −0.4 −0.4 99% 103%

Boundary prediction filters −0.2 −0.2 −0.2 102% 100% −0.1 −0.1 −0.1 99% 100%

Cross component prediction −2.7 0.5 2.6 101% 98% −1.5 2.5 5.5 99% 99%

Position dependent intra combination −1.5 −1.5 −1.6 188% 102% −0.8 −0.4 −0.4 107% 101%

Adaptive reference sample smoothing −1.0 −1.2 −1.1 160% 98% −0.4 −0.5 −0.6 105% 101%

Sub-PU based motion vector prediction na na na na na −1.7 −1.6 −1.7 115% 110%

Adaptive motion vector resolution na na na na na −0.8 −1.2 −1.2 113% 99%

Overlapped block motion compensation na na na na na −1.9 −3.0 −2.9 110% 123%

Local illumination compensation na na na na na −0.3 0.1 0.1 112% 100%

Affine motion compensation prediction na na na na na −0.9 −0.8 −1.0 118% 102%

Pattern matched motion vector derivation na na na na na −4.5 −4.1 −4.2 161% 300%

Bi-directional optical flow na na na na na −2.4 −0.8 −0.8 128% 219%

Adaptive multiple Core transform −2.8 −0.1 −0.2 215% 108% −2.4 0.5 0.2 124% 103%

Secondary transforms −3.3 −5.0 −5.2 369% 102% −1.8 −4.6 −4.7 125% 103%

Signal dependent transform (SDT) −2.0 −2.2 −2.2 2460% 1540% −1.7 −1.6 −1.7 593% 1907%

Adaptive loop filter −2.8 −3.1 −3.4 119% 124% −4.6 −2.3 −2.2 105% 128%

Context models for transform coefficient −0.9 −0.6 −0.7 104% 99% −0.6 0.1 0.0 102% 99%

Multi-hypothesis probability estimation −0.7 −1.0 −0.8 102% 97% −0.4 −0.1 0.1 101% 101%

Initialization for context models na na na na na −0.2 −0.4 −0.4 99% 99%

"hypothetical max gain" −17.4 −15.0 −13.8

−26.8 −19.4 −17.0

JEM1.0 −14.2 −12.6 −12.6 20 1.6 −20.8 −17.7 −15.4 6 7.9

Efficiency factor 0.82

0.78

Page: 330 Date Saved: 2016-06-03

Part 2: Low delay B and low delay P.

Tool name

Low-delay B Low-delay P

Y U V Enc Dec Y U V Enc Dec

Larger CTB and Larger TU −1.1 −4.6 −5.5 101% 103% −1.6 −6.2 −7.0 97% 106%

Quadtree plus binary tree structure −6.4 −12.5 −13.9 151% 104% −6.7 −14.2 −15.5 140% 107%

67 intra prediction modes 0.0 0.0 −0.2 96% 95% −0.2 0.0 −0.2 94% 99%

Four-tap intra interpolation filter −0.1 −0.2 −0.2 96% 95% −0.1 0.0 −0.3 94% 99%

Boundary prediction filters 0.0 0.0 −0.2 97% 95% −0.1 −0.1 0.1 94% 99%

Cross component prediction −0.1 −4.0 −4.3 97% 96% −0.2 −4.9 −4.8 96% 96%

Position dependent intra combination −0.3 −0.2 −0.6 102% 94% −0.3 −0.5 −0.5 103% 99%

Adaptive reference sample smoothing −0.1 −0.4 −0.7 101% 94% −0.2 −0.6 −0.3 101% 94%

Sub-PU based motion vector prediction −1.9 −2.2 −1.8 114% 102% −1.6 −1.9 −1.6 104% 103%

Adaptive motion vector resolution −0.6 −1.0 −0.9 111% 94% −0.4 −0.7 −0.5 106% 99%

Overlapped block motion compensation −2.3 −2.9 −2.7 105% 119% −5.2 −5.2 −4.9 103% 119%

Local illumination compensation −0.4 −0.3 −0.3 116% 96% −0.8 −0.5 −0.3 109% 99%

Affine motion compensation prediction −1.6 −1.4 −1.6 118% 99% −1.9 −1.1 −1.2 110% 103%

Pattern matched motion vector derivation −2.7 −2.3 −2.3 146% 249% −2.5 −2.0 −1.5 121% 155%

Bi-directional optical flow 0.0 −0.2 −0.1 101% 102% na na na na na

Adaptive multiple Core transform −1.6 1.1 0.6 117% 96% −1.9 0.6 0.6 120% 101%

Secondary transforms −0.7 −1.9 −2.5 117% 95% −0.8 −2.4 −2.8 120% 100%

Signal dependent transform (SDT) −3.0 −2.8 −2.7 −6.8 −5.8 −5.7

Adaptive loop filter −3.2 −1.6 −1.8 101% 116% −5.2 −2.8 −2.7 101% 122%

Context models for transform coefficient −0.2 0.3 0.0 99% 94% −0.3 0.1 0.2 97% 98%

Multi-hypothesis probability estimation −0.2 0.5 0.7 99% 95% −0.2 0.8 0.8 97% 98%

Initialization for context models −0.3 −1.5 −1.2 96% 94% −0.3 −1.3 −1.0 94% 99%

"hypothetical max gain" −17.4 −22.8 −25.6

−23.8 −28.7 −27.9

JEM1.0 −16.7 −21.7 −22.3 4.1 4.7 −19.9 −24.1 −24.3 3.6 2.4

Efficiency factor 0.96 0.84

General comments in the contribution, based on this tool-by-tool analysis, were

Tools have been added to JEM without proper cross-check and study

Some tools include modifications that are not directly related to the proposed tool

Proposals include very broad description of algorithm (important details were not

mentioned in the JEM description)

There is some overlap between tools; the "efficiency coefficient" is: AI: 82%, RA: 78%;

LD: 96%; LDP: 84%

The additional memory for parameters storage is huge

The additional precision of new transform coefficients and interpolation filters is

questionable

Page: 331 Date Saved: 2016-06-03

Tool-by-tool analysis and commentary for each tool in JEM1.0 was provided in substantial detail.

A few of the many observations reported in the document are:

For large block sizes, CU sizes larger than 64 are almost not used for encoding even for

the highest resolution test sequences (class A). But enlarging CTB size decreases SAO

overhead cost and so SAO is applied more actively especially for chroma. On our opinion

main source of gain from enlarging CTB size is more efficient SAO usage. The

performance impact of high precision 64x64 transforms was said to be negligible.

Performance improvement of 4-taps Intra interpolation filter is twice higher for classes C

and D compared to high resolution video.

Some combination of recent to MPI handling did not appear helpful.

Some strange behaviour: disabling context model selection for transform coefficient

provides 0.3% (LDB) and 0.2 (LDP) gain; disabling window adaptation in high-

probability estimation for CABAC results in 0.00% BD-rate change.

The deblocking filter operation is changed when ALF is enabled.

Based on the presented JEM analysis, the contributor suggested the following:

Do not do "blind tools additions" to JEM;

Establish exploration experiments (EEs):

o Group tools by categories;

o Proposal should be studied in EE for at least 1 meeting cycle before JEM

modification;

o List-up all alternatives (including tools in HM-KTA blindly modified in JEM);

o "Hidden modifications" should be tested separately;

o Identify tools with duplicated functionality and overlapping performance in EEs;

Simplifications (run time, memory usage) are desired;

JEM tool description need to be updated based on knowledge learned;

Repeat tool-on and tool-off tests for new test sequences (after a test set will be modified).

Comments from the group discussion:

Don't forget to consider subjective quality and alternative quality measures

Compute and study the number of texture bits for luma and chroma separately

It may help if the software architecture can be improved

Group agreements:

Have an EE before an addition to JEM

Try to identify some things to remove (only very cautiously)

Try to identify some inappropriate side-effects to remove

Try to identify some agreed subset(s)

o May need to consider multiple complexity levels

o Consider this in the CTC development

Page: 332 Date Saved: 2016-06-03

JVET-B0062 Crosscheck of JVET-B0022 (ATMVP) [X. Ma, H. Chen, H. Yang (Huawei)] [late]

JVET-B0036 Simplification of the common test condition for fast simulation [X. Ma, H. Chen, H. Yang (Huawei)]

Chaired by J. Boyce

A simplified test condition is proposed for RA and AI configurations to reduce simulation run-

time. For RA configuration, each RAS (Random Access Segment, approximately 1s duration) of

the full-length sequence can be used for simulation independent of other RAS. And therefore the

simulation of the full-length sequence can be split to a set of parallel jobs. For AI configuration,

RAP pictures of the full-length sequence are chosen as a snapshot of the original for simulation.

It is claimed that the compression performance when using the original test condition can be

reflected faithfully by using the proposed new test condition, while the encoding run-time is

significantly reduced.

Encoding of Nebuta for QP22 RA takes about 10 days. The contribution proposes parallel

encoding for RA Segments.

A small mismatch is seen when parallel encoding done, because of some cross-RAP encoder

dependencies. Sources of mismatches identified in contribution. It was suggested that the ALF

related difference is due to a bug in decoder dependency across random access points, which has

been reported in a software bug report.

It was proposed to encode only some of the intra frames, or to use the parallel method.

If RA is changed in this way, LD will become the new bottleneck.

Software was not yet available in the contribution. Significant interest was expressed in having

this software made available.

We want to restrict our encoder to not use cross-RAP dependencies, so that parallel encoding

would have no impact on the results.

It was agreed to create a BoG (coordinated by K. Suehring and H. Yang) to remove cross-RAP

dependencies in the encoder software/configurations. It was agreed that if this could be done

during the meeting, the common test conditions defined at this meeting would include this

removal of the dependencies. (see notes under B0074).

Decision (SW): Adopt to JEM SW, once the SW is available and confirmed to have identical

encoding results, with cross-RAP dependencies removed. Also add to common test conditions.

Decoding time reporting is typically done in ratios. Decoding time calculation can be based

either on adding parallel decoding times, or the non-parallel decoding, but the same method

should be used for both the Anchor and the Test.

It is proposed for AI to just use the I frames from the RA config, in order to reduce the AI

encode time.

This was further discussed Tuesday as part of the common test conditions consideration.

JVET-B0037 Performance analysis of affine inter prediction in JEM1.0 [H. Zhang, H. Chen, X. Ma, H. Yang (Huawei)]

Chaired by J. Boyce.

An inter prediction method based on an affine motion model was proposed in the previous

meeting and was adopted into JEM (Joint Exploration Model). This contribution presents the

coding performance of the affine coding tool integrated in JEM 1.0. Results show that affine

inter prediction can bring 0.50%, 1.32%, 1.35% coding gains beyond JEM 1.0 in RA main 10,

LDB main 10 and LDP main 10 configurations, respectively. In addition, comments regarding

this coding tool collected from the previous meeting is addressed.

In the affine motion model tool, 1/64 pixel MV resolution is used only for those PU that selected

the affine model.

Page: 333 Date Saved: 2016-06-03

Affine motion model tool is already included in the JEM. No changes are proposed. This

contribution just provides some additional information about the tool.

JVET-B0039 Non-normative JEM encoder improvements [K. Andersson, P. Wennersten, R. Sjoberg, J. Samuelsson, J. Strom, P. Hermansson, M. Pettersson (Ericsson)]

Chaired by J. Boyce.

This contribution reports that a change to the alignment between QP and lambda improves the

BD rate for luma by 1.65% on average for RA, 1.53% for LD B and 1.57% for LD P using the

common test conditions. The change, in combination with extension to a GOP hierarchy of

length 16 for random access, is reported to improve the BD rate for luma by 7.0% on average

using the common test conditions. To verify that a longer GOP hierarchy does not decrease the

performance for difficult-to-encode content, four difficult sequences were also tested. An

average improvement in luma BD rate of 4.7% was reported for this additional test set. Further

extending the GOP hierarchy to length 32 is reported for HM to improve the BD rate by 9.7% for

random access common conditions and 5.4% for the additional test set. It was also reported that

the PSNR of the topmost layer is improved and that subjective quality improvements with

respect to both static and moving areas have been seen by the authors especially when both the

change to the alignment between QP and lambda and a longer GOP hierarchy are used. The

contribution proposes that both the change to the alignment between QP and lambda and the

extension to a GOP hierarchy of 16 or 32 pictures be included in the reference software for JEM

and used in the common test conditions. Software is provided in the contribution.

The contribution proposed to adjust the alignment between lambda and QP. This would be an

encoder only change. Decision (SW): Adopt the QP and lambda alignment change to the JEM

encoder SW. Communicate to JCT-VC to consider making the same change to the HM. Also add

to common test conditions.

The contribution proposed an increase in the hierarchy depth that would require a larger DPB

size than HEVC currently supports if the resolution was at the maximum for the level. This will

add a very long delay and would make it difficult to compare performance to the HM unless a

corresponding change is also made to that. Encoders might not actually use the larger hierarchy,

so this might not represent expected real world conditions.

It was suggested to revisit the consideration of the common test conditions to include GOP

hierarchy of 16 or 32 after offline subjective viewing. The intra period will also need to be

considered. Memory analysis is also requested. A BoG (coordinated by K. Andersson, E. Alshina)

was created to conduct informal subjective viewing.

This was discussed again Tuesday AM, see further notes under the JVET-B0075 BoG report.

JVET-B0063 Cross-check of non-normative JEM encoder improvements (JVET-B0039) [B. Li, J. Xu (Microsoft)] [late]

JVET-B0067 Cross-check of JVET-B0039: Non-normative JEM encoder improvements

[C. Rudat, B. Bross, H. Schwarz (Fraunhofer HHI)] [late]

JVET-B0044 Coding Efficiency / Complexity Analysis of JEM 1.0 coding tools for the Random Access Configuration [H. Schwarz, C. Rudat, M. Siekmann, B. Bross, D. Marpe, T. Wiegand (Fraunhofer HHI)]

Chaired by J. Boyce.

This contribution provides a coding efficiency / complexity analysis of JEM 1.0 coding tools for

the random access Main 10 configuration. The primary goal of the investigation was to identify

sets of coding tools that represent operation points on the concave hull of the coding efficiency –

Page: 334 Date Saved: 2016-06-03

complexity points for all possible combinations of coding tools. Since an analysis of all

combinations of coding tools is virtually impossible (for the 22 integrated coding tools, there are

222

= 4.194.304 combinations), the authors used a two-step analysis: First, all coding tools were

evaluated separately and ordered according to the measured coding efficiency – complexity

slopes. In the second step, the coding tools were successively enabled in the determined order.

The analysis started with the tool with the highest value in (greedy) ―bang for the buck‖ (coding

gain vs complexity, as measured by a weighted combination of encode and decode run times,

with decode 5x more important than encode), and iteratively added the next higher value in each

step.

LMCHROMA showed a loss with the new common test conditions with chroma QP offsets.

The contribution only tested RA Main 10 classes B-D.

There was a slight difference in configuration, TC offset −2 vs TC offset 0 vs JVET-B0022.

Different compilers get different decoding times. GCC 4.6.3 800 vs GCC 5.2 900 decoder

runtimes.

It was suggested that it would be useful if memory bandwidth and usage could be considered. It

would also be useful if a spreadsheet with raw data could be provided so that parameters can be

changed, such as relative weight between encoder and decoder complexity. It would be useful to

provide a similar graph containing only decoder complexity.

Encoder runtime is also important, at least since it impacts our ability to run simulations.

Two tools have very large increases in as-measured complexity – BIO and FRUC_MERGE.

It was remarked that the BAC_ADAPT_WDOW results may be incorrect because of a software

bug.

It was commented that this measurement of complexity is not necessarily the best measure. It

was suggested that proponents of tools that show high complexity with this measurement provide

some information about the complexity using other implementations. For example, knowledge

that a technique is SIMD friendly, or parallelizable, would be useful.

Tools with high encoder complexity could provide two different encoder algorithms with

different levels of encoder complexity, e.g. a best performing and a faster method.

This was further discussed on Tuesday. The contribution had been updated to provide summary

sheets and enable adjustment of the weighting factor. All raw data had also been provided.

JVET-B0045 Performance evaluation of JEM 1 tools by Qualcomm [J. Chen, X. Li, F. Zou, M. Karczewicz, W.-J. Chien (Qualcomm)] [late]

Chaired by J. Boyce.

This contribution evaluates the performance of the coding tools in the JEM1. The coding gain,

encoder and decoder running time of each individual tool in JEM reference software are

provided.

The contribution used HEVC common test conditions, All Intra Class A-E, RA Class A-D, for

LDP, LDB Class B-E. Individual tool on and tool off tests were performed.

The contribution proposed a grouping of tools into 4 categories. The first group was considered

the most suitable for an extension to HEVC.

The proponent requested to have a discussion about the potential for this exploratory work to be

included in a new extension HEVC. (This would be a parent-body matter.)

JVET-B0050 Performance comparison of HEVC SCC CTC sequences between HM16.6 and JEM1.0 [S. Wang, T. Lin (Tongji Univ.)] [late]

The contributor was not available to present this contribution.

This contribution presents an SCC performance comparison between HM16.6 (anchor) and

JEM1.0 (tested). Seven TGM and three MC sequences from HEVC SCC CTC were used. HEVC

SCC CTC AI and LB configurations wre tested using 50 frames and 150 frames, respectively.

Page: 335 Date Saved: 2016-06-03

AI YUV BD-rate −3.6%, −4.0%, −3.6% and −4.6%, −4.0%, −3.7% are reported for TGM and

MC sequences, respectively.

LB YUV BD-rate −13.2%, −12.5%, −11.8% and −11.3%, −10.3%, −10.0% are reported for

TGM and MC sequences, respectively.

JVET-B0057 Evaluation of some intra-coding tools of JEM1 [A. Filippov, V. Rufitskiy (Huawei Technologies)] [late]

Chaired by J. Boyce.

This contribution presents an evaluation of some of JEM1.0 intra-coding tools, specifically: 4-tap

interpolation filter for intra prediction, position dependent intra prediction combination, adaptive

reference sample smoothing and MPI. Simulations include ―off-tests‖ as provided in JVET-

B0022 as well as a brief tools efficiency analysis. Tools efficiency is estimated by calculating a

ratio of coding gain increase to encoder complexity.

The contribution calculated the ―slope‖ of tools, comparing coding gain with weighted

complexity measure, similar to that used in JVET-B0044, but with a relative weight of 3 for

decode vs encode. This was applied to intra tools in AI configuration.

Experimental results were similar to those in JVET-B0022.

General Discussion

Comments from the general discussion of the contributions in this area included:

Encourage proponents to provide range of complexity, both highest quality and simpler

encoding algorithm for faster encoding.

In contributions, proponents should disclose any configuration changes that could also be

changed separate from their tool proposal.

The tools in the JEM have not been cross-checked.

Suggest to do some type of cross checking of tools already in the JEM, perhaps through

exploration experiments.

At this meeting will want to define common test conditions with new sequences.

Further discussion and conclusion was conducted on Sunday:

Decision (SW): Create an experimental branch of the JEM SW. Candidate tools can be made

available for further study within this experimental branch without being adopted to the JEM

model. The software coordinators will not maintain this branch, and it won‘t use bug tracking,

but will instead be maintained by the proponents.

JVET-B0073 Simplification of Low Delay configurations for JVET CTC [M. Sychev (Huawei)]

Chaired by J. Boyce.

A simplified test condition is proposed for LDB and LDP configurations to reduce simulation

run-time. Each RAS (Random Access Segment, approximately 1s duration) of the full-length

sequence is proposed to be used for simulation, independent of other RAS, and it was asserted

that therefore the simulation of the full-length sequence can be split to a set of parallel jobs. By

using the proposed new test condition, the encoding run-time can be reduced by the multiple

parallelism factor.

The contribution provided some experimental results with varying LD encoding configurations,

but not identical to what was being proposed.

It was remarked that with the parallelization of RA encoding and subsampling of the AI intra

frames, the LD cases become the longest sequences to encode.

Page: 336 Date Saved: 2016-06-03

4 Test material investigation (17)

All contributions in this category were reviewed in a BoG on selection of test material, reported

in JVET-B0076.

JVET-B0024 Evaluation report of SJTU Test Sequences [T. Biatek, X. Ducloux]

JVET-B0025 Evaluation Report of Chimera Test Sequence for Future Video Coding [H. Ko, S.-C. Lim, J. Kang, D. Jun, J. Lee]

JVET-B0026 JEM1.0 Encoding Results of Chimera Test Sequence [S.-C. Lim, H. Ko, J. Kang]

JVET-B0027 SJTU 4K test sequences evaluation report from Sejong University [N. U. Kim, J. W. Choi, G.-R. Kim]

JVET-B0029 Evaluation report of B-Com test sequence (JCTVC-V0086) [O. Nakagami]

JVET-B0030 Comment on test sequence selection [O. Nakagami, T. Suzuki (Sony)]

JVET-B0031 Evaluation report of Huawei test sequence [K. Choi, E. Alshina, A. Alshin, M. Park] [late]

JVET-B0035 Evaluation Report of Chimera and Huawei Test Sequences for Future Video Coding [P. Philippe (Orange)]

JVET-B0040 Evaluation Report of Huawei and B-Com Test Sequences for Future Video Coding [F. Racapé, F. Le Léannec, T. Poirier]

JVET-B0042 Evaluation Report of B-COM Test Sequence for Future Video Coding (JCTVC-V0086) [H. B. Teo, M. Dong]

JVET-B0046 Evaluation report of Netflix Chimera and SJTU test sequences [F. Zou, J. Chen, X. Li, M. Karczewicz (Qualcomm)] [late]

JVET-B0049 Four new SCC test sequences for ultra high quality and ultra high efficiency SCC [J. Guo, L. Zhao, T. Lin (Tongji Univ.)] [late]

JVET-B0052 Report of evaluating Huawei surveillance test sequences [C.-C. Lin, J.-S. Tu, Y.-J. Chang, C.-L. Lin (ITRI)] [late]

Page: 337 Date Saved: 2016-06-03

JVET-B0053 Report of evaluating Huawei UGC test sequences [J.-S. Tu, C.-C. Lin, Y.-J. Chang, C.-L. Lin (ITRI)] [late]

JVET-B0055 Netflix Chimera test sequences evaluation report [M. Sychev, H. Chen (Huawei)] [late]

JVET-B0056 Evaluation report of SJTU Test Sequences from Sharp [T. Ikai (Sharp)] [late]

JVET-B0061 Evaluation report of SJTU test sequences for future video coding standardization [S.-H. Park, H. Xu, E. S. Jang] [late]

JVET-B0065 Coding results of 4K surveillance and 720p portrait sequences for future video coding [K. Kawamura, S. Naito (KDDI)] [late]

5 Technology proposals (16)

JVET-B0023 Quadtree plus binary tree structure integration with JEM tools [J. An, H. Huang, K. Zhang, Y.-W. Huang, S. Lei (MediaTek)]

Chaired by J. Boyce

This contribution reports the integration of the new coding tools in JEM on top of the quadtree

plus binary tree (QTBT) structure. It is reported that around 5% BD-rate saving can be achieved

by the QTBT structure.

At the previous meeting, it was decided to put QTBT in a separate branch, because of the

interaction with other tools. Integration with all but two of the other adopted tools – NSST and

RSAF – has since been done.

JEM 1.0 is based on HM16.6.

The plan is for proponents to integrate QTBT into JEM 1.0. An intermediate step would be to

add the remaining two tools in the separate branch, and then upgrade to HM 16.6. At the next

meeting we will decide if QTBT should be merged into the main branch.

This was discussed again on Sunday. The proponents provided information that the QTBT

software is now based on HM16.6, rather than an earlier version of the HM as had been

discussed on Saturday.

It was agreed to include QTBT in the EE document for testing.

JVET-B0034 Cross-check of JVET-B0023 [E. Alshina, K. Choi, A. Alshin, M. Park, M. Park, C. Kim] [late]

Simulation results matched, but the cross-checkers didn‘t look at the source code.

JVET-B0028 Direction-dependent sub-TU scan order on intra prediction [S. Iwamura, A. Ichigaya]

Chaired by J. Boyce

This contribution proposes an change of intra prediction by modification of sub-TU scan order

depending on intra prediction direction. The proposed method modifies z-scan order of sub-TUs

when intra prediction direction is set to from top-right to bottom-left or from bottom-left to top-

right, which is corresponding to intra prediction mode from 2 to 9 or from 27 to 34 of the HEVC

specification. By the modification of scan order, the lower/right neighboring samples can be

utilized as reference samples, so that the accuracy of intra prediction is improved. The proposed

Page: 338 Date Saved: 2016-06-03

method is integrated on top of HM16.7 and the experimental result shows −0.2%(Y), −0.4%(U)

and −0.3%(V) BD-rate impact for All Intra configuration with very slight increase of encoding

time.

Experimental results were vs. HM16.7 rather than JEM 1.0. The proponent was encouraged to

provide results vs JEM 1.0.

JVET-B0033 Adaptive Multiple Transform for Chroma [K. Choi, E. Alshina, A. Alshin, M. Park, M. Park, C. Kim] [late]

Chaired by J. Boyce.

This contribution provides an information of the use of Adaptive Multiple Transforms (AMT)

for chroma components. In JEM1.0, adaptive multiple transform is used for the luma component.

It shows a good coding performance for the luma component but the some coding loss appears in

chroma components. It is suggest that this is due to the fact that the used transform kernel for

chroma components is different from that of the luma component. This contribution proposes to

enable the use of AMT for chroma by aligning with the used transform kernel of luma

component. The result reportedly shows 1% increase of chroma gain without coding loss of luma

and increase of encoding/decoding time.

Further study was encouraged.

JVET-B0038 Harmonization of AFFINE, OBMC and DBK [H. Chen, S. Lin, H. Yang]

Chaired by J. Boyce.

In this contribution, a change of AFFINE (affine transform prediction), OBMC (overlapped

block motion compensation) and DBF (de-blocking filter) is proposed. Simulations reportedly

show that 0.15%, 0.15% and 0.14% luma BD-rate reduction can be achieved for RA, LDB and

LDP configurations, respectively. More than 1% coding gain can reportedly be obtained for

some affine-featured sequences.

Decoder time increase, average 118%, for sequences with rotation. An increase in worst case

complexity is not expected. The sequences with the biggest coding gains show the biggest

increase in decoding time.

Decision: Adopt to JEM the proposal to harmonize AFFINE with OBMC and deblocking filter.

Also add to common test conditions.

JVET-B0041 Adaptive reference sample smoothing simplification [A. Filippov, V. Rufitskiy (Huawei Research)] [late]

Chaired by J. Boyce.

This contribution presents a simplification of the RDO procedure used by the adaptive reference

sample smoothing (ARSS) filter, i.e. a non-normative modification of ARSS is considered. The

results of different tests are presented and analyzed. The proposed scheme provides a better ratio

of the coding gain to encoder-side computational complexity.

The presentation was later uploaded in a revision of the contribution.

Two non-normative encoder changes are proposed, which provide simplification.

Future study was encouraged for interaction with other tools.

Decision (SW): Adopt to the JEM SW encoder the proposed simplifications, #1a and #2, to the

RDO decision of the ARSS. Also add to common test conditions.

JVET-B0043 Polyphase subsampled signal for spatial scalability [E. Thomas (TNO)]

Chaired by J. Boyce.

This contribution presents a technique to enable spatial scalability of a video bitstream. The

video signal (luma and chroma components) is subsampled to a lower resolution, possibly using

polyphase subsampling. Multiple lower resolution versions of the signal, called resolution

Page: 339 Date Saved: 2016-06-03

components in this contribution, are encoded and transported in the same video bitstream. On the

decoder side, the more resolution components are decoded the higher the output resolution is.

The contribution is related to multi-description coding. A high resolution frame is decomposed

into 4 lower resolution frames. Two options were presented: temporal multiplexing with inter-

layer prediction, or spatial multiplexing with frame packing, which could use tiles.

No experimental results were available yet.

Further study was encouraged. It would be interesting to compare this scheme to SHVC, both for

compression efficiency and for use case and complexity.

JVET-B0047 Non Square TU Partitioning [K. Rapaka, J. Chen, L. Zhang, W.-J. Chien, M. Karczewicz (Qualcomm)] [late]

Chaired by J. Boyce.

This contribution proposes non-square TU partitioning for intra and inter prediction modes. Two

partition types (2NxN and Nx2N) are added for intra mode. For non-square partitions, a binary

split is allowed at the root level (level 0) for intra and inter prediction modes. Further TU

splitting processing follows the HEVC mechanism. It is reported that the proposed method

provides 1.5%, 1.0%, 0.7%, 0.8% BD-rate saving for AI, RA, LDB and LDP configurations

respectively over HM 16.6.

Results are compared with HM 16.6 rather than JEM 1.0. It was not tested vs QTBT.

The minimum TU size is 4x8.

Experimental results vs. the JEM are requested.

Decision (SW): Make SW available in experimental SVN branch of JEM software. Include in

the EE document for testing.

JVET-B0068 Cross-check of Non Square TU Partitioning (JVET-B0047) [O. Nakagami (Sony)] [late]

Not all simulations were finished, but those that are finished showed a match. The cross-checker

didn‘t study the source code.

JVET-B0048 Universal string matching for ultra high quality and ultra high efficiency SCC [L. Zhao, K. Zhou, J. Guo, S. Wang, T. Lin (Tongji Univ.)] [late]

Chaired by J. Boyce.

"Universal string matching" (USM) is proposed for screen content coding. USM is integrated

with HM16.6-JEM1.0 to get HM16.6-JEM1.0USM. Using HM16.7-SCM6.0 as anchor with

HEVC-SCC CTC sequences and coding configurations (full frame IBC version), it is reported

that HM16.6-JEM1.0USM with all JEM specific tools turned off (i.e. equivalent to

HM16.6USM) has −4.8%, −4.4%, −4.2% BD-rate for YUV TGM AI lossy coding. Encoding

time ratio is 86%, i.e. 14% decrease from SCM5.2. Moreover, using four newly proposed screen

content test sequences and the same HEVC-SCC CTC coding configurations, Y BD-rate is

reported as −33.8%, −24.4%, −25.7%, and −23.3% for the four sequences ClearTypeSpreadsheet,

BitstreamAnalyzer, EnglishDocumentEditing, and ChineseDocumentEditing, respectively

(proposed in JVET-B0049), resulting in an average of −26.8% Y BD-rate. Furthermore,

replacing qp=(22, 27, 32, 37) with qp=(7, 12, 17, 22) and keeping other HEVC-SCC CTC coding

configurations unchanged, it is reported that the BD-rate becomes −6.4%, −6.2%, −6.0% for

YUV TGM sequences in HEVC-SCC CTC and −48.0%, −29.8%, −28.2%, and −26.6% for Y of

the four sequences, resulting in an average of −33.1% Y BD-rate.

The contribution proposes new SCC test sequences for JVET.

The "universal string matching" tool is proposed. Compared to what had been studied when tool

was proposed in prior SCC work, additional complexity constraints are imposed.

Page: 340 Date Saved: 2016-06-03

Experimental results were based on comparing Tested: HM16.6+JEM1.0+USM (JEM macros

off) to Anchor: HM16.7+SCM6.0 using full frame IBC. More gains were reported at higher bit

rates. Much higher gains were reported on proposed SCC sequences vs. the SCC CTC sequences.

It was initially planned to further discuss this after test sequences are available, and consider

including in the experimental SVN branch if new CTC conditions would contain screen content

sequences. As, however, such an action was not taken (see BoG report B0076), this plan became

obsolete.

JVET-B0051 Further improvement of intra coding tools [S.-H. Kim, A. Segall (Sharp)] [late]

Chaired by J. Boyce.

This contribution proposes changes to the intra-coding process in JEM 1.0, with specific

emphasis on (i) extended intra prediction directions (ii) non-separable secondary transform

(NSST). The changes are as follows: First, when extended intra prediction directions are enabled,

the contribution proposes to signal the non-MPM modes by first sub-dividing the non-MPM

modes into two mode sets, and then signalling these modes sets with different binarizations.

Second, the contribution proposes an alternative method for signalling the NSST index

(NSST_idx). Specifically, instead of using two binarization methods based on intra prediction

mode and partition size, the proposal codes NSST_idx with a unified binarization method and

adjusts the context model to reflect the statistics of the index based on the intra prediction mode

and partition size. Finally, the contribution proposes to allow for NSST and PDPC to be enabled

in the same PU. Using the above mentioned changes, it is reported that an improvement of

0.35% and 0.19% luma BD-rate savings is observed for AI and RA configurations, respectively.

NSST and PDCD are disallowed to be combined in the current JEM. It would be possible to

allow the decoder to combine them without enabling the combination in the default encoder

configuration.

There was a significant increase in encoding time when the features are combined.

Decision: Adopt non-MPM mode coding in two mode sets. Also add to common test conditions.

Further study of other aspects was encouraged, and it was suggested to consider the interaction

with B0059.

Decision (SW): Add unified binarization for NSST index and independent coding between

PDPC and NSST index to the experimental SVN branch. Include in the EE list.

Proponents are asked to make experimental results available for each aspect individually.

JVET-B0054 De-quantization and scaling for next generation containers [J. Zhao, A. Segall, S.-H. Kim, K. Misra (Sharp)] [late]

Chaired by J. Boyce.

This contribution proposes a change in the de-quantization and scaling process in JEM 1.0. For

background, the change was said to be motivated by recent work in MPEG, where it has been

shown that next generation "containers", such as ST-2084, re-shape quantization noise as a

function of brightness. For current standards, this requires encoders to compensate by spatially

varying the QP in an inverse manner. Here, it is proposed that a next-generation standards

decoder could infer the needed compensation without significant QP signalling. This is

accomplished by adapting the scaling of AC coefficients based on the DC coefficient and

reconstructed prediction mean. Experiments performed using sequences under study in MPEG

(and now JCT-VC) reportedly show a gain of 2.0% for both AI and RA configuration when the

QP granularity is 16x16.

As proposed, the decoder infers a QP adjustment based on average luma values. Delta QP can

also be signalled.

A LUT is signalled on a per-sequence basis. It was suggested that we would want to give

encoder the ability to disable the feature.

Only AC coefficients are affected, and not the DC coefficients.

Page: 341 Date Saved: 2016-06-03

The proponent suggested that SDR content may also use the ST-2084 container, especially for

services with a mix of SDR and HDR content.

Decision (SW): Make SW available in experimental SVN branch of JEM software. Include in

the EE document for testing. Also include the luma QP adjustment encoder functionality.

JVET-B0058 Modification of merge candidate derivation [W.-J. Chien, J. Chen, S. Lee, M. Karczewicz (Qualcomm)] [late]

Chaired by J. Boyce.

In this contribution, modifications to the merge candidate derivation are proposed, including

higher motion resolution, POC-based merge candidate pruning, simplification of the advanced

temporal motion vector predictor, and derivation of the spatio-temporal motion vector predictor.

With the proposed modifications, an additional 0.6%, 0.6%, and 2.3% BD rate reduction over

HM16.6 is reportedly achieved for random access, low delay B, and low delay P configurations,

respectively.

Four different modifications are proposed, but only combined performance results are available,

not individual tool performance numbers.

It was proposed to move from 1/8 pel to 1/16 pel storage and merge candidate accuracy. No

additional storage or memory bandwidth vs. HEVC is used, but the allowable range is decreased

to ~4k.

This was further discussed Tuesday AM (chaired by JO/JB). It was reported that the higher

precision of MV storage increases by 0.0/0.3/0.4% for the cases of RA/LDB/LDP.

It was asked if the gain will be reduced once the harmonization of the affine with OBMC is

included in the JEM. The gain of this aspect is greater than the affine OBMC harmonization.

Decision: Adopt the 1/16 pel motion vector storage accuracy to the JEM and the common test

conditions.

It was suggested for individual ―tool on‖ experiments to only test this with ATMVP turned on,

because these would show more benefits together.

Decision (SW): Add to the experimental branch the pruning and ATMVP simplification. Include

in the EE document for testing. Separate experimental results for each proposed aspect should be

provided.

JVET-B0066 Cross-check of JVET-B0058: Modification of merge candidate derivation [H. Chen, H. Yang (Huawei)] [late]

JVET-B0059 TU-level non-separable secondary transform [X. Zhao, A. Said, V. Seregin, M. Karczewicz, J. Chen, R. Joshi (Qualcomm)] [late]

Chaired by J. Boyce.

In this contribution, a TU-level non-separable secondary transform (NSST) is proposed.

Compared to the current CU-level NSST design in JEM-1.0 software, the proposed method

speeds up the encoder by reducing the number of rate-distortion checks and using transform-

domain distortion estimation. With the proposed TU-level NSST, an average 44% overall

encoder run-time reduction is reportedly achieved over JEM-1.0 for all intra (AI), and average

BD-rate improvement of 0.1% is reportedly achieved for the luminance component for both AI

and random access (RA) configurations.

Replacing CU-level CSST with TU-level NSST provides an encoder speedup of 44%, plus a

small coding gain in luma and coding loss in chroma.

A new Hypercube-Givens Transform (HyGT) is used in the computation of the secondary

transform and also proposed. It has a butterfly-like structure. Separate experimental results are

not given for the two aspects, which would be preferable.

A small increase in decoder runtime was seen, but it is unclear why.

Page: 342 Date Saved: 2016-06-03

Further study was encouraged, and it was requested to consider the interaction with B0051.

This was further discussed on Wednesday.

Decision (SW): Make SW available in experimental SVN branch of JEM software. Include in

the EE document for testing. Proponents were asked to provide separate experimental results for

each aspect individually.

JVET-B0060 Improvements on adaptive loop filter [M. Karczewicz, L. Zhang, W.-J. Chien (Qualcomm)] [late]

Chaired by J. Boyce.

In this contribution, several changes to the adaptive loop filter (ALF) in HM16.6 JEM-1.0 are

proposed. Three main introduced modifications are: classification with the diagonal gradients

taken into consideration, geometric transformations of filter coefficients, and prediction from

fixed filters. In addition, some cleanups of the software are also included. With the proposed

methods, the coding performance of HM16.6 JEM-1.0 is reportedly improved by 1.1% and 1.1%

on average for all intra (AI) and random access (RA) configurations, respectively, when all the

tools are enabled and by 1.5% and 1.5% on average for AI and RA configurations, respectively,

when only ALF is enabled. The overall performance improvement of ALF, compared to HM16.6,

reportedly reaches 4.0% and 6.0%, on average for AI and RA, respectively.

The HM 3.0 version of the ALF was put into the JEM at an earlier stage. Changes are proposed

with respect to the HM 3.0 version of ALF. It was commented that later versions of the HM (HM

8) had made changes to ALF vs. the HM 3.0 version.

The contribution proposes 25 classes rather than the 15 classes in the older design.

The proposal avoids use of temporal prediction in I frames.

Software cleanups were also proposed.

Simulation results were only provided for the combination of changes. Some of the changes are

inherently grouped together, but some could be separated. It was specifically requested to

provide test results with the fixed filters on and off. The impact of the change to the chroma filter

shape alignment with luma filter shape is also requested.

Decision (SW): Make SW available in experimental SVN branch of JEM software. Include in

the EE document for testing.

JVET-B0069 Crosscheck of the improvements on ALF in JVET-B060 [C.-Y. Chen, Y.-W. Huang (MediaTek)] [late]

Contribution noted.

JVET-B0070 Cross-check of JVET-B0060 [B. Li, J. Xu (Microsoft)] [late]

Contribution noted.

6 Joint Meetings, BoG Reports, and Summary of Actions Taken

6.1 General

The setup of Exploration Experiments was discussed, and an initial draft of the EE document

was reviewed in the plenary (chaired by JRO). This included the list of all tools that are intended

to be investigated in EEs during the subsequent meeting cycle:

EE1: Quad-tree plus binary-tree (QTBT)

EE2: Non Square TU Partitioning

EE3: NSST and PDPC index coding

EE4: De-quantization and scaling for next generation containers

Page: 343 Date Saved: 2016-06-03

EE5: Improvements on adaptive loop filter

EE6: Modification of Merge candidate derivation

EE7: TU-level non-separable secondary transform

It was agreed to give the editors the discretion to finalize the document during the two weeks

after the meeting, and circulate/discuss it on the reflector appropriately.

6.2 Joint meetings

A joint meeting of the parent bodies was held on Monday February 23 at 1800 in which future

video coding was discussed. In that discussion, it was noted for clarification that JVET is tasked

with exploring potential compression improvement technology, regardless of whether it differs

substantially from HEVC or not. Discussions of converting that work into a formal

standardization project, determining whether that would be a new standard or not, timelines for

standardization, profiles, etc., belong in the parent bodies rather than in JVET.

A requirements input VCEG-BA07 / m37709 from Nokia was noted on video for virtual reality

systems. Other requirements issues and contributions relating to future video coding

requirements are also under consideration in the parent bodies.

See the corresponding and reports of the parent-body meetings and the JCT-VC meeting for

additional discussions of potential relevance.

6.3 BoGs

JVET-B0074 Report of BoG on parallel encoding and removal of cross-RAP dependencies [K. Suehring, H. Yang (BoG coordinators)]

In contribution JVET-B0036, independent coding of test sequence segments was proposed. It

was discovered that the JEM software encoder uses information from the coded part of the

sequence to make decisions in and after the next IRAP picture.

To enable independent encoding, these dependencies need to be removed. Contribution JVET-

B0036 lists the following macros to cause dependencies across random access points at the

encoder:

CABAC_INIT_PRESENT_FLAG

VCEG_AZ07_INIT_PREVFRAME

COM16_C806_ALF_TEMPPRED_NUM

There also exists a dependency related to SAO encoding.

Some of the issues had already been resolved.

The BoG planned to meet again.

If we decide to keep the AI conditions to include all frames in the sequence, we should apply

parallel encoding to the AI case.

It was asked if we should sub-sample the intra frames in the IA case for the common test

conditions. We may want to have different common test conditions for objective results than for

subjective testing. It would be possible to reuse the intra frames from the RA case. It was

suggested that there may be overtraining of intra proposals to particular frames.

Decision (SW): Use a factor of 8 for subsampling of intra frames in common test conditions.

This was further discussed on Wednesday.

Patches for all issues have been provided. No problems were seen in the experiments with the

common test conditions that had been run so far.

Several questions regarding common test conditions were raised.

A concern was expressed that, especially for small resolution sequences, segment-wise decoding

may lead to adding up inaccuracies in decoding time, when segments are decoded in parallel.

Page: 344 Date Saved: 2016-06-03

Concatenation of the segments with removing the additional coded frame is not directly possible,

because POC would be incorrect. So the concatenated stream will have to include the extra frame.

It was suggested that fixing the POC values is possible by rewriting the slice segment headers.

No action was taken at this time on that, but further study was encouraged.

The decoding time can be corrected by subtracting the reported decoding time of the duplicated

frames. It was agreed to correct decoding times in this way.

Tests for JEM showed that for Classes A-D there was not much impact. It was agreed that it is

OK to use parallelization for decoding. It was also agreed that for run time calculations, either

parallel or not can be used, but the same method should be used consistently for the anchor and

tested cases.

For using temporally subsampled sequences for AI as decided by JVET this morning, either the

software needs to be modified to allow subsampling or subsampled sequences need to be

provided. It was suggested that the software coordinators can take care of patching the software

to provide this feature. It was agreed that for AI configuration with frame subsampling, software

coordinators will create a configuration option to enable this type of encoding using the original

sequences.

The question was raised, how to calculate bi trate on the subsampled sequences (i.e. using

original frame rate, or the lower actual coded frame rate). It was agreed that the bit rate reporting

should reflect the lower frame rate of the actually coded frames.

It was suggested to use IRAP pictures in the AI test conditions to enable splitting. IDR use would

not require any duplicate encoding, but the frames won‘t have different POC values. An IDR

period may solve the issue. No action was taken on this point at this meeting.

Initial verification results were provided with the BoG report, as well as the software patches.

JVET-B0075 Report on BoG on informal subjective viewing related to JVET-B0039 [K. Andersson, E. Alshina (BoG coordinators)]

This document provides a report on informal subjective viewing of the proposed extension of the

hierarchy for random access coding to 32 together with the change of QP alignment with lambda

for common conditions and software as proposed in JVET-B0039. The outcome was that the

proposal applied on HM-16.6 looked similar or better than HM-16.6 at a bit rate lower than the

bit rate for HM-16.6 (on average 10% lower bit rate).

About 9 people attended the informal subjective viewing. No concerns were raised about visual

pumping during the subjective viewing. Some viewers suggested that intra pumping may be

reduced with the larger GOP size, with smoother temporal characteristics.

Memory consumption with increased GOP size was studied. Approximately a factor of 2

memory usage increase is needed for GOP 32 vs GOP 8. The usage is up to 5.7 GB for GOP size

32, 3.3 GB for GOP size 16, 3 GB for GOP size 8 for Class A. 4k sequences would require more

memory. It was remarked that SCC has a memory increase as well.

Configuration files should be provided for GOP 16 and GOP 32, regardless of whether this is

included in the common test conditions.

With a GOP hierarchy length of 16, what should we do with the intra period, especially for 24

fps sequences? It was suggested that we should use 32 for the intra period for 24 fps content.

Decision (SW): Use GOP 16 in the common test conditions. For anchor comparison with HEVC,

we should also use GOP 16 in the HM. For 24 fps sequences, use an intra period of 32.

JVET-B0076 Report of BoG on selection of test material [T. Suzuki, J. Chen (BoG coordinators)]

The BoG selected some sequences for viewing.

We would like to select about 4 sequences per category, after viewing. A goal was to replace

Class A at this meeting.

Selection focused on the application domain category. Categories are: Moving vehicle,

surveillance, sports, TV/movie, people, high frame rate, and texture.

Page: 345 Date Saved: 2016-06-03

25 sequences were identified for viewing. It was agreed to put a priority on QP37, because of

hard drive capacity limit in the viewing room equipment. Only 8 bit viewing was available with

this equipment.

Due to contention for viewing room availability, it was agreed to look into moving the

equipment to another room for the viewing session Tuesday afternoon.

New sequences were proposed for screen content coding. The JEM doesn‘t include the SCC

tools, so it was agreed to defer consideration of such sequences until the next meeting, since the

priority for this meeting is replacing the Class A sequences.

Further discussed on Wednesday.

Two new class A categories with different characteristics were proposed.

A1: People : Tango, Drums (100), CampfireParty, ToddlerFountain

A2: Others : CatRobot, TrafficFlow, DaylightRoad, RollerCoaster

It was asked whether the number of frames should be reduced, and agreed to use 300 frames to

encode, regardless of frame rate.

The suggested sequences are mostly 50 or 60 fps, but Drums is 100 fps, and CampfireParty and

TrafficFlow are 30 fps.

Class A isn‘t tested with LD in the current common test conditions.

All discussed candidate sequences are 4:2:0, 10 bit.

It was remarked that the Drums sequence is 100 fps and with the parallel encoding, it can only be

split into 3 parallel segments.

For RollerCoaster, it was agreed to start 600 frames into the sequence. A new sequence will be

created starting at the offset position and given a slightly different name.

Agreed on Wednesday was to replace the prior Class A sequences with 8 new sequences in 2

categories as listed above, 300 frames each.

Participants are encouraged to make recommendations at the next meeting to replace sequences

in other categories, possibly by downsampling higher-resolution sequences.

BoG on Call for Test Material [A. Norkin (BoG coordinator)]

A BoG on on a Call for Test Material (coordinated by A. Norkin) was held Thu. morning. The

result of this BoG activity, after its review and refinement at the meeting, is the output document

JVET-B1002. The following types of content were initially identified as currently missing: HDR,

Sports, Gaming, High/complex Motion, UGC, panoramic, VR, Nature, and 8K.

6.4 List of actions taken affecting the JEM2

The following is a summary, in the form of a brief list, of the actions taken at the meeting that

affect the text of the JEM2 description. Both technical and editorial issues are included. This list

is provided only as a summary – details of specific actions are noted elsewhere in this report and

the list provided here may not be complete and correct. The listing of a document number only

indicates that the document is related, not that it was adopted in whole or in part.

Encoder only

o JVET-B0036

IRAP-level parallel encoding

AI subsampling

o JVET-B0039

Cfg: GOP16

QP lambda change

Page: 346 Date Saved: 2016-06-03

o JVET-B0041

Simplification #1a and #2

Normative change (i.e., affecting the bitstream format or output of the decoding process)

o JVET-B0038

Harmonization of AFFINE, OBMC and DBF

o JVET-B0051

non-MPM mode coding

o JVET-B0058

1/16 pel motion vector storage accuracy

7 Project planning

7.1 JEM description drafting and software

The following agreement has been established: the editorial team has the discretion to not

integrate recorded adoptions for which the available text is grossly inadequate (and cannot be

fixed with a reasonable degree of effort), if such a situation hypothetically arises. In such an

event, the text would record the intent expressed by the committee without including a full

integration of the available inadequate text.

7.2 Plans for improved efficiency and contribution consideration

The group considered it important to have the full design of proposals documented to enable

proper study.

Adoptions need to be based on properly drafted working draft text (on normative elements) and

HM encoder algorithm descriptions – relative to the existing drafts. Proposal contributions

should also provide a software implementation (or at least such software should be made

available for study and testing by other participants at the meeting, and software must be made

available to cross-checkers in CEs).

Suggestions for future meetings included the following generally-supported principles:

No review of normative contributions without draft specification text

JEM text is strongly encouraged for non-normative contributions

Early upload deadline to enable substantial study prior to the meeting

Using a clock timer to ensure efficient proposal presentations (5 min) and discussions

The document upload deadline for the next meeting was planned to be Monday 16 May 2016.

As general guidance, it was suggested to avoid usage of company names in document titles,

software modules etc., and not to describe a technology by using a company name.

7.3 General issues for Experiments

Group coordinated experiments have been planned. These may generally fall into one category:

"Exploration experiments" (EEs) are the coordinated experiments on coding tools which

are deemed to be interesting but require more investigation and could potentially become

part of the main branch of JEM by the next meeting.

A description of each experiment is to be approved at the meeting at which the

experiment plan is established. This should include the issues that were raised by other

experts when the tool was presented, e.g., interference with other tools, contribution of

Page: 347 Date Saved: 2016-06-03

different elements that are part of a package, etc. (E. Alshina will edit the document

based on input from the proponents, review is performed in the plenary)

Software for tools investigated in EE is provided in a separate branch of the software

repository

During the experiment, further improvements can be made

By the next meeting it is expected that at least one independent party will report a

detailed analysis about the tool, confirms that the implementation is correct, and gives

reasons to include the tool in JEM

As part of the experiment description, it should be captured whether performance relative

to JEM as well as HM (with all other tools of JEM disabled) should be reported by the

next meeting.

It is possible to define sub-experiments within particular EEs, for example designated as EEX.a,

EEX.b, etc., where X is the basic EE number.

As a general rule, it was agreed that each EE should be run under the same testing conditions

using one software codebase, which should be based on the JEM software codebase. An

experiment is not to be established as a EE unless there is access given to the participants in (any

part of) the TE to the software used to perform the experiments.

The general agreed common conditions for single-layer coding efficiency experiments are

described in the output document JVET-B1010.

Experiment descriptions should be written in a way such that it is understood as a JVET output

document (written from an objective "third party perspective", not a company proponent

perspective – e.g. referring to methods as "improved", "optimized", etc.). The experiment

descriptions should generally not express opinions or suggest conclusions – rather, they should

just describe what technology will be tested, how it will be tested, who will participate, etc.

Responsibilities for contributions to EE work should identify individuals in addition to company

names.

EE descriptions should not contain excessively verbose descriptions of a technology (at least not

unless the technology is not adequately documented elsewhere). Instead, the EE descriptions

should refer to the relevant proposal contributions for any necessary further detail. However, the

complete detail of what technology will be tested must be available – either in the CE description

itself or in referenced documents that are also available in the JVET document archive.

Any technology must have at least one cross-check partner to establish an EE – a single

proponent is not enough. It is highly desirable have more than just one proponent and one cross-

checker.

Some agreements relating to EE activities were established as follows:

Only qualified JVET members can participate in an EE.

Participation in an EE is possible without a commitment of submitting an input document

to the next meeting.

All software, results, documents produced in the EE should be announced and made

available to all EE participants in a timely manner.

This was further discussed Tuesday AM, chaired by JRO and J. Boyce.

A separate branch under the experimental section will be created for each new tool include in the

EE. The proponent of that tool is the gatekeeper for that separate software branch. (This differs

from the main branch of the JEM, which is maintained by the software coordinators.)

New branches may be created which combine two or more tools included in the EE document or

the JEM. Requests for new branches should be made to the software coordinators.

Page: 348 Date Saved: 2016-06-03

We don‘t need to formally name cross-checkers in the EE document. To promote the tool to the

JEM at the next meeting, we would like see comprehensive cross-checking done, with analysis

that the description matches the software, and recommendation of value of the tool given trade-

offs.

Timeline:

T1 = JEM2.0 SW release + 4 weeks: Integration of all tools into separate EE branch of JEM is

completed and announced to JVET reflector.

Initial study by cross-checkers can begin.

Proponents may continue to modify the software in this branch until T2

3rd

parties encouraged to study and make contributions to the next meeting with proposed

changes

T2: JVET-C meeting start – 3 weeks: Any changes to the exploration branch software must be

frozen, so the cross-checkers can know exactly what they are cross-checking. An SVN tag

should be created at this time and announced on the JVET reflector.

This procedure was agreed on Tuesday.

Common test conditions:

Intra-frame sub-sampling of 8

Parallel encoding of RA

Replacing Class A sequences (see notes for BoG report JVET-B0076). Maintaining other

sequences for this meeting cycle.

Tools not currently included in the main branch are QTBT and signal dependent

transforms. A tool can be in the main branch without being enabled in the common test

conditions.

QTBT should be included as an EE. Not included in the common test conditions defined

at this meeting.

Signal dependent transforms usage is not enabled in the common test conditions defined

at this meeting.

Above common test conditions characteristics were agreed on Tuesday.

7.4 Software development

Software coordinators will work out the detailed schedule with the proponents of adopted

changes.

Any adopted proposals where software is not delivered by the scheduled date will be rejected.

The planned timeline for software releases was established as follows:

JEM2 will be released within 2 weeks (2016-03-11)

The results about coding performance will be reported by 2016-03-18

8 Output documents and AHGs

The following documents were agreed to be produced or endorsed as outputs of the meeting.

Names recorded below indicate the editors responsible for the document production.

JVET-B1000 Meeting Report of the 2nd JVET Meeting [G. J. Sullivan, J.-R. Ohm] [2016-05-01] (near next meeting)

Page: 349 Date Saved: 2016-06-03

JVET-B1001 Algorithm description of Joint Exploration Test Model 2 (JEM2) [J. Chen, E. Alshina, G. J. Sullivan, J.-R. Ohm, J. Boyce] [2016-03-25]

Based on JVET-B0021 plus the new adoptions:

Encoder only

o JVET-B0036

IRAP-level parallel encoding

AI subsampling

o JVET-B0039

Cfg: GOP hierarchy length 16

QP lambda change

o JVET-B0041

Simplification #1a and #2

Normative change

o JVET-B0038

Harmonization of AFFINE, OBMC and DBF

o JVET-B0051

non-MPM mode coding

o JVET-B0058

1/16 pel motion vector storage accuracy

JVET-B1002 Call for test materials for future video coding standardization [A. Norkin, H. Yang, J.-R. Ohm, G. J. Sullivan, T. Suzuki] [2016-03-05]

JVET-B1010 JVET common test conditions and software reference configurations [K. Suehring, X. Li] [2016-03-11]

JVET-B1011 Description of Exploration Experiments on coding tools [E. Alshina, J. Boyce, S.-H. Kim, L. Zhang, Y.-W. Huang] [2016-03-11]

AHG Title and Email Reflector Chairs Mtg

Tool evaluation (AHG1)

([email protected])

Coordinate the exploration experiments.

Investigate interaction of tools in JEM and

exploration experiment branches.

Discuss and evaluate methodologies and criteria

to assess the benefit of tool.

Study and summarize new technology proposals.

E. Alshina, M.

Karczewicz (co-chairs)

N

Page: 350 Date Saved: 2016-06-03

JEM algorithm description editing (AHG2)

([email protected])

Produce and finalize JVET-B1001 Algorithm

Description of Joint Exploration Test Model 2

Gather and address comments for refinement of

the document

Coordinate with the JEM software development

AHG to address issues relating to mismatches

between software and text.

J. Chen (chair) E. Alshina,

J. Boyce (vice chairs)

N

JEM software development (AHG3)

([email protected])

Coordinate development of the JEM2 software

and its distribution.

Produce documentation of software usage for

distribution with the software.

Prepare and deliver JEM2 software version and

the reference configuration encodings according

to JVET-B1010 common conditions.

Suggest configuration files for additional testing

of tools.

Coordinate with AHG on JEM model editing

and errata reporting to identify any mismatches

between software and text.

Investigate parallelization for speedup of

simulations.

X. Li, K. Suehring (co-

chairs)

N

Test material (AHG4)

([email protected])

Maintain the video sequence test material

database for development of future video coding

standards.

Identify and recommend appropriate test

materials and corresponding test conditions for

use in the development of future video coding

standards.

Identify missing types of video material, solicit

contributions, collect, and make available a

variety of video sequence test material.

Study coding performance and characteristics in

relation to video test materials.

T. Suzuki (chair), J. Chen,

J. Boyce, A. Norkin (vice

chairs)

N

Page: 351 Date Saved: 2016-06-03

Objective quality metrics (AHG5)

([email protected])

Study metrics which are useful to evaluate the

quality of video compression algorithms with

closer match to human perception.

Collect and make software implementing the

computation of such metrics available.

P. Nasiopoulos, M.

Pourazad (co-chairs)

N

9 Future meeting plans, expressions of thanks, and closing of the meeting

Future meeting plans were established according to the following guidelines:

Meeting under ITU-T SG 16 auspices when it meets (starting meetings on the Thursday

of the first week and closing it on the Tuesday or Wednesday of the second week of the

SG 16 meeting – a total of 6–6.5 meeting days), and

Otherwise meeting under ISO/IEC JTC 1/SC 29/WG 11 auspices when it meets (starting

meetings on the Saturday prior to such meetings and closing it on the last day of the

WG 11 meeting – a total of 6.5 meeting days).

Some specific future meeting plans (to be confirmed) were established as follows:

Thu. 26 May – Wed. 1 June 2016, 3rd meeting under ITU-T auspices in Geneva, CH.

Sat. 15 – Fri. 21 Oct. 2016, 4th meeting under WG 11 auspices in Chengdu, CN.

Thu. 12 – Wed. 18 Jan 2017, 5th meeting under ITU-T auspices in Geneva, CH.

Sat. 1 – Fri. 7 Apr. 2017, 6th meeting under WG 11 auspices in Hobart, AU.

The agreed document deadline for the 3rd JVET meeting is Monday 16 May 2016. Plans for

scheduling of agenda items within that meeting remain TBA.

The USNB of WG11 and the companies that financially sponsored the meeting and associated

social event – Apple, CableLabs, Google, Huawei, InterDigital, Microsoft, Mitsubishi Electric,

Netflix and Qualcomm – were thanked for the excellent hosting of the 2nd meeting of the JVET.

InterDigital, Qualcomm, Samsung and Sony were thanked for providing viewing equipment.

The 2nd

JVET meeting was closed at approximately 1555 hours on Thursday 25 February 2016.

Page: 352 Date Saved: 2016-06-03

Annex A to JVET report:

List of documents

JVET number MPEG

number Created First upload Last upload Title Authors

JVET-B0001 m38092 2016-02-19

23:07:31

2016-02-20

16:04:33

2016-02-20

16:04:33

Report of VCEG AHG1 on Coding Efficiency

Improvements

M. Karczewicz, M.

Budagavi

JVET-B0002 m38155 2016-02-23

03:59:29

2016-02-23

04:01:30

2016-02-23

04:01:30

VCEG AHG report on Subjective Distortion

Measurement (AHG2 of VCEG) TK Tan

JVET-B0004 m38077 2016-02-19

06:37:30

2016-02-20

21:07:58

2016-02-21

23:03:29

VCEG AHG report on test sequences selection

(AHG4 of VCEG)

T. Suzuki, J. Boyce, A.

Norkin

JVET-B0006 m38064 2016-02-18

17:56:47

2016-02-20

07:37:18

2016-02-20

07:37:18 Report of AHG on JEM software development X. Li, K. Suehring

JVET-B0021 m37606 2016-01-29

02:32:08

2016-02-20

18:09:50

2016-02-20

18:09:50

Proposed Improvements to Algorithm

Description of Joint Exploration Test Model 1

J. Chen, E. Alshina, G.-

J. Sullivan, J.-R. Ohm,

J. Boyce

JVET-B0022 m37610 2016-02-02

07:28:11

2016-02-12

18:05:42

2016-02-17

13:57:41

Performance of JEM 1 tools analysis by

Samsung

E. Alshina, A. Alshin,

K. Choi, M. Park

JVET-B0023 m37673 2016-02-08

09:57:19

2016-02-08

10:03:12

2016-02-20

17:37:03

Quadtree plus binary tree structure integration

with JEM tools

J. An, H. Huang, K.

Zhang, Y.-W. Huang, S.

Lei (MediaTek)

JVET-B0024 m37750 2016-02-10

10:02:09

2016-02-15

15:35:39

2016-02-17

15:20:11 Evaluation report of SJTU Test Sequences

Thibaud Biatek, Xavier

Ducloux

JVET-B0025 m37778 2016-02-12

06:09:39

2016-02-12

06:38:55

2016-02-15

05:47:05

Evaluation Report of Chimera Test Sequence

for Future Video Coding

H. Ko, S.-C. Lim, J.

Kang, D. Jun, J. Lee, H.

Y. Kim (ETRI)

JVET-B0026 m37779 2016-02-12

06:10:40

2016-02-12

06:39:27

2016-02-15

05:47:37

JEM1.0 Encoding Results of Chimera Test

Sequence

S.-C. Lim, H. Ko, J.

Kang, H. Y. Kim

(ETRI)

JVET-B0027 m37796 2016-02-13

03:07:31

2016-02-13

03:10:27

2016-02-13

03:10:27

SJTU 4K test sequences evaluation report from

Sejong University

Nam Uk Kim, JunWoo

Choi, Ga-Ram Kim,

Yung-Lyul Lee

JVET-B0028 m37809 2016-02-15

02:17:32

2016-02-15

15:55:10

2016-02-20

17:30:17

Direction-dependent sub-TU scan order on intra

prediction

Shunsuke Iwamura,

Atsuro Ichigaya

JVET-B0029 m37820 2016-02-15

04:31:35

2016-02-15

04:47:27

2016-02-15

04:47:27

Evaluation report of B-Com test sequence

(JCTVC-V0086)

O. Nakagami, T. Suzuki

(Sony)

JVET-B0030 m37821 2016-02-15

04:43:04

2016-02-15

05:11:26

2016-02-15

05:11:26 Comment on test sequence selection

O. Nakagami, T. Suzuki

(Sony)

JVET-B0031 m37822 2016-02-15

05:14:56

2016-02-16

05:08:49

2016-02-16

05:08:49 Evaluation report of Huawei test sequence

Kiho Choi, E. Alshina,

A. Alshin, M. Park

JVET-B0032 m37823 2016-02-15

05:14:58 Withdrawn

JVET-B0033 m37824 2016-02-15

05:21:46

2016-02-16

05:09:44

2016-02-21

04:32:07 Adaptive Multiple Transform for Chroma

Kiho Choi, E. Alshina,

A. Alshin, M. Park, M.

Park, C. Kim

JVET-B0034 m37825 2016-02-15

05:26:09

2016-02-16

05:10:38

2016-02-16

05:10:38 Cross-check of JVET-B0023

E. Alshina, Kiho Choi,

A. Alshin, M. Park, M.

Park, C. Kim

JVET-B0035 m37829 2016-02-15

08:58:14

2016-02-16

12:11:43

2016-02-16

12:11:43

Evaluation Report of Chimera and Huawei Test

Sequences for Future Video Coding

Pierrick Philippe

(Orange)

JVET-B0036 m37840 2016-02-15

11:59:37

2016-02-15

14:43:11

2016-02-21

23:10:45

Simplification of the common test condition for

fast simulation

X. Ma, H. Chen, H.

Yang (Huawei)

JVET-B0037 m37841 2016-02-15

12:04:45

2016-02-15

14:43:51

2016-02-19

15:10:34

Performance analysis of affine inter prediction

in JEM1.0

H. Zhang, H. Chen, X.

Ma, H. Yang (Huawei)

Page: 353 Date Saved: 2016-06-03

JVET-B0038 m37842 2016-02-15

12:07:39

2016-02-15

14:44:23

2016-02-19

15:09:18 Harmonization of AFFINE, OBMC and DBF

H. Chen, S. Lin, H.

Yang, X. Ma (Huawei)

JVET-B0039 m37845 2016-02-15

12:40:11

2016-02-15

23:18:30

2016-02-24

18:34:20 Non-normative JEM encoder improvements

Kenneth Andersson, Per

Wennersten, Rickard

Sjoberg, Jonatan

Samuelsson, Jacob

Strom, Per Hermansson,

Martin Pettersson

JVET-B0040 m37855 2016-02-15

14:32:47

2016-02-15

17:39:50

2016-02-20

21:26:34

Evaluation Report of Huawei and B-Com Test

Sequences for Future Video Coding

Fabien Racape, Fabrice

Le Leannec, Tangi

Poirier

JVET-B0041 m37862 2016-02-15

15:20:43

2016-02-18

03:12:59

2016-02-21

10:06:43

Adaptive reference sample smoothing

simplification

Alexey Filippov, Vasily

Rufitskiy (Huawei

Technologies)

JVET-B0042 m37888 2016-02-15

17:34:11

2016-02-15

18:03:23

2016-02-20

18:27:21

Evaluation Report of B-COM Test Sequence for

Future Video Coding (JCTVC-V0086)

Han Boon Teo, Meng

Dong

JVET-B0043 m37890 2016-02-15

18:06:12

2016-02-15

23:23:21

2016-02-20

18:03:10

Polyphase subsampled signal for spatial

scalability Emmanuel Thomas

JVET-B0044 m37898 2016-02-15

18:40:36

2016-02-15

23:54:59

2016-02-23

20:29:56

Coding Efficiency / Complexity Analysis of

JEM 1.0 coding tools for the Random Access

Configuration

H. Schwarz, C. Rudat,

M. Siekmann, B. Bross,

D. Marpe, T. Wiegand

(Fraunhofer HHI)

JVET-B0045 m37956 2016-02-16

01:58:25

2016-02-16

07:35:03

2016-02-20

21:27:44

Performance evaluation of JEM 1 tools by

Qualcomm

J. Chen, X. Li, F. Zou,

M. Karczewicz, W.-J.

Chien, T. Hsieh

JVET-B0046 m37957 2016-02-16

02:17:57

2016-02-16

02:25:03

2016-02-21

23:16:32

Evaluation report of Netflix Chimera and SJTU

test sequences

F. Zou, J. Chen, X. Li,

M. Karczewicz

(Qualcomm)

JVET-B0047 m37958 2016-02-16

02:18:53

2016-02-16

04:07:53

2016-02-21

03:33:27 Non Square TU Partitioning

K. Rapaka, J. Chen, L.

Zhang, W. -J. Chien, M.

Karczewicz

JVET-B0048 m37961 2016-02-16

04:31:59

2016-02-16

15:59:49

2016-02-21

17:54:10

Universal string matching for ultra high quality

and ultra high efficiency SCC

Liping Zhao, Kailun

Zhou, Jing Guo, Shuhui

Wang, Tao Lin (Tongji

Univ.)

JVET-B0049 m37962 2016-02-16

04:34:23

2016-02-16

16:02:14

2016-02-23

08:35:43

Four new SCC test sequences for ultra high

quality and ultra high efficiency SCC

Jing Guo, Liping Zhao,

Tao Lin (Tongji Univ.)

JVET-B0050 m37963 2016-02-16

04:36:58

2016-02-16

16:54:00

2016-02-21

15:52:23

Performance comparison of HEVC SCC CTC

sequences between HM16.6 and JEM1.0

Shuhui Wang, Tao Lin

(Tongji Univ.)

JVET-B0051 m37964 2016-02-16

05:10:48

2016-02-16

05:26:13

2016-02-20

02:47:22 Further improvement of intra coding tools

S.-H. Kim, A. Segall

(Sharp)

JVET-B0052 m37965 2016-02-16

07:46:08

2016-02-16

08:02:52

2016-02-21

21:55:29

Report of evaluating Huawei surveillance test

sequences

Ching-Chieh Lin, Jih-

Sheng Tu, Yao-Jen

Chang, Chun-Lung Lin

(ITRI)

JVET-B0053 m37966 2016-02-16

07:49:02

2016-02-16

08:04:05

2016-02-20

02:32:14

Report of evaluating Huawei UGC test

sequences

Jih-Sheng Tu, Ching-

Chieh Lin, Yao-Jen

Chang, Chun-Lung Lin

(ITRI)

JVET-B0054 m37972 2016-02-16

09:25:00

2016-02-16

09:44:13

2016-02-21

19:04:12

De-quantization and scaling for next generation

containers

J. Zhao, A. Segall, S.-H.

Kim, K. Misra (Sharp)

JVET-B0055 m37973 2016-02-16

09:46:19

2016-02-21

17:00:07

2016-02-21

17:00:07

Netflix Chimera test sequences evaluation

report

Maxim Sychev,

Huanbang

Chen(Huawei)

JVET-B0056 m37980 2016-02-16

10:57:10

2016-02-16

10:59:30

2016-02-16

10:59:30

Evaluation report of SJTU Test Sequences from

Sharp T. Ikai (Sharp)

JVET-B0057 m37990 2016-02-16

17:23:15

2016-02-18

14:15:40

2016-02-21

10:10:21 Evaluation of some intra-coding tools of JEM1

Alexey Filippov, Vasily

Rufitskiy (Huawei

Technologies)

Page: 354 Date Saved: 2016-06-03

JVET-B0058 m37994 2016-02-16

23:18:03

2016-02-16

23:35:44

2016-02-23

21:54:07 Modification of merge candidate derivation

W. -J. Chien, J. Chen,

S. Lee, M. Karczewicz

(Qualcomm)

JVET-B0059 m37998 2016-02-17

05:06:31

2016-02-17

05:29:50

2016-02-21

03:32:20 TU-level non-separable secondary transform

X. Zhao, A. Said, V.

Seregin, M.

Karczewicz, J. Chen, R.

Joshi (Qualcomm)

JVET-B0060 m38000 2016-02-17

05:19:30

2016-02-17

05:28:11

2016-02-20

01:40:08 Improvements on adaptive loop filter

M. Karczewicz, L.

Zhang, W. -J. Chien, X.

Li (Qualcomm)

JVET-B0061 m38004 2016-02-17

06:29:45

2016-02-17

07:17:22

2016-02-17

12:18:47

Evaluation report of SJTU test sequences for

future video coding standardization

Sang-hyo Park, Haiyan

Xu, Euee S. Jang

JVET-B0062 m38019 2016-02-17

13:12:30

2016-02-19

15:06:12

2016-02-19

15:06:12 Crosscheck of JVET-B0022(ATMVP)

X. Ma, H. Chen, H.

Yang (Huawei)

JVET-B0063 m38078 2016-02-19

07:08:45

2016-02-19

07:20:12

2016-02-19

07:20:12

Cross-check of non-normative JEM encoder

improvements (JVET-B0039) B. Li, J. Xu (Microsoft)

JVET-B0064 m38079 2016-02-19

07:13:04 Withdrawn

JVET-B0065 m38096 2016-02-20

04:16:23

2016-02-20

17:58:16

2016-02-23

03:21:38

Coding results of 4K surveillance and 720p

portrait sequences for future video coding

K. Kawamura, S. Naito

(KDDI)

JVET-B0066 m38100 2016-02-20

09:55:37

2016-02-21

04:28:46

2016-02-21

04:28:46

Cross-check of JVET-B0058: Modification of

merge candidate derivation

H. Chen, H. Yang

(Huawei)

JVET-B0067 m38103 2016-02-20

18:50:57

2016-02-26

20:58:09

2016-02-26

20:58:09

Cross-check of JVET-B0039: Non-normative

JEM encoder improvements

C. Rudat, B. Bross, H.

Schwarz (Fraunhofer

HHI)

JVET-B0068 m38104 2016-02-20

19:58:43

2016-02-22

00:38:06

2016-02-22

00:38:06

Cross-check of Non Square TU Partitioning

(JVET-B0047) O. Nakagami (Sony)

JVET-B0069 m38105 2016-02-20

21:06:16

2016-02-25

10:41:24

2016-02-25

10:41:24

Crosscheck of the improvements on ALF in

JVET-B060

C.-Y. Chen, Y.-W.

Huang (MediaTek)

JVET-B0070 m38106 2016-02-20

21:19:55

2016-02-25

19:48:36

2016-02-25

19:48:36 Cross-check of JVET-B0060 B. Li, J. Xu (Microsoft)

JVET-B0071 m38108 2016-02-20

23:59:39 Withdrawn

JVET-B0072 m38109 2016-02-21

02:21:38

2016-02-21

02:24:37

2016-02-21

19:33:56 SJTU 4k test sequences evaluation report

Seungsu Jeon, Namuk

Kim, HuikJae Shim,

Byeungwoo Jeon

JVET-B0073 m38117 2016-02-21

20:17:28

2016-02-21

20:31:14

2016-02-24

03:10:14

Simplification of Low Delay configurations for

JVET CTC

Maxim Sychev

(Huawei)

JVET-B0074 m38122 2016-02-22

00:16:55

2016-02-23

03:14:00

2016-02-24

23:17:46

Report of BoG on parallel encoding and

removal of cross-RAP dependencies K. Suehring, H. Yang

JVET-B0075 m38160 2016-02-23

08:26:10

2016-02-23

15:37:54

2016-02-23

15:37:54

Report on BoG on informal subjective viewing

related to JVET-B0039

K. Andersson, E.

Alshina

JVET-B0076 m38172 2016-02-24

18:14:39

2016-02-24

20:22:20

2016-02-24

20:22:20 Report of BoG on selection of test material T. Suzuki, J. Chen

JVET-B1000 m38200 2016-02-27

21:17:38 Meeting Report of 2nd JVET Meeting

G. J. Sullivan, J.-R.

Ohm

JVET-B1001 m38201 2016-02-27

21:20:40

2016-03-08

18:04:59

2016-03-25

22:30:44

Algorithm description of Joint Exploration Test

Model 2

J. Chen, E. Alshina, G.

J. Sullivan, J.-R. Ohm,

J. Boyce

JVET-B1002 m38199 2016-02-26

23:44:07

2016-03-05

23:52:05

2016-03-05

23:52:05

Call for test material for future video coding

standardization

A. Norkin, H. Yang, J.-

R. Ohm, G. J. Sullivan,

T. Suzuki

JVET-B1010 m38202 2016-02-27

21:31:20

2016-04-01

15:29:21

2016-04-04

13:20:09

JVET common test conditions and software

reference configurations K. Suehring, X. Li

JVET-B1011 m38182 2016-02-25

02:05:31

2016-02-25

16:41:35

2016-03-14

07:26:38

Description of Exploration Experiments on

Coding Tools

E.Alshina, J. Boyce, Y.-

W. Huang, S.-H. Kim,

L. Zhang

Page: 355 Date Saved: 2016-06-03

Annex B to JVET report:

List of meeting participants

The participants of the second meeting of the JVET, according to a sign-in sheet circulated

during the meeting sessions (approximately 161 people in total), were as follows:

356

1. Anne Aaron (Netflix)

2. Yong-Jo Ahn (Kwangwoon Univ. (KWU))

3. Elena Alshina (Samsung Electronics)

4. Peter Amon (Siemens AG)

5. Kenneth Andersson (LM Ericsson)

6. Maryam Azimi (UBC)

7. Giovanni Ballocca (Sisvel Tech)

8. Yukihiro Bandoh (NTT)

9. Gun Bang (ETRI)

10. Guillaume Barroux (Fujitsu Labs)

11. David Baylon (Arris)

12. Ronan Boitard (UBC)

13. Jill Boyce (Intel)

14. Benjamin Bross (Fraunhofer HHI)

15. Madhukar Budagavi (Samsung Research)

16. Alan Chalmers (Univ. Warwick)

17. Yao-Jen Chang (ITRI Intl.)

18. Chun-Chi Chen (NCTU/ITRI)

19. Jianle Chen (Qualcomm)

20. Peisong Chen (Broadcom)

21. Wei-Jung Chien (Qualcomm)

22. Haechul Choi (Hanbat Nat. Univ.)

23. Kiho Choi (Samsung Electronics)

24. Keiichi Chono (NEC)

25. Takeshi Chujoh (Toshiba)

26. Gordon Clare (Orange Labs FT)

27. Audré Dias (BBC)

28. Xavier Ducloux (Thomson Video Networks)

29. Alberto Duenas (NGCodec)

30. Thierry Fautier (Harmonic)

31. Alexey Filippov (Huawei)

32. Christophe Gisquet (Canon Research France)

33. Zhouye Gu (Arris)

34. Wassim Hamiclouche (IETR/INSA)

35. Ryoji Hashimoto (Renesas)

36. Dake He (Blackberry)

37. Yuwen He (InterDigital Commun.)

38. Hendry (Qualcomm)

39. Jin Heo (LG Electronics)

40. James Holland (Intel)

41. Seungwook Hong (Arris)

42. Ted Hsieh (Qualcomm Tech.)

43. Yu-Wen Huang (MediaTek)

44. Atsuro Ichigaya (NHK (Japan Broadcasting Corp.))

45. Tomohiro Ikai (Sharp)

46. Masaru Ikeda (Sony)

47. Shunsuke Iwamura (NHK (Japan Broadcasting Corp.))

48. Euee S. Jang (Hanyang Univ.)

49. Wonkap Jang (Vidyo)

50. Seungsu Jeon (Sungkyunkwan Univ. (SKKU))

51. Minqiang Jiang (Huawei)

52. Guoxin Jin (Qualcomm Tech.)

53. Rajan Joshi (Qualcomm)

54. Dongsan Jun (ETRI)

55. Joël Jung (Orange Labs)

56. Jung Won Kang (Electronics and Telecom Research Institute (ETRI))

57. Marta Karczewicz (Qualcomm Tech.)

58. Kei Kawamura (KDDI)

Page: 357 Date Saved: 2016-06-03

357

59. Louis Kerofsky (Interdigital)

60. Dae Yeon Kim (Chips & Media)

61. Hui Yong Kim (ETRI)

62. Jae-Gon Kim (Korea Aerosp. Univ.)

63. Jungsun Kim (MediaTek USA)

64. Namuk Kim (Sungkyunkwan Univ. (SKKU))

65. Seung-Hwan Kim (Sharp)

66. Hyunsuk Ko (Electronics and Telecom Research Institute (ETRI))

67. Krasimir Kolarov (Apple)

68. Konstantinos Konstantinides (Dolby Labs)

69. Patrick Ladd (Comcast Cable)

70. Jani Lainema (Nokia)

71. Fabrice Le Léannec (Technicolor)

72. Dongkyu Lee (Kwangwoon Univ.)

73. Jae Yung Lee (Sejong Univ.)

74. Jinho Lee (Electronics and Telecom Research Institute (ETRI))

75. Sungwon Lee (Qualcomm)

76. Yung-Lyul Lee (Sejong Univ.)

77. Shawmin Lei (MediaTek)

78. Ming Li (ZTE)

79. Xiang Li (Qualcomm Tech.)

80. Chongsoon Lim (Panasonic)

81. Jaehyun Lim (LG Electronics)

82. Sung-Chang Lim (Electronics and Telecom Research Institute (ETRI))

83. Sung-Won Lim (Sejong Univ.)

84. Ching-Chieh Lin (ITRI Intl.)

85. Tao Lin (Tongji Univ.)

86. James Wenjun Liu (Huawei)

87. Shan Liu (MediaTek)

88. Ang Lu (Zhejiang Univ.)

89. Taoran Lu (Dolby)

90. Xiang Ma (Huawei)

91. Dimitrie Margarit (Sigma Designs)

92. Detlev Marpe (Fraunhofer HHI)

93. Akira Minezawa (Mitsubishi Electric)

94. Koohyar Minoo (Arris)

95. Kiran Misra (Sharp)

96. Matteo Naccari (BBC R&D)

97. Ohji Nakagami (Sony)

98. Panos Nasiopoulos (Univ. British Columbia)

99. Tung Nguyen (Fraunhofer HHI)

100. Didier Nicholson (VITEC)

101. Andrey Norkin (Netflix)

102. Byungtae Oh (Korea Aerosp. Univ.)

103. Jens-Rainer Ohm (RWTH Aachen Univ.)

104. Hao Pan (Apple)

105. Krit Panusopone (Motorola Mobility)

106. Manindra Parhy (Nvidia)

107. Min Woo Park (Samsung Electronics)

108. Sang-Hyo Park (Hanyang Univ.)

109. Youngo Park (Samsung Electronics)

110. Wen-Hsiao Peng (ITRI Intl./NCTU)

111. Pierrick Philippe (Orange Labs FT)

112. Tangi Poirier (Technicolor)

113. Mahsa Pourazad (TELUS Commun. & UBC)

114. Fangjun Pu (Dolby Labs)

115. Krishnakanth Rapaka (Qualcomm Tech.)

116. Justin Ridge (Nokia)

Page: 358 Date Saved: 2016-06-03

358

117. Dmytro Rusanovskyy (Qualcomm)

118. Amir Said (Qualcomm Tech.)

119. Jonatan Samuelsson (LM Ericsson)

120. Yago Sanchez De La Fuente (Fraunhofer HHI)

121. Andrew Segall (Sharp)

122. Vadim Seregin (Qualcomm)

123. Masato Shima (Canon)

124. Rickard Sjöberg (Ericsson)

125. Robert Skupin (Fraunhofer HHI)

126. Ranga Ramanujam Srinivasan (Nvidia)

127. Yeping Su (Apple)

128. Karsten Sühring (Fraunhofer HHI)

129. Gary Sullivan (Microsoft)

130. Haiwei Sun (Panasonic)

131. Teruhiko Suzuki (Sony)

132. Maxim Sychev (Huawei Tech.)

133. Yasser Syed (Comcast Cable)

134. Han Boon Teo (Panasonic)

135. Emmanuel Thomas (TNO)

136. Tadamasa Toma (Panasonic)

137. Pankaj Topiwala (FastVDO)

138. Alexandros Tourapis (Apple)

139. Jih-Sheng Tu (ITRI international)

140. Yi-Shin Tung (ITRI USA / MStar Semi.)

141. Rahul Vanam (InterDigital Commun.)

142. Wade Wan (Broadcom)

143. Jian Wang (Polycom)

144. Stephan Wenger (Vidyo)

145. Dongjae Won (Sejong Univ.)

146. Ping Wu (ZTE UK)

147. Xiangjian Wu (Kwangwoon Univ.)

148. Xiaoyu Xiu (InterDigital Commun.)

149. Jizheng Xu (Microsoft)

150. Xiaozhong Xu (MediaTek)

151. Anna Yang (Korea Aerosp. Univ.)

152. Haitao Yang (Huawei Tech.)

153. Yan Ye (InterDigital Commun.)

154. Sehoon Yea (LG Electronics)

155. Peng Yin (Dolby Labs)

156. Yue Yu (Arris)

157. Li Zhang (Qualcomm Tech.)

158. Wenhao Zhang (Intel)

159. Xin Zhao (Qualcomm Tech.)

160. Zhijie Zhao (Huawei Tech.)

161. Jiantong Zhou (Huawei Tech.)

Page: 359 Date Saved: 2016-06-03

359

– Audio report

Source: Schuyler Quackenbush, Chair

Table of Contents

1 Record of AhG meetings 361

1.1 AhG on 3D Audio Phase II ............................................................................... 361

2 Opening Audio Plenary 365

3 Administrative matters 365

3.1 Communications from the Chair....................................................................... 365

3.2 Approval of agenda and allocation of contributions ......................................... 365

3.3 Creation of Task Groups ................................................................................... 365

3.4 Approval of previous meeting report ................................................................ 365

3.5 Review of AHG reports .................................................................................... 365

3.6 Ballots to process .............................................................................................. 365

3.7 Received National Body Comments and Liaison matters ................................ 365

3.8 Joint meetings ................................................................................................... 366

3.9 Plenary Discussions .......................................................................................... 366

4 Task group activities 366

4.1 Joint Meetings ................................................................................................... 366

4.1.1 With Systems on 3D Audio PDAM 4 ........................................................ 366

4.1.2 With All on MPEG Vision ......................................................................... 367

4.1.3 With 3DG on Interactive 360 degree Media, VR and AR ......................... 368

4.1.4 With Requirements on New Profile Proposal ............................................ 368

4.1.5 With All on Joint work between JPEG and MPEG .................................... 369

4.2 Task Group discussions .................................................................................... 369

4.2.1 3D Audio Phase 1 ....................................................................................... 369

4.2.2 3D Audio AMD 3 (Phase 2) ....................................................................... 370

4.2.3 Maintenance ............................................................................................... 379

4.3 Discussion of Remaining Open Issues .............................................................. 382

5 Closing Audio Plenary and meeting deliverables 386

5.1 Discussion of Open Issues ................................................................................ 386

5.2 Recommendations for final plenary .................................................................. 386

5.3 Disposition of Comments on Ballot Items ........................................................ 386

5.4 Responses to Liaison and NB comments .......................................................... 386

5.5 Establishment of Ad-hoc Groups ...................................................................... 386

5.6 Approval of output documents ......................................................................... 386

5.7 Press statement .................................................................................................. 386

5.8 Agenda for next meeting ................................................................................... 386

5.9 All other business .............................................................................................. 386

5.10 Closing of the meeting .................................................................................... 387

Annex A Participants 388

Annex B Audio Contributions and Schedule 390

Page: 360 Date Saved: 2016-06-03

360

Annex C Task Groups 394

Annex D Output Documents 395

Annex E Agenda for the 115th

MPEG Audio Meeting 398

Page: 361 Date Saved: 2016-06-03

361

1 Record of AhG meetings

1.1 AhG on 3D Audio Phase II

A meeting of the AhG on 3D Audio was held the 1300 – 1800 hrs on the Sunday prior to

the 114th

meeting of WG11 at the MPEG meeting venue.

3D Audio Phase 2 CEs

Total Components Coding (TCC)

Lukasz Januszkiewicz, Zylia, presented m37930 Zylia Poznan Listening Test Site Properties Jakub Zamojski, Lukasz

Januszkiewicz, Tomasz Zernicki

The contribution presents details on the Zylia listening room. This room meets BS.1116

requirements in terms of

Aspect ratio

Reverberation time as a function of frequency

Speakers are on the surface of a cylinder with radius of approximately 3 meters.

Lukasz Januszkiewicz, Zylia, presented m37932 Corrections and clarifications on Tonal

Component Coding

Lukasz Januszkiewicz, Tomasz

Zernicki

The contribution proposes syntax changes

Add one bit and define a 2-bit field tccMode in the config()

This permits a one or alternatively two TCC ―packets‖ of data per CPE.

Other corrections are proposed that that are either purely editorial or make specification

text conform to reference software.

All experts present in the AhG meeting agreed to recommend to the Audio Subgroup to

incorporate all changes in the contribution into a Study on MPEG-H 3D Audio DAM3

output document.

Christian Neukam, FhG-IIS, presented m37947 Listening Test Results for TCC from FhG

IIS

Sascha Dick, Christian Neukam

The contribution reports on a cross-check listening test on the proposed Zylia TCC Core

Experiment. In the test

Sys1 RM

Sys2 CE technology using OFDT-based synthesis

In absolute MUSHRA scores, no items different, mean not different

In differential MUSHRA scores, 1 item better for Sys2, mean not different, but mean

value better by 1 MUSHRA point.

Lukasz Januszkiewicz, Zylia, presented m37933 Low Complexity Tonal Component Coding Tomasz Zernicki, Lukasz

Januszkiewicz, Andrzej Rumiaski,

Marzena Malczewska

The contribution, along with the previous cross-checks, consists of a complete CE

proposal.

The contribution explores whether a Low Compexity TCC might be appropriate for the

Low Complexity Profile. The ―RM‖ baseline was

MPEG-H 3DA LC RQE with IGF active

The point of the experiment is that the TCC is able to work with the IGF tool. The

contribution reports on a listening test on the proposed Zylia TCC Core Experiment. In

the test

Sys1 RM

Sys2 CE technology using ODFT-based synthesis

In absolute MUSHRA scores, no items different, mean not different

Page: 362 Date Saved: 2016-06-03

362

In differential MUSHRA scores, 3 items better for Sys2, mean better, mean value better

by 1.5 MUSHRA point.

The presenter noted that the number of Tonal Components is typically small (e.g. less

than 3 per core channel), in which case the Time Domain tone synthesis technique

would fit with a Low Complexity use case. The presenter noted that low complexity

could be guaranteed via restrictions

The Chair clarified that the following issues and questions are on the table:

TCC works with IGF (as demonstrated in the listening test)

We might assume that TD synthesis is higher quality that ODFT synthesis

We need to investigate the maxium number of TC per core audio channel

This will continue to be discussed and brought up later in the week.

High Resolution Envelope Processing (HREP)

Seungkwon Beack, ETRI, presented m37833 ETRI's cross-check report for CE on High

Resolution Envelope Processing

Seungkwon Beack, Taejin Lee

The contribution presents a cross-check listening test or HREP. Tested were:

48 kb/s, 128 kb/s

8 items (stereo)

11 listeners

Listening via headphones

Sys1 – HREP

Sys2: - 3D Audio RM

48 kb/s

Absolute: 4 better, overall better

Differential: 8 better (i.e. all better), overall better by 9 points (value is ~65)

128 kb/s

Absolute: 1 better, overall better

Differential: 2 better, overall better. Overall better by 2 points (value is ~92)

The Chair presented, on behalf of FhG-IDMT experts m37715 Cross Check Report for CE on HREP (Test

Site Fraunhofer IDMT)

Judith Liebetrau, Thomas Sporer,

Alexander Stojanow

The contribution presents a cross-check listening test or HREP

5.1 channel, 128 kb/s

Absolute: no difference

Differential: 3 better (only applause items), overall no difference

Stereo, 48 kb/s

Absolute: overall better

Differential: 5 better, overall better

Stereo 128 kb/s

Absolute: no difference

Differential: no difference

Christian Neukam, FhG-IIS, presented m37889 3DA CE on High Resolution Envelope

Processing (HREP)

Sascha Disch, Florin Ghido, Franz

Reutelhuber, Alexander Adami,

Juergen Herre

The contribution, along with the previous cross-checks, consists of a complete CE

proposal.

The presenter motivated the need for the HREP tool – in short that applause-like signals

are common in many scenarios, particularly broadcast of live performances.

The technology is an independent, single-channel pre- and post-processing tool whose

side information rate is 1 to 4 kb/s for stereo (i.e. 2 channels).

Page: 363 Date Saved: 2016-06-03

363

Complexity is dominated by the 50% overlap real-valued DFT/IDFT, which is

approximately 2.7 WMOPS. Worst case is 3.4 WMOPS when other processing is added.

For LC Profile, it is proposed to limit the number of HREP for channels/objects. Further,

the presenter noted that if the gain is 1, then the DFT/IDFT does not need to be executed.

For LC Profile, it is proposed that HREP

No more than 8 core audio channels use HREP at any instant

No more than 50% HREP frames (i.e. the 64-frame hop) are active with HREP.

The presenter showed activation plots (not included in the contribution) that indicated

that HREP is active for almost 100% of the frames for the applause items, and almost

none of the frames for one non-applause item.

The presenter noted that, to a large extent, the HREP coding is independent of core

coder bitrate.

FhG-IIS conducted the same listening tests as reported in the previous cross-checks. The

test items in these tests were:

5.1 channel, 128 kb/s

7 applause items

Stereo, 48 kb/s and 128 kb/s

11 MPEG Surround item, plus 2 additional applause items

Test results were:

5.1 channel, 128 kb/s

differential: 4 better, overall better 48 kb/s stereo

2 better in absolute score

7 of 8 better in differential, overall better, mean improvement more than 10 mushra points

128 kb/s stereo

2 better, overall better in absolute by 5 mushra points

6 of 8 better in differential, mean better

The contribution presented in ANNEX B test outcomes when all listening test data is

pooled .

5.1 channel, 128 kb/s

4 better, overall better

48 kb/s stereo

8 (all) better in differential, by as much as 15 mushra points, overall better, by 10 mushra points

128 kb/s stereo

6 better in differential, overall better. Overall improvement of 3 mushra points.

There was some discussion as to exactly where the HREP post-processor was in the 3D

Audio decoder. The presenter noted that a figure in the contribution makes this very

clear. It was concluded that HREP is applicable to channels and discrete objects (i.e. not

SAOC objects). The contribution does not cover HOA content, and the Chair concluded

that it may be too late in the Phase 2 timeline to contemplate application to HOA content.

In summary, the contribution requests

That HREP technology be accepted into the MPEG-H 3D Audio standard

That HREP be included in the LC Profile with the recommended constraints

All experts present in the AhG meeting agreed to recommend to the Audio Subgroup to

incorporate the HREP technology into a Study on MPEG-H 3D Audio DAM3 output

document and also into the High Profile.

Issues of acceptance into LC profile will continue to be discussed.

Page: 364 Date Saved: 2016-06-03

364

HOA Issues

Gregory Pallone, Orange, presented m37894 Proposed modifications on MPEG-H 3D

Audio

Gregory Pallone

The contribution notes that when presenting via loudspeakers and listening in the near

field, the perceived spatial cues, e.g. interaural level, may be incorrect. It gives use cases

in which such near-field listening will occur, e.g. inside a car.

The results of an experiment are reported, in which far-field and near-field presentation

are simulated using binaural rendering and presentation. Near Field Compensation (NFC)

simulates moving the speakers further from the listener.

The contribution proposes to modify the 3D Audio specification in two places as follows: Preprocessing block NFC processing (should be switched active if UseNfc is true and the speaker

listener distance rmax is samller NfcReference Distance), pre-processing block DRC-1 for HOA

and as an alternative to rendering to loud-speakers, a computational efficient binaural rendering

directly using the HOA coefficients (H2B, see 13.3.1). Computational more efficient but

mathematically equivalent ways to implement the processing chain may be found in Annex G.

with: Preprocessing block NFC processing (should be switched active if rmax < NfcReferenceDistance

in case UsesNfc flag is active, or if rmax < 1.5 meters in case UsesNfc flag is inactive, with rmax

the maximum speaker distance of the listening setup), pre-processing block DRC-1 for HOA and

as an alternative to rendering to loud-speakers, a computational efficient binaural rendering

directly using the HOA coefficients (H2B, see 13.3.1). Computational more efficient but

mathematically equivalent ways to implement the processing chain may be found in Annex G.

Nils Peters, Qualcomm, noted that the contribution uses a very regular set of

loudspeaker positions, and wondered if the tested quality might be less with e.g. the

MPEG-H 3D Audio 22.2 loudspeaker positions.

Oliver Weubolt, Technicolor, questioned how realistic or prevelant is the use case of the

close-placed loudspeaker listening.

The Chair asked experts work together to draft the intent of the Orange proposal in more

clear and concise language. This topic will continue to be discussed.

AhG Report

The Chair presented m37901 Report of AHG on 3D Audio and Audio

Maintenance

Schuyler Quackenbush

Experts agreed that the report represents the AhG activity. The Chair will upload it as a

contribution document.

The AhG meeting was adjourned at 5:50pm

Page: 365 Date Saved: 2016-06-03

365

2 Opening Audio Plenary

The MPEG Audio Subgroup meeting was held during the 114th

meeting of WG11,

February 22-26, San Diego, USA. The list of participants is given in Annex A.

3 Administrative matters

3.1 Communications from the Chair

The Chair summarised the issues raised at the Sunday evening Chair‘s meeting, proposed task groups for the week, and proposed agenda items for discussion in Audio plenary.

3.2 Approval of agenda and allocation of contributions

The agenda and schedule for the meeting was discussed, edited and approved. It shows

the documents contributed to this meeting and presented to the Audio Subgroup, either

in the task groups or in Audio plenary. The Chair brought relevant documents from

Requirements, Systems to the attention of the group. It was revised in the course of the

week to reflect the progress of the meeting, and the final version is shown in Annex B.

3.3 Creation of Task Groups

Task groups were convened for the duration of the MPEG meeting, as shown in Annex

C. Results of task group activities are reported below.

3.4 Approval of previous meeting report

The Chair asked for approval of the 113th

Audio Subgroup meeting report, which was

registered as a contribution. The report was approved. m37805 113th MPEG Audio Report Schuyler Quackenbush

3.5 Review of AHG reports

There were no requests to review any of the AHG reports. m37902 AHG on 3D Audio and Audio Maintenance ISO secretariat

m37901 AHG on Responding to Industry Needs on Adoption

of MPEG Audio

ISO secretariat

3.6 Ballots to process

The following table indicates the ballots to be processed at this meeting. WG11 Doc Title Closes Ballot

15166 ISO/IEC 13818-1:201x/DAM 5 2015-12-25 37555

15826 ISO/IEC 14496-3:2009/Amd.3:2012/DCOR 1 2016-02-10 37573

15828 ISO/IEC 14496-3:2009/PDAM 6, Profiles, Levels and

Downmixing Method for 22.2 Channel Programs

2015-12-26 37553

15838 ISO/IEC 23003-3:2012/Amd.1:2014/DCOR 2 2016-01-26 37640

15392 ISO/IEC 23003-3:2012/DAM 3 DRC and IPF 37560

15842 ISO/IEC 23003-4:2015 PDAM 1, Parametric DRC,

Gain Mapping and Equalization Tools

37643

15847 ISO/IEC 23008-3:2015/DAM 2, MPEG-H 3D Audio

File Format Support

37559

3.7 Received National Body Comments and Liaison matters

The Liaison statements were presented, discussed, and resources to draft responses were

allocated. Number Title Topic

m37580 Liaison Statement from ITU-R SG 6 on ITU-R BS.1196-

5

ITU-R SG 6 via SC 29 Secretariat

m37655 m37655: Liaison Statement from DVB on MPEG-H

Audio

DVB

Page: 366 Date Saved: 2016-06-03

366

m37589 IEC CD 61937-13 and 61937-14 IEC TC 100 via SC 29 Secretariat

m37590 IEC CD 61937-2 Ed. 2.0/Amd.2 IEC TC 100 via SC 29 Secretariat

m37596 IEC CDV MIDI (MUSICAL INSTRUMENT DIGITAL

INTERFACE) SPECIFICATION 1.0 (ABRIDGED

EDITION, 2015)

IEC TC 100 via SC 29 Secretariat

m37597 IEC NP MIDI (MUSICAL INSTRUMENT DIGITAL

INTERFACE) SPECIFICATION 1.0 (ABRIDGED

EDITION, 2015)

IEC TC 100 via SC 29 Secretariat

m37651 IEC NP Microspeakers IEC TC 100 via SC 29 Secretariat

m37652 IEC NP Multimedia Vibration Audio Systems - Method

of measurement for audio characteristics of audio

actuator by pinna-conduction

IEC TC 100 via SC 29 Secretariat

m37658 IEC CD 60728-13-1 Ed. 2.0 IEC TC 100 via SC 29 Secretariat

3.8 Joint meetings

Groups What Where Day Time

Audio, Systems Carriage of MPEG-H Systems data in MPEG-H 3D Audio

m37531 Study Of 23008-3 DAM4 (w15851) - Carriage Of

Systems Metadata, Michael Dolan, Dave Singer, Schuyler

Quackenbush

m37896 Study on Base Media File Format 14496-12

PDAM1

Audio Tue 0900-1000

All MPEG Vision Audio Wed 1130-1300

Audio, 3DV MPEG-H 3D Audio and VR, AR Audio Thu 1000-1100

Audio, Req Possible future MPEG-H 3D Audio profiles

m37832 MPEG-H Part 3 Profile Definition

Audio Thu 1100-1200

All 360 Media Audio Thu 1530-1600

3.9 Plenary Discussions

Henney Oh, WILUS, presented m37987 Information on Korean standard for

terrestrial UHD broadcast services

Henney Oh

The presenter reviewed the information from NGBF (m37104) that was submitted to the

113th

MPEG meeting. At this meeting, this contribution notes that MPEG-H 3D Audio

was selected and as the audio broadcast technology, and specifically the Low

Complexity Profile. Schedule

2Q trial

4Q public roll-out The NGBF envisions 16-channel input and 12-channel output.

The Chair was delighted to state that the Korean NGBF is the first customer of MPEG-H

3D Audio.

4 Task group activities

In this report consensus positions of the Audio subgroup are highlighted in yellow.

Other text captures the main points of presentations and subsequent discussion.

4.1 Joint Meetings

4.1.1 With Systems on 3D Audio PDAM 4

The Audio Chair presented m37531 Study Of 23008-3 DAM4 (w15851) -

Carriage Of Systems Metadata

Michael Dolan, Dave Singer, Schuyler

Quackenbush

The contribution proposes to replace the DAM4 text from the 113th

meeting with new

text that specifies a new signalling mechanism using UUID as opposed to a field value

specified in the MPEG-H 3D Audio specification.

It was the consensus of the Audio and Systems experts to issue the contribution text as

Study on ISO/IEC 23008-3 DAM4.

Page: 367 Date Saved: 2016-06-03

367

m37896 Study on Base Media File Format

14496-12 PDAM1

It was the consensus of the Audio and Systems experts to issue the contribution text as

ISO/IEC 14496-14/DAM 1. The ballot comments were reviewed and an acceptable

response was determined.

4.1.2 With All on MPEG Vision

Rob Koenen, TNO, reviewed N15724, from the 113th

meeting, which captured the status

of MPEG Vision. Many experts contributed to the discussion.

The concept of MPEG Vision is

A 5 year time horizon

Stakeholders o Industry that uses MPEG specifications o Companies and institutions that participate in MPEG o The organizations in liaison with MPEG

Establish dialog with industry, via WG11 output documents, to bring MPEG Vision to their attention for both participation and feedback

Vision topics are succinctly captured in an Annex of N15724

A next version of the MPEG Vision document could be in the following format:

Introduction

MPEG technology has enabled new markets o MP3 enabled Internet music delivery o Media compression that enabled wireless streaming media to SmartPhones

Why MPEG is uniquely able to address the emerging needs of industry (high quality technology due to internal competitive phase, rigorous conformance and reference software testing).

Emerging Trends o Increasing supply and demand of media o Social media o Mobile high-speed networking

That is always available o Broadband/Broadcast convergence o Internet of Things o Cloud computing and storage o Big Data, machine learning, search and discovery o Using above to improve customer experience (the “individual” end-user and

the business application user). o Facilitating richer media authoring and presentation o Facilitating richer user to user communication o Facilitate seamless media processing chains, e.g. via Common Media Format

Issues o Security

Specific Topic Keywords (e.g. taken from aspects of Trends), followed by several sentences of exciting text. It may be desirable to also have a figure to communicate more effectively.

Each specific topic could be associated with 30 seconds of evangelizing video, to be compiled into the “MPEG Vision Video”

Specific ask to potential customers: o What are roadblocks? o What is level of interest? o When is it needed?

What will MPEG offer between now and 2020?

Page: 368 Date Saved: 2016-06-03

368

What can Audio experts contribute? At least a summary of emerging trends in audio and

more specifically, audio compression.

4.1.3 With 3DG on Interactive 360 degree Media, VR and AR

The Chair showed figure from 113th

Audio report on the Interactive 360 degree Media

joint meeting and noted that objects in the VR model have both (yaw, pitch, roll) and (x,

y, z) parameters. The 3DV Chair noted that objects can be virtual sound sources, ―users‖

or even rooms. In this respect, rooms can also have associated reverberation properties.

The Audio Chair noted that if a higher level process (e.g. visual engine) in Augmented

Reality use case assesses room properties such as dimension, acoustic reflectivity,

reverberation, then Audio can react to Augmented Reality is the same way as Virtual

Reality.

This need may trigger Audio to define interfaces to AR or VR engines and also create

acoustic simulation (e.g. reverberation) technology.

4.1.4 With Requirements on New Profile Proposal

Christof Fersch, Dolby, presented m37832 MPEG-H Part 3 Profile Definition Christof Fersch

This is a joint input contribution from Dolby, DTS, Zylia, which proposes a new profile.

The presenter noted that the proposed new profile has two main objectives:

Efficient support of object-based immersive content

Efficient integration into products supporting multiple formats

It is anticipated that a renderer would be out of scope for this profile, such that device

manufacturers could add value or differentiate with their own renderer.

Relative to LC profile, it proposed tools

Add: eSbr, MPS212, SAOC-3D, IC, TCC

Remove: Format Converter, Object Renderer, HOA, Binaural, System metadata carriage

Jon Gibbs, Huawei, stated that Huawei supports the proposed profile since they desire to

provide their own renderer.

Marek Domanski Polish National Body, stated support for a profile that does not include

a renderer.

Max Neuendorf, FhG-IIS, noted that requested profile fails to address requirement of

rendering.

Deep Sen, Qualcomm, asserted that the authors of the contribution are also the main

competitors with MPEG-H 3D Audio in the marketplace. He further noted that a

normative behaviour, including rendering, permits broadcasters to fulfil the regulatory

requirements of e.g. the CALM act.

Juergen Herre, IAL/FhG-IIS, noted that SAOC-3D cannot provide high-quality

individual objects as envisioned by the contribution.

Gregory Pallone, Orange, expressed the point of view of Orange as a broadcaster.

Orange does not support non-normative rendering, and is concerned about using only

some other renderer.

Matteo Naccari, BBC, stated that BBC wishes to have complete control of the complete

broadcast chain, and hence does not support this proposal.

Jon Gibbs, Huawei, noted that this a fourth profile in MPEG-H 3D Audio. Huawei

supports the possibility of providing its own renderer as a means to differentiate their

products in the market. Further, he stated that Huawei, as a mobile handset device

manufacturer, is very familiar with standards where end-to-end quality needs to be

maintained and in those markets the network operators subsidise the handsets in order to

justify this end-to-end control.

David Daniels, Sky Europe, stated support for the proposed profile.

Ken McCann, speaking as DVB liaison officer, noted that the Liaison to MPEG from

DVB in m37655 includes DVB‘s Commercial Requirements for Next Generation Audio

Page: 369 Date Saved: 2016-06-03

369

which reflects opinions expressed in the room –that there is support for both normative

and informative renders.

Yasser Syed, Comcast, stated that profiles should be responsive to market needs.

Matteo Naccari, BBC, stated that when broadcast consumers complain, they complain to

BBC.

The Chair proposed that Audio experts draft a WG11 document that captures the

proposal for careful study but on a timeline independent of DAM 3.

In addition, Audio could draft a resolution requesting that experts in the broadcast

industry review the document and comment via contribution documents.

Furthermore, Audio could draft a Liaison template addressed to appropriate application

standards organizations.

4.1.5 With All on Joint work between JPEG and MPEG

The AhG Chair, Arienne Hines, CableLabs, gave a presentation on the plan for joint

work. She presented a diagram on workflow, which Audio experts can find in the notes

on the Joint Meeting on 360 degree Media as documented in the 113th

MPEG Audio

report.

Visual experts have proposed a Light Field representation. The Audio Chair stated that

Audio experts could envision sound field analysis/synthesis as being applicable.

The work address end-to-end workflow, and the goal of the joint meeting was to fill in

the headings for Audio. Candidate headings were:

Audio Applications of Conceptual Workflow

Technologies supporting Audio

Attributes and Commonalities of Audio Technologies

Marius Preda, Univ Mines, noted that there can be sound fields and sound objects, and

that both may be appropriate for this study.

Interested Audio experts will follow this work and progress document N16150 and

N15971.

4.2 Task Group discussions

4.2.1 3D Audio Phase 1

Phase I Corrections

Max Neuendorf, FhG-IIS, presented m37885 Proposed DCOR to MPEG-H 3D Audio

edition 2015

Max Neuendorf, Achim Kuntz, Simone

Fueg, Andreas Hoelzer, Michael

Kratschmer, Christian Neukam, Sascha

Dick, Elena Burdiel, Toru Chinen

The contribution proposed numerous corrections and clarifications to the 3D Audio base

text.

The Chair noted that, procedurally, it is proper to address Phase 1 corrections with a

DCOR, and Phase 2 corrections with a Study on text, but at the 115th

MPEG meeting is

it expected that both texts are merged to create MPEG-H 3D Audio Second Edition.

The presenter reviewed the corrections proposed in the contribution.

Gregory Pallone, Orange, noted that in HOA binaural rendering there can be two BRIR

filter sets: normal and H2B, and that this conflicts with the proposed change: signalling

which BRIR to use. The presenter stated that he would consult with BRIR experts back

at the office and bring back a recommendation for further discussion.

With the exception of one proposed correction discussed in the preceding paragraph, it

was the consensus of the Audio subgroup to incorporate all changes proposed in the

contribution into ISO/IEC 23008-3:2015/DCOR 1 Corrections, to issue from this

meeting.

Page: 370 Date Saved: 2016-06-03

370

4.2.2 3D Audio AMD 3 (Phase 2)

Kai WU, Panasonic Singapore, presented m37827 Proposed simplification of HOA parts in

MPEG-H 3D Audio Phase 2

Hiroyuki EHARA, Sua-Hong NEO, Kai

WU

The contribution raises concerns on Near Field Compensation (NFC) in LC Profile.

The contribution notes the following:

To avoid creating such a confusing and difficult standard, this alternative option

between ―lower HOA order with NFC‖ and ―higher HOA order without NFC‖

should be removed, and the low complexity should be guaranteed for the HOA

tools. There are four options of countermeasure as follows:

1) Always enable NFC (no order restriction on the NFC usage)

2) Always enable NFC (reduce the HOA order restriction in each level to

the order where NFC can be applied)

3) Always disable NFC (LCP does not support NFC)

4) Disable HOA (LCP does not support HOA)

The contribution discusses how each option could be specified in the LC profile text.

In conclusion, the presenter stated support for option 3), which would require the

following text:

If option-3 is chosen, a) remove NFC from LCP in Table P1 in *1+ and the corresponding “Note 1”, b) change the “Note 6” in Table P1 in *1+ to “Note 6: In order to meet target complexity

for the profile/levels, implementers shall use the low-complexity HOA decoder and renderer”,

c) remove NFC processing text after Table P4 in [1], and d) add the following text in the introduction part of Section 18 in *1+: “This section

specifies the low-complexity HOA decoding and rendering algorithm. In the low-complexity profile, this section overrides the original sections of “HOA decoding” and “HOA rendering” for achieving a reduced complexity, otherwise this section is informative.”

The Chair noted that there are two components to the option 3 proposal:

Remove NFC from LC Profile

Mandate use of the low complexity HOA decoding found in Annex G

Max Neuendorf, FhG-IIS, stated that ―option 3‖ proposal would lead to simpler, lower-

complexity implementations.

The Chair recommended that experts continue to discuss the issues raised by the Orange

Oliver Wuebbolt, Technicolor, presented m37770 Corrections and Clarifications on

MPEG-H 3D Audio DAM3

Oliver Wuebbolt, Johannes Boehm,

Alexander Krueger, Sven Kordon,

Florian Keiler

The contribution proposed corrections and clarifications to the DAM3 text concerning

HOA processing.

Clarification of the order of DRC and NFC processing, with both text and a figure.

Restrict application of NFC to only one HOA channel group

Other corrections and clarifications

There was discussion on NFC and HOA channel groups between Gregory Pallone,

Orange and the presenter. The Chair suggested that this one topic needs further

discussion.

With the exception of NFC and HOA channel groups, it was the consensus of the Audio

subgroup to incorporate all changes proposed in the contribution into the Study on

ISO/IEC 23008-3:2015/DAM 3, to issue from this meeting.

Nils Peters, Qualcomm, presented m37874 Thoughts on MPEG-H 3D Audio Nils Peters, Deep Sen, Jeongook Song,

Moo Young Kim

Page: 371 Date Saved: 2016-06-03

371

The contribution has two categories of proposals

Extension of CICP tables

HOA issues

Pre-binauralized Stereo

It proposes to signal ―stereo that is binauralized‖ as a CICP index, specifically index 21.

This must be added to a table in MPEG-H and a table in CICP . Further, such signals

should be normatively specified to be processed with only certain outputs.

Achim Kuntz, FhG-IIS, noted that the WIRE output might facilitate processing of pre-

binauralized stereo.

Gregory Pallone, Orange, reminded experts of their contribution to the previous MPEG

meeting, in which an ambiance signal is provided as pre-binauralized stereo and an

object it mixed onto that using a personal BRIR.

Coverage of ITU-R Speaker Configurations

The contribution proposes to add ITU-R speaker configurations to CICP and 3D Audio

tables.

Support for Horizontal-Only HOA

Currently, the 3D Audio HOA tools to not have any directivity that lies directly on the

horizontal plane. This can be resolved via an additional 64-value codebook and without

any changes to bitstream syntax.

Screen-related Adaptation for HOA

In the current specification, HOA audio sound stage adaptation can result is peaks in

computational complexity. The presenter noted that an implementation-dependent

solution is to pre-compute the adaptation matrix for each production and decoder screen

size combination.

The contribution proposes an alternative signalling of production screen size.

HOA and Static Objects

If a program consists of an HOA scene and e.g. 3 static dialog objects, the contribution

suggests that the HOA renderer be used for the static dialog objects.

Michael K, FhG-IIS, noted that switch group interactivity (e.g. dialog level) is not

supported in HOA rendering. Gregory Pallone, Orange, noted that it should be possible.

The Chair suggested that both of the preceding issues needs more discussion, and will

bring it up later in the week after all other contributions have been presented.

Achim Kuntz, FhG-II, presented m37892 Review of MPEG-H 3DA Metadata Simone Feug, Christian Ertel, Achim

Kuntz

The contribution was triggered by feedback from FhG-IIS implementers. The presenter

noted that there are two disctinct categories of 3D Audio metadata:

User interaction

Decoding and rendering

Currently, most Audio Scene Interaction (ASI) metadata is provided in the MHAS layer,

but this does not contain all ASI metadata.

The contribution proposes to

Move rendering metadata from ASI to config and extension elements. In this way the decoder can be set up after parsing the config() element.

Add other user interaction metadata to ASI. In this way, decoder user interface can be set up after parsing ASI.

The presenter noted that no metadata is added, and none is removed in the proposed

changes.

It was the consensus of the Audio subgroup to adopt the proposed changes into the

Study on MPEG-H 3D Audio DAM3.

Max Neuendorf, FhG-IIS, presented m37897 Review of MPEG-H 3DA Signaling Max Neuendorf, Sascha Dick, Nikolaus

Rettelbach

Page: 372 Date Saved: 2016-06-03

372

The contribution proposes several minor changes to signalling methods in MPEG-H 3D

Audio.

It proposed to change:

Signaling of start and stop indices in IGF such that they better match the acuity of human auditory system. This would be by increasing granularity by a factor of 2. This would require adding two bits, one for start and one for stop.

Signaling of Stereo Filling in Multichannel Coding Tool (MCT). This would permit stereo filling to be used in MCT. The contribution includes results of a listening test that shows the improvement in performance when using Stereo Filling in MCT.

o With differential scores, 3 items better, one by nearly 20 MUSHRA points. These are exactly the items with the worst performance when using the current 3D Audio technology.

Signal crossfade (or not), such that crossfades are not mandated when they don’t make sense, e.g. when transitioning from one program to another. In addition, the contribution to removes the need for redundant config() information at the AudioPreRoll() level.

It was the consensus of the Audio subgroup to adopt the proposed changes into the

Study on MPEG-H 3D Audio DAM 3.

Sang Bae Chon, Samsung, presented m37853 Clarifications on MPEG-H PDAM3 Sang Bae Chon, Sunmin Kim

The contribution notes errors in the Internal Channel portion of the DAM 3 text and also

Reference Software. It proposes the following corrections to the text, each of which

were reviewed by the presenter.

No Change Type Descriptions

1 Syntax Configuration bitstream correction.

2 Editorial Typo

3 Editorial Missing a group and clarifications

4 Editorial Clarification on the ―output‖ channel

5 Editorial Clarification on the ―output‖ channel

6 Editorial Clarification on the figure

7 Editorial Typo and clarification

8 Editorial Detail description of signal and parameter flow in Figure

9 Editorial Detail description of signal and parameter flow in Figure

10 Editorial Clarification on the equation

11 Editorial Typo

In addition, it proposes two bug fixes in the RM6 Reference Software.

It was the consensus of the Audio subgroup to adopt the proposed changes into the

Study on MPEG-H 3D Audio DAM 3.

Max Neuendorf, FhG-IIS, presented m37863 Proposed Study on DAM3 for MPEG-H

3D Audio

Christian Neukam, Michael Kratschmer,

Max Neuendorf, Nikolaus Rettelbach,

Toru Chinen

The contribution proposes numerous editorial or minor changes to the DAM 3 text from

the 113th

MPEG meeting, as shown in the following table.

Page: 373 Date Saved: 2016-06-03

373

Issue Changes Text?

Changes Ref

Soft?

Changes Bitstr

Config

Changes Bitstr

Payload

due to signal

processing

due to side

effects

Application of Peak Limiter Y Y - - Y (only at high

target loudness)

-

Default Parameters for DRC

decoder

Y Y - - Y (only at high

target loudness)

-

Corrections in Technical

Overview

Y - - - - -

Clarification on IGF

Whitening

Y - - - - -

Correction in TCX

windowing

Y - - - - -

Clarification on post-

processing of the synthesis

signal (bass post filtering)

Y - - - - -

Update of description of

Adaptive Low-Frequency

De-emphasis

Y - - - - -

Correction of wrap around in

MCT

Y - - - - -

Clarification on totalSfb Y - - - - -

Correction of inter-frame

dependencies

Y Y - Y - Y

Alignment of bitstream

element names and

semantics for screen-related

remapping

Y - - - - -

Removal of unnecessary

semantics

Y - - - - -

Correction of remapping

formulas

Y - - - - -

Replacement of Figure for

screen-related remapping

Y - - - - -

Correction of non-uniform

spread

Y - - - - -

Application of spread

rendering

Y Y - - - Y

Clarification of the

relationship of scene-

displacement processing

and DRC

Y - - - - -

Clarification on the

processing of scene-

displacement data

Y - - - - -

Definition of „atan2()‟ Y - - - - -

Correction of the HOA

transform matrix

Y - - - - -

Gain interaction as part of

the metadata preprocessing

Y - - - - -

Clarification of behavior after

divergence processing

Y - - - - -

Gain of original and

duplicated objects

(divergence)

Y - - - - -

Exclusion of LFEs from

diffuseness processing

Y - - - - -

Gain adjustment of direct

and diffuse paths

Y - - - - -

Routing of diffuse path Y - - - - -

Correct reference distance in Y - - - - -

Page: 374 Date Saved: 2016-06-03

374

doubling factor formulas

Fix of behavior for smaller

radius values

Y - - - - -

Minimum radius for depth

spread rendering

Y - - - - -

Correction in mae_Data() Y - - - - -

Correction of excluded

sector signaling

Y Y - - - -

Clarifications wrt.

receiverDelayCompensation

Y Y - - - -

Internal Channel signaling

correction

Y Y Y Y - Y

Editorial correction to

Section 8 Updates to MHAS

Y - - - - -

Typos Y - - - - -

It was the consensus of the Audio subgroup to adopt the proposed changes into the

Study on MPEG-H 3D Audio DAM 3.

3D Audio Profiles

Christof Fersch, Dolby, presented m37832 MPEG-H Part 3 Profile Definition Christof Fersch

This a joint input contribution from Dolby, DTS, Zylia, which proposes a new profile,

Broadcast Baseline. The presenter noted that Dolby Atmos and DTX DTS-X have

cinema sound formats that are composed only of dynamic objects.

The presenter described a Common Receiver Broadcast Receiver architecture in which

there might be multiple audio decoders that interface to a separate rendering engine.

In conclusion, the presenter requested that the new profile definition be included in the

Study on DAM 3.

Discussion

Gregory Pallone, Orange, asked why the binaural rendering was removed from the

profile proposal. The presenter responded that the profile does not include any rendering

technology.

Juergen Herre, IAL/FhG-IIS, noted that some content providers wish to guarantee the

user experience via a normative profile. The presenter observed that broadcasters are

also free to use the MPEG-H LC Profile, with a normative renderer.

Jon Gibbs, Huawei, stated that as an implementer Huawei finds flexibility in rendering a

desirable option.

The presenter stated that the proposed profile can decode every LC Profile bitstream.

The Chair noted that the decoder can parse the LC Profile bitstream, but cannot be

conformant since no rendered output is produced.

Henney Oh, WILUS, stated that Korean Broadcast Industry desires to have a codec

coupled with renderer to guarantee a baseline user experience.

There will be further discussion in a joint meeting with Requirements.

Takehiro Sugimoto, NHK, presented m37816 Proposed number of core channels for

LC profile of MPEG-H 3D Audio

Takehiro Sugimoto, Tomoyasu Komori

The contribution points out an ambiguity and also a limitation in the current LC Profile

specification. The presenter stated that customers or even government mandate will be

for

9 languages (beyond Japanese) in a multilingual service

Audio description in every broadcast service (in both Japanese and English)

This leads to the following needs

10 languages for dialog

2 languages for audio description

22.2 immersive audio program

Page: 375 Date Saved: 2016-06-03

375

The Chair noted that there is

Channels in a bitstream

Channels that are decoded by 3D Audio Core Coder

Channels that are ouput by Format Converter

It was the consensus of the Audio subgroup to support the needs expressed in the

contribution, which will require clarification of the LC and High Profile specification.

Further Discussion

Max Neuendorf, FhG-IIS, presented a modified table for describing LC Profile in which

new tables were added:

Stream chn

Decoded chn

Output chn

After some discussion by experts, and small changes to the presented text, it was the

consensus of the Audio subgroup to incorporate the table and text shown into the

specification of LC and Profile.

Max Neuendorf, FhG-IIS, presented m37883 Complexity Constraints for MPEG-H Max Neuendorf, Michael Kratschmer,

Manuel Jander, Achim Kuntz, Simone

Fueg, Christian Neukam, Sascha Dick,

Florian Schuh

The contribution proposed to change the LC Profile definition such that the maximum

complexity is reduced. The presenter noted that the proposal for Binaural Rendering has

already been discussed between experts with a lack of full agreement. Hence more

discussion is needed on this one proposal.

DRC

Arithmetic Coding (Chair’s note – need more complete description)

LTPF

OAM

M/S, Complex prediction

IGF

MCT

Sampling Rate

Object Rendering

Binaural Rendering

IPF

Size of Audio Scene Information

Tim Onders, Dolby, asked if all LC profile listening test bitstreams satisfied the

proposed constraints. The presenter believed that all did.

With the exception of the proposal for Binaural Rendering, and NFC in

SignalGroupTypeHOA, it was the consensus of the Audio subgroup to adopt all

proposed changes in the contribution into the Study on 3D Audio DAM 3 text.

The proposal for Binaural Rendering, and NFC in SignalGroupTypeHOA restrictions

needs additional discussion.

Further Discussion

Concerning NFC in SignalGroupTypeHOA, it was the consensus of the Audio subgroup

to adopt the proposed change in the contribution into the Study on 3D Audio DAM 3

text.

3D Audio Reference Software

Achim Kuntz, FhG-IIS, presented m37891 Software for MPEG-H 3D Audio RM6 Michael Fischer, Achim Kuntz, Sangbae

Chon, Aeukasz Januszkiewicz, Sven

Kordon, Nils Peters, Yuki Yamamoto

This a joint contribution from many companies, and the presenter gave credit to all for

their hard work. The code is in the contribution zip archive. The code implements:

Page: 376 Date Saved: 2016-06-03

376

DAM3 from the 113th meeting, if #defines are set correctly

Additional bugs that were identified and corrected, and delimited by #defines.

It was the consensus of the Audio subgroup to take the contribution and associated

source code and make it RM6, Software for MPEG-H 3D Audio.

Taegyu Lee, Yonsei, presented m37986 Bugfix on the software for MPEG-H 3D

Audio

Taegyu Lee, Henney Oh

The contribution noted that the current code for the FD binauralization tool supportes

block size of 4096 but not 1024. The contribution also presents fix for this bug.

It was the consensus of the Audio subgroup to incorporate the proposed fix into RM7,

which will be built according to a workplan from this meeting.

Invariants CE

The Chair asked Audio experts if they felt it was appropriate to review and discuss this

meeting‘s documents concerning the Swissaudec Invariants CE even though Clemens

Par, Swissaudec, was not present to make the presentation and engage in the discussion.

No Audio experts objected to this proposal.

The Chair made a presentation concerning the Swissaudec Invariants CE. First, he noted

that the following document from the 113th

meeting is the CE proposal containing the

CE technical description. m37271 MPEG-H "Phase 2" Core Experiment –

Technical Description and Evidence of

Merit

Clemens Par

Second, he noted that a new version of the following contribution was uploaded to the

contribution register during the afternoon of Tuesday of the MPEG week. m37529 Resubmission of Swissaudec's MPEG-H

"Phase 2" Core Experiment

Clemens Par

From the many items in the m37529 zip archive, the Chair presented the following two

documents: m37592-2/m37271_Delta_Final_Test_Report/m37271_l100825-01_Swissaudec_SenseLab042-15.pdf

and m37529/m37529_Computational_Complexity/m37529_m37271_ANNEX_Computational_complexity_clean.docx

The first is a final listening test report from DELTA SenseLab, the second a comparison

of the complexity of the CE technology and the RM technology. In fact, the Chair

created and presented his own complexity tables based on the Swissaudec contribution

and the appropriate MPEG contribution documents (see text between the ―====‖

delimiters below). The summary complexity table is shown here:

Comparison of the complexity of the Invariants CE to RM0 or Benchmark CO submission RM0/Benchmark CE Ratio

bitrate/items CO_01 - CO_10 PCU

48 kbps 3DA Phase 1 + MPS 63+40 = 103 80.5 0.78

64 kbps 3DA Phase 1 + MPS 63+40 = 103 80.5 0.78

96 kbps 3DA Phase 1 63 80.5 1.28

128 kbps 3DA Phase 1 63 80.5 1.28

bitrate/items CO_11 - CO_12

48 kbps 3DA Phase 1 (incl. SAOC 3D) 63 + 35 = 98 80.5 0.82

64 kbps 3DA Phase 1 (incl. SAOC 3D) 63 + 35 = 98 80.5 0.82

96 kbps 3DA Phase 1 (incl. SAOC 3D) 63 + 35 = 98 80.5 0.82

128 kbps 3DA Phase 1 (incl. SAOC 3D) 63 + 35 = 98 80.5 0.82

Comments from Audio experts

The Chair understands that the CE proponent asserts performance equivalent to RM0

and complexity lower than RM0, however, the Chair notes that for some operating

Page: 377 Date Saved: 2016-06-03

377

points the CE is less computationally complex than RM0, and for others it is more

computationally complex.

Max Neuendorf, FhG-IIS, stated that subjective test results based on only three items do

not prove the that subjective quality is preserved in all cases. Hence, there would be

considerable risk in adopting the technology. The Chair noted that nine other experts

expressed agreement with the previous statement. When asking the question: ―how

many experts agree to adopt the Swissauded CE technology into the Study on DAM 3?‖

no (zero) experts raised their hands.

Jon Gibbs, Huawei, noted that the Delta SenseLab test is statistically fairly weak in

terms of proving that system quality is truly equivalent.

The Chair noted that other CEs have more than 3 items in their subjective listening tests,

and that the risk in miss-judging the subjective performance based on the submitted test

is a major issue that cannot be overcome by the associated computational complexity

figures.

Chair‘s presentation document:

M3721, MPEG-H ―Phase 2‖ Core Experiment

113th

MPEG meeting

Systems under test:

Bitrate Sys Description

128 kb/s Sys1 Benchmark FhG 128 kb/s

Sys2 CE 3DAC 128 (RM0+CE technology)

Sys3 CPE 128 (Coded CE downmix)

Sys4 CPE PCM (Uncoded (PCM) CE downmix)

Sys5 High Anchor from CfP, 256 kb/s

96 kb/s Sys1 Benchmark FhG 96 kb/s

Sys2 CE 3DAC 96 (RM0+CE technology)

Sys3 CPE 96 (Coded CE downmix)

Sys4 CPE PCM (Uncoded (PCM) CE downmix)

64 kb/s Sys1 RM0 64 kb/s

Sys2 CE 3DAC 64 (RM0+CE technology)

Sys3 CPE 64 (Coded CE downmix)

Sys4 CPE PCM (Uncoded (PCM) CE downmix)

48 kb/s Sys1 RM0 48 kb/s

Sys2 CE 3DAC 48 (RM0+CE technology)

Sys3 CPE 48 (Coded CE downmix)

Sys4 CPE PCM (Uncoded (PCM) CE downmix)

Signals used in the subjective test

Signal Channels

CO_01_Church 22.2

CO_02_Mensch 22.2

CO_03_SLNiseko 22.2

[Chair presented DELTA SenseLab Report]

M34261, Description of the Fraunhofer IIS 3D-Audio Phase 2 Submission

and Benchmark

109th

MPEG meeting, July 2014, Sapporo, Japan

Overview

Page: 378 Date Saved: 2016-06-03

378

Table 1: Technology used for CO submission incl. number of coded

channels (#ch)

CO submission

bitrate/items CO_01 - CO_10 #ch

48 kbps 3DA Phase 1 + MPS 9.1

64 kbps 3DA Phase 1 + MPS 9.1

96 kbps 3DA Phase 1 9.1 / 9.0

128 kbps 3DA Phase 1 9.1 / 9.0

bitrate/items CO_11 - CO_12

48 kbps 3DA Phase 1 (incl. SAOC 3D) 22.2

64 kbps 3DA Phase 1 (incl. SAOC 3D) 22.2

96 kbps 3DA Phase 1 (incl. SAOC 3D) 22.2

128 kbps 3DA Phase 1 (incl. SAOC 3D) 22.2

Table 2: Technology used for CO benchmark incl. number of coded

channels (#ch) (Blue entries indicate that the waveforms are identical to the corresponding

waveforms of the submission)

CO benchmark

bitrate/items CO_01 - CO_10 #ch

48 kbps 3DA Phase 1 + MPS 5.1

64 kbps 3DA Phase 1 + MPS 7.1

96 kbps 3DA Phase 1 9.1 / 9.0

128 kbps 3DA Phase 1 9.1 / 9.0

bitrate/items CO_11 - CO_12

48 kbps 3DA Phase 1 (incl. SAOC 3D) 22.2

64 kbps 3DA Phase 1 (incl. SAOC 3D) 22.2

96 kbps 3DA Phase 1 (incl. SAOC 3D) 22.2

128 kbps 3DA Phase 1 (incl. SAOC 3D) 22.2

PCU Complexity

As usually done within MPEG, the decoder and processing complexity is

specified in terms of PCU. Memory requirements are given in RCU. The

numbers given in Table 3 are worst-case estimates using the highest number out

of the 4 bitrates (48, 64, 96 and 128 kbps).

Table 3: Complexity estimation

Module 3DA-Core Decoder

SAOC 3D MPEG

Surround

RCU 152 (ROM) 50 (RAM)

98 23

PCU 63 35 40

Given above, Phase 2 RM0 and Benchmark complexity is CO submission

bitrate/items CO_01 - CO_10 #ch PCU

48 kbps 3DA Phase 1 + MPS 9.1 63+40 = 103

64 kbps 3DA Phase 1 + MPS 9.1 63+40 = 103

96 kbps 3DA Phase 1 9.1 / 9.0 63

128 kbps 3DA Phase 1 9.1 / 9.0 63

bitrate/items CO_11 - CO_12

48 kbps 3DA Phase 1 (incl. SAOC 3D) 22.2 63 + 35 = 98

64 kbps 3DA Phase 1 (incl. SAOC 3D) 22.2 63 + 35 = 98

96 kbps 3DA Phase 1 (incl. SAOC 3D) 22.2 63 + 35 = 98

Page: 379 Date Saved: 2016-06-03

379

128 kbps 3DA Phase 1 (incl. SAOC 3D) 22.2 63 + 35 = 98

From m37271 v3

ECMA-407 Decoder 40.7 PCU CICP-Downmix (9.1) 0.39 PCU CICP-Downmix (11.1) 0.37 PCU CICP-Downmix (14.0) 0.27 PCU Complexity for the RM0 6-channel 3D Audio Core is ~ 3*13.2 = 39.6 PCU Total PCU complexity for 22.2 80.3 PCU Total PCU complexity for 9.1 80.69 PCU Total PCU complexity for 11.1 80.67 PCU Total PCU complexity for 14.0 80.57 PCU

Comparison of the complexity of the Invariants CE to RM0 or Benchmark CO submission RM0/Benchmark CE Ratio

bitrate/items CO_01 - CO_10 PCU

48 kbps 3DA Phase 1 + MPS 63+40 = 103 80.5 0.78

64 kbps 3DA Phase 1 + MPS 63+40 = 103 80.5 0.78

96 kbps 3DA Phase 1 63 80.5 1.28

128 kbps 3DA Phase 1 63 80.5 1.28

bitrate/items CO_11 - CO_12

48 kbps 3DA Phase 1 (incl. SAOC 3D) 63 + 35 = 98 80.5 0.82

64 kbps 3DA Phase 1 (incl. SAOC 3D) 63 + 35 = 98 80.5 0.82

96 kbps 3DA Phase 1 (incl. SAOC 3D) 63 + 35 = 98 80.5 0.82

128 kbps 3DA Phase 1 (incl. SAOC 3D) 63 + 35 = 98 80.5 0.82

4.2.3 Maintenance

Seungkwon Beack, ETRI, presented m37834 Maintenance report on MPEG Surround

Extension tool for internal sampling-rate

Seungkwon Beack, Taejin Lee, Jeongil

Seo, Adrian Murtaza

MPS

The presenter reminded Audio experts that, at the 113th

meeting, the MPEG Surround

specification was revised to permit greater flexibility with respect to MPEG Surround

internal sampling rate and number of QMF bands. Specifically, to support 64 QMF

bands permits it to interface directly with MPEG-H 3D Audio in the QMF domain. It

presents listening test results that document the performance of this operation point.

Systems under test

Sys1 Revised system

Sys2 Original system

Mushra test results showed

No difference for average scores

One better for differential scores, no difference overall

In conclusion, test results showed that current spec works.

Adrian Murtaza, FhG-IIS, presented m37877 Proposed Study on DAM3 for MPEG-D

MPEG Surround

Adrian Murtaza, Achim Kuntz MPS

The contribution relates to the internal sampling rate issue addressed by the previous

contribution. Specifically, it mandates that MPEG-H 3D Audio shall only be used with

MPEG Surround when MPEG Surround is in 64-band QMF mode.

It was the consensus of the Audio subgroup to incorporate the contribution into a Study

on DAM3 for MPEG-D MPEG Surround.

Adrian Murtaza, FhG-IIS, presented m37879 Thoughts on MPEG-D SAOC Second Adrian Murtaza, Jouni Paulus, Leon SAOC

Page: 380 Date Saved: 2016-06-03

380

Edition Terentiv

This contribution is a draft for what will become MPEG-D SAOC Second Edition. This

Draft Second Edition contains:

COR 1

COR 2

DCOR 3 (in the final text of the Second Edition)

AMD 3 (Dialog Enhancement)

The Chair thanks Audio experts for undertaking the roll-up to make the SAOC Second

Edition.

Adrian Murtaza, FhG-IIS, presented m37878 Proposed Corrigendum to MPEG-D

SAOC

Adrian Murtaza, Jouni Paulus, Leon

Terentiv

SAOC

The contribution proposes additional corrections to be added to the SAOC Defect Report

from the 106th

and 112th

meeting to make the text of a DCOR 3 to issue from this

meeting.

Corrections are:

Better organization of text

Clarifications of text

Corrections to text

It was the consensus of the Audio subgroup to incorporate the text from the two defect

reports (from the 106th

and 112th

meetings) and the corrections in this contribution into a

DCOR 3 to issue from this meeting.

Adrian Murtaza, FhG-IIS, presented m37875 Proposed Study on DAM4 for MPEG-D

SAOC

Adrian Murtaza, Leon Terentiv, Jouni

Paulus

SAOC

The contribution related to Conformance, and proposes corrections to the

The definition of “correct” decoding (i.e. maximum PCM output of 32 for 16-bit PCM output, and maximum RMS difference)

Numerous other corrections to the text of the conformance document

Definition of 23 new conformance sequences for SAOC-DE. The conformance streams are available now. In total, there are 71 SAOC conformance streams, 48 for SAOC and 23 for SAOC-DE.

It was the consensus of the Audio subgroup to make the contribution a Study on DAM4

for MPEG-D SAOC. The conformance streams are already on the MPEG SVN server,

as indicated in the Study On text.

Adrian Murtaza, FhG-IIS, presented m37876 Proposed Study on DAM5 for MPEG-D

SAOC

Adrian Murtaza, Leon Terentiv, Jouni

Paulus

SAOC

The contribution related to Reference Software, and proposed several corrections and

additional functionality to the Reference Software.

It was the consensus of the Audio subgroup to make the contribution a Study on DAM5

for MPEG-D SAOC. The reference software is already on the MPEG SVN server, as

indicated in the Study On text.

Christof Fersch, Dolby, gave a verbal presentation of m37791 Report on corrected USAC conformance

bitstreams

Christof Fersch USAC

The one conformance stream previously identified as a problem, was re-defined and re-

generated so as to resolve all issues.

Yuki Yamamoto, Sony, gave a verbal presentation of m37826 Sony's crosscheck report on USAC

conformance

Yuki Yamamoto, Toru Chinen USAC

Sony experts confirmed that the new conformance stream was able to be decoded

successfully.

Page: 381 Date Saved: 2016-06-03

381

The Chair noted that the fully correct and cross-checked set of USAC conformance

streams will be made available attached to ISO/IEC 23003-3:2012/AMD 1 COR 2,

Corrections to Conformance. This will be re-visited when the DoC on DCOR 2 is

reviewed.

Max Neuendorf, FhG-IIS, presented m37886 Constraints for USAC in adaptive

streaming applications

Max Neuendorf, Matthias Felix, Bernd

Herrmann, Bernd Czelhan, Michael

Haertl

USAC

The contribution describes and clarifies numerous situations that arise in streaming use

cases involving USAC. The contribution proposes to add text to

The body of the USAC specification where appropriate

Annex B Encoder Description

Annex F Audio/Systems Interaction

It was the consensus of the Audio subgroup to incorporate the contribution text into

ISO/IEC 23003-3:2012/FDAM 3, Support for MPEG-D DRC and IPF.

Michael Kratschmer, FhG-IIS, presented m37884 Parametric Limiter for MPEG-D DRC Michael Kratschmer, Frank Baumgarte DRC

The presenter gave a brief overview of how MPEG-D DRC works and what it can be

used for. He further noted that peak limiting and clipping prevention is typically out of

scope for most MPEG audio decoders. The contribution specifically addresses the

prevention of peak limiting, via the specification of a new parametric DRC type for peak

limiting. This new functionality does not require any new tools or architecture. What is

required is a new playload that contains

Limiting threshold

Smoothing attack and release time constants

It was the consensus of the Audio subgroup to incorporate the contribution text into

ISO/IEC 23003-4:2015 DAM 1, Parametric DRC, Gain Mapping and Equalization

Tools, to be produced at this meeting.

Michael Kratschmer, FhG-IIS, presented m37882 Proposed Corrigendum to MPEG-D

DRC

Michael Kratschmer, Frank Baumgarte DRC

The contribution notes that each DRC configuration requires a separate metadata set. It

proposes to adopt the downmixld mechanism for downmix configurations into a new

drcSetId for DRC configurations. This does not require a syntax change, only a

semantics change.

It was the consensus of the Audio subgroup to incorporate the contribution text into a

Defect Report on MPEG-D DRC.

Frank Baumgarte, Apple, presented m37895 Study on MPEG-D DRC 23003-4

PDAM1

Frank Baumgarte, Michael Kratschmer DRC

The presenter reviewed that the PDAM 1 text specifies the following tools:

Parametric DRC

Gain mapping

Loudness EQ

Generic EQ Since the 113

th meeting, when the PDAM issued, the technology has been implemented

which has identified issues in the specification. Many of those issues are captured in the

proposed Study On text. Issues are:

Complexity management. The Study text defines how to o Estimate complexity o Conditions under which EQs and other gains can be discarded so as to satisfy

maxium decoder complexity limits

Loudness measurement o Update to latest ITU recommendation

Page: 382 Date Saved: 2016-06-03

382

EQ Phase alignment o Need further restrictions on filter phase

Ordering of boxes in MP4 FF o To simplify decoder parser complexity

Numerous other clarifications and editorial changes

It was the consensus of the Audio subgroup to make the contribution text ISO/IEC

23003-4:2015 DAM 1, Parametric DRC, Gain Mapping and Equalization Tools, to be

produced at this meeting.

Michael Kratschmer, FhG-IIS, presented m37881 Proposed RM7 of MPEG-D DRC

software

Michael Kratschmer, Frank Baumgarte DRC

The contribution is a proposed RM7 for MPEG-D DRC Reference Software. It

incorporates all tools in DRC including

ISO/IEC 23003-4:2015, Dynamic Range Control

15842, Text of ISO/IEC 23003-4:2015 PDAM 1, Parametric DRC, Gain Mapping and Equalization Tools

m37895, Study on MPEG-D DRC 23003-4 PDAM1

It was the consensus of the Audio subgroup to add to this the technology in

m37884, Parametric Limiter for MPEG-D DRC

And issue this as

ISO/IEC 23003-4:2015/PDAM 2, DRC Reference Software

from this meeting with a

3 week editing period and

A resolution for a 2 month ballot

4.3 Discussion of Remaining Open Issues

DAM 3 Open Issues

NFC Syntax

Gregory Pallone, Orange, presented syntax and supporting text pertaining to carriage of

NFC information

Experts agreed that the current syntax will work and support the Orange use case if the

NfcReferenceDistance is signalled in the bitstream.

Experts from Technicolor and Samsung stated that any change, even editorial, causes

more work for implementers, and so would prefer that syntax remain as in the DAM 3

text.

It was the consensus of the Audio subgroup to keep syntax as in the DAM 3 text from

the 113th

meeting.

NFC Processing

Gregory Pallone, Orange, presented information pertaining to NFC processing.

The Chair asked the question: what are the use cases in LC Profile decoders that require

NFC processing? The presenter noted that when listening in the car (and others) the

speakers might be too close.

Revisions to LC Profile specification

Max Neuendorf, FhG-IIS, presented edited LC Profile specification text concerning:

Bitstream channels

3D Audio core decoded channels

Speaker output channels

The text is shown between the ―====‖ delimiters, below.

It was the consensus of the Audio subgroup to keep adopt this text into Study on MPEG-

H 3D Audio DAM 3 text.

Page: 383 Date Saved: 2016-06-03

383

Table P2 — Levels and their corresponding restrictions for the Low Complexity Profile L

ev

el

Ma

x.

Sa

mp

lin

g r

ate

Ma

x. n

o.

of

co

re c

h i

n

co

mp

ress

ed

da

ta s

tre

am

Ma

x. n

o.

of

de

co

de

r

pro

ce

sse

d c

ore

ch

Ma

x. n

o.

of

lou

dsp

eak

er

ou

tpu

t c

h

Ex

am

ple

of

ma

x.

lou

ds

pea

ke

r c

on

fig

ura

tio

n

Ma

x. n

o.

of

de

co

de

d o

bje

cts

Ex

am

ple

of

a

ma

x. C

on

fig

C+

O

Ma

x.

HO

A o

rde

r

Ex

am

ple

of

ma

x.

HO

A o

rde

r +

O

1 48000 10 5 2 2.0 5 2 ch + 3 static obj 2 2nd order + 3 static obj

2 48000 18 9 8 7.1 9 6 ch + 3 static obj 4 4th order + 3 static obj

3 48000 32 16 12 11.1 16 12 ch + 4 obj 6 6th order + 4 obj

4 48000 56 28 24 22.2 28 24 ch + 4 obj 6 6th order + 4 obj

5 96000 56 28 24 22.2 28 24 ch + 4 obj 6 6th order + 4 obj

— The use of switch groups determines the subset of core channels out of the core

channels in the bitstream that shall be decoded.

— If the mae_AudioSceneInfo() contains switch groups (mae_numSwitchGroups>0),

then the elementLengthPresent flag shall be 1

Further discussion on Zylia CE and LC Profile

Tomasz Żernicki and Lukasz Januszkiewicz from Zylia has presented listening test

pooled results for TCC at 20 kbps (TCC+eSBR) and 64 kbps (TCC+IGF). There is a

significant improvement for 7 items for 20 kbps and 2 items for 64 kbps. The quality of

none item was degraded.

New results (64kbps) were related to application of TCC in higher bitrates with IGF tool

activated. These new results demonstrate that TCC works efficiently for high bitrates use

cases and still can introduce statistically significant improvement of the quality.

Tomasz Żernicki, Zylia, proposed to include TCC tool into MPEG-H 3D Audio Low

Complexity profile. Additionally, relevant changes to DAM3 text were proposed.

The presenter proposed to restrict the tool for use in LC Profile according to the table

below

Table PX — Restrictions applying to TCC tool according to the Levels of the Low

Complexity Profile

Mpegh3daProfile LevelIndication 1 2 3 4 5

Maximum number of TCC channels 2 4 4 8 0

MAX_NUM_TRJ 4 4 4 4 0

Max Neuendorf, FhG-IIS, noted that the TCC processing presented to this meeting used

the ODFT synthesis method.

Juergen Herre, IAL/FhG-IIS, asked why pitch pipe, which is a highly tonal tool, did not

show improvement using the TCC tool. The presenter stated that the encoder signal

classifier disable the tool for this class of signal.

Max Neuendorf, FhG-IIS, asked to clarify the description of complexity based on the

synthesis method used. Presenters agreed, that a short update regarding the Taylor series

Page: 384 Date Saved: 2016-06-03

384

cosine function calculation could be added to the technical description of the tool.

Christof Fersch, Dolby, noted that this is a small change that can be added to DAM3

during present meeting.

Discussion on new tools LC Profile

The Audio Chair observed the TCC tool and the HREF tool have both requested

adoption into LC profile, and furthermore, that the Chair has suggested the possibility of

making all NFC processing informative in LC Profile. Furthermore, experts from Korea,

the first customer of MPEG-H 3D Audio, have expressed a strong request that the set of

tools in LC Profile should remain unchanged. The Chair suggested that a possible

consensus position that resolves many open issues is to:

Not admit TCC into LC Profile

Not admit HREP into LC Profile

Keep NFC signaling syntax and NFC processing in LC Profile as specified in the DAM 3 from the 113th MPEG meeting.

Henney Oh, WULUS, spoke for the Korean broadcast industry to say that Korea is

implementing MPEG-H 3D Audio codec now, and it would be best if there is no change

in the LC Profile toolbox. Sang Bae Chon, Samsung, speaking as a Consumer

Electronics device manufacturer, stated that implementers are on a similarly aggressive

timeline. A change to the LC Profile toolbox will jeopardize this timeline.

Concerning the set of tools in LC Profile and also NFC processing mandated in LCP

profile, it was the consensus of the Audio subgroup to stay as is specified in the DAM 3

text from the 113th

meeting.

HREP

Christain Neukam, FhG-IIS, gave a short presentation on HREP. The presentation asked

to have HREP in all processing paths of the 3D Audio decoder: channels, objects,

SAOC-3D, HOA.

Christof Freich, Dolby, stated some concern as to whether HREP will actually deliver a

quality increase in the SAOC and HOA signal paths. Christian Neukam, FhG-IIS, stated

that HREP is a core coder tool and as such will work on all signal types just at the 3D

Audio core provides efficient compression for all signal types. Nils Peters, Qualcomm,

noted that HOA works well with the core coder, and as such it his expectation that it will

work with HREP. Oliver Weubbolt, Technicolor, noted that ―channel-based‖ coding

tools work equally well for HOA signals. Adrian Murtaza, FhG-IIS, noted HREP gives

more bits to core coder and hence can be expected to make signals sound better.

Christian Neukam, FhG-IIS, noted that HREP is an identity system absent any coding.

Tim Onders, Doby, noted that HREP ―shifts a more objectionable artifact to a less

objectionable artifact,‖ and questioned whether subsequent SOAC and HOA processing

could ―color‖ the artifacts resulting in a worse result. Oliver Weubbolt, Technicolor,

reminded experts that this tool supplies more than 15 MUSHRA points performance

gain for some signals (e.g. selected applause signals). The Chair attempted to sum up,

and noted that a 15 point performance gain is greater than almost any CE, and hence

expects that HREP will deliver good performance when put in the SAOC and HOA

signal paths.

It was the consensus of the Audio subgroup to accept the HREP tool into the SAOC and

HOA signal paths (so that it is now present in all signal paths), and to document this in

Study on MPEG-H 3D Audio DAM 3.

Qualcomm, multiple items

Nils Peters, Qualcomm, gave a presentation that re-iterated the points raised in his

contribution m37874. The resolution for each item is recorded below.

CICP Extensions – Study as AhG mandate.

Screen adaptation and Signaling of screen size – pre-compute information ahead of

content switch. The Chair noted that there was no need to change the existing syntax, but

only recommend a small number (e.g. 8 of the 9x9x9 possibilities) preferred screen sizes

Page: 385 Date Saved: 2016-06-03

385

and to describe how the adaptation information could be pre-compued. It was the

consensus of the Audio subgroup to capture the proposal, with the modifications of the

Chair, into an informative Annex.

Rendering of HOA and static objects –

Deep Sen, Qualcomm, noted that the content provider might be mixing using only an

HOA panner and so it may be advantageous to place dialog objects using the HOA

panner.

Achim Kuntz questioned if HOA panning is desirable, in that some objects would tend

to become more diffuse. Presenter confirmed that a HOA panner would tend to excite

more speakers.

This proposal was not accepted

Support for horizontal only HOA content – the proposal is to add one new codebook so

that truly horizontal-only HOA content can be rendered as such.

It was the consensus of the Audio subgroup to adopt the proposal in to Study on MPEG-

H 3D Audio DAM 3.

Panasonic presentation

The presenter observed that both ―straightforward‖ and ―informative Annex G‖ HOA

renderer will be used in LC Profile decoders.

The presenter recommended adding one sentence. This was discussed, with some

experts supporting the new text and some wishing it to be further edited. The Chair

noted that, for this matter, the DAM text from the 113th

meeting is correct and proposed

that there be no changes.

Proposed changes were not accepted.

Further Discussion on Panasonic proposals

Concerning Section 18 ―Low Complexity HOA Spatial Decoding and Rendering,‖

Panasonic experts presented new text, as shown below within the ―#####‖ delimiters,

where the red text is the proposed new text.

It was the consensus of the Audio subgroup to adopt the newly proposed text in to Study

on MPEG-H 3D Audio DAM 3. (The following text is extracted from Section 18 of DAM3 for your reference.)

######################################################################

18 Low Complexity HOA Spatial Decoding and Rendering

Replace the following sentence at the beginning of subclause 12.4.2.1 "General Architecture"

The architecture of the spatial HOA decoder is depicted in Figure 40.

With

The Spatial HOA decoding process describes how to reconstruct the HOA coefficient sequences from the HOA transport channels and the HOA side information (HOA extension payload). Subsequently the HOA rendering matrix is applied to the HOA coefficient sequences to get the final loudspeaker signals. The HOA renderer is described in section 12.4.3. Both processing steps can be very efficiently combined resulting in an implementation with much lower computational complexity. Since the HOA synthesis in the decoding process can be expressed as a synthesizing matrix operation, the rendering matrix can be applied to the synthesizing matrix for such combination. This realizes “decoding and rendering” in one-step rendering without having to reconstruct full HOA coefficient sequences when they are not necessary. A detailed description how t o integrate the spatial HOA decoding and rendering can be found in Annex G. However, for didactical reasons the processing steps are described separately in the followi‟ng subclauses.

The architecture of the spatial HOA decoder is depicted in Figure 40.

Replace ANNEX G (informative) "Low Complexity HOA Rendering" with the following text:

Page: 386 Date Saved: 2016-06-03

386

Annex G

(informative)

######################################################################

Binaural Rendering and selection of impulse responses

Max Neuendorf, FhG-IIS, made a presentation on new text. This text was discussed, and

edited.

It was the consensus of the Audio subgroup to adopt the newly proposed text in to Study

on MPEG-H 3D Audio DAM 3.

5 Closing Audio Plenary and meeting deliverables

5.1 Discussion of Open Issues

Remaining open issues were discussed and resolved. These pertained to 3D Audio and

are documented at the end of the 3D Audio Task Group section.

5.2 Recommendations for final plenary

The Audio recommendations were presented and approved.

5.3 Disposition of Comments on Ballot Items

DoC on Audio-related balloted items were presented and approved.

5.4 Responses to Liaison and NB comments

Liaison statement and NB comment responses generated by Audio were presented and

approved.

5.5 Establishment of Ad-hoc Groups

The ad-hoc groups shown in the following table were established by the Audio subgroup.

No. Title Mtg

AHG on 3D Audio and Audio Maintenance No

AHG on Responding to Industry Needs on

Adoption of MPEG Audio

No

5.6 Approval of output documents

All output documents, shown in Annex D, were presented in Audio plenary and were

approved.

5.7 Press statement

The was no Audio contribution to the press statement.

5.8 Agenda for next meeting

The agenda for the next MPEG meeting is shown in Annex F.

5.9 All other business

There was none.

Page: 387 Date Saved: 2016-06-03

387

5.10 Closing of the meeting

The 114th

Audio Subgroup meeting was adjourned Friday at 13:30 hrs.

388

Annex A Participants

There were 43 participants in the Audio subgroup meeting, as shown in the following table.

First Last Country Affiliation Email

Seungkwon Beack KR ETRI [email protected]

Toru Chinen JP Sony [email protected]

Sang Chon KR Samsung Electronics [email protected]

Jürgen Herre DE

Int'l Audio Labs Erlangen / Fraunhofer [email protected]

Taejin Lee KR ETRI [email protected]

Max Neuendorf DE Fraunhofer IIS [email protected]

Henney Oh KR WILUS [email protected]

Gregory Pallone FR Orange [email protected]

Schuyler Quackenbush USA ARL [email protected]

Takehiro Sugimoto Japan NHK [email protected]

Jeongook Song US Qualcomm [email protected]

Oliver Wuebbolt DE Technicolor [email protected]

Tomasz Zernicki PL Zylia [email protected]

Yuki Yamamoto Japan Sony Corporation [email protected]

Christof Fersch Germany Dolby [email protected]

Taegyu Lee KR Yonsei University [email protected]

Hiroyuki Ehara Japan Panasonic Corporation [email protected]

Frank Baumgarte USA Apple Inc. [email protected]

Werner De Bruijn NL Philips [email protected]

Panji Setiawan Germany Huawei Technologies [email protected]

Nils Peters US Qualcomm [email protected]

Harald Fuchs Germany Fraunhofer IIS [email protected]

Michael Kratschmer Germany Fraunhofer IIS [email protected]

Achim Kuntz Germany Fraunhofer IIS [email protected]

Martin Morrell USA Qualcomm [email protected]

&#321;ukasz Januszkiewicz Poland Zylia Sp. z o.o. [email protected]

Adrian Murtaza DE Fraunhofer IIS [email protected]

Moo Young Kim USA Qualcomm [email protected]

Christian Neukam Germany Fraunhofer [email protected]

Kai Wu Singapore Panasonic R&D Center [email protected]

Timothy Onders US Dolby Laboratories, Inc. [email protected]

Deep Sen USA Qualcomm [email protected]

Peisong Chen USA Broadcom [email protected]

Haiting Li CN Huawei [email protected]

Page: 389

Date Saved: 2016-06-03

389

Technologies Co., Ltd.

Jon Gibbs UK

Huawei Technologies Co Ltd [email protected]

Ken McCann UK Zetacast/Dolby [email protected]

Jason Filos USA Qualcomm [email protected]

S M Akramus Salehin USA QUALCOMM [email protected]

Ingo Hofmann Germany Fraunhofer IIS [email protected]

Phillip Maness USA DTS. Inc. [email protected]

Shankar Shivappa USA Qualcomm technologies Inc [email protected]

Hyunho Ju KR

Korea Electronics Technology Institute [email protected]

Ted Laverty USA DTS, Inc. [email protected]

390

Annex B Audio Contributions and Schedule

3D Audio Phase 2 AhG Meeting Sunday Topic Authors Presented

1300-1800 3D Audio Phase 2 CEs

TCC

m37930 Zylia Poznan Listening Test Site Properties Jakub Zamojski, Lukasz Januszkiewicz,

Tomasz Zernicki

x

m37932 Corrections and clarifications on Tonal

Component Coding

Lukasz Januszkiewicz, Tomasz Zernicki x

m37947 Listening Test Results for TCC from FhG IIS Sascha Dick, Christian Neukam x

m37933 Low Complexity Tonal Component Coding Tomasz Zernicki, Lukasz

Januszkiewicz, Andrzej Rumiaski,

Marzena Malczewska

x

HREP

m37833 ETRI's cross-check report for CE on High

Resolution Envelope Processing

Seungkwon Beack, Taejin Lee x

m37715 Cross Check Report for CE on HREP (Test Site

Fraunhofer IDMT)

Judith Liebetrau, Thomas Sporer,

Alexander Stojanow

x

m37889 3DA CE on High Resolution Envelope

Processing (HREP)

Sascha Disch, Florin Ghido, Franz

Reutelhuber, Alexander Adami, Juergen

Herre

x

HOA Issues

m37894 Proposed modifications on MPEG-H 3D Audio Gregory Pallone x

Review of AhG Report

114th

MPEG Audio subgroup meeting Monday Topic Authors Presented

0900-1300 MPEG Plenary

1300-1400 Lunch

1400-1430 Audio Plenary

Welcome and Remarks

Report on Sunday Chairs meeting

Review main tasks for the week

m37805 113th

MPEG Audio Report Schuyler Quackenbush x

m37902 AHG on 3D Audio and Audio Maintenance Schuyler Quackenbush x

m37901 AHG on Responding to Industry Needs on

Adoption of MPEG Audio

Juliane Borsum x

Review of Liaison Documents

m37987 Information on Korean standard for

terrestrial UHD broadcast services

Henney Oh x

1430-1800 Maintenance

MPEG-D

m37834 Maintenance report on MPEG Surround

Extension tool for internal sampling-rate

Seungkwon Beack, Taejin Lee, Jeongil

Seo, Adrian Murtaza

x

m37877 Proposed Study on DAM3 for MPEG-D

MPEG Surround

Adrian Murtaza, Achim Kuntz x

m37875 Proposed Study on DAM4 for MPEG-D

SAOC

Adrian Murtaza, Leon Terentiv, Jouni

Paulus

x

m37876 Proposed Study on DAM5 for MPEG-D

SAOC

Adrian Murtaza, Leon Terentiv, Jouni

Paulus

x

m37878 Proposed Corrigendum to MPEG-D SAOC Adrian Murtaza, Jouni Paulus, Leon

Terentiv

x

m37879 Thoughts on MPEG-D SAOC Second

Edition

Adrian Murtaza, Jouni Paulus, Leon

Terentiv

x

m37791 Report on corrected USAC conformance Christof Fersch x

Page: 391

Date Saved: 2016-06-03

391

bitstreams

m37826 Sony's crosscheck report on USAC

conformance

Yuki Yamamoto, Toru Chinen x

m37886 Constraints for USAC in adaptive streaming

applications

Max Neuendorf, Matthias Felix, Bernd

Herrmann, Bernd Czelhan, Michael Haertl

x

m37884 Parametric Limiter for MPEG-D DRC Michael Kratschmer, Frank Baumgarte x

m37895 Study on MPEG-D DRC 23003-4 PDAM1 Frank Baumgarte, Michael Kratschmer x

m37882 Proposed Corrigendum to MPEG-D DRC Michael Kratschmer, Frank Baumgarte x

m37881 Proposed RM7 of MPEG-D DRC software Michael Kratschmer, Frank Baumgarte x

Tuesday

0900-1000 Joint with Systems

3D Audio DAM 4

m37531 Study Of 23008-3 DAM4 (w15851) -

Carriage Of Systems Metadata

Michael Dolan, Dave Singer, Schuyler

Quackenbush

x

m37896 Study on Base Media File Format 14496-12

PDAM1

x

Final AhG document presentations

m37827 Proposed simplification of HOA parts in

MPEG-H 3D Audio Phase 2

Hiroyuki EHARA, Sua-Hong NEO, Kai

WU

x

Phase I Corrections

m37885 Proposed DCOR to MPEG-H 3D Audio

edition 2015

Max Neuendorf, Achim Kuntz, Simone

Fueg, Andreas Hoelzer, Michael

Kratschmer, Christian Neukam, Sascha

Dick, Elena Burdiel, Toru Chinen

x

Phase II Corrections and Clarifications

m37770 Corrections and Clarifications on MPEG-H

3D Audio DAM3

Oliver Wuebbolt, Johannes Boehm,

Alexander Krueger, Sven Kordon, Florian

Keiler

x

m37874 Thoughts on MPEG-H 3D Audio Nils Peters, Deep Sen, Jeongook Song,

Moo Young Kim

x

1300-1400 Lunch

Phase II Corrections and Clarifications

m37892 Review of MPEG-H 3DA Metadata Simone Feug, Christian Ertel, Achim

Kuntz

x

m37897 Review of MPEG-H 3DA Signaling Max Neuendorf, Sascha Dick, Nikolaus

Rettelbach

x

m37853 Clarifications on MPEG-H PDAM3 Sang Bae Chon, Sunmin Kim x

m37863 Proposed Study on DAM3 for MPEG-H 3D

Audio

Christian Neukam, Michael Kratschmer,

Max Neuendorf, Nikolaus Rettelbach, Toru

Chinen

x

Proposed 3D Audio Profile

m37832 MPEG-H Part 3 Profile Definition Christof Fersch x

3D Audio Reference Software

m37891 Software for MPEG-H 3D Audio RM6 Michael Fischer, Achim Kuntz, Sangbae

Chon, Aeukasz Januszkiewicz, Sven

Kordon, Nils Peters, Yuki Yamamoto

x

m37986 Bugfix on the software for MPEG-H 3D

Audio

Taegyu Lee, Henney Oh x

1800- Chairs meeting

Wednesday

0900-1100 MPEG Plenary

1130-1300 Joint with All at Audio

MPEG Vision x

Page: 392

Date Saved: 2016-06-03

392

1300-1400 Lunch

1400-1500 Document Preparation

1500-1600 3D Audio LC Profile

m37816 Proposed number of core channels for LC

profile of MPEG-H 3D Audio

Takehiro Sugimoto, Tomoyasu Komori x

m37883 Complexity Constraints for MPEG-H Max Neuendorf, Michael Kratschmer,

Manuel Jander, Achim Kuntz, Simone

Fueg, Christian Neukam, Sascha Dick,

Florian Schuh

x

1600-1700 Phase II CE

m37529 Resubmission of Swissaudec's MPEG-H

"Phase 2" Core Experiment

Clemens Par x

1700-1730 Open Issues

Zylia presentation x

1730- Social: Buses leave at 6:15pm

Thursday

0900-1000 Open Issues

1000-1100 Joint with 3DV at Audio

MPEG-H 3D Audio in a

Virtural/Augmented Reality Use Case

x

1100-1200 Joint with Requirements at Audio

Possible future MPEG-H 3D Audio profiles

m37832 MPEG-H Part 3 Profile Definition

Christof Fersch

Possible LCX profile for Cable Industry

x

1200-1300 Document Preparation

1300-1400 Lunch

1400-1500 DoC Review

1530-1600 3D Everything joint meeting x

1600-1800 Open Issues

1800- Chairs meeting

Friday

0800-0900 Discussion of Open Issues

0800-1300 Audio Plenary

Report on Thursday Chairs meeting

Recommendations for final plenary

Establishment Ad-hoc groups and review

AhG Mandates

1000 Get document numbers

1030 Submit AhG Mandates and Resolutions

Approve and send Press Release

Approve Responses to NB comments and

Liaison

Approval of output documents:

Nxxxx in document header

wxxxx (short title).docx -- document

filename

wxxxx.zip – zip archive name

Agenda for next meeting

Review of Audio presentation to MPEG

Page: 393

Date Saved: 2016-06-03

393

plenary

A.O.B.

Closing of the Audio meeting

1300-1400 Lunch

1400- MPEG Plenary

394

Annex C Task Groups

1. MPEG-H 3D Audio Phase 1

2. MPEG-H 3D Audio Phase 2

3. Maintenance of MPEG-2, MPEG-4 and MPEG-D

Page: 395

Date Saved: 2016-06-03

395

Annex D Output Documents

Documents approved by Audio and jointly by Audio and other subgroups are shown below. Note

that document numbers shown in RED are listed in another subgroups resolutions, and shown here

for reference.

No. Title In charge TBP Available

ISO/IEC 13818-1– Systems

15912 DoC on ISO/IEC 13818-1:2015/DAM 5 Harald

Fuchs

N 16/02/26

15913 ISO/IEC 13818-1:2015/FDAM 5 Harald

Fuchs

N 16/02/26

No. Title In charge TBP Available

ISO/IEC 14496-3 – Audio

15998 Text of ISO/IEC 14496-3:2009/AMD 3:2012/COR 1,

Downscaled (E)LD

Adrian

Murtaza

N 16/02/26

15999 ISO/IEC 14496-3:2009/DAM 6, Profiles, Levels and

Downmixing Method for 22.2 Channel Programs

Takehiro

Sugimoto

N 16/02/26

No. Title In charge TBP Available

ISO/IEC 14496-5 – Reference software

15924 Text of ISO/IEC 14496-5:2001/AMD 24:2009/DCOR 3,

Downscaled (E)LD

Adrian

Murtaza

N 16/02/26

No. Title In charge TBP Available

ISO/IEC 14496-12 – ISO base media file format

15922 DoC on ISO/IEC 14496-12:2015 PDAM 1 DRC Extensions David

Singer

N 16/02/26

15923 Text of ISO/IEC 14496-12:2015 DAM 1 DRC Extensions David

Singer

N 16/04/01

No. Title In charge TBP Available

ISO/IEC 23003-1 – MPEG Surround

15934 Study on ISO/IEC 23003-1:2007/DAM 3 MPEG Surround

Extensions for 3D Audio

Adrian

Murtaza

N 16/02/26

No. Title In charge TBP Available

ISO/IEC 23003-2 – Spatial Audio Object Coding (SAOC)

16076 ISO/IEC 23003-2:2010/DCOR 3 SAOC, SAOC Corrections Adrian

Murtaza

N 16/02/26

16077 Study on ISO/IEC 23003-2:2010/DAM 4, SAOC

Conformance

Adrian

Murtaza

N 16/02/26

16078 Study on ISO/IEC 23003-2:2010/DAM 5, SAOC Reference

Software

Adrian

Murtaza

N 16/02/26

16079 Draft of ISO/IEC 23003-2:2010 SAOC, Second Edition Adrian

Murtaza

N 16/02/26

No. Title In charge TBP Available

ISO/IEC 23003-3 – Unified speech and audio coding

16080 DoC on ISO/IEC 23003-3:2012/Amd.1:2014/DCOR 2 Michael

Kratschmer

N 16/02/26

Page: 396

Date Saved: 2016-06-03

396

16081 Text of ISO/IEC 23003-3:2012/Amd.1:2014/COR 2 Michael

Kratschmer

N 16/02/26

16082 DoC on ISO/IEC 23003-3:2012/DAM 3 Support of MPEG-

D DRC, Audio Pre-Roll and IPF

Michael

Kratschmer

N 16/02/26

16083 Text of ISO/IEC 23003-3:2012/FDAM 3 Support of

MPEG-D DRC, Audio Pre-Roll and IPF

Michael

Kratschmer

N 16/02/26

No. Title In charge TBP Available

ISO/IEC 23003-4 – Dynamic Range Control

16084 Defect Report on MPEG-D DRC Michael

Kratschmer

N 16/02/26

16085 DoC on ISO/IEC 23003-4:2015 PDAM 1, Parametric DRC,

Gain Mapping and Equalization Tools

Michael

Kratschmer

N 16/02/26

16086 Text of ISO/IEC 23003-4:2015 DAM 1, Parametric DRC,

Gain Mapping and Equalization Tools

Michael

Kratschmer

N 16/04/01

16087 Request for Amendment ISO/IEC 23003-4:2015/AMD 2,

DRC Reference Software

Michael

Kratschmer

N 16/02/26

16088 ISO/IEC 23003-4:2015/PDAM 2, DRC Reference Software Michael

Kratschmer

N 16/03/18

No. Title In charge TBP Available

ISO/IEC 23008-3 – 3D Audio

16089 ISO/IEC 23008-3:2015/DCOR 1 Corrections, Christian

Neukam

N 16/02/26

16090 DoC on ISO/IEC 23008-3:2015/DAM 2, MPEG-H 3D

Audio File Format Support

Ingo

Hofmann

N 16/02/26

16091 Text of ISO/IEC 23008-3:2015/FDAM 2, MPEG-H 3D

Audio File Format Support

Ingo

Hofmann

N 16/02/26

16092 Study on ISO/IEC 23008-3:2015/DAM 3, MPEG-H 3D

Audio Phase 2

Max

Neuendorf

N 16/03/18

16093 Study on ISO/IEC 23008-3:2015/DAM 4, Carriage of

Systems Metadata

Schuyler

Quackenbush

N 16/02/26

16094 WD on New Profiles for 3D Audio Christof

Fersch

N 16/02/26

No. Title In charge TBP Available

ISO/IEC 23008-6 – 3D Audio Reference Software

16095 3D Audio Reference Software RM6 Achim

Kuntz

N 16/02/26

16096 Workplan on 3D Audio Reference Software RM7 Achim

Kuntz

N 16/02/26

No. Title In charge TBP Available

Liaisons

16097 Liaison Statement to DVB on MPEG-H 3D Audio Ken McCann N 16/02/26

16098 Liaison Statement Template on MPEG-H 3D Audio Ken McCann N 16/02/26

16099 Liaison Statement to ITU-R Study Group 6 on BS.1196-

5

Schuyler

Quackenbush

N 16/02/26

16100 Liaison Statement to IEC TC 100 Schuyler

Quackenbush

N 16/02/26

Page: 397

Date Saved: 2016-06-03

397

16101 Liaison Statement to IEC TC 100 TA 4 Schuyler

Quackenbush

N 16/02/26

16102 Liaison Statement to IEC TC 100 TA 5 Schuyler

Quackenbush

N 16/02/26

Page: 398

Date Saved: 2016-06-03

398

Annex E Agenda for the 115th

MPEG Audio Meeting

Agenda Item

1. Opening of the meeting

2. Administrative matters

2.1. Communications from the Chair

2.2. Approval of agenda and allocation of contributions

2.3. Review of task groups and mandates

2.4. Approval of previous meeting report

2.5. Review of AhG reports

2.6. Joint meetings

2.7. Received national body comments and liaison matters

3. Plenary issues

4. Task group activities

4.1. MPEG-H 3D Audio

4.2. Maintenance: MPEG-2, MPEG-4, and MPEG-D

4.3. Audio Exploration

5. Discussion of unallocated contributions

6. Meeting deliverables

6.1. Responses to Liaison

6.2. Recommendations for final plenary

6.3. Establishment of new Ad-hoc groups

6.4. Approval of output documents

6.5. Press statement

7. Future activities

8. Agenda for next meeting

9. A.O.B

10. Closing of the meeting

Page: 399

Date Saved: 2016-06-03

399

– 3DG report

Source: Marius Preda, Chair

Summary

3DGC meeting report San Diego, February 2016 ..................... Error! Bookmark not defined.

1. Opening of the meeting ................................................................................................ 400

1.1 Roll call ..................................................................................................................... 400

1.2 Approval of the agenda ............................................................................................. 400

1.3 Goals for the week .................................................................................................... 400

1.4 Standards from 3DGC ............................................................................................... 401

1.5 Room allocation ........................................................................................................ 401

1.6 Joint meetings ........................................................................................................... 401

1.7 Schedule at a glance .................................................................................................. 402

2. AhG reports .................................................................................................................. 403

2.1 MPEG-V ................................................................................................................... 403

2.2 Augmented Reality ................................................................................................... 403

2.3 3D Graphics compression ......................................................................................... 403

2.4 MIoT and Wearables ................................................................................................. 404

http://wg11.sc29.org/doc_end_user/documents/114_San%20Diego/ahg_presentations/MIoT-

MPEGWearables-AHGR-SanDiego114.pptx-1456203700-MIoT-MPEGWearables-AHGR-

SanDiego114.pptx .............................................................................................................. 404

2.5 3D 3DG Activities are reported in the Wednesday and Friday plenary ................... 404

3. Analysis of contributions ............................................................................................. 404

3.1 Joint meeting with Systems on MSE AF .................................................................. 412

3.2 Joint meeting with Requirements on IoT and Wearable ........................................... 412

3.3 Joint meeting with 3DA ............................................................................................ 412

3.4 Joint Session with JPEG on JPEGAR ....................................................................... 412

3.5 Session 3DG Plenary ................................................................................................ 413

4. General issues ............................................................................................................... 413

4.1 General discussion .................................................................................................... 413

4.1.1 Reference Software ............................................................................................ 413

4.1.2 Web site .............................................................................................................. 413

5. General 3DG related activities ..................................................................................... 413

5.1 Promotions ................................................................................................................ 413

5.2 Press Release ............................................................................................................. 413

5.3 Liaison ....................................................................................................................... 414

6. Resolutions from 3DG ................................................................................................. 414

6.1 Resolutions related to MPEG-4 ................................................................................ 414

6.1.1 Part 5 – Reference software ............................................................................... 414

6.2 Part 16 – Animation Framework eXtension (AFX) .................................................. 414

Page: 400

Date Saved: 2016-06-03

400

6.2.1 The 3DG subgroup recommends approval of the following documents ........... 414

6.3 Part 27 – 3D Graphics conformance ......................................................................... 415

6.3.1 The 3DG subgroup recommends approval of the following documents ........... 415

6.4 Resolutions related to MPEG-A ............................................................................... 415

6.5 Part 13 – Augmented reality application format ....................................................... 415

6.5.1 The 3DG subgroup recommends approval of the following documents ........... 415

6.6 Part 17 – Multisensorial Media Application Format ................................................ 415

6.6.1 The 3DG subgroup recommends approval of the following documents ........... 415

6.6.2 The 3DG subgroup thanks US National Body for their comments on ISO/IEC 23000-

17:20xx CD .................................................................................................................... 415

6.7 Resolutions related to MPEG-V (ISO/IEC 23005 – Media context and control) ..... 415

6.7.1 General ............................................................................................................... 415

6.7.2 Part 1 – Architecture .......................................................................................... 416

6.7.3 Part 2 – Control Information .............................................................................. 416

6.7.4 Part 3 – Sensory Information ............................................................................. 416

6.7.5 Part 4 – Virtual World Object Characteristics ................................................... 416

6.7.6 Part 5 – Data Formats for Interaction Devices ................................................... 417

6.7.7 Part 6 – Common types and tools....................................................................... 417

6.8 Resolutions related to MAR Reference Model (ISO/IEC 18039 Mixed and Augmented

Reality Reference Model) .................................................................................................. 417

6.8.1 General ............................................................................................................... 417

6.9 Resolutions related to Explorations .......................................................................... 418

6.9.1 Media-centric IoT and Wearable ........................................................................ 418

6.9.2 Point Cloud Compression................................................................................... 418

6.10 Management .......................................................................................................... 418

6.10.1 Liaisons ........................................................................................................... 418

7. Establishment of 3DG Ad-Hoc Groups ....................................................................... 418

8. Closing of the Meeting ................................................................................................. 420

1. Opening of the meeting

1.1 Roll call

1.2 Approval of the agenda

The agenda is approved.

1.3 Goals for the week

The goals of this week are: Review contributions related to MPEG-V

Review contributions related to Augmented Reality

Page: 401

Date Saved: 2016-06-03

401

Status of ref soft and conformance for Web3D Coding

Review contributions related to MIoT and Wearable

Edit output documents related to Context, objectives and requirements for MIoT/W

Contribute to Big Media output documents

Edit DoCs

Investigate future developments for MPEG 3D Graphics Compression

Point cloud compression

Review and issue liaison statements

JPEG on AR

MIoT and Wearable with WG10, ITU-T, IEC SG10, Syc AAL

Review the votes

Web-site

MPEG database

1.4 Standards from 3DGC

Std Pt Edit. A/E Description CfP WD CD DIS FDIS Gr.

4 5 2001 A40 3DG for browsers RS 15/06 15/10 16/06 3

4 16 2011 A3 Web3DG coding 12/10 15/02 15/10 16/06 3

4 27 2009 A7 Web3DC Conformance 15/06 15/10 16/06 3

AR 201x E1 ARRM 14/07 16/02 16/10 3

A 13 201x E2 ARAF 14/10 15/06 16/02 3

A 13 201x A1 ARAF RS & C 15/06 15/10 16/06 17/01 3

A 17 201x E1 MSMAF 15/10 16/02 16/10 3

V 1 201x E4 Architecture 15/10 16/02 16/06 17/01 3

V 2 201x E4 Control information 15/10 16/02 16/06 17/01 3

V 3 201x E4 Sensory information 15/10 16/02 16/06 17/01 3

V 4 201x E4 Virtual world object characteristics 15/10 16/02 16/06 17/01 3

V 5 201x E4 Data formats for interaction devices 15/10 16/02 16/06 17/01 3

V 6 201x E4 Common types and tools 15/10 16/02 16/06 17/01 3

V 7 201x E3 RS & C 14/07 15/10 16/06 3

1.5 Room allocation

3DGC: Santa Clara

1.6 Joint meetings

During the week, 3DG had several joint meetings with Requirements, Video, Audio and Systems.

Groups What Day Time1 Time2 Where

Page: 402

Date Saved: 2016-06-03

402

R, V, 3 Everything 3D Tue 10:00 11:00 R

All MPEG Vision Wed 11:30 13:00 A

JPEG-MPEG Joint standards Thu 09:00 10:00 JPEG

A, 3 3D Audio in VR/AR Thu 10:00 11:00 A

R, 3 MIoTW Thu 14:00 15:00 3

All Communication Thu 16:00 17:00 Ocean Beach

All MPEG Vision Thu 16:00 18:00

1.7 Schedule at a glance

Monday

MPEG Plenary 09h00 to 13h00

Lunch 13h00 to 14h00

Session Agenda/Status/Preparation of the week 14h00 to 14h30

MIoT and Wearable (xxx) 14h30 to 17h00

Session 3DG Plenary, review of 3DG

contributions ( xxx ) 17h00 to 18h00

Tuesday

ARAF contributions 09h00 to 10h00

JSession Everything 3D 10h00 to 11h00

MioT and Wearable (review of

contributions) 11h00 to 13h00

Lunch 13h00 to 14h00

MPEG-V (review of contributions) 14h00 to 16h00

MioT and Wearable (review of

contributions) 16h00 to 18h00

Wed

MPEG Plenary 09h00 to 11h30

J Session (with all) MPEG Vision 11h30 to 13h00

Lunch 13h00 to 14h00

MIoT and Wearable (liaisons) 14h00 to 16h30

Session ARAF White paper 16h30 to 17h00

Thu

JSession MPEG-JPEG Joint standards 09h00 to 10h00

Session 3D Audio in VR/AR 10h00 to 11h00

Page: 403

Date Saved: 2016-06-03

403

Session MIoT and Wearable (review draft

requirements and DCfP) 11h00 to 13h00

Lunch 13h00 to 14h00

Requirements MIoTW 14h00 to 15h00

Session MIoT and Wearable output documents 15h00 to 18h00

JSession Everything 3D 15h30 to 16h30

BO Session Point Cloud compression planning 16h30 to 18h00

Joint meeting

Communication (only for a

BO group)

ARAF White Paper 16h00 to 17h00

Joint meeting with all (only

for a BO group) MPEG Vision 16h00 to 18h00

Friday

Session Liaisons review, press release, AR and MPEG-V,

MIoTW output documents 09h00 to 10h00

Session 3DG Plenary, 3DG Output Documents Review,

resolutions 10h00 to 13h00

MPEG Plenary 14h00 to xxh00

2. AhG reports

2.1 MPEG-V

No AhG was established at the last meeting.

2.2 Augmented Reality

http://wg11.sc29.org/doc_end_user/documents/114_San%20Diego/ahg_presentations/ARAF_AhG_

Report.ppt-1456190378-ARAF_AhG_Report.ppt

2.3 3D Graphics compression

http://wg11.sc29.org/doc_end_user/documents/114_San%20Diego/ahg_presentations/AhG_3DG_m

onday_san_diego_february.v.1.pptx-1456171057-AhG_3DG_monday_san_diego_february.v.1.pptx

Page: 404

Date Saved: 2016-06-03

404

2.4 MIoT and Wearables

http://wg11.sc29.org/doc_end_user/documents/114_San%20Diego/ahg_presentations/MIoT-

MPEGWearables-AHGR-SanDiego114.pptx-1456203700-MIoT-MPEGWearables-AHGR-

SanDiego114.pptx

2.5 3D 3DG Activities are reported in the Wednesday and Friday plenary

Wednesday:

http://wg11.sc29.org/doc_end_user/documents/114_San%20Diego/presentations/MPEG3DGraphics

Mercredi.pptx-1456339383-MPEG3DGraphicsMercredi.pptx

Friday:

http://wg11.sc29.org/doc_end_user/documents/114_San%20Diego/presentations/MPEG3DGraphics

Vendredi.ppt-1456529824-MPEG3DGraphicsVendredi.ppt

3. Analysis of contributions

Wearable & IoT

m37763

Root Elements for Media-centric IoT and Wearable (M-IoTW)

The root element is considered as a collection of several elements : Data,

PUnit, Cmmd, User.

Anna Yang, Jae-Gon Kim,

Sungmoon Chun, Hyunchul

Ko

m37764

Common and Gesture-Based Wearable Description for M-IoTW

A draft and initial schema is proposed for each of the following types : Data,

PUnit, Cmmd. The technical description is in a very early stage but it be

considered as a good starting point

Sungmoon Chun, Hyunchul

Ko, Anna Yang, Jae-Gon

Kim

m37993

Towards a reference architecture for Media-centric IoT and Wearable (M-

IoTW)

Summary : A draft architecture inspired by WSO2.org is proposed

Mihai Mitrea, Bojan Joveski

m38057

MIoT Use-case (Vibration subtitle for movie by using wearable device)

Resolution: consider this MIoT as an Individual MIoT for part 3

Da Young Jung, Hyo-Chul

Bae, Kyoungro Yoon,

m38113

Speech-Related Wearable Element Description for M-IoTW

Summary :

Add Smartheadphone that has one or several microphones (regularMic and

InearMic)

AP : to check the micrphone from MPEG-V and update

AP : investigate on considering the generic « audioResource » in PData

instead of « speech »

Miran Choi, Hyun-ki Kim

m37903 Use Case of MIoT Jin Young Lee

Page: 405

Date Saved: 2016-06-03

405

Summary :We need to embed the global positioning in the metadata of the

IoT.

AP : add the requierement in the Req Document

m37911

Image analysis description for M-IoTW

Summary: A hybrid architecture including some local processing (on the

wearable) and some remote processing (more complex)

Various image analysis are proposed (face detection and recognition, object

detection and recognition, …)

Resolution: consider this simple example for identifying MPEG-U and

MPEG-UD types that can be reused

duckhwan kim, bontae koo

m37975

MIoT API instances

A set of APIs are proposed for MIoT covering basic functionalities. Camera

and Tracker MIoT are also proposed

Sang-Kyun Kim, Min Hyuk

Jeong, Hyun Young Park

m37976

Introduction to IoTivity APIs (MIoT)

Summary: IoTivity is a project proposed by Samsung and Intel for discovery

and communication for IoTs.

AP: use such a framework for Part 2 of MIoTW

Sang-Kyun Kim, Min Hyuk

Jeong, Hyun Young Park,

m38041 Liaison Statement from JTC 1/WG 10 on Revised WD of ISO/IEC 30141 JTC 1/WG 10 via SC 29

Secretariat

m38042

Liaison Statement from JTC 1/WG 10 on Request contributions on IoT use

cases

JTC 1/WG 10 via SC 29

Secretariat

m37800

Wearables and IoT&AAL use case standardisation

IEC 62559-2 is specifyig a template for use cases.

WG xxx and SyC AAL developped use cases related to IoTs

IEC formed a strategy group on Smart Wearable Devices

AP : put all the deocuments in a single place to facilitate the access for MPEG

members

m38041

Liaison

Statement from

JTC 1/WG 10 on

Revised WD of

ISO/IEC 30141

JTC 1/WG 10 via SC 29 Secretariat

m38042

Liaison

Statement from

JTC 1/WG 10 on

Request

contributions on

IoT use cases

JTC 1/WG 10 via SC 29 Secretariat

- Send a liaison to IEC SG 10 (strategic group on Wearable Smart Devices)

- CTA standardisation for BCI products (Consumer technology Association)

Details are in the documents below :

Kate Grant

Page: 406

Date Saved: 2016-06-03

406

m37697

2016-02-09

11:42:16

2016-02-17

18:48:03

MPEG-V

General/All

MIoT Use-case

Summary: this contribution was not presented

M. Jalil

Piran

Part 1. Global architecture, use cases and common requirements

Part 2. System aspects: discovery, communication

o to interwork with available platforms, e.g UPnP or SmartBAN or IoTivity or xxx

o to set up a NEW light layer of presence and capabilities signaling

o AP: issue a CfP for Part 2 (Sang)

(Note: implementation guidelines for MIoT to be used on other platforms)

Part 3. Individual M-IoTs, data formats and APIs

o Sensors and actuators

Data format defined in MPEG-V (some may need to be extended), the MIoTW

standard deals only with the APIs for Sensors and actuators

See MIoT Camera Example

o Media processing & storage units

Data formats and/or API

See MotionTracker Example, Face Recognition example

AP: issue a CfP for Media processing unit interfaces (Mihai)

Part 4. Wearable M-IoTs, data formats and APIs

o Smart Glasses

Camera, gesture recognizer, microphone, display, etc.,

o Smart Watch

o Fitness tracker, Smart Textile (D-Shirt), Sleep monitoring

Part 5. M-IoT Aggregates (combining individual MIoTs, eventually with other IoTs)

o Video Surveillance Systems

o Car Sensing and Communication System

o Smart Cities, Smart Factory, Smart Offices

MPEG-V

m37808

Proposal of metadata description for light display in MPEG-V

Summary: A lightDisplay type is proposed that can be used to activate

low resolution displays. These displays can have various forms (not only

rectangular)

AP: add the color matrix and the mask matrix. The second if used to

create an arbitrary form of the LightDevice

AP: design a VisualDisplayType (and AuralDisplayType) and an

AdvancedLightEffect

Jae-Kwan Yun, Yoonmee Doh,

Hyun-woo Oh, Jong-Hyun Jang

Page: 407

Date Saved: 2016-06-03

407

m37831

A proposal of instantiation to olfactory information for MPEG-V 4th

edition part 1

Summary: use cases for enose and olfactory

AP: accepted for Part 1 of 4th Edition

Hae-Ryong Lee, Jun-Seok Park,

Hyung-Gi Byun, Jang-Sik Choi,

Jeong-Do Kim

m37860

Enhancement of Enose CapabilityType for MPEG-V 4th edition part 2

Summary: a full set of enose capabilities is provided.

AP: accepted

Sungjune Chang, Hae-Ryong Lee,

Hyung-Gi Byun, Jang-Sik Choi,

Jeong-Do Kim

m37861

A modification of syntax and examples for EnoseSensorType for

MPEG-V 4th edition part 5

Summary: EnoseSensorType

AP: add also the MonoChemical type (and change the Scent into

MixtureChemical). Boths have CSs.

Jong-Woo Choi, Hae-Ryong Lee,

Hyung-Gi Byun, Jang-Sik Choi,

Jeong-Do Kim

m37977

Modification of 3DPrintingLUT

Summary: add the ThreeDPrintingSpectrumLUT (in addition to

ThreeDPrintingXYZLUT)

AP: accepted

In-Su Jang, Yoon-Seok Cho, Jin-

Seo Kim, Min Hyuk Jeong, Sang-

Kyun Kim

m37981

3D Printing Color Reproduction command and preference

Summary: a command for activating or disactivating the color

reproduction.

AP: accepted

In-Su Jang, Yoon-Seok Cho, Jin-

Seo Kim, Min Hyuk Jeong, Sang-

Kyun Kim

m37999

Proposal of metadata descriptions for handling sound effect in MPEG-V

Summary: Sound Device

AP: add the user preference at semantic level (a CS including "theatre,

cinema, concert hall, …)

Saim Shin, Jong-Seol James Lee,

Dalwon Jang, Sei-Jin Jang, Hyun-

Ho Joo, Kyoungro Yoon

m38054 Editor‘s input for the WD of MPEG-V Part 1 Version 4 Seung Wook Lee, JinSung Choi,

Kyoungro Yoon

m38055 Editor‘s input for the WD of MPEG-V Part 2 Version 4 Seung Wook Lee, JinSung Choi,

Kyoungro Yoon

m38056 Editor‘s input for the CD of MPEG-V Part 5 Version 4 Seung Wook Lee, JinSung Choi,

Kyoungro Yoon, Hyo-Chul Bae

AR

m37909 White Paper on ARAF 2nd Edition Traian Lavric, Marius

Preda

m37910 Big Data for personalized user experience in AR Traian Lavric, Marius

Preda, Veronica Scurtu

m38114

ARAF Expansion for Transformation System between the outdoor GPS and

Indoor Navigation

Summary: it is supposed that the indoor location system is able to calculate

the latitude, longitude and altitude corresponding to the user position.

However, the designer would like to specify indoor POIs by using local

coordinates (e.g. 10 meters x 30 meters x 3rd floor) and not the global

coordinates (long, lat, altitude).

JinHo Jeong,

HyeonWoo Nam

Page: 408

Date Saved: 2016-06-03

408

There is a need to calibrate the transformation between the indoor and global

positioning systems (this can be communicated to the browser as a

instantiation proto).

Another possibility is to consider the MapIndoor proto as a child of the

MapMarker (this needs a corrigenda for MapMarker because there is no

support for children)

Liaison:

# Title Source Disposition

37576 Liaison statement JTC 1/

WG 10

IoT 3

37581 JTC 1/WG 10 on Invitation to the 4th JTC

1/WG 10 Meeting

JTC 1/

WG 10

Invitation to the 4th JTC 1/WG 10 Meeting, 18th-

22nd Jan. 2016

3

37582 JTC 1/WG 10 on Logistical information

for the 4th JTC 1/WG 10 Meeting

JTC 1/

WG 10

3

37583 Liaison statement ITU-T

SG 20

a new Study Group, IoT and its applications

including smart cities and communities (SC&C)

3

37584 Liaison statement JTC 1/

WG 10

collection of Data related to the Internet of Things 3

38041 Revised WD of ISO/IEC 30141 JTC 1/

WG 10

Internet of Things Reference Architecture (IoT RA) 3

38042 Request contributions on IoT use cases JTC 1/

WG 10

3

3DG

m37828 Efficient color data compression methods for PCC Li Cui, Haiyan Xu, Seung-ho Lee, Marius Preda,

Christian Tulvan, Euee S. Jang

m38136 Point Cloud Codec for Tele-immersive Video Rufael Mekuria (CWI), Kees Blom (CWI), Pablo

Cesar (CWI)

m37528

[FTV AHG] Further results on scene reconstruction with

hybrid SPLASH 3D models

Improvements on the SPLASH reconstruction from

image + depth. Point cloud can be the base

representation.

Sergio García Lobo, Pablo Carballeira López,

Francisco Morán Burgos

m37934

Web3D Coding for large objects with attributes and

texture

Summary: update for the Web3D ref software (support

for high resolution textures, better navigation)

Christian Tulvan, Euee S. Jang, Marius Preda

Text copied from the last version of the report in order to guideline the work on Wearable

Page: 409

Date Saved: 2016-06-03

409

Glasses (see-through and see-closed)

o Gesture recognition (performed by image analysis)

Add new gestures (update the classification schema)

MPEG-U could be the starting point

Consider an intermediate representation format for arbitrary hand(s)

gestures

MPEG-7 ShapeDescriptor (Contour and Region) can be the

starting point

Adaptation of the recognition process with respect to the user

MPEG-UD could be the starting point

o Voice recognition (check with Audio)

Recognizing "some" voice commands

Pre-encoded keywords: play, pause, left, right,

User configured set of "words"

Able to transmit the captured audio to a processing unit

Probably encoded

Probably sound features

Interpret ambient sounds

o Image analysis (other than gesture)

Recognizing "some" objects (e.g. Traffic signaling)

CDVS and probably CDVA

Face recognition

MPEG-7 (FaceRecognition Desc, AdvancedFaceRecognition

Desc and InfraredFaceRecognition Desc)

Text recognition

Image to string – not too much to standardize however the

in/out API should be defined

Able to transmit the captured image/video to a processing unit

Probably encoded : MPEG-4 video and JPEG

Probably image or video features (CDVS and CDVA)

Able to convert in real time the captured image into another image (that

will be eventually displayed)

Input: image, output: image– not too much to standardize

however the in/out API should be defined

o User interface

Sensors

MPEG-V could be the starting point

o Gyro, Accelerometer, Camera (color, stereoscopic,

infrared, …), microphone, touch sensitive device, gaze

tracker (?!)

Display capabilities (Single, double screen, Stereoscopic)

MPEG-V has the possibility to define actuator capabilities but is

not dealing yet with displays

Rendering

Rendering is controlled by the application

Page: 410

Date Saved: 2016-06-03

410

The glass should expose rendering capabilities (HW

acceleration, speed, extensions…)

Consider the user profile for adapting glass features

MPEG-UD

o Control and management

Define level of quality for individual components in the glass system

Example: voice recognition may have level 100 and object

recognition only 30: in case of lack of resources, voice

recognition will have priority

Exposing the hardware capabilities (CPU, GPU, memory, storage,

battery level, …)

Define level of quality for individual applications (to be moved outside

the glass section)

o Informative Part

Typical overall architecture for smart glasses

Use cases examples

o Communication and interconnection between glasses and external devices

Messages, commands

Eg. http, udp

Media (image, video, audio)

Eg. DASH

Wearable we want to deal with in MPEG

Glasses

Watches (Miran Choi). AP: to do the same exercise that was done for glasses.

Earphone (Miran Choi). AP: to do the same exercise that was done for glasses.

Artificial heart (Mihai Mitrea). AP: to do the same exercise that was done for glasses.

D-Shirt (Mihai Mitrea). AP: to do the same exercise that was done for glasses.

Text copied from the last version of the report in order to guideline the work on MIoT:

MIoT should expose timing information

MIoT should expose location information (from the use case of fire surveillance

system)

MIoT should be able to implement specific image processing algorithms and provides

codes with respect to a detected situation

o Defined some classes for image processing

IoTs that we care about

o video camera

o microphone

o display (visual, auditory, olfactory, haptic)

o media storage

o media analyzers

MIoT camera

o Sensing

Page: 411

Date Saved: 2016-06-03

411

MPEG-V camera sensor (5 types already defined: color, depth,

stereoscopic, thermo, spectrum)

o Some local Processing and support from a processing unit

Compression (MPEG-4 video)

Feature extraction and their transmission

Face feature extraction (MPEG-7)

Gesture recognition (MPEG-U ++)

Feature extraction for arbitrary textures (CDVS)

Color, shape, contour, texture pattern, motion trajectory, …

(MPEG-7)

Fire

o Full processing

Send compact commands to outside, depending on the application;

some commands can be standardized

Sensors & Actuators may become Engines (Active components, xxx) (we should add

APIs on top of MPEG-V s&a), therefore, they become IoTs. Some of them are MIoTs.

We can add some processing capabilities for some of them, from low processing

(sampling, compression, ..) to high processing (interpretation, analysis, …). We can

also build aggregates of MIoTs and IoTs and wearable are an example of these

aggregates.

Alternatives

o MIoT as a new part in MPEG-V containing the APIs

Not so appropriate for MIoTs that don't have sensing or actuating (like

media analyzers or media storage)

o MIoT like MPEG-M engines

Not so appropriate because the MPEG-M engines are usually complex

o A new project

One layer contains individual MIoTs

A second layer aggregates individual MIoTs, eventually with other

IoTs

A particular class of this layer is the wearable

Another class is the large scale systems (e.g. multi-cam

surveillance systems)

Output documents:

o Overview, context and objectives of Media-centric IoTs and Wearables (Marius) 3w

o Conceptual model, architecture and use cases for Media-centric IoTs and Wearables

(Mihai and Sang) 3w

o Draft requirements for Media-centric IoTs and Wearables (Sang and Mihai) 3w

E.g. Category MIoT Camera

E.g. Category glasses

Page: 412

Date Saved: 2016-06-03

412

M-IoTW Ahg Mandate

o Improve and clarify the area of M-IoTW

o Identify and document additional use cases for M-IoTW

o Refine requirements for M-IoTW

o Prepare material for CfP (e.g. scope, evaluation criteria, data set)

o Investigate IoT Architectures for specific domains and how MIoTW will interwork

with them

o Identify the list of MPEG technologies related to M-IoTW

o Identify key organizations in IoT and Wearables and the status of their work

o Analyse the Working Draft of Information technology— Internet of Things

Reference Architecture (IoT RA) and submit initial comments for their next meeting

3.1 Joint meeting with Systems on MSE AF

No joint meeting was organized this meeting, MSE AF was handled by 3DG alone.

3.2 Joint meeting with Requirements on IoT and Wearable

Definitions of IoT and Wearables terms:

Entity any physical or virtual object that is sensed by and / or acted on by Things.

Thing any thing that can communicate with other Things, in addition it may sense

and / or act on Entities.

Media

Thing

is a Thing with at least one of audio / visual sensing and actuating capabilities

Wearer any living organism that is sensed by a Wearable.

Wearable any thing that senses the Wearer, may have control, communication, storage

and actuation capabilities, and may sense the Wearer environment.

Mwearable a Wearable having at least one of media communication or storage capabilities

Three types of Wearables were illustrated by using the MPEG-V Architecture.

3.3 Joint meeting with 3DA

No joint meeting was organized this meeting.

3.4 Joint Session with JPEG on JPEGAR

No joint meeting was organized this meeting.

Page: 413

Date Saved: 2016-06-03

413

3.5 Session 3DG Plenary

Review of all the output documents. Details are provided in the documents listed in section 6.

4. General issues

4.1 General discussion

4.1.1 Reference Software

It is recalled that the source code of both decoder AND encoder should be provided as part of the

Reference Software for all technologies to be adopted in MPEG standards. Moreover, not providing

the complete software for a published technology shall conduct to the removal of the corresponding

technical specification from the standard.

Currently all the AFX tools published in the third edition are supported by both encoder and decoder

implementation.

4.1.2 Web site

The new web site is available at http://wg11.sc29.org/3dgraphics/. It is a blog-based web site and all

members are allowed to post.

5. General 3DG related activities

5.1 Promotions

5.2 Press Release

Augmented Reality Application Format reaches FDIS status

At the 114th MPEG meeting, MPEG's Application Format for Augmented Reality (ISO/IEC 23000-

13) has reached FDIS status and will be soon published as an International Standard. The MPEG

ARAF enables augmentation of the real world with synthetic media objects by combining multiple,

existing MPEG standards within a single specific application format addressing certain industry

needs. In particular, ARAF comprises three components referred to as scene, sensor/actuator, and

media. The scene component is represented using a subset of MPEG-4 Part 11 (BIFS), the

sensor/actuator component is defined within MPEG-V, and the media component may comprise

various types of compressed (multi)media assets using different modalities and codecs. The target

Page: 414

Date Saved: 2016-06-03

414

applications include geo-location based services, image based object detection and tracking, audio

recognition and synchronization, mixed and augmented reality games and real-virtual interactive

scenarios.

MPEG issues the 4th

Edition of MPEG-V CD for communication between actors in virtual and

physical worlds

At 114th

meeting, MPEG have released the 4th

edition of MPEG-V CD (from part 1 to 6) that

supports new sensors and actuator such as 3DPrinter, ArrayCamera, E-nose, Radar, Microphone,

SoundDisplay and sensory effects such as AdvancedLight. In general, MPEG-V specifies the

architecture and associated representations to enable interaction between digital content and virtual

worlds with the physical one, as well as information exchange between virtual worlds. Features of

MPEG-V enable the specification of multi-sensorial content associated with audio/video data, and

control of multimedia applications via advanced interaction devices.

5.3 Liaison

Answer to ITU-T SG20 liaison on IoT. An output document was produced.

Answer to JTC1 WG10 liaison on IoT. An output document was produced.

6. Resolutions from 3DG

6.1 Resolutions related to MPEG-4

6.1.1 Part 5 – Reference software

6.1.1.1 The 3DG subgroup recommends approval of the following documents

No. Title In charge TBP Available

ISO/IEC 14496-5 – Reference software

6.2 Part 16 – Animation Framework eXtension (AFX)

6.2.1 The 3DG subgroup recommends approval of the following documents

No. Title In charge TBP Available

ISO/IEC 14496-16 – Animation Framework eXtension (AFX)

16037 Core Experiments Description for 3DG Christian

Tulvan

N 16/02/26

Page: 415

Date Saved: 2016-06-03

415

6.3 Part 27 – 3D Graphics conformance

6.3.1 The 3DG subgroup recommends approval of the following documents

No. Title In charge TBP Available

ISO/IEC 14496-27 – 3D Graphics conformance

6.4 Resolutions related to MPEG-A

6.5 Part 13 – Augmented reality application format

6.5.1 The 3DG subgroup recommends approval of the following documents

No. Title In charge TBP Available

ISO/IEC 23000-13 – Augmented reality application format

16103 Text of ISO/IEC FDIS 23000-13 2

nd Edition Augmented

Reality Application Format

Traian

Lavric

N 16/03/03

6.6 Part 17 – Multisensorial Media Application Format

6.6.1 The 3DG subgroup recommends approval of the following documents

No. Title In charge TBP Available

ISO/IEC 23000-17 – Multisensorial Media Application Format

16104

DoC for ISO/IEC 23000-17:20xx CD Multiple Sensorial

Media Application Format

Sang

Kyun

Kim

N 16/02/26

16105

Text of ISO/IEC 23000-17:20xx DIS Multiple Sensorial

Media Application Format

Sang

Kyun

Kim

N 16/02/26

6.6.2 The 3DG subgroup thanks US National Body for their comments on ISO/IEC 23000-

17:20xx CD

6.7 Resolutions related to MPEG-V (ISO/IEC 23005 – Media context and control)

6.7.1 General

6.7.1.1 The 3DG subgroup recommends approval of the following documents

No. Title In charge TBP Available

ISO/IEC 23005 – Media context and control

16106 Technology under consideration Seung

Wook

Lee

N 16/02/26

Page: 416

Date Saved: 2016-06-03

416

6.7.2 Part 1 – Architecture

6.7.2.1 The 3DG subgroup recommends approval of the following documents

No. Title In charge TBP Available

ISO/IEC 23005-1 – Architecture

16107 Request for ISO/IEC 23005-1 4

th Edition Architecture Marius

Preda

16/02/26

16108 Text of ISO/IEC CD 23005-1 4

th Edition Architecture Marius

Preda

16/02/26

6.7.2.2 The 3DG recommends to appoint Marius Preda and Seung Wook Lee as editors of

ISO/IEC 23005-1 4th Edition Architecture

6.7.3 Part 2 – Control Information

6.7.3.1 The 3DG subgroup recommends approval of the following documents

No. Title In charge TBP Available

ISO/IEC 23005-2 – Control information

16109

Request for ISO/IEC 23005-2 4th

Edition Control

Information

Seung

Wook

Lee

16/02/26

16110

Text of ISO/IEC CD 23005-2 4th

Edition Control Information Seung

Wook

Lee

16/03/11

6.7.3.2 The 3DG recommends to appoint Seung Wook Lee and Sang Kyun Kim as editors of

ISO/IEC DIS 23005-2 4th Edition Control Information

6.7.4 Part 3 – Sensory Information

6.7.4.1 The 3DG subgroup recommends approval of the following documents

No. Title In charge TBP Available

ISO/IEC 23005-3 – Sensory information

16111

Request for ISO/IEC 23005-3 4th

Edition Sensory

Information

Sang

Kyun

Kim

16/02/26

16112

Text of ISO/IEC CD 23005-3 4th

Edition Sensory Information Sang

Kyun

Kim

16/03/11

6.7.4.2 The 3DG recommends to appoint Sang Kyun Kim as editor of ISO/IEC DIS 23005-3 4th

Edition Sensory Information

6.7.5 Part 4 – Virtual World Object Characteristics

6.7.5.1 The 3DG subgroup recommends approval of the following documents

No. Title In charge TBP Available

ISO/IEC 23005-4 – Virtual world object characteristics

16113 Request for ISO/IEC 23005-4 4th

Edition Virtual world In-Su 16/02/26

Page: 417

Date Saved: 2016-06-03

417

object characteristics Jang

16114 Text of ISO/IEC CD 23005-4 4

th Edition Virtual world object

characteristics

In-Su

Jang

16/03/11

6.7.5.2 The 3DG recommends to appoint In-Su Jang and Sang Kyun Kim as editors of ISO/IEC

DIS 23005-4 4th Edition Virtual world object characteristics

6.7.6 Part 5 – Data Formats for Interaction Devices

6.7.6.1 The 3DG subgroup recommends approval of the following documents

No. Title In charge TBP Available

ISO/IEC 23005-5 – Data formats for interaction devices

16115

Request for ISO/IEC 23005-5 4th Edition Data Formats for

Interaction Devices

Seung

Woo

Kum

16/02/26

16116

Text of ISO/IEC CD 23005-5 4th Edition Data Formats for

Interaction Devices

Seung

Woo

Kum

16/03/11

6.7.6.2 The 3DG recommends to appoint Seung Woo Kum, Sang Kyun Kim and Kyoungro Yoon

as editors of ISO/IEC DIS 23005-5 4th Edition Data Formats for Interaction Devices

6.7.7 Part 6 – Common types and tools

No. Title In charge TBP Available

ISO/IEC 23005-6 – Common types and tools

16117 Request for ISO/IEC 23005-6 4th Edition Common types

and tools

Kyoungro

Yoon

16/02/26

16118 Text of ISO/IEC CD 23005-6 4th Edition Common types and

tools

Kyoungro

Yoon

16/03/11

6.7.7.1 The 3DG recommends to appoint Kyoungro Yoon as editor of ISO/IEC DIS 23005-6 4th

Edition Common types and tools

6.8 Resolutions related to MAR Reference Model (ISO/IEC 18039 Mixed and

Augmented Reality Reference Model)

6.8.1 General

6.8.1.1 The 3DG subgroup recommends approval of the following documents

No. Title In charge TBP Available

ISO/IEC 18039 Mixed and Augmented Reality Reference

Model

16119 Text of ISO/IEC 2nd

CD 18039 Mixed and Augmented

Reality Reference Model

Marius

Preda

Y 16/02/26

6.8.1.2 The 3DG subgroup recommends, at the request of SC24 WG9 concerning minor editorial

and formatting aspects, to withdraw the ISO/IEC DIS 18039 Mixed and Augmented Reality

Reference Model issued at 112th

MPEG meeting, and transform it into a 2nd

CD. In order to

Page: 418

Date Saved: 2016-06-03

418

minimize further delays in processing this standard we request two months CD ballot to be

implemented by both SCs so that the ballot results become available before the next meetings of

the working groups.

6.9 Resolutions related to Explorations

6.9.1 Media-centric IoT and Wearable

6.9.1.1 The 3 subgroup recommends approval of the following documents

No. Title In charge TBP Available

Explorations – Media-centric Internet of Things and Wearable

16120 State of discussions related to MIoTW technologies Marius N 16/02/26

6.9.2 Point Cloud Compression

6.9.2.1 The 3 subgroup recommends approval of the following documents

No. Title In charge TBP Available

Explorations – Point Cloud Compression

16121 Current status on Point Cloud Compression (PCC) Lazar

Bivolarsky

N 16/03/11

16122 Description of PCC Software implementation Lazar

Bivolarsky

N 16/03/11

6.10 Management

6.10.1 Liaisons

6.10.1.1 3DG recommends approval of the following document

No. Title In charge TBP Available

Liaisons

16123 Liaison Statement to JTC1 WG10 related to MIoT Marius N 16/02/26

16124 Liaison Statement to ITU-T SG20 related to MIoT Marius N 16/02/26

7. Establishment of 3DG Ad-Hoc Groups

AHG on AR

Page: 419

Date Saved: 2016-06-03

419

Mandates

1. Edit MAR RM documents

2. Continue the implementation of ARAF Reference Software

3. Identify additional needs for ARAF

4. Investigate technologies for representing Points of Interests

5. Identify the MPEG technologies that shall be part of ARAF

6. Continue actions to implement the collaborative work-plan for MAR RM with SC24

Chairmen Traian Lavric (Institut Mines Telecom), Marius Preda (Institut Mines Telecom)

Duration Until 115th MPEG Meeting

Reflector mpeg-3dgc AT gti. ssr. upm. es

Subscribe To subscribe, send email to https://mx.gti.ssr.upm.es/mailman/listinfo/mpeg-3dgc

Meeting During weekend prior to MPEG Room size 20

Before weekend prior to MPEG Place /Date/Logistics May 29th

, 17h00-18h00

AHG on MPEG-V

Mandates

1. Edit the MPEG-V documents

2. To further develop tools for MPEG-V 4th Edition and discuss related contributions.

3. Collect material for reference software and conformance of MPEG-V 3rd

Edition

Chairmen Marius Preda (Institut Mines Telecom), Seung Wook Lee (ETRI)

Duration Until 115th MPEG Meeting

Reflector [email protected]

Subscribe http://lists.aau.at/mailman/listinfo/metaverse

Meeting During weekend prior to MPEG Room size 20

Before weekend prior to MPEG Place /Date/Logistics May 29th

, 15h00-17h00

AHG on Graphics compression

Mandates

1. Refine requirements for PCC

2. Solicit and compile additional test data for point clouds, including point clouds with

multiple attributes per point

3. Solicit contribution related to evaluation metrics

4. Propose a raw representation for point clouds geometry and appearance

5. Further develop compression technologies for point clouds geometry and appearance

6. Collect contributions and maintain the utility software

Page: 420

Date Saved: 2016-06-03

420

7. Logistic preparation for a potential workshop

Chairmen Lazar Bivolarski (LZ), Rufael Mekuria (CWI), Christian Tulvan (Institut Mines Telecom),

Duration Until 115th MPEG Meeting

Reflector mpeg-3dgc AT gti. ssr. upm. es

Subscribe To subscribe, send email to https://mx.gti.ssr.upm.es/mailman/listinfo/mpeg-3dgc

Meeting

During weekend prior to MPEG Room size 20

Before weekend prior to MPEG Place /Date/Logistics Sunday May 29

th 2016,

09h00-18h00

8. Closing of the Meeting

See you in Geneva.