irisa14.pdf · encoding of ltl semantics in a gnba ltlmc3.2-39-copy idea: encode the semantics of...

340
Overview overview5.2 Introduction Modelling parallel systems Linear Time Properties Regular Properties Linear Temporal Logic (LTL) syntax and semantics of LTL automata-based LTL model checking ←− ←− ←− complexity of LTL model checking Computation-Tree Logic Equivalences and Abstraction 1 / 527

Upload: others

Post on 08-Sep-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Overview overview5.2

Introduction

Modelling parallel systems

Linear Time Properties

Regular Properties

Linear Temporal Logic (LTL)

syntax and semantics of LTLautomata-based LTL model checking ←−←−←−complexity of LTL model checking

Computation-Tree Logic

Equivalences and Abstraction

1 / 527

Page 2: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LTL model checking problem ltlmc3.2-19

2 / 527

Page 3: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LTL model checking problem ltlmc3.2-19

given: finite transition system TTT over APAPAP(without terminal states)LTL-formula ϕϕϕ over APAPAP

question: does T |= ϕT |= ϕT |= ϕ hold ?

3/527

Page 4: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LTL model checking problem ltlmc3.2-19

given: finite transition system TTT over APAPAP(without terminal states)LTL-formula ϕϕϕ over APAPAP

question: does T |= ϕT |= ϕT |= ϕ hold ?

basic idea: try to refute T |= ϕT |= ϕT |= ϕ

4 / 527

Page 5: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LTL model checking problem ltlmc3.2-19

given: finite transition system TTT over APAPAP(without terminal states)LTL-formula ϕϕϕ over APAPAP

question: does T |= ϕT |= ϕT |= ϕ hold ?

basic idea: try to refute T |= ϕT |= ϕT |= ϕ by searchingfor a path πππ in TTT s.t.

π �|= ϕπ �|= ϕπ �|= ϕ

5 / 527

Page 6: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LTL model checking problem ltlmc3.2-19

given: finite transition system TTT over APAPAP(without terminal states)LTL-formula ϕϕϕ over APAPAP

question: does T |= ϕT |= ϕT |= ϕ hold ?

basic idea: try to refute T |= ϕT |= ϕT |= ϕ by searchingfor a path πππ in TTT s.t.

π �|= ϕπ �|= ϕπ �|= ϕ, i.e., π |= ¬ϕπ |= ¬ϕπ |= ¬ϕ

6 / 527

Page 7: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

The LTL model checking problem ltlmc3.2-19a

given: finite transition system TTT over APAPAPLTL-formula ϕϕϕ over APAPAP

question: does T |= ϕT |= ϕT |= ϕ hold ?

1. construct an NBA AAA for Words(¬ϕ)Words(¬ϕ)Words(¬ϕ)

7 / 527

Page 8: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

The LTL model checking problem ltlmc3.2-19a

given: finite transition system TTT over APAPAPLTL-formula ϕϕϕ over APAPAP

question: does T |= ϕT |= ϕT |= ϕ hold ?

1. construct an NBA AAA for Words(¬ϕ)Words(¬ϕ)Words(¬ϕ)2. search a path πππ in TTT with

trace(π) ∈Words(¬ϕ)trace(π) ∈ Words(¬ϕ)trace(π) ∈ Words(¬ϕ)

8 / 527

Page 9: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

The LTL model checking problem ltlmc3.2-19a

given: finite transition system TTT over APAPAPLTL-formula ϕϕϕ over APAPAP

question: does T |= ϕT |= ϕT |= ϕ hold ?

1. construct an NBA AAA for Words(¬ϕ)Words(¬ϕ)Words(¬ϕ)2. search a path πππ in TTT with

trace(π) ∈Words(¬ϕ)trace(π) ∈ Words(¬ϕ)trace(π) ∈ Words(¬ϕ) = Lω(A)= Lω(A)= Lω(A)

9 / 527

Page 10: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

The LTL model checking problem ltlmc3.2-19a

given: finite transition system TTT over APAPAPLTL-formula ϕϕϕ over APAPAP

question: does T |= ϕT |= ϕT |= ϕ hold ?

1. construct an NBA AAA for Words(¬ϕ)Words(¬ϕ)Words(¬ϕ)2. search a path πππ in TTT with

trace(π) ∈Words(¬ϕ)trace(π) ∈ Words(¬ϕ)trace(π) ∈ Words(¬ϕ) = Lω(A)= Lω(A)= Lω(A)↑↑↑construct the product-TS T ⊗AT ⊗ AT ⊗Asearch a path in the product that meets

the acceptance condition of AAA

10 / 527

Page 11: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Automata-based LTL model checking ltlmc3.2-18

finite transitionsystem TTT LTL formula ϕϕϕ

LTL model checking

does T |= ϕT |= ϕT |= ϕ hold ?

yes no11 / 527

Page 12: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Automata-based LTL model checking ltlmc3.2-18

finite transitionsystem TTT LTL formula ϕϕϕ

NBA AAA for ¬ϕ¬ϕ¬ϕ“bad behaviors”

LTL model checking

does T |= ϕT |= ϕT |= ϕ hold ?

yes no12 / 527

Page 13: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Automata-based LTL model checking ltlmc3.2-18

finite transitionsystem TTT LTL formula ϕϕϕ

NBA AAA for ¬ϕ¬ϕ¬ϕ“bad behaviors”

LTL model checking

via persistence checkingT ⊗ A |=T ⊗A |=T ⊗A |= “♦�♦�♦� no final state” ?

yes no13 / 527

Page 14: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Automata-based LTL model checking ltlmc3.2-18

finite transitionsystem TTT LTL formula ϕϕϕ

NBA AAA for ¬ϕ¬ϕ¬ϕ“bad behaviors”

LTL model checking

via persistence checkingT ⊗ A |=T ⊗A |=T ⊗A |= “♦�♦�♦� no final state” ?

yes no +++ error indication14 / 527

Page 15: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Safety and LTL model checking ltlmc3.2-20

15 / 527

Page 16: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Safety and LTL model checking ltlmc3.2-20

safety property EEE LTL-formula ϕϕϕ

16 / 527

Page 17: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Safety and LTL model checking ltlmc3.2-20

safety property EEE LTL-formula ϕϕϕ

NFA for thebad prefixes for EEEL(A) ⊆ (2AP)+L(A) ⊆ (2AP)+L(A) ⊆ (2AP)+

17 / 527

Page 18: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Safety and LTL model checking ltlmc3.2-20

safety property EEE LTL-formula ϕϕϕ

NFA for thebad prefixes for EEEL(A) ⊆ (2AP)+L(A) ⊆ (2AP)+L(A) ⊆ (2AP)+

NBA for the“bad behaviors”

Lω(A) = Words(¬ϕ)Lω(A) = Words(¬ϕ)Lω(A) = Words(¬ϕ)

18 / 527

Page 19: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Safety and LTL model checking ltlmc3.2-20

safety property EEE LTL-formula ϕϕϕ

NFA for thebad prefixes for EEEL(A) ⊆ (2AP)+L(A) ⊆ (2AP)+L(A) ⊆ (2AP)+

NBA for the“bad behaviors”

Lω(A) = Words(¬ϕ)Lω(A) = Words(¬ϕ)Lω(A) = Words(¬ϕ)

Tracesfin(T ) ∩ L(A) = ∅Tracesfin(T ) ∩ L(A) = ∅Tracesfin(T ) ∩ L(A) = ∅

19 / 527

Page 20: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Safety and LTL model checking ltlmc3.2-20

safety property EEE LTL-formula ϕϕϕ

NFA for thebad prefixes for EEEL(A) ⊆ (2AP)+L(A) ⊆ (2AP)+L(A) ⊆ (2AP)+

NBA for the“bad behaviors”

Lω(A) = Words(¬ϕ)Lω(A) = Words(¬ϕ)Lω(A) = Words(¬ϕ)

Tracesfin(T ) ∩ L(A) = ∅Tracesfin(T ) ∩ L(A) = ∅Tracesfin(T ) ∩ L(A) = ∅ Traces(T ) ∩ Lω(A) = ∅Traces(T ) ∩ Lω(A) = ∅Traces(T ) ∩ Lω(A) = ∅

20 / 527

Page 21: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Safety and LTL model checking ltlmc3.2-20

safety property EEE LTL-formula ϕϕϕ

NFA for thebad prefixes for EEEL(A) ⊆ (2AP)+L(A) ⊆ (2AP)+L(A) ⊆ (2AP)+

NBA for the“bad behaviors”

Lω(A) = Words(¬ϕ)Lω(A) = Words(¬ϕ)Lω(A) = Words(¬ϕ)

Tracesfin(T ) ∩ L(A) = ∅Tracesfin(T ) ∩ L(A) = ∅Tracesfin(T ) ∩ L(A) = ∅ Traces(T ) ∩ Lω(A) = ∅Traces(T ) ∩ Lω(A) = ∅Traces(T ) ∩ Lω(A) = ∅

invariant checkingin the productT ⊗A |= �¬FT ⊗A |= �¬FT ⊗A |= �¬F ?

21/527

Page 22: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Safety and LTL model checking ltlmc3.2-20

safety property EEE LTL-formula ϕϕϕ

NFA for thebad prefixes for EEEL(A) ⊆ (2AP)+L(A) ⊆ (2AP)+L(A) ⊆ (2AP)+

NBA for the“bad behaviors”

Lω(A) = Words(¬ϕ)Lω(A) = Words(¬ϕ)Lω(A) = Words(¬ϕ)

Tracesfin(T ) ∩ L(A) = ∅Tracesfin(T ) ∩ L(A) = ∅Tracesfin(T ) ∩ L(A) = ∅ Traces(T ) ∩ Lω(A) = ∅Traces(T ) ∩ Lω(A) = ∅Traces(T ) ∩ Lω(A) = ∅

invariant checkingin the productT ⊗A |= �¬FT ⊗A |= �¬FT ⊗A |= �¬F ?

persistence checkingin the productT ⊗A |= ♦�¬FT ⊗A |= ♦�¬FT ⊗A |= ♦�¬F ?

22/527

Page 23: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Safety and LTL model checking ltlmc3.2-20

safety property EEE LTL-formula ϕϕϕ

NFA for thebad prefixes for EEEL(A) ⊆ (2AP)+L(A) ⊆ (2AP)+L(A) ⊆ (2AP)+

NBA for the“bad behaviors”

Lω(A) = Words(¬ϕ)Lω(A) = Words(¬ϕ)Lω(A) = Words(¬ϕ)

Tracesfin(T ) ∩ L(A) = ∅Tracesfin(T ) ∩ L(A) = ∅Tracesfin(T ) ∩ L(A) = ∅ Traces(T ) ∩ Lω(A) = ∅Traces(T ) ∩ Lω(A) = ∅Traces(T ) ∩ Lω(A) = ∅

invariant checkingin the productT ⊗A |= �¬FT ⊗A |= �¬FT ⊗A |= �¬F ?

persistence checkingin the productT ⊗A |= ♦�¬FT ⊗A |= ♦�¬FT ⊗A |= ♦�¬F ?

error indication:π ∈ Pathsfin(T )π ∈ Pathsfin(T )π ∈ Pathsfin(T )

s.t. trace(π) ∈ L(A)trace(π) ∈ L(A)trace(π) ∈ L(A)23 / 527

Page 24: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Safety and LTL model checking ltlmc3.2-20

safety property EEE LTL-formula ϕϕϕ

NFA for thebad prefixes for EEEL(A) ⊆ (2AP)+L(A) ⊆ (2AP)+L(A) ⊆ (2AP)+

NBA for the“bad behaviors”

Lω(A) = Words(¬ϕ)Lω(A) = Words(¬ϕ)Lω(A) = Words(¬ϕ)

Tracesfin(T ) ∩ L(A) = ∅Tracesfin(T ) ∩ L(A) = ∅Tracesfin(T ) ∩ L(A) = ∅ Traces(T ) ∩ Lω(A) = ∅Traces(T ) ∩ Lω(A) = ∅Traces(T ) ∩ Lω(A) = ∅

invariant checkingin the productT ⊗A |= �¬FT ⊗A |= �¬FT ⊗A |= �¬F ?

persistence checkingin the productT ⊗A |= ♦�¬FT ⊗A |= ♦�¬FT ⊗A |= ♦�¬F ?

error indication:π ∈ Pathsfin(T )π ∈ Pathsfin(T )π ∈ Pathsfin(T )

s.t. trace(π) ∈ L(A)trace(π) ∈ L(A)trace(π) ∈ L(A)

error indication:prefix of a path πππ

s.t. trace(π) ∈ Lω(A)trace(π) ∈ Lω(A)trace(π) ∈ Lω(A)24 / 527

Page 25: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Safety vs LTL model checking ltlmc3.2-10

25 / 527

Page 26: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Safety vs LTL model checking ltlmc3.2-10

T |=T |=T |= safety property EEE

iff Tracesfin(T ) ∩ L(A) = ∅Tracesfin(T ) ∩ L(A) = ∅Tracesfin(T ) ∩ L(A) = ∅

where AAA is an NFA for the bad prefixes

T |=T |=T |= LTL-formula ϕϕϕ

iff Traces(T ) ∩ Lω(A) = ∅Traces(T ) ∩ Lω(A) = ∅Traces(T ) ∩ Lω(A) = ∅

where AAA is an NBA for ¬ϕ¬ϕ¬ϕ

26 / 527

Page 27: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Safety vs LTL model checking ltlmc3.2-10

T |=T |=T |= safety property EEE

iff Tracesfin(T ) ∩ L(A) = ∅Tracesfin(T ) ∩ L(A) = ∅Tracesfin(T ) ∩ L(A) = ∅

iff there is no path fragment 〈s0, q0〉 〈s1, q1〉 . . . 〈sn, qn〉〈s0, q0〉 〈s1, q1〉 . . . 〈sn, qn〉〈s0, q0〉 〈s1, q1〉 . . . 〈sn, qn〉in T ⊗ AT ⊗ AT ⊗A s. t. qn ∈ Fqn ∈ Fqn ∈ F

T |=T |=T |= LTL-formula ϕϕϕ

iff Traces(T ) ∩ Lω(A) = ∅Traces(T ) ∩ Lω(A) = ∅Traces(T ) ∩ Lω(A) = ∅

iff there is no path 〈s0, q0〉 〈s1, q1〉 〈s2, q2〉 . . .〈s0, q0〉 〈s1, q1〉 〈s2, q2〉 . . .〈s0, q0〉 〈s1, q1〉 〈s2, q2〉 . . .in T ⊗ AT ⊗ AT ⊗A s.t. qi ∈ Fqi ∈ Fqi ∈ F for infinitely many i ∈ Ni ∈ Ni ∈ N

27 / 527

Page 28: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Safety vs LTL model checking ltlmc3.2-10

T |=T |=T |= safety property EEE

iff Tracesfin(T ) ∩ L(A) = ∅Tracesfin(T ) ∩ L(A) = ∅Tracesfin(T ) ∩ L(A) = ∅

iff there is no path fragment 〈s0, q0〉 〈s1, q1〉 . . . 〈sn, qn〉〈s0, q0〉 〈s1, q1〉 . . . 〈sn, qn〉〈s0, q0〉 〈s1, q1〉 . . . 〈sn, qn〉in T ⊗ AT ⊗ AT ⊗A s. t. qn ∈ Fqn ∈ Fqn ∈ F

iff T ⊗A |= �¬FT ⊗ A |= �¬FT ⊗ A |= �¬F

T |=T |=T |= LTL-formula ϕϕϕ

iff Traces(T ) ∩ Lω(A) = ∅Traces(T ) ∩ Lω(A) = ∅Traces(T ) ∩ Lω(A) = ∅

iff there is no path 〈s0, q0〉 〈s1, q1〉 〈s2, q2〉 . . .〈s0, q0〉 〈s1, q1〉 〈s2, q2〉 . . .〈s0, q0〉 〈s1, q1〉 〈s2, q2〉 . . .in T ⊗ AT ⊗ AT ⊗A s.t. qi ∈ Fqi ∈ Fqi ∈ F for infinitely many i ∈ Ni ∈ Ni ∈ N

iff T ⊗A |= ♦�¬FT ⊗ A |= ♦�¬FT ⊗ A |= ♦�¬F28 / 527

Page 29: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Safety vs LTL model checking ltlmc3.2-10

T |=T |=T |= safety property EEE

iff Tracesfin(T ) ∩ L(A) = ∅Tracesfin(T ) ∩ L(A) = ∅Tracesfin(T ) ∩ L(A) = ∅

iff there is no path fragment 〈s0, q0〉 〈s1, q1〉 . . . 〈sn, qn〉〈s0, q0〉 〈s1, q1〉 . . . 〈sn, qn〉〈s0, q0〉 〈s1, q1〉 . . . 〈sn, qn〉in T ⊗ AT ⊗ AT ⊗A s. t. qn ∈ Fqn ∈ Fqn ∈ F

iff T ⊗A |= �¬FT ⊗ A |= �¬FT ⊗ A |= �¬F ←−←−←− invariant checking

T |=T |=T |= LTL-formula ϕϕϕ

iff Traces(T ) ∩ Lω(A) = ∅Traces(T ) ∩ Lω(A) = ∅Traces(T ) ∩ Lω(A) = ∅

iff there is no path 〈s0, q0〉 〈s1, q1〉 〈s2, q2〉 . . .〈s0, q0〉 〈s1, q1〉 〈s2, q2〉 . . .〈s0, q0〉 〈s1, q1〉 〈s2, q2〉 . . .in T ⊗ AT ⊗ AT ⊗A s.t. qi ∈ Fqi ∈ Fqi ∈ F for infinitely many i ∈ Ni ∈ Ni ∈ N

iff T ⊗A |= ♦�¬FT ⊗ A |= ♦�¬FT ⊗ A |= ♦�¬F ←−←−←− persistence checking29 / 527

Page 30: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Recall: nondeterministic Buchi automata ltlmc3.2-def-NBA

NBA A = (Q,Σ, δ,Q0, F )A = (Q,Σ, δ,Q0, F )A = (Q,Σ, δ,Q0, F )

• QQQ finite set of states

• ΣΣΣ alphabet

• δ : Q × Σ→ 2Qδ : Q × Σ→ 2Qδ : Q × Σ→ 2Q transition relation

• Q0 ⊆ QQ0 ⊆ QQ0 ⊆ Q set of initial states

• F ⊆ QF ⊆ QF ⊆ Q set of final states, also called accept states

30 / 527

Page 31: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Recall: nondeterministic Buchi automata ltlmc3.2-def-NBA

NBA A = (Q,Σ, δ,Q0, F )A = (Q,Σ, δ,Q0, F )A = (Q,Σ, δ,Q0, F )

• QQQ finite set of states

• ΣΣΣ alphabet

• δ : Q × Σ→ 2Qδ : Q × Σ→ 2Qδ : Q × Σ→ 2Q transition relation

• Q0 ⊆ QQ0 ⊆ QQ0 ⊆ Q set of initial states

• F ⊆ QF ⊆ QF ⊆ Q set of final states, also called accept states

run for a word A0 A1 A2 . . . ∈ ΣωA0 A1 A2 . . . ∈ ΣωA0 A1 A2 . . . ∈ Σω:

state sequence π = q0 q1 q2 . . .π = q0 q1 q2 . . .π = q0 q1 q2 . . . where q0 ∈ Q0q0 ∈ Q0q0 ∈ Q0

and qi+1 ∈ δ(qi ,Ai)qi+1 ∈ δ(qi ,Ai)qi+1 ∈ δ(qi ,Ai) for i ≥ 0i ≥ 0i ≥ 0

run πππ is accepting if∞∃ i ∈ N. qi ∈ F∞∃ i ∈ N. qi ∈ F∞∃ i ∈ N. qi ∈ F

31 / 527

Page 32: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Recall: nondeterministic Buchi automata ltlmc3.2-def-NBA

NBA A = (Q,Σ, δ,Q0, F )A = (Q,Σ, δ,Q0, F )A = (Q,Σ, δ,Q0, F )

• QQQ finite set of states

• ΣΣΣ alphabet

• δ : Q × Σ→ 2Qδ : Q × Σ→ 2Qδ : Q × Σ→ 2Q transition relation

• Q0 ⊆ QQ0 ⊆ QQ0 ⊆ Q set of initial states

• F ⊆ QF ⊆ QF ⊆ Q set of final states, also called accept states

accepted language Lω(A) ⊆ ΣωLω(A) ⊆ ΣωLω(A) ⊆ Σω is given by:

Lω(A)def=Lω(A)def=Lω(A)def= set of infinite words over ΣΣΣ that have

an accepting run in AAA

32 / 527

Page 33: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Recall: nondeterministic Buchi automata ltlmc3.2-def-NBA

NBA A = (Q,Σ, δ,Q0, F )A = (Q,Σ, δ,Q0, F )A = (Q,Σ, δ,Q0, F )

• QQQ finite set of states

• ΣΣΣ alphabet←−←−←− here: Σ = 2APΣ = 2APΣ = 2AP

• δ : Q × Σ→ 2Qδ : Q × Σ→ 2Qδ : Q × Σ→ 2Q transition relation

• Q0 ⊆ QQ0 ⊆ QQ0 ⊆ Q set of initial states

• F ⊆ QF ⊆ QF ⊆ Q set of final states, also called accept states

accepted language Lω(A) ⊆ ΣωLω(A) ⊆ ΣωLω(A) ⊆ Σω is given by:

Lω(A)def=Lω(A)def=Lω(A)def= set of infinite words over ΣΣΣ that have

an accepting run in AAA33 / 527

Page 34: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

From LTL to NBA ltlmc3.2-thm-LTL-2-NBA

34 / 527

Page 35: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

From LTL to NBA ltlmc3.2-thm-LTL-2-NBA

For each LTL formula ϕϕϕ over APAPAP there is anNBA AAA over the alphabet 2AP2AP2AP such that

Words(ϕ) = Lω(A)Words(ϕ) = Lω(A)Words(ϕ) = Lω(A)

35 / 527

Page 36: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

From LTL to NBA ltlmc3.2-thm-LTL-2-NBA

For each LTL formula ϕϕϕ over APAPAP there is anNBA AAA over the alphabet 2AP2AP2AP such that

• Words(ϕ) = Lω(A)Words(ϕ) = Lω(A)Words(ϕ) = Lω(A)

• size(A) = O(exp(|ϕ|)

)size(A) = O

(exp(|ϕ|)

)size(A) = O

(exp(|ϕ|)

)

36 / 527

Page 37: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

From LTL to NBA ltlmc3.2-thm-LTL-2-NBA

For each LTL formula ϕϕϕ over APAPAP there is anNBA AAA over the alphabet 2AP2AP2AP such that

• Words(ϕ) = Lω(A)Words(ϕ) = Lω(A)Words(ϕ) = Lω(A)

• size(A) = O(exp(|ϕ|)

)size(A) = O

(exp(|ϕ|)

)size(A) = O

(exp(|ϕ|)

)proof: ... later ...

37 / 527

Page 38: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

NBA for LTL formulas ltlmc3.2-3

q0q0q0 q1q1q1 qFqFqF

truetrue ¬a¬a¬a Lω(A) =Lω(A) =Lω(A) = ?

38/527

Page 39: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

NBA for LTL formulas ltlmc3.2-3

q0q0q0 q1q1q1 qFqFqF

truetrue ¬a¬a¬a Lω(A) =Lω(A) =Lω(A) = Words(©¬a)Words(©¬a)Words(©¬a)

39 / 527

Page 40: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

NBA for LTL formulas ltlmc3.2-3

q0q0q0 q1q1q1 qFqFqF

truetrue ¬a¬a¬a Lω(A) =Lω(A) =Lω(A) = Words(©¬a)Words(©¬a)Words(©¬a)

q0q0q0 qFqFqF trueaaa

p0p0p0 pFpFpF truebbb Lω(A) =Lω(A) =Lω(A) = ?

40/527

Page 41: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

NBA for LTL formulas ltlmc3.2-3

q0q0q0 q1q1q1 qFqFqF

truetrue ¬a¬a¬a Lω(A) =Lω(A) =Lω(A) = Words(©¬a)Words(©¬a)Words(©¬a)

q0q0q0 qFqFqF trueaaa

p0p0p0 pFpFpF truebbbLω(A) =Lω(A) =Lω(A) = Words(a ∨ b)Words(a ∨ b)Words(a ∨ b)

41 / 527

Page 42: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

NBA for LTL formulas ltlmc3.2-3

q0q0q0 q1q1q1 qFqFqF

truetrue ¬a¬a¬a Lω(A) =Lω(A) =Lω(A) = Words(©¬a)Words(©¬a)Words(©¬a)

q0q0q0 qFqFqF trueaaa

p0p0p0 pFpFpF truebbbLω(A) =Lω(A) =Lω(A) = Words(a ∨ b)Words(a ∨ b)Words(a ∨ b)

qFqFqF q1q1q1

aaa

bbbbbb

Lω(A) =Lω(A) =Lω(A) = ?

42/527

Page 43: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

NBA for LTL formulas ltlmc3.2-3

q0q0q0 q1q1q1 qFqFqF

truetrue ¬a¬a¬a Lω(A) =Lω(A) =Lω(A) = Words(©¬a)Words(©¬a)Words(©¬a)

q0q0q0 qFqFqF trueaaa

p0p0p0 pFpFpF truebbbLω(A) =Lω(A) =Lω(A) = Words(a ∨ b)Words(a ∨ b)Words(a ∨ b)

qFqFqF q1q1q1

aaa

bbbbbb

Lω(A) =Lω(A) =Lω(A) = Words(�a)Words(�a)Words(�a)

43 / 527

Page 44: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

NBA for LTL formulas ltlmc3.2-4

q0q0q0 q1q1q1

¬a¬a¬a aaa

aaa

¬a¬a¬a Lω(A) =Lω(A) =Lω(A) = ?

44/527

Page 45: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

NBA for LTL formulas ltlmc3.2-4

q0q0q0 q1q1q1

¬a¬a¬a aaa

aaa

¬a¬a¬a Lω(A) =Lω(A) =Lω(A) = Words(�♦a)Words(�♦a)Words(�♦a)

45 / 527

Page 46: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

NBA for LTL formulas ltlmc3.2-4

q0q0q0 q1q1q1

¬a¬a¬a aaa

aaa

¬a¬a¬a Lω(A) =Lω(A) =Lω(A) = Words(�♦a)Words(�♦a)Words(�♦a)

q0q0q0 q1q1q1

¬a ∨ b¬a ∨ b¬a ∨ b ¬b¬b¬b

a ∧ ¬ba ∧ ¬ba ∧ ¬b

bbb Lω(A) =Lω(A) =Lω(A) = ?

46/527

Page 47: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

NBA for LTL formulas ltlmc3.2-4

q0q0q0 q1q1q1

¬a¬a¬a aaa

aaa

¬a¬a¬a Lω(A) =Lω(A) =Lω(A) = Words(�♦a)Words(�♦a)Words(�♦a)

q0q0q0 q1q1q1

¬a ∨ b¬a ∨ b¬a ∨ b ¬b¬b¬b

a ∧ ¬ba ∧ ¬ba ∧ ¬b

bbb Lω(A) =Lω(A) =Lω(A) = ?

e.g., ∅ ∅ ∅ ∅ . . . = ∅ω∅ ∅ ∅ ∅ . . . = ∅ω

∅ ∅ ∅ ∅ . . . = ∅ω

({a} {b})ω({a} {b})ω({a} {b})ω}

are accepted by AAA

47 / 527

Page 48: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

NBA for LTL formulas ltlmc3.2-4

q0q0q0 q1q1q1

¬a¬a¬a aaa

aaa

¬a¬a¬a Lω(A) =Lω(A) =Lω(A) = Words(�♦a)Words(�♦a)Words(�♦a)

q0q0q0 q1q1q1

¬a ∨ b¬a ∨ b¬a ∨ b ¬b¬b¬b

a ∧ ¬ba ∧ ¬ba ∧ ¬b

bbb Lω(A) =Lω(A) =Lω(A) = Words(�(a→ ♦b))Words(�(a→ ♦b))Words(�(a→ ♦b))

e.g., ∅ ∅ ∅ ∅ . . . = ∅ω∅ ∅ ∅ ∅ . . . = ∅ω

∅ ∅ ∅ ∅ . . . = ∅ω

({a} {b})ω({a} {b})ω({a} {b})ω}

are accepted by AAA

48 / 527

Page 49: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

NBA for LTL formula ltlmc3.2-5

q0q0q0 q1q1q1 q1q1q1

true aaa true

aaa ¬a¬a¬a

Lω(A) =Lω(A) =Lω(A) = ?

49/527

Page 50: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

NBA for LTL formula ltlmc3.2-5

q0q0q0 q1q1q1 q1q1q1

true aaa true

aaa ¬a¬a¬a

Lω(A) =Lω(A) =Lω(A) = Words(♦�a)Words(♦�a)Words(♦�a)

50 / 527

Page 51: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

NBA for LTL formula ltlmc3.2-5

q0q0q0 q1q1q1 q1q1q1

true aaa true

aaa ¬a¬a¬a

Lω(A) =Lω(A) =Lω(A) = Words(♦�a)Words(♦�a)Words(♦�a)

possible runs for {a}ω{a}ω{a}ω

q0 q0 q0 q0 q0 q0 ...q0 q0 q0 q0 q0 q0 ...q0 q0 q0 q0 q0 q0 ... not acceptingq0 q1 q1 q1 q1 q1 ...q0 q1 q1 q1 q1 q1 ...q0 q1 q1 q1 q1 q1 ... acceptingq0 q0 q1 q1 q1 q1 ...q0 q0 q1 q1 q1 q1 ...q0 q0 q1 q1 q1 q1 ... acceptingq0 q0 q0 q1 q1 q1 ...q0 q0 q0 q1 q1 q1 ...q0 q0 q0 q1 q1 q1 ... accepting

...

...

...

51 / 527

Page 52: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

NFA and NBA for safety properties ltlmc3.2-6

52 / 527

Page 53: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

NFA and NBA for safety properties ltlmc3.2-6

Let AAA be an NFA for the language of all bad prefixesfor a safety property EEE .

53 / 527

Page 54: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

NFA and NBA for safety properties ltlmc3.2-6

Let AAA be an NFA for the language of all bad prefixesfor a safety property EEE . Then:

Lω(A) = E =(2AP

)ω \ ELω(A) = E =(2AP

)ω \ ELω(A) = E =(2AP

)ω \ E

54 / 527

Page 55: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

NFA and NBA for safety properties ltlmc3.2-6

Let AAA be an NFA for the language of all bad prefixesfor a safety property EEE . Then:

Lω(A) = E =(2AP

)ω \ ELω(A) = E =(2AP

)ω \ ELω(A) = E =(2AP

)ω \ E

Example: EEE === “never aaa twice in a row”

q0q0q0 q1q1q1 q2q2q2aaa

true

aaa

true55 / 527

Page 56: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

NFA and NBA for safety properties ltlmc3.2-6

Let AAA be an NFA for the language of all bad prefixesfor a safety property EEE . Then:

Lω(A) = E =(2AP

)ω \ ELω(A) = E =(2AP

)ω \ ELω(A) = E =(2AP

)ω \ E = Words(¬ϕ)= Words(¬ϕ)= Words(¬ϕ)

Example: EEE === “never aaa twice in a row”

q0q0q0 q1q1q1 q2q2q2aaa

true

aaa

true

ϕ = �(a→©¬a)ϕ = �(a→©¬a)ϕ = �(a→©¬a)

56 / 527

Page 57: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

NFA and NBA for safety properties ltlmc3.2-6

Let AAA be an NFA for the language of all bad prefixesfor a safety property EEE . Then:

Lω(A) = E =(2AP

)ω \ ELω(A) = E =(2AP

)ω \ ELω(A) = E =(2AP

)ω \ E = Words(¬ϕ)= Words(¬ϕ)= Words(¬ϕ)

wrong, if L(A) =L(A) =L(A) = language of minimal bad prefixes

Example: EEE === “never aaa twice in a row”

q0q0q0 q1q1q1 q2q2q2aaa

true

aaa

true

ϕ = �(a→©¬a)ϕ = �(a→©¬a)ϕ = �(a→©¬a)

57 / 527

Page 58: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

NFA and NBA for safety properties ltlmc3.2-6

Let AAA be an NFA for the language of all bad prefixesfor a safety property EEE . Then:

Lω(A) = E =(2AP

)ω \ ELω(A) = E =(2AP

)ω \ ELω(A) = E =(2AP

)ω \ E = Words(¬ϕ)= Words(¬ϕ)= Words(¬ϕ)

wrong, if L(A) =L(A) =L(A) = language of minimal bad prefixes

Example: EEE === “never aaa twice in a row”

q0q0q0 q1q1q1 q2q2q2aaa

¬a¬a¬a

aaa q3q3q3

true

true Lω(A) = ∅Lω(A) = ∅Lω(A) = ∅

58 / 527

Page 59: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

NFA and NBA for safety properties ltlmc3.2-6

Let AAA be an NFA for the language of all bad prefixesfor a safety property EEE . Then:

Lω(A) = E =(2AP

)ω \ ELω(A) = E =(2AP

)ω \ ELω(A) = E =(2AP

)ω \ E = Words(¬ϕ)= Words(¬ϕ)= Words(¬ϕ)

wrong, if L(A) =L(A) =L(A) = language of minimal bad prefixeseven if AAA is a non-blocking DFA

Example: EEE === “never aaa twice in a row”

q0q0q0 q1q1q1 q2q2q2aaa

¬a¬a¬a

aaa q3q3q3

true

true Lω(A) = ∅Lω(A) = ∅Lω(A) = ∅

59 / 527

Page 60: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

NFA and NBA for safety properties ltlmc3.2-6

Let AAA be an NFA for the language of all bad prefixesfor a safety property EEE . Then:

Lω(A) = E =(2AP

)ω \ ELω(A) = E =(2AP

)ω \ ELω(A) = E =(2AP

)ω \ E = Words(¬ϕ)= Words(¬ϕ)= Words(¬ϕ)

wrong, if L(A) =L(A) =L(A) = language of minimal bad prefixeseven if AAA is a non-blocking DFA

Example: EEE === “never aaa twice in a row”

q0q0q0 q1q1q1 q2q2q2aaa

¬a¬a¬a

aaa

¬a¬a¬aq3q3q3

true

true Lω(A) = ∅Lω(A) = ∅Lω(A) = ∅

60 / 527

Page 61: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LTL model checking ltlmc3.2-2a

finite transitionsystem TTT

LTL model checking

persistence checkingT ⊗A |= ♦�¬FT ⊗ A |= ♦�¬FT ⊗ A |= ♦�¬F ?

LTL formula ϕϕϕ

NBA AAA for ¬ϕ¬ϕ¬ϕ

yes no +++ counterexample61 / 527

Page 62: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LTL model checking ltlmc3.2-2a

finite transitionsystem TTT

LTL model checking

persistence checkingT ⊗A |= ♦�¬FT ⊗ A |= ♦�¬FT ⊗ A |= ♦�¬F ?

LTL formula ϕϕϕ

NBA AAA for ¬ϕ¬ϕ¬ϕ

yes no +++ counterexample

later

62 / 527

Page 63: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Recall: product transition system ltlmc3.2-7

T = (S ,Act,→, S0,AP, L)T = (S ,Act,→, S0,AP, L)T = (S ,Act,→, S0,AP, L) TS without terminal states

A = (Q, 2AP , δ,Q0, F )A = (Q, 2AP , δ,Q0, F )A = (Q, 2AP , δ,Q0, F ) NBA or NFAnon-blocking, Q0 ∩ F = ∅Q0 ∩ F = ∅Q0 ∩ F = ∅

63 / 527

Page 64: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Recall: product transition system ltlmc3.2-7

T = (S ,Act,→, S0,AP, L)T = (S ,Act,→, S0,AP, L)T = (S ,Act,→, S0,AP, L) TS without terminal states

A = (Q, 2AP , δ,Q0, F )A = (Q, 2AP , δ,Q0, F )A = (Q, 2AP , δ,Q0, F ) NBA or NFAnon-blocking, Q0 ∩ F = ∅Q0 ∩ F = ∅Q0 ∩ F = ∅

product-TS T ⊗A def= (S×Q,Act,→′, S ′0,AP ′, L′)T ⊗ A def= (S×Q,Act,→′, S ′0,AP ′, L′)T ⊗ A def= (S×Q,Act,→′, S ′0,AP ′, L′)

64 / 527

Page 65: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Recall: product transition system ltlmc3.2-7

T = (S ,Act,→, S0,AP, L)T = (S ,Act,→, S0,AP, L)T = (S ,Act,→, S0,AP, L) TS without terminal states

A = (Q, 2AP , δ,Q0, F )A = (Q, 2AP , δ,Q0, F )A = (Q, 2AP , δ,Q0, F ) NBA or NFAnon-blocking, Q0 ∩ F = ∅Q0 ∩ F = ∅Q0 ∩ F = ∅

product-TS T ⊗A def= (S×Q,Act,→′, S ′0,AP ′, L′)T ⊗ A def= (S×Q,Act,→′, S ′0,AP ′, L′)T ⊗ A def= (S×Q,Act,→′, S ′0,AP ′, L′)

initial states: S ′0 = {〈s0, q〉 : s0 ∈ S0, q ∈ δ(Q0, L(s0))}S ′0 = {〈s0, q〉 : s0 ∈ S0, q ∈ δ(Q0, L(s0))}S ′0 = {〈s0, q〉 : s0 ∈ S0, q ∈ δ(Q0, L(s0))}labeling: AP ′ = QAP ′ = QAP ′ = Q, L′(〈s , q〉) = {q}L′(〈s, q〉) = {q}L′(〈s, q〉) = {q}

65 / 527

Page 66: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Recall: product transition system ltlmc3.2-7

T = (S ,Act,→, S0,AP, L)T = (S ,Act,→, S0,AP, L)T = (S ,Act,→, S0,AP, L) TS without terminal states

A = (Q, 2AP , δ,Q0, F )A = (Q, 2AP , δ,Q0, F )A = (Q, 2AP , δ,Q0, F ) NBA or NFAnon-blocking, Q0 ∩ F = ∅Q0 ∩ F = ∅Q0 ∩ F = ∅

product-TS T ⊗A def= (S×Q,Act,→′, S ′0,AP ′, L′)T ⊗ A def= (S×Q,Act,→′, S ′0,AP ′, L′)T ⊗ A def= (S×Q,Act,→′, S ′0,AP ′, L′)

initial states: S ′0 = {〈s0, q〉 : s0 ∈ S0, q ∈ δ(Q0, L(s0))}S ′0 = {〈s0, q〉 : s0 ∈ S0, q ∈ δ(Q0, L(s0))}S ′0 = {〈s0, q〉 : s0 ∈ S0, q ∈ δ(Q0, L(s0))}labeling: AP ′ = QAP ′ = QAP ′ = Q, L′(〈s , q〉) = {q}L′(〈s, q〉) = {q}L′(〈s, q〉) = {q}transition relation:

sα−→ s ′ ∧ q′ ∈ δ(q, L(s ′))

〈s , q〉 α−→′ 〈s ′, q′〉s

α−→ s ′ ∧ q′ ∈ δ(q, L(s ′))

〈s, q〉 α−→′ 〈s ′, q′〉s

α−→ s ′ ∧ q′ ∈ δ(q, L(s ′))

〈s , q〉 α−→′ 〈s ′, q′〉66 / 527

Page 67: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: LTL model checking ltlmc3.2-8

TS TTT

red

green

LTL formula ϕ = �♦ϕ = �♦ϕ = �♦green

67 / 527

Page 68: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: LTL model checking ltlmc3.2-8

TS TTT

red

green

LTL formula ϕ = �♦ϕ = �♦ϕ = �♦green

NBA AAA for the complement¬ϕ ≡ ♦�¬¬ϕ ≡ ♦�¬¬ϕ ≡ ♦�¬green

q0q0q0 qFqFqF q1q1q1

true ¬¬¬green true

¬¬¬green green

68 / 527

Page 69: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: LTL model checking ltlmc3.2-8

TS TTT

red

green

LTL formula ϕ = �♦ϕ = �♦ϕ = �♦green

NBA AAA for the complement¬ϕ ≡ ♦�¬¬ϕ ≡ ♦�¬¬ϕ ≡ ♦�¬green

q0q0q0 qFqFqF q1q1q1

true ¬¬¬green true

¬¬¬green green

red q0q0q0

green q0q0q0 red qFqFqF

green q1q1q1red q1q1q1

reachable fragment of theproduct TS T ⊗AT ⊗ AT ⊗A

69 / 527

Page 70: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: LTL model checking ltlmc3.2-8

TS TTT

red

green

LTL formula ϕ = �♦ϕ = �♦ϕ = �♦green

NBA AAA for the complement¬ϕ ≡ ♦�¬¬ϕ ≡ ♦�¬¬ϕ ≡ ♦�¬green

q0q0q0 qFqFqF q1q1q1

true ¬¬¬green true

¬¬¬green green

red q0q0q0

green q0q0q0 red qFqFqF

green q1q1q1red q1q1q1

initial states:〈〈〈red, q〉, q〉, q〉 where

q ∈q ∈q ∈ δ(q0, L(δ(q0, L(δ(q0, L(red))))))=== δ(q0,∅)δ(q0,∅)δ(q0,∅)=== {q0, qF}{q0, qF}{q0, qF}

70 / 527

Page 71: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: LTL model checking ltlmc3.2-8

TS TTT

red

green

LTL formula ϕ = �♦ϕ = �♦ϕ = �♦green

NBA AAA for the complement¬ϕ ≡ ♦�¬¬ϕ ≡ ♦�¬¬ϕ ≡ ♦�¬green

q0q0q0 qFqFqF q1q1q1

true ¬¬¬green true

¬¬¬green green

red q0q0q0

green q0q0q0 red qFqFqF

green q1q1q1red q1q1q1

transition〈〈〈green, q0〉, q0〉, q0〉 →→→ 〈〈〈red, q〉, q〉, q〉q ∈q ∈q ∈ δ(q0, L(δ(q0, L(δ(q0, L(red))))))

=== δ(q0,∅)δ(q0,∅)δ(q0,∅)=== {q0, qF}{q0, qF}{q0, qF}

71 / 527

Page 72: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: LTL model checking ltlmc3.2-8

TS TTT

red

green

LTL formula ϕ = �♦ϕ = �♦ϕ = �♦green

NBA AAA for the complement¬ϕ ≡ ♦�¬¬ϕ ≡ ♦�¬¬ϕ ≡ ♦�¬green

q0q0q0 qFqFqF q1q1q1

true ¬¬¬green true

¬¬¬green green

red q0q0q0

green q0q0q0 red qFqFqF

green q1q1q1red q1q1q1

atomic propositionsAP ′ = {q0, qF , q1}AP ′ = {q0, qF , q1}AP ′ = {q0, qF , q1}obvious labeling function

72 / 527

Page 73: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: LTL model checking ltlmc3.2-8

TS TTT

red

green

LTL formula ϕ = �♦ϕ = �♦ϕ = �♦green

NBA AAA for the complement¬ϕ ≡ ♦�¬¬ϕ ≡ ♦�¬¬ϕ ≡ ♦�¬green

q0q0q0 qFqFqF q1q1q1

true ¬¬¬green true

¬¬¬green green

red q0q0q0

green q0q0q0 red qFqFqF

green q1q1q1red q1q1q1

T ⊗ A |=T ⊗A |=T ⊗ A |= ♦�¬F♦�¬F♦�¬F

73 / 527

Page 74: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: LTL model checking ltlmc3.2-8

TS TTT

red

green

LTL formula ϕ = �♦ϕ = �♦ϕ = �♦green

NBA AAA for the complement¬ϕ ≡ ♦�¬¬ϕ ≡ ♦�¬¬ϕ ≡ ♦�¬green

q0q0q0 qFqFqF q1q1q1

true ¬¬¬green true

¬¬¬green green

red q0q0q0

green q0q0q0 red qFqFqF

green q1q1q1red q1q1q1

T ⊗ A |=T ⊗A |=T ⊗ A |= ♦�¬F♦�¬F♦�¬F

hence: T |= ϕT |= ϕT |= ϕ

74 / 527

Page 75: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: LTL model checking ltlmc3.2-9

TS TTTstart

try to send

lost delivered

LTL formula ϕ = �(try → ♦del)ϕ = �(try → ♦del)ϕ = �(try → ♦del)

“each (repeatedly) sent message willeventually be delivered”

75 / 527

Page 76: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: LTL model checking ltlmc3.2-9

TS TTTstart

try to send

lost delivered

LTL formula ϕ = �(try → ♦del)ϕ = �(try → ♦del)ϕ = �(try → ♦del)

“each (repeatedly) sent message willeventually be delivered”

T �|= ϕT �|= ϕT �|= ϕ

76 / 527

Page 77: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: LTL model checking ltlmc3.2-9

TS TTT NBA AAA for ¬ϕ ≡ ♦(try ∧�¬del)¬ϕ ≡ ♦(try ∧�¬del)¬ϕ ≡ ♦(try ∧�¬del)start

try to send

lost delivered

q0q0q0 qFqFqF q1q1q1

true ¬del¬del¬del true

try ∧ ¬deltry ∧ ¬deltry ∧ ¬del deldeldel

LTL formula ϕ = �(try → ♦del)ϕ = �(try → ♦del)ϕ = �(try → ♦del)

“each (repeatedly) sent message willeventually be delivered”

T �|= ϕT �|= ϕT �|= ϕ

77 / 527

Page 78: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: LTL model checking ltlmc3.2-9

TS TTT NBA AAA for ¬ϕ ≡ ♦(try ∧�¬del)¬ϕ ≡ ♦(try ∧�¬del)¬ϕ ≡ ♦(try ∧�¬del)start

try to send

lost delivered

q0q0q0 qFqFqF q1q1q1

true ¬del¬del¬del true

try ∧ ¬deltry ∧ ¬deltry ∧ ¬del deldeldel

start q0q0q0

try q0q0q0

lost q0q0q0

del q0q0q0

try qFqFqF

lost qFqFqF

del q1q1q1

start q1q1q1

try q1q1q1

lost q1q1q1

reachable fragment of the product-TS78 / 527

Page 79: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: LTL model checking ltlmc3.2-9

TS TTT NBA AAA for ¬ϕ ≡ ♦(try ∧�¬del)¬ϕ ≡ ♦(try ∧�¬del)¬ϕ ≡ ♦(try ∧�¬del)start

try to send

lost delivered

q0q0q0 qFqFqF q1q1q1

true ¬del¬del¬del true

try ∧ ¬deltry ∧ ¬deltry ∧ ¬del deldeldel

start q0q0q0

try q0q0q0

lost q0q0q0

del q0q0q0

try qFqFqF

lost qFqFqF

del q1q1q1

start q1q1q1

try q1q1q1

lost q1q1q1

set of atomic propositions AP ′ = {q0, q1, qF}AP ′ = {q0, q1, qF}AP ′ = {q0, q1, qF}79 / 527

Page 80: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: LTL model checking ltlmc3.2-9

TS TTT NBA AAA for ¬ϕ ≡ ♦(try ∧�¬del)¬ϕ ≡ ♦(try ∧�¬del)¬ϕ ≡ ♦(try ∧�¬del)start

try to send

lost delivered

q0q0q0 qFqFqF q1q1q1

true ¬del¬del¬del true

try ∧ ¬deltry ∧ ¬deltry ∧ ¬del deldeldel

start q0q0q0

try q0q0q0

lost q0q0q0

del q0q0q0

try qFqFqF

lost qFqFqF

del q1q1q1

start q1q1q1

try q1q1q1

lost q1q1q1

T ⊗A �|=T ⊗A �|=T ⊗ A �|= ♦�¬F♦�¬F♦�¬F80 / 527

Page 81: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: LTL model checking ltlmc3.2-9

TS TTT NBA AAA for ¬ϕ ≡ ♦(try ∧�¬del)¬ϕ ≡ ♦(try ∧�¬del)¬ϕ ≡ ♦(try ∧�¬del)start

try to send

lost delivered

q0q0q0 qFqFqF q1q1q1

true ¬del¬del¬del true

try ∧ ¬deltry ∧ ¬deltry ∧ ¬del deldeldel

start q0q0q0

try q0q0q0

lost q0q0q0

del q0q0q0

try qFqFqF

lost qFqFqF

del q1q1q1

start q1q1q1

try q1q1q1

lost q1q1q1

T ⊗A �|=T ⊗A �|=T ⊗ A �|= ♦�¬F♦�¬F♦�¬F hence: T �|= ϕT �|= ϕT �|= ϕ81 / 527

Page 82: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LTL model checking ltlmc3.2-38

given: finite TS TTT , LTL-formula ϕϕϕquestion: does T |= ϕT |= ϕT |= ϕ hold ?

82/527

Page 83: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LTL model checking ltlmc3.2-38

given: finite TS TTT , LTL-formula ϕϕϕquestion: does T |= ϕT |= ϕT |= ϕ hold ?

construct an NBA AAA for ¬ϕ¬ϕ¬ϕ and the product T ⊗AT ⊗AT ⊗Acheck whether T ⊗ A |= ♦�¬FT ⊗ A |= ♦�¬FT ⊗A |= ♦�¬F

83 / 527

Page 84: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LTL model checking ltlmc3.2-38

given: finite TS TTT , LTL-formula ϕϕϕquestion: does T |= ϕT |= ϕT |= ϕ hold ?

construct an NBA AAA for ¬ϕ¬ϕ¬ϕ and the product T ⊗AT ⊗AT ⊗Acheck whether T ⊗ A |= ♦�¬FT ⊗ A |= ♦�¬FT ⊗A |= ♦�¬F ←−←−←− persistence

checkingnested DFS

84/527

Page 85: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LTL model checking ltlmc3.2-38

given: finite TS TTT , LTL-formula ϕϕϕquestion: does T |= ϕT |= ϕT |= ϕ hold ?

construct an NBA AAA for ¬ϕ¬ϕ¬ϕ and the product T ⊗AT ⊗AT ⊗Acheck whether T ⊗ A |= ♦�¬FT ⊗ A |= ♦�¬FT ⊗A |= ♦�¬F ←−←−←− persistence

checkingnested DFS

IF T ⊗A |= ♦�¬FT ⊗ A |= ♦�¬FT ⊗A |= ♦�¬FTHEN return “yes”ELSE compute a counterexample

〈s0, p0〉 . . . 〈sn, pn〉 . . . 〈sn, pn〉〈s0, p0〉 . . . 〈sn, pn〉 . . . 〈sn, pn〉〈s0, p0〉 . . . 〈sn, pn〉 . . . 〈sn, pn〉for T ⊗AT ⊗ AT ⊗A and ♦�¬F♦�¬F♦�¬F

return “no” and s0 . . . sn . . . sns0 . . . sn . . . sns0 . . . sn . . . sn

85 / 527

Page 86: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Complexity of LTL model checking ltlmc3.2-38

given: finite TS TTT , LTL-formula ϕϕϕquestion: does T |= ϕT |= ϕT |= ϕ hold ?

����������������������������������construct an NBA AAA for ¬ϕ¬ϕ¬ϕ and the product T ⊗ AT ⊗ AT ⊗Acheck whether T ⊗ A |= ♦�¬FT ⊗ A |= ♦�¬FT ⊗A |= ♦�¬F ←−←−←− persistence

checkingnested DFS

IF T ⊗A |= ♦�¬FT ⊗ A |= ♦�¬FT ⊗A |= ♦�¬FTHEN return “yes”ELSE compute a counterexample

〈s0, p0〉 . . . 〈sn, pn〉 . . . 〈sn, pn〉〈s0, p0〉 . . . 〈sn, pn〉 . . . 〈sn, pn〉〈s0, p0〉 . . . 〈sn, pn〉 . . . 〈sn, pn〉for T ⊗AT ⊗ AT ⊗A and ♦�¬F♦�¬F♦�¬F

return “no” and s0 . . . sn . . . sns0 . . . sn . . . sns0 . . . sn . . . sn

time complexity: O(size(T ) · size(A))O(size(T ) · size(A))O(size(T ) · size(A))86 / 527

Page 87: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LTL model checking ltlmc3.2-2

finite transitionsystem TTT

LTL model checking

persistence checkingT ⊗A |= ♦�¬FT ⊗ A |= ♦�¬FT ⊗ A |= ♦�¬F ?

LTL formula ϕϕϕ

NBA AAA for ¬ϕ¬ϕ¬ϕ

yes no +++ counterexample87 / 527

Page 88: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LTL model checking ltlmc3.2-2

finite transitionsystem TTT

LTL model checking

persistence checkingT ⊗A |= ♦�¬FT ⊗ A |= ♦�¬FT ⊗ A |= ♦�¬F ?

LTL formula ϕϕϕ

NBA AAA for ¬ϕ¬ϕ¬ϕ

yes no +++ counterexample88 / 527

Page 89: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

From LTL to NBA ltlmc3.2-46

89 / 527

Page 90: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

From LTL to NBA ltlmc3.2-46

For each LTL formula ϕϕϕ there is an NBA AAA s.t.Lω(A) = Words(ϕ)Lω(A) = Words(ϕ)Lω(A) = Words(ϕ)

90 / 527

Page 91: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

From LTL to NBA ltlmc3.2-46

For each LTL formula ϕϕϕ there is an NBA AAA s.t.Lω(A) = Words(ϕ)Lω(A) = Words(ϕ)Lω(A) = Words(ϕ)

LTL formula ϕϕϕ

NBA AAA s.t.Lω(A) = Words(ϕ)Lω(A) = Words(ϕ)Lω(A) = Words(ϕ)

nondeterministicBuchi automaton

91 / 527

Page 92: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

From LTL to NBA ltlmc3.2-46

For each LTL formula ϕϕϕ there is an NBA AAA s.t.Lω(A) = Words(ϕ)Lω(A) = Words(ϕ)Lω(A) = Words(ϕ)

LTL formula ϕϕϕ

GNBA GGG s.t.Lω(G) = Words(ϕ)Lω(G) = Words(ϕ)Lω(G) = Words(ϕ)

NBA AAA s.t.Lω(A) = Lω(G)Lω(A) = Lω(G)Lω(A) = Lω(G)

generalized NBAseveral acceptance sets

nondeterministicBuchi automaton111 acceptance set

92 / 527

Page 93: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

From LTL to NBA ltlmc3.2-46

For each LTL formula ϕϕϕ there is an NBA AAA s.t.Lω(A) = Words(ϕ)Lω(A) = Words(ϕ)Lω(A) = Words(ϕ)

LTL formula ϕϕϕ

GNBA GGG s.t.Lω(G) = Words(ϕ)Lω(G) = Words(ϕ)Lω(G) = Words(ϕ)

NBA AAA s.t.Lω(A) = Lω(G)Lω(A) = Lω(G)Lω(A) = Lω(G)

generalized NBAkkk acceptance sets

nondeterministicBuchi automaton111 acceptance set

kkk copies of GGG

93 / 527

Page 94: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Encoding of LTL semantics in a GNBA ltlmc3.2-39

94 / 527

Page 95: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Encoding of LTL semantics in a GNBA ltlmc3.2-39

idea: encode the semantics of the operators appearingin ϕϕϕ by appropriate components of the GNBA GGG

95 / 527

Page 96: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Encoding of LTL semantics in a GNBA ltlmc3.2-39

idea: encode the semantics of the operators appearingin ϕϕϕ by appropriate components of the GNBA GGG

semantics of ... encoding

propositional logictruetruetrue, ¬¬¬, ∧∧∧next©©©until UUU

96 / 527

Page 97: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Encoding of LTL semantics in a GNBA ltlmc3.2-39

idea: encode the semantics of the operators appearingin ϕϕϕ by appropriate components of the GNBA GGG

semantics of ... encoding

propositional logictruetruetrue, ¬¬¬, ∧∧∧ in the states

next©©©until UUU

97 / 527

Page 98: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Encoding of LTL semantics in a GNBA ltlmc3.2-39

idea: encode the semantics of the operators appearingin ϕϕϕ by appropriate components of the GNBA GGG

semantics of ... encoding

propositional logictruetruetrue, ¬¬¬, ∧∧∧ in the states

next©©© in the transition relation

until UUU

98 / 527

Page 99: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Encoding of LTL semantics in a GNBA ltlmc3.2-39

idea: encode the semantics of the operators appearingin ϕϕϕ by appropriate components of the GNBA GGG

semantics of ... encoding

propositional logictruetruetrue, ¬¬¬, ∧∧∧ in the states

next©©© in the transition relation

until UUU via expansion law

99 / 527

Page 100: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Encoding of LTL semantics in a GNBA ltlmc3.2-39

idea: encode the semantics of the operators appearingin ϕϕϕ by appropriate components of the GNBA GGG

semantics of ... encoding

propositional logictruetruetrue, ¬¬¬, ∧∧∧ in the states

next©©© in the transition relation

until UUU via expansion law

ψ1 Uψ2ψ1 Uψ2ψ1 Uψ2 ≡≡≡ ψ2 ∨ (ψ1 ∧©(ψ1 Uψ2))ψ2 ∨ (ψ1 ∧©(ψ1 Uψ2))ψ2 ∨ (ψ1 ∧©(ψ1 Uψ2))

100 / 527

Page 101: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Encoding of LTL semantics in a GNBA ltlmc3.2-39

idea: encode the semantics of the operators appearingin ϕϕϕ by appropriate components of the GNBA GGG

semantics of ... encoding

propositional logictruetruetrue, ¬¬¬, ∧∧∧ in the states

next©©© in the transition relation

until UUU via expansion law

ψ1 Uψ2ψ1 Uψ2ψ1 Uψ2 ≡≡≡ ψ2 ∨ (ψ1 ∧©(ψ1 Uψ2))ψ2 ∨ (ψ1 ∧©(ψ1 Uψ2))ψ2 ∨ (ψ1 ∧©(ψ1 Uψ2))↖↖↖↗↗↗

encoded inthe states

101 / 527

Page 102: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Encoding of LTL semantics in a GNBA ltlmc3.2-39

idea: encode the semantics of the operators appearingin ϕϕϕ by appropriate components of the GNBA GGG

semantics of ... encoding

propositional logictruetruetrue, ¬¬¬, ∧∧∧ in the states

next©©© in the transition relation

until UUU via expansion law

ψ1 Uψ2ψ1 Uψ2ψ1 Uψ2 ≡≡≡ ψ2 ∨ (ψ1 ∧©(ψ1 Uψ2))ψ2 ∨ (ψ1 ∧©(ψ1 Uψ2))ψ2 ∨ (ψ1 ∧©(ψ1 Uψ2))↖↖↖↗↗↗ ↑↑↑

encoded inthe states

encoded in thetransition relation

102 / 527

Page 103: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Encoding of LTL semantics in a GNBA ltlmc3.2-39

idea: encode the semantics of the operators appearingin ϕϕϕ by appropriate components of the GNBA GGG

semantics of ... encoding

propositional logictruetruetrue, ¬¬¬, ∧∧∧ in the states

next©©© in the transition relation

until UUU expansion law, least fixed point

ψ1 Uψ2ψ1 Uψ2ψ1 Uψ2 ≡≡≡ ψ2 ∨ (ψ1 ∧©(ψ1 Uψ2))ψ2 ∨ (ψ1 ∧©(ψ1 Uψ2))ψ2 ∨ (ψ1 ∧©(ψ1 Uψ2)) ↑↑↑↖↖↖↗↗↗ ↑↑↑

encoded inthe states

encoded in thetransition relation

acceptancecondition

103 / 527

Page 104: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LTL ��� GNBA ltlmc3.2-46a

104 / 527

Page 105: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LTL ��� GNBA ltlmc3.2-46a

LTL formula ϕϕϕ��� GNBA GGG for Words(ϕ)Words(ϕ)Words(ϕ)

105 / 527

Page 106: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LTL ��� GNBA ltlmc3.2-46a

LTL formula ϕϕϕ��� GNBA GGG for Words(ϕ)Words(ϕ)Words(ϕ)

states of GGG === (certain) sets of subformulas of ϕϕϕ

106 / 527

Page 107: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LTL ��� GNBA ltlmc3.2-46a

LTL formula ϕϕϕ��� GNBA GGG for Words(ϕ)Words(ϕ)Words(ϕ)

states of GGG === (certain) sets of subformulas of ϕϕϕs.t. each word σ = A0 A1 A2... ∈ Words(ϕ)σ = A0 A1 A2... ∈Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ) can beextended to an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . in GGG

107 / 527

Page 108: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LTL ��� GNBA ltlmc3.2-46a

LTL formula ϕϕϕ��� GNBA GGG for Words(ϕ)Words(ϕ)Words(ϕ)

states of GGG === (certain) sets of subformulas of ϕϕϕs.t. each word σ = A0 A1 A2... ∈ Words(ϕ)σ = A0 A1 A2... ∈Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ) can beextended to an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . in GGG

A0A0A0 A1A1A1 A2A2A2 A3A3A3 ......... ∈ Words(ϕ)∈ Words(ϕ)∈Words(ϕ)

108 / 527

Page 109: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LTL ��� GNBA ltlmc3.2-46a

LTL formula ϕϕϕ��� GNBA GGG for Words(ϕ)Words(ϕ)Words(ϕ)

states of GGG === (certain) sets of subformulas of ϕϕϕs.t. each word σ = A0 A1 A2... ∈ Words(ϕ)σ = A0 A1 A2... ∈Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ) can beextended to an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . in GGG

A0A0A0 A1A1A1 A2A2A2 A3A3A3 ......... ∈ Words(ϕ)∈ Words(ϕ)∈Words(ϕ)↓↓↓ ↓↓↓ ↓↓↓ ↓↓↓B0B0B0 B1B1B1 B2B2B2 B3B3B3 ......... accepting run

where Bi ={ψ ∈ cl(ϕ) : AiAi+1Ai+2... |= ψ

}Bi =

{ψ ∈ cl(ϕ) : AiAi+1Ai+2... |= ψ

}Bi =

{ψ ∈ cl(ϕ) : AiAi+1Ai+2... |= ψ

}

109 / 527

Page 110: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LTL ��� GNBA ltlmc3.2-46a

LTL formula ϕϕϕ��� GNBA GGG for Words(ϕ)Words(ϕ)Words(ϕ)

states of GGG === (certain) sets of subformulas of ϕϕϕs.t. each word σ = A0 A1 A2... ∈ Words(ϕ)σ = A0 A1 A2... ∈Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ) can beextended to an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . in GGG

A0A0A0 A1A1A1 A2A2A2 A3A3A3 ......... ∈ Words(ϕ)∈ Words(ϕ)∈Words(ϕ)↓↓↓ ↓↓↓ ↓↓↓ ↓↓↓B0B0B0 B1B1B1 B2B2B2 B3B3B3 ......... accepting run

where Bi ={ψ ∈ cl(ϕ) : AiAi+1Ai+2... |= ψ

}Bi =

{ψ ∈ cl(ϕ) : AiAi+1Ai+2... |= ψ

}Bi =

{ψ ∈ cl(ϕ) : AiAi+1Ai+2... |= ψ

}���set of subformulas of ϕϕϕ and their negations

110 / 527

Page 111: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LTL ��� GNBA ltlmc3.2-47

LTL formula ϕϕϕ��� GNBA GGG for Words(ϕ)Words(ϕ)Words(ϕ)

states of GGG === (certain) sets of subformulas of ϕϕϕs.t. each word σ = A0 A1 A2... ∈ Words(ϕ)σ = A0 A1 A2... ∈Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ) can beextended to an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . in GGG

Example: ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)

111 / 527

Page 112: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LTL ��� GNBA ltlmc3.2-47

LTL formula ϕϕϕ��� GNBA GGG for Words(ϕ)Words(ϕ)Words(ϕ)

states of GGG === (certain) sets of subformulas of ϕϕϕs.t. each word σ = A0 A1 A2... ∈ Words(ϕ)σ = A0 A1 A2... ∈Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ) can beextended to an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . in GGG

Example: ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ

112 / 527

Page 113: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LTL ��� GNBA ltlmc3.2-47

LTL formula ϕϕϕ��� GNBA GGG for Words(ϕ)Words(ϕ)Words(ϕ)

states of GGG === (certain) sets of subformulas of ϕϕϕs.t. each word σ = A0 A1 A2... ∈ Words(ϕ)σ = A0 A1 A2... ∈Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ) can beextended to an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . in GGG

Example: ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ↓ ↓ ↓ ↓ ↓ ↓B0 B1 B2 B3 B4 B5

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ↓ ↓ ↓ ↓ ↓ ↓B0 B1 B2 B3 B4 B5

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ↓ ↓ ↓ ↓ ↓ ↓B0 B1 B2 B3 B4 B5

113 / 527

Page 114: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LTL ��� GNBA ltlmc3.2-47

LTL formula ϕϕϕ��� GNBA GGG for Words(ϕ)Words(ϕ)Words(ϕ)

states of GGG === (certain) sets of subformulas of ϕϕϕs.t. each word σ = A0 A1 A2... ∈ Words(ϕ)σ = A0 A1 A2... ∈Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ) can beextended to an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . in GGG

Example: ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b) ψ = ¬a ∧ bψ = ¬a ∧ bψ = ¬a ∧ b

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ↓ ↓ ↓ ↓ ↓ ↓B0 B1 B2 B3 B4 B5

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ↓ ↓ ↓ ↓ ↓ ↓B0 B1 B2 B3 B4 B5

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ↓ ↓ ↓ ↓ ↓ ↓B0 B1 B2 B3 B4 B5

where the BiBiBi ’s are subsets of{a,¬a, b,¬b, ψ,¬ψ, ϕ,¬ϕ}{a,¬a, b,¬b, ψ,¬ψ, ϕ,¬ϕ}{a,¬a, b,¬b, ψ,¬ψ, ϕ,¬ϕ}

114 / 527

Page 115: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LTL ��� GNBA ltlmc3.2-47

LTL formula ϕϕϕ��� GNBA GGG for Words(ϕ)Words(ϕ)Words(ϕ)

states of GGG === (certain) sets of subformulas of ϕϕϕs.t. each word σ = A0 A1 A2... ∈ Words(ϕ)σ = A0 A1 A2... ∈Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ) can beextended to an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . in GGG

Example: ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b) ψ = ¬a ∧ bψ = ¬a ∧ bψ = ¬a ∧ b

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ↓a¬b¬ψϕ

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ

↓a¬b¬ψϕ

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ↓a¬b¬ψϕ

just for better readability:tuple rather than set notation

115 / 527

Page 116: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LTL ��� GNBA ltlmc3.2-47

LTL formula ϕϕϕ��� GNBA GGG for Words(ϕ)Words(ϕ)Words(ϕ)

states of GGG === (certain) sets of subformulas of ϕϕϕs.t. each word σ = A0 A1 A2... ∈ Words(ϕ)σ = A0 A1 A2... ∈Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ) can beextended to an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . in GGG

Example: ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b) ψ = ¬a ∧ bψ = ¬a ∧ bψ = ¬a ∧ b

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ↓ ↓a¬b¬ψϕ

a¬b¬ψϕ

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ

↓ ↓a¬b¬ψϕ

a¬b¬ψϕ

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ↓ ↓a¬b¬ψϕ

a¬b¬ψϕ

116 / 527

Page 117: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LTL ��� GNBA ltlmc3.2-47

LTL formula ϕϕϕ��� GNBA GGG for Words(ϕ)Words(ϕ)Words(ϕ)

states of GGG === (certain) sets of subformulas of ϕϕϕs.t. each word σ = A0 A1 A2... ∈ Words(ϕ)σ = A0 A1 A2... ∈Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ) can beextended to an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . in GGG

Example: ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b) ψ = ¬a ∧ bψ = ¬a ∧ bψ = ¬a ∧ b

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ↓ ↓ ↓a¬b¬ψϕ

a¬b¬ψϕ

ab¬ψϕ

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ

↓ ↓ ↓a¬b¬ψϕ

a¬b¬ψϕ

ab¬ψϕ

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ↓ ↓ ↓a¬b¬ψϕ

a¬b¬ψϕ

ab¬ψϕ

117 / 527

Page 118: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LTL ��� GNBA ltlmc3.2-47

LTL formula ϕϕϕ��� GNBA GGG for Words(ϕ)Words(ϕ)Words(ϕ)

states of GGG === (certain) sets of subformulas of ϕϕϕs.t. each word σ = A0 A1 A2... ∈ Words(ϕ)σ = A0 A1 A2... ∈Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ) can beextended to an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . in GGG

Example: ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b) ψ = ¬a ∧ bψ = ¬a ∧ bψ = ¬a ∧ b

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ↓ ↓ ↓ ↓a¬b¬ψϕ

a¬b¬ψϕ

ab¬ψϕ

¬abψϕ

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ

↓ ↓ ↓ ↓a¬b¬ψϕ

a¬b¬ψϕ

ab¬ψϕ

¬abψϕ

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ↓ ↓ ↓ ↓a¬b¬ψϕ

a¬b¬ψϕ

ab¬ψϕ

¬abψϕ

118 / 527

Page 119: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LTL ��� GNBA ltlmc3.2-47

LTL formula ϕϕϕ��� GNBA GGG for Words(ϕ)Words(ϕ)Words(ϕ)

states of GGG === (certain) sets of subformulas of ϕϕϕs.t. each word σ = A0 A1 A2... ∈ Words(ϕ)σ = A0 A1 A2... ∈Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ) can beextended to an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . in GGG

Example: ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b) ψ = ¬a ∧ bψ = ¬a ∧ bψ = ¬a ∧ b

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ↓ ↓ ↓ ↓ ↓a¬b¬ψϕ

a¬b¬ψϕ

ab¬ψϕ

¬abψϕ

¬a¬b¬ψ¬ϕ

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ

↓ ↓ ↓ ↓ ↓a¬b¬ψϕ

a¬b¬ψϕ

ab¬ψϕ

¬abψϕ

¬a¬b¬ψ¬ϕ

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ↓ ↓ ↓ ↓ ↓a¬b¬ψϕ

a¬b¬ψϕ

ab¬ψϕ

¬abψϕ

¬a¬b¬ψ¬ϕ

119 / 527

Page 120: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LTL ��� GNBA ltlmc3.2-47

LTL formula ϕϕϕ��� GNBA GGG for Words(ϕ)Words(ϕ)Words(ϕ)

states of GGG === (certain) sets of subformulas of ϕϕϕs.t. each word σ = A0 A1 A2... ∈ Words(ϕ)σ = A0 A1 A2... ∈Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ) can beextended to an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . in GGG

Example: ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b) ψ = ¬a ∧ bψ = ¬a ∧ bψ = ¬a ∧ b

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ↓ ↓ ↓ ↓ ↓ ↓a¬b¬ψϕ

a¬b¬ψϕ

ab¬ψϕ

¬abψϕ

¬a¬b¬ψ¬ϕ

¬a¬b¬ψ¬ϕ

. . .. . .. . .

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ

↓ ↓ ↓ ↓ ↓ ↓a¬b¬ψϕ

a¬b¬ψϕ

ab¬ψϕ

¬abψϕ

¬a¬b¬ψ¬ϕ

¬a¬b¬ψ¬ϕ

. . .. . .. . .

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ↓ ↓ ↓ ↓ ↓ ↓a¬b¬ψϕ

a¬b¬ψϕ

ab¬ψϕ

¬abψϕ

¬a¬b¬ψ¬ϕ

¬a¬b¬ψ¬ϕ

. . .. . .. . .

120 / 527

Page 121: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Closure of LTL formulas ltlmc3.2-48

121 / 527

Page 122: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Closure of LTL formulas ltlmc3.2-48

Let ϕϕϕ be an LTL formula. Then:

subf (ϕ)subf (ϕ)subf (ϕ)def=def=def= set of all subformulas of ϕϕϕ

122 / 527

Page 123: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Closure of LTL formulas ltlmc3.2-48

Let ϕϕϕ be an LTL formula. Then:

subf (ϕ)subf (ϕ)subf (ϕ)def=def=def= set of all subformulas of ϕϕϕ

cl(ϕ)cl(ϕ)cl(ϕ)def=def=def= subf (ϕ) ∪ {¬ψ : ψ ∈ subf (ϕ)}subf (ϕ) ∪ {¬ψ : ψ ∈ subf (ϕ)}subf (ϕ) ∪ {¬ψ : ψ ∈ subf (ϕ)}

where ψψψ and ¬¬ψ¬¬ψ¬¬ψ are identified

123 / 527

Page 124: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Closure of LTL formulas ltlmc3.2-48

Let ϕϕϕ be an LTL formula. Then:

subf (ϕ)subf (ϕ)subf (ϕ)def=def=def= set of all subformulas of ϕϕϕ

cl(ϕ)cl(ϕ)cl(ϕ)def=def=def= subf (ϕ) ∪ {¬ψ : ψ ∈ subf (ϕ)}subf (ϕ) ∪ {¬ψ : ψ ∈ subf (ϕ)}subf (ϕ) ∪ {¬ψ : ψ ∈ subf (ϕ)}

where ψψψ and ¬¬ψ¬¬ψ¬¬ψ are identified

Example: if ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b) then

cl(ϕ) = {a, b,¬a ∧ b, ϕ} ∪ {¬a,¬b,¬(¬a ∧ b),¬ϕ}cl(ϕ) = {a, b,¬a ∧ b, ϕ} ∪ {¬a,¬b,¬(¬a ∧ b),¬ϕ}cl(ϕ) = {a, b,¬a ∧ b, ϕ} ∪ {¬a,¬b,¬(¬a ∧ b),¬ϕ}

124 / 527

Page 125: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Closure of LTL formulas ltlmc3.2-48

Let ϕϕϕ be an LTL formula. Then:

subf (ϕ)subf (ϕ)subf (ϕ)def=def=def= set of all subformulas of ϕϕϕ

cl(ϕ)cl(ϕ)cl(ϕ)def=def=def= subf (ϕ) ∪ {¬ψ : ψ ∈ subf (ϕ)}subf (ϕ) ∪ {¬ψ : ψ ∈ subf (ϕ)}subf (ϕ) ∪ {¬ψ : ψ ∈ subf (ϕ)}

where ψψψ and ¬¬ψ¬¬ψ¬¬ψ are identified

Example: if ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b) then

cl(ϕ) = {a, b,¬a ∧ b, ϕ} ∪ {¬a,¬b,¬(¬a ∧ b),¬ϕ}cl(ϕ) = {a, b,¬a ∧ b, ϕ} ∪ {¬a,¬b,¬(¬a ∧ b),¬ϕ}cl(ϕ) = {a, b,¬a ∧ b, ϕ} ∪ {¬a,¬b,¬(¬a ∧ b),¬ϕ}

Example: if ϕ′ = �aϕ′ = �aϕ′ = �a

125 / 527

Page 126: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Closure of LTL formulas ltlmc3.2-48

Let ϕϕϕ be an LTL formula. Then:

subf (ϕ)subf (ϕ)subf (ϕ)def=def=def= set of all subformulas of ϕϕϕ

cl(ϕ)cl(ϕ)cl(ϕ)def=def=def= subf (ϕ) ∪ {¬ψ : ψ ∈ subf (ϕ)}subf (ϕ) ∪ {¬ψ : ψ ∈ subf (ϕ)}subf (ϕ) ∪ {¬ψ : ψ ∈ subf (ϕ)}

where ψψψ and ¬¬ψ¬¬ψ¬¬ψ are identified

Example: if ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b) then

cl(ϕ) = {a, b,¬a ∧ b, ϕ} ∪ {¬a,¬b,¬(¬a ∧ b),¬ϕ}cl(ϕ) = {a, b,¬a ∧ b, ϕ} ∪ {¬a,¬b,¬(¬a ∧ b),¬ϕ}cl(ϕ) = {a, b,¬a ∧ b, ϕ} ∪ {¬a,¬b,¬(¬a ∧ b),¬ϕ}

Example: if ϕ′ = �aϕ′ = �aϕ′ = �a = ¬♦¬a = ¬(true U¬a)= ¬♦¬a = ¬(true U¬a)= ¬♦¬a = ¬(true U¬a)

126 / 527

Page 127: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Closure of LTL formulas ltlmc3.2-48

Let ϕϕϕ be an LTL formula. Then:

subf (ϕ)subf (ϕ)subf (ϕ)def=def=def= set of all subformulas of ϕϕϕ

cl(ϕ)cl(ϕ)cl(ϕ)def=def=def= subf (ϕ) ∪ {¬ψ : ψ ∈ subf (ϕ)}subf (ϕ) ∪ {¬ψ : ψ ∈ subf (ϕ)}subf (ϕ) ∪ {¬ψ : ψ ∈ subf (ϕ)}

where ψψψ and ¬¬ψ¬¬ψ¬¬ψ are identified

Example: if ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b) then

cl(ϕ) = {a, b,¬a ∧ b, ϕ} ∪ {¬a,¬b,¬(¬a ∧ b),¬ϕ}cl(ϕ) = {a, b,¬a ∧ b, ϕ} ∪ {¬a,¬b,¬(¬a ∧ b),¬ϕ}cl(ϕ) = {a, b,¬a ∧ b, ϕ} ∪ {¬a,¬b,¬(¬a ∧ b),¬ϕ}

Example: if ϕ′ = �aϕ′ = �aϕ′ = �a = ¬♦¬a = ¬(true U¬a)= ¬♦¬a = ¬(true U¬a)= ¬♦¬a = ¬(true U¬a) then

cl(ϕ′) = {a,¬a, true,¬true,�a,¬�a}cl(ϕ′) = {a,¬a, true,¬true,�a,¬�a}cl(ϕ′) = {a,¬a, true,¬true,�a,¬�a}127 / 527

Page 128: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Elementary formula-sets ltlmc3.2-50

128 / 527

Page 129: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Elementary formula-sets ltlmc3.2-50

Let B ⊆ cl(ϕ)B ⊆ cl(ϕ)B ⊆ cl(ϕ). BBB is called elementary if:

129 / 527

Page 130: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Elementary formula-sets ltlmc3.2-50

Let B ⊆ cl(ϕ)B ⊆ cl(ϕ)B ⊆ cl(ϕ). BBB is called elementary if:

(1) BBB is consistent w.r.t. propositional logic

(2) BBB is maximal consistent

(3) BBB is locally consistent with respect to until UUU:

130 / 527

Page 131: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Elementary formula-sets ltlmc3.2-50

Let B ⊆ cl(ϕ)B ⊆ cl(ϕ)B ⊆ cl(ϕ). BBB is called elementary if:

(1) BBB is consistent w.r.t. propositional logic

if ψ ∈ Bψ ∈ Bψ ∈ B then ¬ψ /∈ B¬ψ /∈ B¬ψ /∈ B

(2) BBB is maximal consistent

(3) BBB is locally consistent with respect to until UUU:

131 / 527

Page 132: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Elementary formula-sets ltlmc3.2-50

Let B ⊆ cl(ϕ)B ⊆ cl(ϕ)B ⊆ cl(ϕ). BBB is called elementary if:

(1) BBB is consistent w.r.t. propositional logic

if ψ ∈ Bψ ∈ Bψ ∈ B then ¬ψ /∈ B¬ψ /∈ B¬ψ /∈ Bif ψ1 ∧ ψ2 ∈ Bψ1 ∧ ψ2 ∈ Bψ1 ∧ ψ2 ∈ B then ¬ψ1 /∈ B¬ψ1 /∈ B¬ψ1 /∈ B and ¬ψ2 /∈ B¬ψ2 /∈ B¬ψ2 /∈ B

(2) BBB is maximal consistent

(3) BBB is locally consistent with respect to until UUU:

132 / 527

Page 133: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Elementary formula-sets ltlmc3.2-50

Let B ⊆ cl(ϕ)B ⊆ cl(ϕ)B ⊆ cl(ϕ). BBB is called elementary if:

(1) BBB is consistent w.r.t. propositional logic

if ψ ∈ Bψ ∈ Bψ ∈ B then ¬ψ /∈ B¬ψ /∈ B¬ψ /∈ Bif ψ1 ∧ ψ2 ∈ Bψ1 ∧ ψ2 ∈ Bψ1 ∧ ψ2 ∈ B then ¬ψ1 /∈ B¬ψ1 /∈ B¬ψ1 /∈ B and ¬ψ2 /∈ B¬ψ2 /∈ B¬ψ2 /∈ Bif ψ1 ∈ Bψ1 ∈ Bψ1 ∈ B and ψ2 ∈ Bψ2 ∈ Bψ2 ∈ B then ¬(ψ1 ∧ ψ2) /∈ B¬(ψ1 ∧ ψ2) /∈ B¬(ψ1 ∧ ψ2) /∈ B

(2) BBB is maximal consistent

(3) BBB is locally consistent with respect to until UUU:

133 / 527

Page 134: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Elementary formula-sets ltlmc3.2-50

Let B ⊆ cl(ϕ)B ⊆ cl(ϕ)B ⊆ cl(ϕ). BBB is called elementary if:

(1) BBB is consistent w.r.t. propositional logic

if ψ ∈ Bψ ∈ Bψ ∈ B then ¬ψ /∈ B¬ψ /∈ B¬ψ /∈ Bif ψ1 ∧ ψ2 ∈ Bψ1 ∧ ψ2 ∈ Bψ1 ∧ ψ2 ∈ B then ¬ψ1 /∈ B¬ψ1 /∈ B¬ψ1 /∈ B and ¬ψ2 /∈ B¬ψ2 /∈ B¬ψ2 /∈ Bif ψ1 ∈ Bψ1 ∈ Bψ1 ∈ B and ψ2 ∈ Bψ2 ∈ Bψ2 ∈ B then ¬(ψ1 ∧ ψ2) /∈ B¬(ψ1 ∧ ψ2) /∈ B¬(ψ1 ∧ ψ2) /∈ Bif false ∈ cl(ϕ)false ∈ cl(ϕ)false ∈ cl(ϕ) then false /∈ Bfalse /∈ Bfalse /∈ B

(2) BBB is maximal consistent

(3) BBB is locally consistent with respect to until UUU:

134 / 527

Page 135: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Elementary formula-sets ltlmc3.2-50

Let B ⊆ cl(ϕ)B ⊆ cl(ϕ)B ⊆ cl(ϕ). BBB is called elementary if:

(1) BBB is consistent w.r.t. propositional logic

if ψ ∈ Bψ ∈ Bψ ∈ B then ¬ψ /∈ B¬ψ /∈ B¬ψ /∈ Bif ψ1 ∧ ψ2 ∈ Bψ1 ∧ ψ2 ∈ Bψ1 ∧ ψ2 ∈ B then ¬ψ1 /∈ B¬ψ1 /∈ B¬ψ1 /∈ B and ¬ψ2 /∈ B¬ψ2 /∈ B¬ψ2 /∈ Bif ψ1 ∈ Bψ1 ∈ Bψ1 ∈ B and ψ2 ∈ Bψ2 ∈ Bψ2 ∈ B then ¬(ψ1 ∧ ψ2) /∈ B¬(ψ1 ∧ ψ2) /∈ B¬(ψ1 ∧ ψ2) /∈ Bif false ∈ cl(ϕ)false ∈ cl(ϕ)false ∈ cl(ϕ) then false /∈ Bfalse /∈ Bfalse /∈ B

(2) BBB is maximal consistent

if ψ ∈ cl(ϕ) \ Bψ ∈ cl(ϕ) \ Bψ ∈ cl(ϕ) \ B then ¬ψ ∈ B¬ψ ∈ B¬ψ ∈ B

(3) BBB is locally consistent with respect to until UUU:

135 / 527

Page 136: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Elementary formula-sets ltlmc3.2-50

Let B ⊆ cl(ϕ)B ⊆ cl(ϕ)B ⊆ cl(ϕ). BBB is called elementary if:

(1) BBB is consistent w.r.t. propositional logic

if ψ ∈ Bψ ∈ Bψ ∈ B then ¬ψ /∈ B¬ψ /∈ B¬ψ /∈ Bif ψ1 ∧ ψ2 ∈ Bψ1 ∧ ψ2 ∈ Bψ1 ∧ ψ2 ∈ B then ¬ψ1 /∈ B¬ψ1 /∈ B¬ψ1 /∈ B and ¬ψ2 /∈ B¬ψ2 /∈ B¬ψ2 /∈ Bif ψ1 ∈ Bψ1 ∈ Bψ1 ∈ B and ψ2 ∈ Bψ2 ∈ Bψ2 ∈ B then ¬(ψ1 ∧ ψ2) /∈ B¬(ψ1 ∧ ψ2) /∈ B¬(ψ1 ∧ ψ2) /∈ Bif false ∈ cl(ϕ)false ∈ cl(ϕ)false ∈ cl(ϕ) then false /∈ Bfalse /∈ Bfalse /∈ B

(2) BBB is maximal consistent

if ψ ∈ cl(ϕ) \ Bψ ∈ cl(ϕ) \ Bψ ∈ cl(ϕ) \ B then ¬ψ ∈ B¬ψ ∈ B¬ψ ∈ B

(3) BBB is locally consistent with respect to until UUU:

if ψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ B and ¬ψ2 ∈ B¬ψ2 ∈ B¬ψ2 ∈ B then ¬ψ1 �∈ B¬ψ1 �∈ B¬ψ1 �∈ B

136 / 527

Page 137: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Elementary formula-sets ltlmc3.2-50

Let B ⊆ cl(ϕ)B ⊆ cl(ϕ)B ⊆ cl(ϕ). BBB is called elementary if:

(1) BBB is consistent w.r.t. propositional logic

if ψ ∈ Bψ ∈ Bψ ∈ B then ¬ψ /∈ B¬ψ /∈ B¬ψ /∈ Bif ψ1 ∧ ψ2 ∈ Bψ1 ∧ ψ2 ∈ Bψ1 ∧ ψ2 ∈ B then ¬ψ1 /∈ B¬ψ1 /∈ B¬ψ1 /∈ B and ¬ψ2 /∈ B¬ψ2 /∈ B¬ψ2 /∈ Bif ψ1 ∈ Bψ1 ∈ Bψ1 ∈ B and ψ2 ∈ Bψ2 ∈ Bψ2 ∈ B then ¬(ψ1 ∧ ψ2) /∈ B¬(ψ1 ∧ ψ2) /∈ B¬(ψ1 ∧ ψ2) /∈ Bif false ∈ cl(ϕ)false ∈ cl(ϕ)false ∈ cl(ϕ) then false /∈ Bfalse /∈ Bfalse /∈ B

(2) BBB is maximal consistent

if ψ ∈ cl(ϕ) \ Bψ ∈ cl(ϕ) \ Bψ ∈ cl(ϕ) \ B then ¬ψ ∈ B¬ψ ∈ B¬ψ ∈ B

(3) BBB is locally consistent with respect to until UUU:

if ψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ B and ¬ψ2 ∈ B¬ψ2 ∈ B¬ψ2 ∈ B then ¬ψ1 �∈ B¬ψ1 �∈ B¬ψ1 �∈ B

if ψ2 ∈ Bψ2 ∈ Bψ2 ∈ B and ψ1 Uψ2 ∈ cl(ϕ)ψ1 Uψ2 ∈ cl(ϕ)ψ1 Uψ2 ∈ cl(ϕ) then ¬(ψ1 Uψ2) /∈ B¬(ψ1 Uψ2) /∈ B¬(ψ1 Uψ2) /∈ B137 / 527

Page 138: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Elementary formula-sets ltlmc3.2-50a

B ⊆ cl(ϕ)B ⊆ cl(ϕ)B ⊆ cl(ϕ) is elementary iff:

(i) BBB is maximal consistent w.r.t. prop. logic,i.e., if ψψψ, ψ1 ∧ ψ2 ∈ cl(ϕ)ψ1 ∧ ψ2 ∈ cl(ϕ)ψ1 ∧ ψ2 ∈ cl(ϕ) then:

ψ �∈ Bψ �∈ Bψ �∈ B iff ¬ψ ∈ B¬ψ ∈ B¬ψ ∈ B

ψ1 ∧ ψ2 ∈ Bψ1 ∧ ψ2 ∈ Bψ1 ∧ ψ2 ∈ B iff ψ1 ∈ Bψ1 ∈ Bψ1 ∈ B and ψ2 ∈ Bψ2 ∈ Bψ2 ∈ B

true ∈ cl(ϕ)true ∈ cl(ϕ)true ∈ cl(ϕ) implies true ∈ Btrue ∈ Btrue ∈ B

(ii) BBB is locally consistent with respect to until UUU,i.e., if ψ1 Uψ2 ∈ cl(ϕ)ψ1 Uψ2 ∈ cl(ϕ)ψ1 Uψ2 ∈ cl(ϕ) then:

if ψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ B and ψ2 �∈ Bψ2 �∈ Bψ2 �∈ B then ψ1 ∈ Bψ1 ∈ Bψ1 ∈ B

if ψ2 ∈ Bψ2 ∈ Bψ2 ∈ B then ψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ B138 / 527

Page 139: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Elementary or not? ltlmc3.2-49

Let ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b).

B1 = {a, b,¬a ∧ b, ϕ}B1 = {a, b,¬a ∧ b, ϕ}B1 = {a, b,¬a ∧ b, ϕ}

139 / 527

Page 140: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Elementary or not? ltlmc3.2-49

Let ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b).

B1 = {a, b,¬a ∧ b, ϕ}B1 = {a, b,¬a ∧ b, ϕ}B1 = {a, b,¬a ∧ b, ϕ} not elementarypropositional inconsistent

140 / 527

Page 141: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Elementary or not? ltlmc3.2-49

Let ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b).

B1 = {a, b,¬a ∧ b, ϕ}B1 = {a, b,¬a ∧ b, ϕ}B1 = {a, b,¬a ∧ b, ϕ} not elementarypropositional inconsistent

B2 = {¬a, b, ϕ}B2 = {¬a, b, ϕ}B2 = {¬a, b, ϕ}

141 / 527

Page 142: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Elementary or not? ltlmc3.2-49

Let ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b).

B1 = {a, b,¬a ∧ b, ϕ}B1 = {a, b,¬a ∧ b, ϕ}B1 = {a, b,¬a ∧ b, ϕ} not elementarypropositional inconsistent

B2 = {¬a, b, ϕ}B2 = {¬a, b, ϕ}B2 = {¬a, b, ϕ} not elementary, not maximalas ¬a ∧ b �∈ B2¬a ∧ b �∈ B2¬a ∧ b �∈ B2

¬(¬a ∧ b) �∈ B2¬(¬a ∧ b) �∈ B2¬(¬a ∧ b) �∈ B2

142 / 527

Page 143: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Elementary or not? ltlmc3.2-49

Let ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b).

B1 = {a, b,¬a ∧ b, ϕ}B1 = {a, b,¬a ∧ b, ϕ}B1 = {a, b,¬a ∧ b, ϕ} not elementarypropositional inconsistent

B2 = {¬a, b, ϕ}B2 = {¬a, b, ϕ}B2 = {¬a, b, ϕ} not elementary, not maximalas ¬a ∧ b �∈ B2¬a ∧ b �∈ B2¬a ∧ b �∈ B2

¬(¬a ∧ b) �∈ B2¬(¬a ∧ b) �∈ B2¬(¬a ∧ b) �∈ B2

B3 = {¬a, b,¬a ∧ b,¬ϕ}B3 = {¬a, b,¬a ∧ b,¬ϕ}B3 = {¬a, b,¬a ∧ b,¬ϕ}

143 / 527

Page 144: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Elementary or not? ltlmc3.2-49

Let ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b).

B1 = {a, b,¬a ∧ b, ϕ}B1 = {a, b,¬a ∧ b, ϕ}B1 = {a, b,¬a ∧ b, ϕ} not elementarypropositional inconsistent

B2 = {¬a, b, ϕ}B2 = {¬a, b, ϕ}B2 = {¬a, b, ϕ} not elementary, not maximalas ¬a ∧ b �∈ B2¬a ∧ b �∈ B2¬a ∧ b �∈ B2

¬(¬a ∧ b) �∈ B2¬(¬a ∧ b) �∈ B2¬(¬a ∧ b) �∈ B2

B3 = {¬a, b,¬a ∧ b,¬ϕ}B3 = {¬a, b,¬a ∧ b,¬ϕ}B3 = {¬a, b,¬a ∧ b,¬ϕ} not elementarynot locally consistent for UUU

144 / 527

Page 145: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Elementary or not? ltlmc3.2-49

Let ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b).

B1 = {a, b,¬a ∧ b, ϕ}B1 = {a, b,¬a ∧ b, ϕ}B1 = {a, b,¬a ∧ b, ϕ} not elementarypropositional inconsistent

B2 = {¬a, b, ϕ}B2 = {¬a, b, ϕ}B2 = {¬a, b, ϕ} not elementary, not maximalas ¬a ∧ b �∈ B2¬a ∧ b �∈ B2¬a ∧ b �∈ B2

¬(¬a ∧ b) �∈ B2¬(¬a ∧ b) �∈ B2¬(¬a ∧ b) �∈ B2

B3 = {¬a, b,¬a ∧ b,¬ϕ}B3 = {¬a, b,¬a ∧ b,¬ϕ}B3 = {¬a, b,¬a ∧ b,¬ϕ} not elementarynot locally consistent for UUU

B4 = {¬a,¬b,¬(¬a ∧ b),¬ϕ}B4 = {¬a,¬b,¬(¬a ∧ b),¬ϕ}B4 = {¬a,¬b,¬(¬a ∧ b),¬ϕ}

145 / 527

Page 146: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Elementary or not? ltlmc3.2-49

Let ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b).

B1 = {a, b,¬a ∧ b, ϕ}B1 = {a, b,¬a ∧ b, ϕ}B1 = {a, b,¬a ∧ b, ϕ} not elementarypropositional inconsistent

B2 = {¬a, b, ϕ}B2 = {¬a, b, ϕ}B2 = {¬a, b, ϕ} not elementary, not maximalas ¬a ∧ b �∈ B2¬a ∧ b �∈ B2¬a ∧ b �∈ B2

¬(¬a ∧ b) �∈ B2¬(¬a ∧ b) �∈ B2¬(¬a ∧ b) �∈ B2

B3 = {¬a, b,¬a ∧ b,¬ϕ}B3 = {¬a, b,¬a ∧ b,¬ϕ}B3 = {¬a, b,¬a ∧ b,¬ϕ} not elementarynot locally consistent for UUU

B4 = {¬a,¬b,¬(¬a ∧ b),¬ϕ}B4 = {¬a,¬b,¬(¬a ∧ b),¬ϕ}B4 = {¬a,¬b,¬(¬a ∧ b),¬ϕ} elementary

146 / 527

Page 147: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: elementary formula-sets ltlmc3.2-51

closure cl(ϕ)cl(ϕ)cl(ϕ):• set of all subformulas of ϕϕϕ and their negations• ψψψ and ¬¬ψ¬¬ψ¬¬ψ are identified

elementary formula-sets: subsets BBB of cl(ϕ)cl(ϕ)cl(ϕ)• maximal consistent w.r.t. propositional logic• locally consistent w.r.t. UUU

For ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b), the elementary sets are:

{ a, b,¬(¬a ∧ b), ϕ}{ a, b,¬(¬a ∧ b), ϕ}{ a, b,¬(¬a ∧ b), ϕ}{ a,¬b,¬(¬a ∧ b), ϕ}{ a,¬b,¬(¬a ∧ b), ϕ}{ a,¬b,¬(¬a ∧ b), ϕ}{¬a, b, ¬a ∧ b , ϕ}{¬a, b, ¬a ∧ b , ϕ}{¬a, b, ¬a ∧ b , ϕ}

{ a, b,¬(¬a ∧ b),¬ϕ}{ a, b,¬(¬a ∧ b),¬ϕ}{ a, b,¬(¬a ∧ b),¬ϕ}{ a,¬b,¬(¬a ∧ b),¬ϕ}{ a,¬b,¬(¬a ∧ b),¬ϕ}{ a,¬b,¬(¬a ∧ b),¬ϕ}{¬a,¬b,¬(¬a ∧ b),¬ϕ}{¬a,¬b,¬(¬a ∧ b),¬ϕ}{¬a,¬b,¬(¬a ∧ b),¬ϕ}

147 / 527

Page 148: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy

idea: encode the semantics of the operators appearingin ϕϕϕ by appropriate components of the GNBA GGG:

semantics of ... encoding

propositional logictruetruetrue, ¬¬¬, ∧∧∧ in the states

next©©© in the transition relation

until UUU expansion law, least fixed point

ψ1 Uψ2ψ1 Uψ2ψ1 Uψ2 ≡≡≡ ψ2 ∨ (ψ1 ∧©(ψ1 Uψ2))ψ2 ∨ (ψ1 ∧©(ψ1 Uψ2))ψ2 ∨ (ψ1 ∧©(ψ1 Uψ2))���

↖↖↖↗↗↗ ↑↑↑encoded inthe states

encoded in thetransition relation

acceptancecondition

148 / 527

Page 149: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy

idea: encode the semantics of the operators appearingin ϕϕϕ by appropriate components of the GNBA GGG:

semantics of ... encoding

propositional logictruetruetrue, ¬¬¬, ∧∧∧ in the states ←−←−←− elementary

formula sets

next©©© in the transition relation

until UUU expansion law, least fixed point

ψ1 Uψ2ψ1 Uψ2ψ1 Uψ2 ≡≡≡ ψ2 ∨ (ψ1 ∧©(ψ1 Uψ2))ψ2 ∨ (ψ1 ∧©(ψ1 Uψ2))ψ2 ∨ (ψ1 ∧©(ψ1 Uψ2))���

↖↖↖↗↗↗ ↑↑↑elementaryformula sets

encoded in thetransition relation

acceptancecondition

149 / 527

Page 150: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

GNBA for LTL-formula ϕϕϕ ltlmc3.2-57

150 / 527

Page 151: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

GNBA for LTL-formula ϕϕϕ ltlmc3.2-57

G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F)

151 / 527

Page 152: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

GNBA for LTL-formula ϕϕϕ ltlmc3.2-57

G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F)

state space: QQQ ==={B ⊆ cl(ϕ) : B

{B ⊆ cl(ϕ) : B

{B ⊆ cl(ϕ) : B is elementary

}}}

152 / 527

Page 153: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

GNBA for LTL-formula ϕϕϕ ltlmc3.2-57

G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F)

state space: QQQ ==={B ⊆ cl(ϕ) : B

{B ⊆ cl(ϕ) : B

{B ⊆ cl(ϕ) : B is elementary

}}}initial states: Q0Q0Q0 ===

{B ∈ Q : ϕ ∈ B

}{B ∈ Q : ϕ ∈ B

}{B ∈ Q : ϕ ∈ B

}

153 / 527

Page 154: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

GNBA for LTL-formula ϕϕϕ ltlmc3.2-57

G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F)

state space: QQQ ==={B ⊆ cl(ϕ) : B

{B ⊆ cl(ϕ) : B

{B ⊆ cl(ϕ) : B is elementary

}}}initial states: Q0Q0Q0 ===

{B ∈ Q : ϕ ∈ B

}{B ∈ Q : ϕ ∈ B

}{B ∈ Q : ϕ ∈ B

}transition relation: for B ∈ QB ∈ QB ∈ Q and A ∈ 2APA ∈ 2APA ∈ 2AP :

if A �= B ∩ APA �= B ∩ APA �= B ∩ AP then δ(B,A) = ∅δ(B ,A) = ∅δ(B ,A) = ∅

154 / 527

Page 155: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

GNBA for LTL-formula ϕϕϕ ltlmc3.2-57

G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F)

state space: QQQ ==={B ⊆ cl(ϕ) : B

{B ⊆ cl(ϕ) : B

{B ⊆ cl(ϕ) : B is elementary

}}}initial states: Q0Q0Q0 ===

{B ∈ Q : ϕ ∈ B

}{B ∈ Q : ϕ ∈ B

}{B ∈ Q : ϕ ∈ B

}transition relation: for B ∈ QB ∈ QB ∈ Q and A ∈ 2APA ∈ 2APA ∈ 2AP :

if A �= B ∩ APA �= B ∩ APA �= B ∩ AP then δ(B,A) = ∅δ(B ,A) = ∅δ(B ,A) = ∅

if A = B ∩ APA = B ∩ APA = B ∩ AP then δ(B,A) =δ(B ,A) =δ(B ,A) = set of all B ′ ∈ QB ′ ∈ QB ′ ∈ Q s.t.

©ψ ∈ B©ψ ∈ B©ψ ∈ B iff ψ ∈ B ′ψ ∈ B ′ψ ∈ B ′

ψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ B iff (ψ2 ∈ B) ∨ (ψ1 ∈ B ∧ ψ1 Uψ2 ∈ B ′)(ψ2 ∈ B) ∨ (ψ1 ∈ B ∧ ψ1 Uψ2 ∈ B ′)(ψ2 ∈ B) ∨ (ψ1 ∈ B ∧ ψ1 Uψ2 ∈ B ′)

155 / 527

Page 156: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

GNBA for LTL-formula ϕϕϕ ltlmc3.2-57

G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F)

state space: QQQ ==={B ⊆ cl(ϕ) : B

{B ⊆ cl(ϕ) : B

{B ⊆ cl(ϕ) : B is elementary

}}}initial states: Q0Q0Q0 ===

{B ∈ Q : ϕ ∈ B

}{B ∈ Q : ϕ ∈ B

}{B ∈ Q : ϕ ∈ B

}transition relation: for B ∈ QB ∈ QB ∈ Q and A ∈ 2APA ∈ 2APA ∈ 2AP :

if A �= B ∩ APA �= B ∩ APA �= B ∩ AP then δ(B,A) = ∅δ(B ,A) = ∅δ(B ,A) = ∅

if A = B ∩ APA = B ∩ APA = B ∩ AP then δ(B,A) =δ(B ,A) =δ(B ,A) = set of all B ′ ∈ QB ′ ∈ QB ′ ∈ Q s.t.

©ψ ∈ B©ψ ∈ B©ψ ∈ B iff ψ ∈ B ′ψ ∈ B ′ψ ∈ B ′

ψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ B iff (ψ2 ∈ B) ∨ (ψ1 ∈ B ∧ ψ1 Uψ2 ∈ B ′)(ψ2 ∈ B) ∨ (ψ1 ∈ B ∧ ψ1 Uψ2 ∈ B ′)(ψ2 ∈ B) ∨ (ψ1 ∈ B ∧ ψ1 Uψ2 ∈ B ′)

acceptance set F ={Fψ1 Uψ2

: ψ1 Uψ2 ∈ cl(ϕ)}

F ={F ψ1 Uψ2 : ψ1 Uψ2 ∈ cl(ϕ)

}F =

{F ψ1 Uψ2

: ψ1 Uψ2 ∈ cl(ϕ)}

156 / 527

Page 157: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

GNBA for LTL-formula ϕϕϕ ltlmc3.2-57

G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F)

state space: QQQ ==={B ⊆ cl(ϕ) : B

{B ⊆ cl(ϕ) : B

{B ⊆ cl(ϕ) : B is elementary

}}}initial states: Q0Q0Q0 ===

{B ∈ Q : ϕ ∈ B

}{B ∈ Q : ϕ ∈ B

}{B ∈ Q : ϕ ∈ B

}transition relation: for B ∈ QB ∈ QB ∈ Q and A ∈ 2APA ∈ 2APA ∈ 2AP :

if A �= B ∩ APA �= B ∩ APA �= B ∩ AP then δ(B,A) = ∅δ(B ,A) = ∅δ(B ,A) = ∅

if A = B ∩ APA = B ∩ APA = B ∩ AP then δ(B,A) =δ(B ,A) =δ(B ,A) = set of all B ′ ∈ QB ′ ∈ QB ′ ∈ Q s.t.

©ψ ∈ B©ψ ∈ B©ψ ∈ B iff ψ ∈ B ′ψ ∈ B ′ψ ∈ B ′

ψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ B iff (ψ2 ∈ B) ∨ (ψ1 ∈ B ∧ ψ1 Uψ2 ∈ B ′)(ψ2 ∈ B) ∨ (ψ1 ∈ B ∧ ψ1 Uψ2 ∈ B ′)(ψ2 ∈ B) ∨ (ψ1 ∈ B ∧ ψ1 Uψ2 ∈ B ′)

acceptance set F ={Fψ1 Uψ2

: ψ1 Uψ2 ∈ cl(ϕ)}

F ={F ψ1 Uψ2 : ψ1 Uψ2 ∈ cl(ϕ)

}F =

{F ψ1 Uψ2

: ψ1 Uψ2 ∈ cl(ϕ)}

where Fψ1 Uψ2=

{B ∈ Q : ψ1 Uψ2 /∈ B ∨ ψ2 ∈ B

}F ψ1 Uψ2

={B ∈ Q : ψ1 Uψ2 /∈ B ∨ ψ2 ∈ B

}Fψ1 Uψ2

={B ∈ Q : ψ1 Uψ2 /∈ B ∨ ψ2 ∈ B

}157 / 527

Page 158: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: GNBA for ϕ =©aϕ =©aϕ =©a ltlmc3.2-52

158 / 527

Page 159: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: GNBA for ϕ =©aϕ =©aϕ =©a ltlmc3.2-52

a,©aa,©aa,©a a,¬©aa,¬©aa,¬©a

¬a,©a¬a,©a¬a,©a ¬a,¬©a¬a,¬©a¬a,¬©a

159 / 527

Page 160: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: GNBA for ϕ =©aϕ =©aϕ =©a ltlmc3.2-52

a,©aa,©aa,©a a,¬©aa,¬©aa,¬©a

¬a,©a¬a,©a¬a,©a ¬a,¬©a¬a,¬©a¬a,¬©a

initial states: formula-sets BBB with©a ∈ B©a ∈ B©a ∈ B

160 / 527

Page 161: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: GNBA for ϕ =©aϕ =©aϕ =©a ltlmc3.2-52

a,©aa,©aa,©a a,¬©aa,¬©aa,¬©a

¬a,©a¬a,©a¬a,©a ¬a,¬©a¬a,¬©a¬a,¬©a

initial states: formula-sets BBB with©a ∈ B©a ∈ B©a ∈ B

transition relation:

if©a ∈ B©a ∈ B©a ∈ B then δ(B ,B ∩ {a}) = {B ′ : a ∈ B ′}δ(B ,B ∩ {a}) = {B ′ : a ∈ B ′}δ(B,B ∩ {a}) = {B ′ : a ∈ B ′}

161 / 527

Page 162: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: GNBA for ϕ =©aϕ =©aϕ =©a ltlmc3.2-52

a,©aa,©aa,©a a,¬©aa,¬©aa,¬©a

¬a,©a¬a,©a¬a,©a ¬a,¬©a¬a,¬©a¬a,¬©a

aaaaaa

initial states: formula-sets BBB with©a ∈ B©a ∈ B©a ∈ B

transition relation:

if©a ∈ B©a ∈ B©a ∈ B then δ(B ,B ∩ {a}) = {B ′ : a ∈ B ′}δ(B ,B ∩ {a}) = {B ′ : a ∈ B ′}δ(B,B ∩ {a}) = {B ′ : a ∈ B ′}

162 / 527

Page 163: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: GNBA for ϕ =©aϕ =©aϕ =©a ltlmc3.2-52

a,©aa,©aa,©a a,¬©aa,¬©aa,¬©a

¬a,©a¬a,©a¬a,©a ¬a,¬©a¬a,¬©a¬a,¬©a

aaaaaa

¬a¬a¬a

¬a¬a¬a

initial states: formula-sets BBB with©a ∈ B©a ∈ B©a ∈ B

transition relation:

if©a ∈ B©a ∈ B©a ∈ B then δ(B ,B ∩ {a}) = {B ′ : a ∈ B ′}δ(B ,B ∩ {a}) = {B ′ : a ∈ B ′}δ(B,B ∩ {a}) = {B ′ : a ∈ B ′}

163 / 527

Page 164: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: GNBA for ϕ =©aϕ =©aϕ =©a ltlmc3.2-52

a,©aa,©aa,©a a,¬©aa,¬©aa,¬©a

¬a,©a¬a,©a¬a,©a ¬a,¬©a¬a,¬©a¬a,¬©a

aaaaaa

¬a¬a¬a

¬a¬a¬a

initial states: formula-sets BBB with©a ∈ B©a ∈ B©a ∈ B

transition relation:

if©a ∈ B©a ∈ B©a ∈ B then δ(B ,B ∩ {a}) = {B ′ : a ∈ B ′}δ(B ,B ∩ {a}) = {B ′ : a ∈ B ′}δ(B,B ∩ {a}) = {B ′ : a ∈ B ′}if©a /∈ B©a /∈ B©a /∈ B then δ(B ,B ∩ {a}) = {B ′ : a �∈ B ′}δ(B ,B ∩ {a}) = {B ′ : a �∈ B ′}δ(B,B ∩ {a}) = {B ′ : a �∈ B ′}

164 / 527

Page 165: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: GNBA for ϕ =©aϕ =©aϕ =©a ltlmc3.2-52

a,©aa,©aa,©a a,¬©aa,¬©aa,¬©a

¬a,©a¬a,©a¬a,©a ¬a,¬©a¬a,¬©a¬a,¬©a

aaaaaa

aaa¬a¬a¬a

¬a¬a¬a

aaa

initial states: formula-sets BBB with©a ∈ B©a ∈ B©a ∈ B

transition relation:

if©a ∈ B©a ∈ B©a ∈ B then δ(B ,B ∩ {a}) = {B ′ : a ∈ B ′}δ(B ,B ∩ {a}) = {B ′ : a ∈ B ′}δ(B,B ∩ {a}) = {B ′ : a ∈ B ′}if©a /∈ B©a /∈ B©a /∈ B then δ(B ,B ∩ {a}) = {B ′ : a �∈ B ′}δ(B ,B ∩ {a}) = {B ′ : a �∈ B ′}δ(B,B ∩ {a}) = {B ′ : a �∈ B ′}

165 / 527

Page 166: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: GNBA for ϕ =©aϕ =©aϕ =©a ltlmc3.2-52

a,©aa,©aa,©a a,¬©aa,¬©aa,¬©a

¬a,©a¬a,©a¬a,©a ¬a,¬©a¬a,¬©a¬a,¬©a

aaa

¬a¬a¬a

aaa

aaa

¬a¬a¬a

¬a¬a¬a

¬a¬a¬a

aaa

initial states: formula-sets BBB with©a ∈ B©a ∈ B©a ∈ B

transition relation:

if©a ∈ B©a ∈ B©a ∈ B then δ(B ,B ∩ {a}) = {B ′ : a ∈ B ′}δ(B ,B ∩ {a}) = {B ′ : a ∈ B ′}δ(B,B ∩ {a}) = {B ′ : a ∈ B ′}if©a /∈ B©a /∈ B©a /∈ B then δ(B ,B ∩ {a}) = {B ′ : a �∈ B ′}δ(B ,B ∩ {a}) = {B ′ : a �∈ B ′}δ(B,B ∩ {a}) = {B ′ : a �∈ B ′}

166 / 527

Page 167: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: GNBA for ϕ =©aϕ =©aϕ =©a ltlmc3.2-53

a,©aa,©aa,©a a,¬©aa,¬©aa,¬©a

¬a,©a¬a,©a¬a,©a ¬a,¬©a¬a,¬©a¬a,¬©a

¬a¬a¬a

aaaaaa

¬a¬a¬a

aaa

¬a¬a¬a

¬a¬a¬a

aaa

set of acceptance sets:

167 / 527

Page 168: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: GNBA for ϕ =©aϕ =©aϕ =©a ltlmc3.2-53

a,©aa,©aa,©a a,¬©aa,¬©aa,¬©a

¬a,©a¬a,©a¬a,©a ¬a,¬©a¬a,¬©a¬a,¬©a

¬a¬a¬a

aaaaaa

¬a¬a¬a

aaa

¬a¬a¬a

¬a¬a¬a

aaa

set of acceptance sets: F = ∅F = ∅F = ∅

hence: all words having an infinite run are accepted

168 / 527

Page 169: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: GNBA for ϕ =©aϕ =©aϕ =©a ltlmc3.2-53

a,©aa,©aa,©a a,¬©aa,¬©aa,¬©a

¬a,©a¬a,©a¬a,©a ¬a,¬©a¬a,¬©a¬a,¬©a

¬a¬a¬a

aaaaaa

¬a¬a¬a

aaa

¬a¬a¬a

¬a¬a¬a

aaa

set of acceptance sets: F = ∅F = ∅F = ∅

∅∅∅ {a}{a}{a} {a}{a}{a} ∅∅∅ ∅∅∅ . . .. . .. . . |= ©a|= ©a|= ©a

169 / 527

Page 170: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: GNBA for ϕ =©aϕ =©aϕ =©a ltlmc3.2-53

a,©aa,©aa,©a a,¬©aa,¬©aa,¬©a

¬a,©a¬a,©a¬a,©a ¬a,¬©a¬a,¬©a¬a,¬©a

¬a¬a¬a

aaaaaa

¬a¬a¬a

aaa

¬a¬a¬a

¬a¬a¬a

aaa

set of acceptance sets: F = ∅F = ∅F = ∅

∅∅∅

↓↓↓¬a¬a¬a©a©a©a

{a}{a}{a} {a}{a}{a} ∅∅∅ ∅∅∅ . . .. . .. . . |= ©a|= ©a|= ©a

170 / 527

Page 171: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: GNBA for ϕ =©aϕ =©aϕ =©a ltlmc3.2-53

a,©aa,©aa,©a a,¬©aa,¬©aa,¬©a

¬a,©a¬a,©a¬a,©a ¬a,¬©a¬a,¬©a¬a,¬©a

¬a¬a¬a

aaaaaa

¬a¬a¬a

aaa

¬a¬a¬a

¬a¬a¬a

aaa

set of acceptance sets: F = ∅F = ∅F = ∅

∅∅∅

↓↓↓¬a¬a¬a©a©a©a

{a}{a}{a}↓↓↓aaa

©a©a©a

{a}{a}{a} ∅∅∅ ∅∅∅ . . .. . .. . . |= ©a|= ©a|= ©a

171 / 527

Page 172: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: GNBA for ϕ =©aϕ =©aϕ =©a ltlmc3.2-53

a,©aa,©aa,©a a,¬©aa,¬©aa,¬©a

¬a,©a¬a,©a¬a,©a ¬a,¬©a¬a,¬©a¬a,¬©a

¬a¬a¬a

aaaaaa

¬a¬a¬a

aaa

¬a¬a¬a

¬a¬a¬a

aaa

set of acceptance sets: F = ∅F = ∅F = ∅

∅∅∅

↓↓↓¬a¬a¬a©a©a©a

{a}{a}{a}↓↓↓aaa

©a©a©a

{a}{a}{a} ∅∅∅

↓↓↓aaa

©a©a©a

∅∅∅ . . .. . .. . . |= ©a|= ©a|= ©a

172 / 527

Page 173: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: GNBA for ϕ =©aϕ =©aϕ =©a ltlmc3.2-53

a,©aa,©aa,©a a,¬©aa,¬©aa,¬©a

¬a,©a¬a,©a¬a,©a ¬a,¬©a¬a,¬©a¬a,¬©a

¬a¬a¬a

aaaaaa

¬a¬a¬a

aaa

¬a¬a¬a

¬a¬a¬a

aaa

set of acceptance sets: F = ∅F = ∅F = ∅

∅∅∅

↓↓↓¬a¬a¬a©a©a©a

{a}{a}{a}↓↓↓aaa

©a©a©a

{a}{a}{a} ∅∅∅

↓↓↓aaa

©a©a©a

∅∅∅ . . .. . .. . .↓↓↓¬a¬a¬a

©a©a©a

|= ©a|= ©a|= ©a

173 / 527

Page 174: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: GNBA for ϕ =©aϕ =©aϕ =©a ltlmc3.2-53

a,©aa,©aa,©a a,¬©aa,¬©aa,¬©a

¬a,©a¬a,©a¬a,©a ¬a,¬©a¬a,¬©a¬a,¬©a

¬a¬a¬a

aaaaaa

¬a¬a¬a

aaa

¬a¬a¬a

¬a¬a¬a

aaa

set of acceptance sets: F = ∅F = ∅F = ∅

∅∅∅

↓↓↓¬a¬a¬a©a©a©a

{a}{a}{a}↓↓↓aaa

©a©a©a

{a}{a}{a} ∅∅∅

↓↓↓aaa

©a©a©a

∅∅∅ . . .. . .. . .↓↓↓¬a¬a¬a

©a©a©a. . .. . .. . .

|= ©a|= ©a|= ©a

acceptingrun

174 / 527

Page 175: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Soundness of the GNBA for ϕ =©aϕ =©aϕ =©a ltlmc3.2-53a

a,©aa,©aa,©a a,¬©aa,¬©aa,¬©a

¬a,©a¬a,©a¬a,©a ¬a,¬©a¬a,¬©a¬a,¬©a

{a}{a}{a}

∅∅∅

{a}{a}{a}

{a}{a}{a}

∅∅∅

∅∅∅

∅∅∅

{a}{a}{a}

for all words σ = A0 A1 A2 A3 . . . ∈ Lω(G)σ = A0 A1 A2 A3 . . . ∈ Lω(G)σ = A0 A1 A2 A3 . . . ∈ Lω(G): A1 = {a}A1 = {a}A1 = {a}

175 / 527

Page 176: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Soundness of the GNBA for ϕ =©aϕ =©aϕ =©a ltlmc3.2-53a

a,©aa,©aa,©a a,¬©aa,¬©aa,¬©a

¬a,©a¬a,©a¬a,©a ¬a,¬©a¬a,¬©a¬a,¬©a

{a}{a}{a}

∅∅∅

{a}{a}{a}

{a}{a}{a}

∅∅∅

∅∅∅

∅∅∅

{a}{a}{a}

for all words σ = A0 A1 A2 A3 . . . ∈ Lω(G)σ = A0 A1 A2 A3 . . . ∈ Lω(G)σ = A0 A1 A2 A3 . . . ∈ Lω(G): A1 = {a}A1 = {a}A1 = {a}proof:

176 / 527

Page 177: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Soundness of the GNBA for ϕ =©aϕ =©aϕ =©a ltlmc3.2-53a

a,©aa,©aa,©a a,¬©aa,¬©aa,¬©a

¬a,©a¬a,©a¬a,©a ¬a,¬©a¬a,¬©a¬a,¬©a

{a}{a}{a}

∅∅∅

{a}{a}{a}

{a}{a}{a}

∅∅∅

∅∅∅

∅∅∅

{a}{a}{a}

for all words σ = A0 A1 A2 A3 . . . ∈ Lω(G)σ = A0 A1 A2 A3 . . . ∈ Lω(G)σ = A0 A1 A2 A3 . . . ∈ Lω(G): A1 = {a}A1 = {a}A1 = {a}proof: Let B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . be an accepting run for σσσ.

177 / 527

Page 178: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Soundness of the GNBA for ϕ =©aϕ =©aϕ =©a ltlmc3.2-53a

a,©aa,©aa,©a a,¬©aa,¬©aa,¬©a

¬a,©a¬a,©a¬a,©a ¬a,¬©a¬a,¬©a¬a,¬©a

{a}{a}{a}

∅∅∅

{a}{a}{a}

{a}{a}{a}

∅∅∅

∅∅∅

∅∅∅

{a}{a}{a}

for all words σ = A0 A1 A2 A3 . . . ∈ Lω(G)σ = A0 A1 A2 A3 . . . ∈ Lω(G)σ = A0 A1 A2 A3 . . . ∈ Lω(G): A1 = {a}A1 = {a}A1 = {a}proof: Let B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . be an accepting run for σσσ.

=⇒=⇒=⇒ ©a ∈ B0©a ∈ B0©a ∈ B0

178 / 527

Page 179: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Soundness of the GNBA for ϕ =©aϕ =©aϕ =©a ltlmc3.2-53a

a,©aa,©aa,©a a,¬©aa,¬©aa,¬©a

¬a,©a¬a,©a¬a,©a ¬a,¬©a¬a,¬©a¬a,¬©a

{a}{a}{a}

∅∅∅

{a}{a}{a}

{a}{a}{a}

∅∅∅

∅∅∅

∅∅∅

{a}{a}{a}

for all words σ = A0 A1 A2 A3 . . . ∈ Lω(G)σ = A0 A1 A2 A3 . . . ∈ Lω(G)σ = A0 A1 A2 A3 . . . ∈ Lω(G): A1 = {a}A1 = {a}A1 = {a}proof: Let B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . be an accepting run for σσσ.

=⇒=⇒=⇒ ©a ∈ B0©a ∈ B0©a ∈ B0 and therefore a ∈ B1a ∈ B1a ∈ B1

179 / 527

Page 180: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Soundness of the GNBA for ϕ =©aϕ =©aϕ =©a ltlmc3.2-53a

a,©aa,©aa,©a a,¬©aa,¬©aa,¬©a

¬a,©a¬a,©a¬a,©a ¬a,¬©a¬a,¬©a¬a,¬©a

{a}{a}{a}

∅∅∅

{a}{a}{a}

{a}{a}{a}

∅∅∅

∅∅∅

∅∅∅

{a}{a}{a}

for all words σ = A0 A1 A2 A3 . . . ∈ Lω(G)σ = A0 A1 A2 A3 . . . ∈ Lω(G)σ = A0 A1 A2 A3 . . . ∈ Lω(G): A1 = {a}A1 = {a}A1 = {a}proof: Let B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . be an accepting run for σσσ.

=⇒=⇒=⇒ ©a ∈ B0©a ∈ B0©a ∈ B0 and therefore a ∈ B1a ∈ B1a ∈ B1

=⇒=⇒=⇒ the outgoing edges of B1B1B1 have label {a}{a}{a}

180 / 527

Page 181: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Soundness of the GNBA for ϕ =©aϕ =©aϕ =©a ltlmc3.2-53a

a,©aa,©aa,©a a,¬©aa,¬©aa,¬©a

¬a,©a¬a,©a¬a,©a ¬a,¬©a¬a,¬©a¬a,¬©a

{a}{a}{a}

∅∅∅

{a}{a}{a}

{a}{a}{a}

∅∅∅

∅∅∅

∅∅∅

{a}{a}{a}

for all words σ = A0 A1 A2 A3 . . . ∈ Lω(G)σ = A0 A1 A2 A3 . . . ∈ Lω(G)σ = A0 A1 A2 A3 . . . ∈ Lω(G): A1 = {a}A1 = {a}A1 = {a}proof: Let B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . be an accepting run for σσσ.

=⇒=⇒=⇒ ©a ∈ B0©a ∈ B0©a ∈ B0 and therefore a ∈ B1a ∈ B1a ∈ B1

=⇒=⇒=⇒ the outgoing edges of B1B1B1 have label {a}{a}{a}=⇒=⇒=⇒ {a} = B1 ∩ AP = A1{a} = B1 ∩ AP = A1{a} = B1 ∩ AP = A1

181 / 527

Page 182: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: GNBA for ϕ = a U bϕ = a U bϕ = a U b ltlmc3.2-54

182 / 527

Page 183: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: GNBA for ϕ = a U bϕ = a U bϕ = a U b ltlmc3.2-54

a, b, a U ba, b, a U ba, b, a U b ¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)

¬a, b, a U b¬a, b, a U b¬a, b, a U b

a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b, a U ba,¬b, a U ba,¬b, a U b

locally inconsistent: {a, b,¬(a U b)}{a, b,¬(a U b)}{a, b,¬(a U b)}{¬a, b,¬(a U b)}{¬a, b,¬(a U b)}{¬a, b,¬(a U b)}{¬a,¬b, a U b}{¬a,¬b, a U b}{¬a,¬b, a U b}

183 / 527

Page 184: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: GNBA for ϕ = a U bϕ = a U bϕ = a U b ltlmc3.2-54

a, b, a U ba, b, a U ba, b, a U b ¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)

¬a, b, a U b¬a, b, a U b¬a, b, a U b

a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b, a U ba,¬b, a U ba,¬b, a U b

initial states: BBB with ϕ = a U b ∈ Bϕ = a U b ∈ Bϕ = a U b ∈ B

184 / 527

Page 185: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: GNBA for ϕ = a U bϕ = a U bϕ = a U b ltlmc3.2-54

a, b, a U ba, b, a U ba, b, a U b ¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)

¬a, b, a U b¬a, b, a U b¬a, b, a U b

a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b, a U ba,¬b, a U ba,¬b, a U b

initial states: BBB with ϕ = a U b ∈ Bϕ = a U b ∈ Bϕ = a U b ∈ B

185 / 527

Page 186: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: GNBA for ϕ = a U bϕ = a U bϕ = a U b ltlmc3.2-54

a, b, a U ba, b, a U ba, b, a U b ¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)

¬a, b, a U b¬a, b, a U b¬a, b, a U b

a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b, a U ba,¬b, a U ba,¬b, a U b

initial states: BBB with ϕ = a U b ∈ Bϕ = a U b ∈ Bϕ = a U b ∈ B

acceptance condition: just one set of accept states

F =F =F = set of all BBB with ϕ �∈ Bϕ �∈ Bϕ �∈ B or b ∈ Bb ∈ Bb ∈ B

186 / 527

Page 187: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: GNBA for ϕ = a U bϕ = a U bϕ = a U b ←−←−←−NBA ltlmc3.2-54

a, b, a U ba, b, a U ba, b, a U b ¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)

¬a, b, a U b¬a, b, a U b¬a, b, a U b

a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b, a U ba,¬b, a U ba,¬b, a U b

initial states: BBB with ϕ = a U b ∈ Bϕ = a U b ∈ Bϕ = a U b ∈ B

acceptance condition: just one set of accept states

F =F =F = set of all BBB with ϕ �∈ Bϕ �∈ Bϕ �∈ B or b ∈ Bb ∈ Bb ∈ B

187 / 527

Page 188: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: (G)NBA for ϕ = a U bϕ = a U bϕ = a U b ltlmc3.2-54

a, b, a U ba, b, a U ba, b, a U b ¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)

¬a, b, a U b¬a, b, a U b¬a, b, a U b

a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b, a U ba,¬b, a U ba,¬b, a U b

initial states: BBB with ϕ = a U b ∈ Bϕ = a U b ∈ Bϕ = a U b ∈ B

acceptance condition: just one set of accept states

F =F =F = set of all BBB with ϕ �∈ Bϕ �∈ Bϕ �∈ B or b ∈ Bb ∈ Bb ∈ B

188 / 527

Page 189: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: (G)NBA for ϕ = a U bϕ = a U bϕ = a U b ltlmc3.2-54

a, b, a U ba, b, a U ba, b, a U b ¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)

¬a, b, a U b¬a, b, a U b¬a, b, a U b

a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b, a U ba,¬b, a U ba,¬b, a U b

transition relation: B ′ ∈ δ(B,B ∩ AP)B ′ ∈ δ(B ,B ∩ AP)B ′ ∈ δ(B,B ∩ AP) iff

a U b ∈ B ⇐⇒(b ∈ B ∨ ( a ∈ B ∧ a U b ∈ B ′ )

)a U b ∈ B ⇐⇒

(b ∈ B ∨ ( a ∈ B ∧ a U b ∈ B ′ )

)a U b ∈ B ⇐⇒

(b ∈ B ∨ ( a ∈ B ∧ a U b ∈ B ′ )

)189 / 527

Page 190: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: (G)NBA for ϕ = a U bϕ = a U bϕ = a U b ltlmc3.2-54

a, b, a U ba, b, a U ba, b, a U b ¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)

¬a, b, a U b¬a, b, a U b¬a, b, a U b

a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b, a U ba,¬b, a U ba,¬b, a U b

¬a ∧ b¬a ∧ b¬a ∧ b

¬a ∧ b¬a ∧ b¬a ∧ b

¬a ∧ b¬a ∧ b¬a ∧ b

transition relation: B ′ ∈ δ(B,B ∩ AP)B ′ ∈ δ(B ,B ∩ AP)B ′ ∈ δ(B,B ∩ AP) iff

a U b ∈ B ⇐⇒(b ∈ B ∨ ( a ∈ B ∧ a U b ∈ B ′ )

)a U b ∈ B ⇐⇒

(b ∈ B ∨ ( a ∈ B ∧ a U b ∈ B ′ )

)a U b ∈ B ⇐⇒

(b ∈ B ∨ ( a ∈ B ∧ a U b ∈ B ′ )

)190 / 527

Page 191: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: (G)NBA for ϕ = a U bϕ = a U bϕ = a U b ltlmc3.2-54

a, b, a U ba, b, a U ba, b, a U b ¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)

¬a, b, a U b¬a, b, a U b¬a, b, a U b

a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b, a U ba,¬b, a U ba,¬b, a U b

a ∧ ba ∧ ba ∧ ba ∧ ba ∧ ba ∧ b

transition relation: B ′ ∈ δ(B,B ∩ AP)B ′ ∈ δ(B ,B ∩ AP)B ′ ∈ δ(B,B ∩ AP) iff

a U b ∈ B ⇐⇒(b ∈ B ∨ ( a ∈ B ∧ a U b ∈ B ′ )

)a U b ∈ B ⇐⇒

(b ∈ B ∨ ( a ∈ B ∧ a U b ∈ B ′ )

)a U b ∈ B ⇐⇒

(b ∈ B ∨ ( a ∈ B ∧ a U b ∈ B ′ )

)191 / 527

Page 192: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: (G)NBA for ϕ = a U bϕ = a U bϕ = a U b ltlmc3.2-54

a, b, a U ba, b, a U ba, b, a U b ¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)

¬a, b, a U b¬a, b, a U b¬a, b, a U b

a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b, a U ba,¬b, a U ba,¬b, a U ba ∧ ¬ba ∧ ¬ba ∧ ¬b

transition relation: B ′ ∈ δ(B,B ∩ AP)B ′ ∈ δ(B ,B ∩ AP)B ′ ∈ δ(B,B ∩ AP) iff

a U b ∈ B ⇐⇒(b ∈ B ∨ ( a ∈ B ∧ a U b ∈ B ′ )

)a U b ∈ B ⇐⇒

(b ∈ B ∨ ( a ∈ B ∧ a U b ∈ B ′ )

)a U b ∈ B ⇐⇒

(b ∈ B ∨ ( a ∈ B ∧ a U b ∈ B ′ )

)192 / 527

Page 193: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: (G)NBA for ϕ = a U bϕ = a U bϕ = a U b ltlmc3.2-54

a, b, a U ba, b, a U ba, b, a U b ¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)

¬a, b, a U b¬a, b, a U b¬a, b, a U b

a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b, a U ba,¬b, a U ba,¬b, a U b

¬a ∧ ¬b¬a ∧ ¬b¬a ∧ ¬b

transition relation: B ′ ∈ δ(B,B ∩ AP)B ′ ∈ δ(B ,B ∩ AP)B ′ ∈ δ(B,B ∩ AP) iff

a U b ∈ B ⇐⇒(b ∈ B ∨ ( a ∈ B ∧ a U b ∈ B ′ )

)a U b ∈ B ⇐⇒

(b ∈ B ∨ ( a ∈ B ∧ a U b ∈ B ′ )

)a U b ∈ B ⇐⇒

(b ∈ B ∨ ( a ∈ B ∧ a U b ∈ B ′ )

)193 / 527

Page 194: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: (G)NBA for ϕ = a U bϕ = a U bϕ = a U b ltlmc3.2-54

a, b, a U ba, b, a U ba, b, a U b ¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)

¬a, b, a U b¬a, b, a U b¬a, b, a U b

a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b, a U ba,¬b, a U ba,¬b, a U b

a ∧ ¬ba ∧ ¬ba ∧ ¬b

transition relation: B ′ ∈ δ(B,B ∩ AP)B ′ ∈ δ(B ,B ∩ AP)B ′ ∈ δ(B,B ∩ AP) iff

a U b ∈ B ⇐⇒(b ∈ B ∨ ( a ∈ B ∧ a U b ∈ B ′ )

)a U b ∈ B ⇐⇒

(b ∈ B ∨ ( a ∈ B ∧ a U b ∈ B ′ )

)a U b ∈ B ⇐⇒

(b ∈ B ∨ ( a ∈ B ∧ a U b ∈ B ′ )

)194 / 527

Page 195: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: (G)NBA for ϕ = a U bϕ = a U bϕ = a U b ltlmc3.2-55

a, b, a U ba, b, a U ba, b, a U b ¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)

¬a, b, a U b¬a, b, a U b¬a, b, a U b a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b,¬(a U b)

a,¬b, a U ba,¬b, a U ba,¬b, a U b

¬a ∧ ¬b¬a ∧ ¬b¬a ∧ ¬ba ∧ ba ∧ ba ∧ b

¬a ∧ b¬a ∧ b¬a ∧ b a ∧ ¬ba ∧ ¬ba ∧ ¬b

195 / 527

Page 196: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: (G)NBA for ϕ = a U bϕ = a U bϕ = a U b ltlmc3.2-55

a, b, a U ba, b, a U ba, b, a U b ¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)

¬a, b, a U b¬a, b, a U b¬a, b, a U b a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b,¬(a U b)

a,¬b, a U ba,¬b, a U ba,¬b, a U b

¬a ∧ ¬b¬a ∧ ¬b¬a ∧ ¬ba ∧ ba ∧ ba ∧ b

¬a ∧ b¬a ∧ b¬a ∧ b a ∧ ¬ba ∧ ¬ba ∧ ¬b

{a}{a}{a} {a}{a}{a} {a, b}{a, b}{a, b} ∅∅∅ ∅∅∅ ∅∅∅ . . . |= a U b. . . |= a U b. . . |= a U b

196 / 527

Page 197: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: (G)NBA for ϕ = a U bϕ = a U bϕ = a U b ltlmc3.2-55

a, b, a U ba, b, a U ba, b, a U b ¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)

¬a, b, a U b¬a, b, a U b¬a, b, a U b a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b,¬(a U b)

a,¬b, a U ba,¬b, a U ba,¬b, a U b

¬a ∧ ¬b¬a ∧ ¬b¬a ∧ ¬ba ∧ ba ∧ ba ∧ b

¬a ∧ b¬a ∧ b¬a ∧ b a ∧ ¬ba ∧ ¬ba ∧ ¬b

{a}{a}{a} {a}{a}{a} {a, b}{a, b}{a, b} ∅∅∅ ∅∅∅ ∅∅∅ . . . |= a U b. . . |= a U b. . . |= a U b↓↓↓aaa¬b¬b¬bϕϕϕ

197 / 527

Page 198: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: (G)NBA for ϕ = a U bϕ = a U bϕ = a U b ltlmc3.2-55

a, b, a U ba, b, a U ba, b, a U b ¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)

¬a, b, a U b¬a, b, a U b¬a, b, a U b a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b,¬(a U b)

a,¬b, a U ba,¬b, a U ba,¬b, a U b

¬a ∧ ¬b¬a ∧ ¬b¬a ∧ ¬ba ∧ ba ∧ ba ∧ b

¬a ∧ b¬a ∧ b¬a ∧ b a ∧ ¬ba ∧ ¬ba ∧ ¬b

{a}{a}{a} {a}{a}{a} {a, b}{a, b}{a, b} ∅∅∅ ∅∅∅ ∅∅∅ . . . |= a U b. . . |= a U b. . . |= a U b↓↓↓aaa¬b¬b¬bϕϕϕ

↓↓↓aaa¬b¬b¬bϕϕϕ

198 / 527

Page 199: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: (G)NBA for ϕ = a U bϕ = a U bϕ = a U b ltlmc3.2-55

a, b, a U ba, b, a U ba, b, a U b ¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)

¬a, b, a U b¬a, b, a U b¬a, b, a U b a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b,¬(a U b)

a,¬b, a U ba,¬b, a U ba,¬b, a U b

¬a ∧ ¬b¬a ∧ ¬b¬a ∧ ¬ba ∧ ba ∧ ba ∧ b

¬a ∧ b¬a ∧ b¬a ∧ b a ∧ ¬ba ∧ ¬ba ∧ ¬b

{a}{a}{a} {a}{a}{a} {a, b}{a, b}{a, b} ∅∅∅ ∅∅∅ ∅∅∅ . . . |= a U b. . . |= a U b. . . |= a U b↓↓↓aaa¬b¬b¬bϕϕϕ

↓↓↓aaa¬b¬b¬bϕϕϕ

↓↓↓aaabbbϕϕϕ

{ } { } { b} ∅199 / 527

Page 200: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: (G)NBA for ϕ = a U bϕ = a U bϕ = a U b ltlmc3.2-55

a, b, a U ba, b, a U ba, b, a U b ¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)

¬a, b, a U b¬a, b, a U b¬a, b, a U b a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b,¬(a U b)

a,¬b, a U ba,¬b, a U ba,¬b, a U b

¬a ∧ ¬b¬a ∧ ¬b¬a ∧ ¬ba ∧ ba ∧ ba ∧ b

¬a ∧ b¬a ∧ b¬a ∧ b a ∧ ¬ba ∧ ¬ba ∧ ¬b

{a}{a}{a} {a}{a}{a} {a, b}{a, b}{a, b} ∅∅∅ ∅∅∅ ∅∅∅ . . . |= a U b. . . |= a U b. . . |= a U b↓↓↓aaa¬b¬b¬bϕϕϕ

↓↓↓aaa¬b¬b¬bϕϕϕ

↓↓↓aaabbbϕϕϕ

↓↓↓¬a¬a¬a¬b¬b¬b¬ϕ¬ϕ¬ϕ

{ } { } { b} ∅200 / 527

Page 201: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: (G)NBA for ϕ = a U bϕ = a U bϕ = a U b ltlmc3.2-55

a, b, a U ba, b, a U ba, b, a U b ¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)

¬a, b, a U b¬a, b, a U b¬a, b, a U b a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b,¬(a U b)

a,¬b, a U ba,¬b, a U ba,¬b, a U b

¬a ∧ ¬b¬a ∧ ¬b¬a ∧ ¬ba ∧ ba ∧ ba ∧ b

¬a ∧ b¬a ∧ b¬a ∧ b a ∧ ¬ba ∧ ¬ba ∧ ¬b

{a}{a}{a} {a}{a}{a} {a, b}{a, b}{a, b} ∅∅∅ ∅∅∅ ∅∅∅ . . . |= a U b. . . |= a U b. . . |= a U b↓↓↓aaa¬b¬b¬bϕϕϕ

↓↓↓aaa¬b¬b¬bϕϕϕ

↓↓↓aaabbbϕϕϕ

↓↓↓¬a¬a¬a¬b¬b¬b¬ϕ¬ϕ¬ϕ

↓↓↓¬a¬a¬a¬b¬b¬b¬ϕ¬ϕ¬ϕ

{ } { } { b} ∅201 / 527

Page 202: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: (G)NBA for ϕ = a U bϕ = a U bϕ = a U b ltlmc3.2-55

a, b, a U ba, b, a U ba, b, a U b ¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)

¬a, b, a U b¬a, b, a U b¬a, b, a U b a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b,¬(a U b)

a,¬b, a U ba,¬b, a U ba,¬b, a U b

¬a ∧ ¬b¬a ∧ ¬b¬a ∧ ¬ba ∧ ba ∧ ba ∧ b

¬a ∧ b¬a ∧ b¬a ∧ b a ∧ ¬ba ∧ ¬ba ∧ ¬b

{a}{a}{a} {a}{a}{a} {a, b}{a, b}{a, b} ∅∅∅ ∅∅∅ ∅∅∅ . . . |= a U b. . . |= a U b. . . |= a U b↓↓↓aaa¬b¬b¬bϕϕϕ

↓↓↓aaa¬b¬b¬bϕϕϕ

↓↓↓aaabbbϕϕϕ

↓↓↓¬a¬a¬a¬b¬b¬b¬ϕ¬ϕ¬ϕ

↓↓↓¬a¬a¬a¬b¬b¬b¬ϕ¬ϕ¬ϕ

↓↓↓¬a¬a¬a¬b¬b¬b¬ϕ¬ϕ¬ϕ

{ } { } { b} ∅202 / 527

Page 203: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: (G)NBA for ϕ = a U bϕ = a U bϕ = a U b ltlmc3.2-55

a, b, a U ba, b, a U ba, b, a U b ¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)

¬a, b, a U b¬a, b, a U b¬a, b, a U b a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b,¬(a U b)

a,¬b, a U ba,¬b, a U ba,¬b, a U b

¬a ∧ ¬b¬a ∧ ¬b¬a ∧ ¬ba ∧ ba ∧ ba ∧ b

¬a ∧ b¬a ∧ b¬a ∧ b a ∧ ¬ba ∧ ¬ba ∧ ¬b

{a}{a}{a} {a}{a}{a} {a, b}{a, b}{a, b} ∅∅∅ ∅∅∅ ∅∅∅ . . . |= a U b. . . |= a U b. . . |= a U b↓↓↓aaa¬b¬b¬bϕϕϕ

↓↓↓aaa¬b¬b¬bϕϕϕ

↓↓↓aaabbbϕϕϕ

↓↓↓¬a¬a¬a¬b¬b¬b¬ϕ¬ϕ¬ϕ

↓↓↓¬a¬a¬a¬b¬b¬b¬ϕ¬ϕ¬ϕ

↓↓↓¬a¬a¬a¬b¬b¬b¬ϕ¬ϕ¬ϕ

acceptingrun

{ } { } { b} ∅203 / 527

Page 204: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: (G)NBA for ϕ = a U bϕ = a U bϕ = a U b ltlmc3.2-56

a, b, a U ba, b, a U ba, b, a U b ¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)

¬a, b, a U b¬a, b, a U b¬a, b, a U b a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b,¬(a U b)

a,¬b, a U ba,¬b, a U ba,¬b, a U b

¬a ∧ ¬b¬a ∧ ¬b¬a ∧ ¬ba ∧ ba ∧ ba ∧ b

¬a ∧ b¬a ∧ b¬a ∧ b a ∧ ¬ba ∧ ¬ba ∧ ¬b

{a} {a} {a} {a} . . . �|= ϕ{a} {a} {a} {a} . . . �|= ϕ{a} {a} {a} {a} . . . �|= ϕ

204 / 527

Page 205: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: (G)NBA for ϕ = a U bϕ = a U bϕ = a U b ltlmc3.2-56

a, b, a U ba, b, a U ba, b, a U b ¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)

¬a, b, a U b¬a, b, a U b¬a, b, a U b a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b,¬(a U b)

a,¬b, a U ba,¬b, a U ba,¬b, a U b

q0q0q0

¬a ∧ ¬b¬a ∧ ¬b¬a ∧ ¬ba ∧ ba ∧ ba ∧ b

¬a ∧ b¬a ∧ b¬a ∧ b a ∧ ¬ba ∧ ¬ba ∧ ¬b

{a} {a} {a} {a} . . . �|= ϕ{a} {a} {a} {a} . . . �|= ϕ{a} {a} {a} {a} . . . �|= ϕ

only 111 infinite run: q0 q0 q0 . . .q0 q0 q0 . . .q0 q0 q0 . . .

205 / 527

Page 206: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: (G)NBA for ϕ = a U bϕ = a U bϕ = a U b ltlmc3.2-56

a, b, a U ba, b, a U ba, b, a U b ¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)

¬a, b, a U b¬a, b, a U b¬a, b, a U b a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b,¬(a U b)

a,¬b, a U ba,¬b, a U ba,¬b, a U b

q0q0q0

{a}{a}{a}

∅∅∅...........................

.........

{a, b}{a, b}{a, b}..................

..................

{b}{b}{b}

..................

.........

.........

{a}{a}{a}

.........

{a} {a} {a} {a} . . . �|= ϕ{a} {a} {a} {a} . . . �|= ϕ{a} {a} {a} {a} . . . �|= ϕ

only 111 infinite run: q0 q0 q0 . . .q0 q0 q0 . . .q0 q0 q0 . . .

206 / 527

Page 207: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Example: (G)NBA for ϕ = a U bϕ = a U bϕ = a U b ltlmc3.2-56

a, b, a U ba, b, a U ba, b, a U b ¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)¬a,¬b,¬(a U b)

¬a, b, a U b¬a, b, a U b¬a, b, a U b a,¬b,¬(a U b)a,¬b,¬(a U b)a,¬b,¬(a U b)

a,¬b, a U ba,¬b, a U ba,¬b, a U b

q0q0q0

{a}{a}{a}

∅∅∅...........................

.........

{a, b}{a, b}{a, b}..................

..................

{b}{b}{b}

..................

.........

.........

{a}{a}{a}

.........

{a} {a} {a} {a} . . . �|= ϕ{a} {a} {a} {a} . . . �|= ϕ{a} {a} {a} {a} . . . �|= ϕ

only 111 infinite run: q0 q0 q0 . . .q0 q0 q0 . . .q0 q0 q0 . . . not accepting

207 / 527

Page 208: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

GNBA for LTL-formula ϕϕϕ ltlmc3.2-57a

G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F)

state space: QQQ ==={B ⊆ cl(ϕ) : B

{B ⊆ cl(ϕ) : B

{B ⊆ cl(ϕ) : B is elementary

}}}initial states: Q0Q0Q0 ===

{B ∈ Q : ϕ ∈ B

}{B ∈ Q : ϕ ∈ B

}{B ∈ Q : ϕ ∈ B

}transition relation: for B ∈ QB ∈ QB ∈ Q and A ∈ 2APA ∈ 2APA ∈ 2AP :

if A �= B ∩ APA �= B ∩ APA �= B ∩ AP then δ(B,A) = ∅δ(B ,A) = ∅δ(B ,A) = ∅

if A = B ∩ APA = B ∩ APA = B ∩ AP then δ(B,A) =δ(B ,A) =δ(B ,A) = set of all B ′ ∈ QB ′ ∈ QB ′ ∈ Q s.t.

©ψ ∈ B©ψ ∈ B©ψ ∈ B iff ψ ∈ B ′ψ ∈ B ′ψ ∈ B ′

ψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ B iff (ψ2 ∈ B) ∨ (ψ1 ∈ B ∧ ψ1 Uψ2 ∈ B ′)(ψ2 ∈ B) ∨ (ψ1 ∈ B ∧ ψ1 Uψ2 ∈ B ′)(ψ2 ∈ B) ∨ (ψ1 ∈ B ∧ ψ1 Uψ2 ∈ B ′)

acceptance set F ={Fψ1 Uψ2

: ψ1 Uψ2 ∈ cl(ϕ)}

F ={F ψ1 Uψ2 : ψ1 Uψ2 ∈ cl(ϕ)

}F =

{F ψ1 Uψ2

: ψ1 Uψ2 ∈ cl(ϕ)}

where Fψ1 Uψ2=

{B ∈ Q : ψ1 Uψ2 /∈ B ∨ ψ2 ∈ B

}F ψ1 Uψ2

={B ∈ Q : ψ1 Uψ2 /∈ B ∨ ψ2 ∈ B

}Fψ1 Uψ2

={B ∈ Q : ψ1 Uψ2 /∈ B ∨ ψ2 ∈ B

}208 / 527

Page 209: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Soundness ltlmc3.2-soundness-LTL-2-GNBA

.... of the construction LTL formula ϕϕϕ��� GNBA GGG

209 / 527

Page 210: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Soundness ltlmc3.2-soundness-LTL-2-GNBA

Let ϕϕϕ be an LTL-formula and G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F) bethe constructed GNBA.

Claim: Words(ϕ) = Lω(G)Words(ϕ) = Lω(G)Words(ϕ) = Lω(G)

210 / 527

Page 211: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Soundness ltlmc3.2-soundness-LTL-2-GNBA

Let ϕϕϕ be an LTL-formula and G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F) bethe constructed GNBA.

Claim: Words(ϕ) = Lω(G)Words(ϕ) = Lω(G)Words(ϕ) = Lω(G)

“⊆⊆⊆” show: each infinite word A0 A1 A2 ... ∈ (2AP)ωA0 A1 A2 ... ∈ (2AP)ωA0 A1 A2 ... ∈ (2AP)ω

with A0 A1 A2 ... |= ϕA0 A1 A2 ... |= ϕA0 A1 A2 ... |= ϕ

has an accepting run in GGG

211 / 527

Page 212: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Soundness ltlmc3.2-soundness-LTL-2-GNBA

Let ϕϕϕ be an LTL-formula and G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F) bethe constructed GNBA.

Claim: Words(ϕ) = Lω(G)Words(ϕ) = Lω(G)Words(ϕ) = Lω(G)

“⊆⊆⊆” show: each infinite word A0 A1 A2 ... ∈ (2AP)ωA0 A1 A2 ... ∈ (2AP)ωA0 A1 A2 ... ∈ (2AP)ω

with A0 A1 A2 ... |= ϕA0 A1 A2 ... |= ϕA0 A1 A2 ... |= ϕ

has an accepting run in GGG

“⊇⊇⊇” show: for all infinite words A0 A1 A2 ... ∈ Lω(G)A0 A1 A2 ... ∈ Lω(G)A0 A1 A2 ... ∈ Lω(G) :

A0 A1 A2 ... |= ϕA0 A1 A2 ... |= ϕA0 A1 A2 ... |= ϕ

212 / 527

Page 213: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Soundness ltlmc3.2-soundness-LTL-2-GNBA

Let ϕϕϕ be an LTL-formula and G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F) bethe constructed GNBA.

Claim: Words(ϕ) = Lω(G)Words(ϕ) = Lω(G)Words(ϕ) = Lω(G)

“⊆⊆⊆” show: each infinite word A0 A1 A2 ... ∈ (2AP)ωA0 A1 A2 ... ∈ (2AP)ωA0 A1 A2 ... ∈ (2AP)ω

with A0 A1 A2 ... |= ϕA0 A1 A2 ... |= ϕA0 A1 A2 ... |= ϕ

has an accepting run in GGG

“⊇⊇⊇” show: for all infinite words A0 A1 A2 ... ∈ Lω(G)A0 A1 A2 ... ∈ Lω(G)A0 A1 A2 ... ∈ Lω(G) :

A0 A1 A2 ... |= ϕA0 A1 A2 ... |= ϕA0 A1 A2 ... |= ϕ

213 / 527

Page 214: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Accepting runs for the elements of Words(ϕ)Words(ϕ)Words(ϕ) ltlmc3.2-47-copy

LTL formula ϕϕϕ��� GNBA GGG for Words(ϕ)Words(ϕ)Words(ϕ)

states of GGG === elementary formula-sets B ⊆ cl(ϕ)B ⊆ cl(ϕ)B ⊆ cl(ϕ)

214 / 527

Page 215: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Accepting runs for the elements of Words(ϕ)Words(ϕ)Words(ϕ) ltlmc3.2-47-copy

LTL formula ϕϕϕ��� GNBA GGG for Words(ϕ)Words(ϕ)Words(ϕ)

states of GGG === elementary formula-sets B ⊆ cl(ϕ)B ⊆ cl(ϕ)B ⊆ cl(ϕ)

s.t. each word σ = A0 A1 A2... ∈Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ) can beextended to an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . in GGG

215 / 527

Page 216: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Accepting runs for the elements of Words(ϕ)Words(ϕ)Words(ϕ) ltlmc3.2-47-copy

LTL formula ϕϕϕ��� GNBA GGG for Words(ϕ)Words(ϕ)Words(ϕ)

states of GGG === elementary formula-sets B ⊆ cl(ϕ)B ⊆ cl(ϕ)B ⊆ cl(ϕ)

s.t. each word σ = A0 A1 A2... ∈Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ) can beextended to an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . in GGG

Example: ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)

216 / 527

Page 217: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Accepting runs for the elements of Words(ϕ)Words(ϕ)Words(ϕ) ltlmc3.2-47-copy

LTL formula ϕϕϕ��� GNBA GGG for Words(ϕ)Words(ϕ)Words(ϕ)

states of GGG === elementary formula-sets B ⊆ cl(ϕ)B ⊆ cl(ϕ)B ⊆ cl(ϕ)

s.t. each word σ = A0 A1 A2... ∈Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ) can beextended to an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . in GGG

Example: ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ

217 / 527

Page 218: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Accepting runs for the elements of Words(ϕ)Words(ϕ)Words(ϕ) ltlmc3.2-47-copy

LTL formula ϕϕϕ��� GNBA GGG for Words(ϕ)Words(ϕ)Words(ϕ)

states of GGG === elementary formula-sets B ⊆ cl(ϕ)B ⊆ cl(ϕ)B ⊆ cl(ϕ)

s.t. each word σ = A0 A1 A2... ∈Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ) can beextended to an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . in GGG

Example: ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ↓ ↓ ↓ ↓ ↓ ↓B0 B1 B2 B3 B4 B5

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ↓ ↓ ↓ ↓ ↓ ↓B0 B1 B2 B3 B4 B5

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ↓ ↓ ↓ ↓ ↓ ↓B0 B1 B2 B3 B4 B5

218 / 527

Page 219: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Accepting runs for the elements of Words(ϕ)Words(ϕ)Words(ϕ) ltlmc3.2-47-copy

LTL formula ϕϕϕ��� GNBA GGG for Words(ϕ)Words(ϕ)Words(ϕ)

states of GGG === elementary formula-sets B ⊆ cl(ϕ)B ⊆ cl(ϕ)B ⊆ cl(ϕ)

s.t. each word σ = A0 A1 A2... ∈Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ) can beextended to an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . in GGG

Example: ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b) ψ = ¬a ∧ bψ = ¬a ∧ bψ = ¬a ∧ b

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ↓ ↓ ↓ ↓ ↓ ↓B0 B1 B2 B3 B4 B5

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ↓ ↓ ↓ ↓ ↓ ↓B0 B1 B2 B3 B4 B5

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ↓ ↓ ↓ ↓ ↓ ↓B0 B1 B2 B3 B4 B5

where the BiBiBi ’s are states in GGG, i.e., elementarysubsets of {a,¬a, b,¬b, ψ,¬ψ, ϕ,¬ϕ}{a,¬a, b,¬b, ψ,¬ψ, ϕ,¬ϕ}{a,¬a, b,¬b, ψ,¬ψ, ϕ,¬ϕ}

219 / 527

Page 220: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Accepting runs for the elements of Words(ϕ)Words(ϕ)Words(ϕ) ltlmc3.2-47-copy

LTL formula ϕϕϕ��� GNBA GGG for Words(ϕ)Words(ϕ)Words(ϕ)

states of GGG === elementary formula-sets B ⊆ cl(ϕ)B ⊆ cl(ϕ)B ⊆ cl(ϕ)

s.t. each word σ = A0 A1 A2... ∈Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ) can beextended to an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . in GGG

Example: ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b) ψ = ¬a ∧ bψ = ¬a ∧ bψ = ¬a ∧ b

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ

↓a¬b¬ψϕ

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ↓a¬b¬ψϕ

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ

↓a¬b¬ψϕ

220 / 527

Page 221: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Accepting runs for the elements of Words(ϕ)Words(ϕ)Words(ϕ) ltlmc3.2-47-copy

LTL formula ϕϕϕ��� GNBA GGG for Words(ϕ)Words(ϕ)Words(ϕ)

states of GGG === elementary formula-sets B ⊆ cl(ϕ)B ⊆ cl(ϕ)B ⊆ cl(ϕ)

s.t. each word σ = A0 A1 A2... ∈Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ) can beextended to an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . in GGG

Example: ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b) ψ = ¬a ∧ bψ = ¬a ∧ bψ = ¬a ∧ b

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ

↓ ↓a¬b¬ψϕ

a¬b¬ψϕ

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ↓ ↓a¬b¬ψϕ

a¬b¬ψϕ

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ

↓ ↓a¬b¬ψϕ

a¬b¬ψϕ

221 / 527

Page 222: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Accepting runs for the elements of Words(ϕ)Words(ϕ)Words(ϕ) ltlmc3.2-47-copy

LTL formula ϕϕϕ��� GNBA GGG for Words(ϕ)Words(ϕ)Words(ϕ)

states of GGG === elementary formula-sets B ⊆ cl(ϕ)B ⊆ cl(ϕ)B ⊆ cl(ϕ)

s.t. each word σ = A0 A1 A2... ∈Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ) can beextended to an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . in GGG

Example: ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b) ψ = ¬a ∧ bψ = ¬a ∧ bψ = ¬a ∧ b

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ

↓ ↓ ↓a¬b¬ψϕ

a¬b¬ψϕ

ab¬ψϕ

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ↓ ↓ ↓a¬b¬ψϕ

a¬b¬ψϕ

ab¬ψϕ

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ

↓ ↓ ↓a¬b¬ψϕ

a¬b¬ψϕ

ab¬ψϕ

222 / 527

Page 223: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Accepting runs for the elements of Words(ϕ)Words(ϕ)Words(ϕ) ltlmc3.2-47-copy

LTL formula ϕϕϕ��� GNBA GGG for Words(ϕ)Words(ϕ)Words(ϕ)

states of GGG === elementary formula-sets B ⊆ cl(ϕ)B ⊆ cl(ϕ)B ⊆ cl(ϕ)

s.t. each word σ = A0 A1 A2... ∈Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ) can beextended to an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . in GGG

Example: ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b) ψ = ¬a ∧ bψ = ¬a ∧ bψ = ¬a ∧ b

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ

↓ ↓ ↓ ↓a¬b¬ψϕ

a¬b¬ψϕ

ab¬ψϕ

¬abψϕ

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ↓ ↓ ↓ ↓a¬b¬ψϕ

a¬b¬ψϕ

ab¬ψϕ

¬abψϕ

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ

↓ ↓ ↓ ↓a¬b¬ψϕ

a¬b¬ψϕ

ab¬ψϕ

¬abψϕ

223 / 527

Page 224: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Accepting runs for the elements of Words(ϕ)Words(ϕ)Words(ϕ) ltlmc3.2-47-copy

LTL formula ϕϕϕ��� GNBA GGG for Words(ϕ)Words(ϕ)Words(ϕ)

states of GGG === elementary formula-sets B ⊆ cl(ϕ)B ⊆ cl(ϕ)B ⊆ cl(ϕ)

s.t. each word σ = A0 A1 A2... ∈Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ) can beextended to an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . in GGG

Example: ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b) ψ = ¬a ∧ bψ = ¬a ∧ bψ = ¬a ∧ b

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ

↓ ↓ ↓ ↓ ↓a¬b¬ψϕ

a¬b¬ψϕ

ab¬ψϕ

¬abψϕ

¬a¬b¬ψ¬ϕ

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ↓ ↓ ↓ ↓ ↓a¬b¬ψϕ

a¬b¬ψϕ

ab¬ψϕ

¬abψϕ

¬a¬b¬ψ¬ϕ

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ

↓ ↓ ↓ ↓ ↓a¬b¬ψϕ

a¬b¬ψϕ

ab¬ψϕ

¬abψϕ

¬a¬b¬ψ¬ϕ

224 / 527

Page 225: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Accepting runs for the elements of Words(ϕ)Words(ϕ)Words(ϕ) ltlmc3.2-47-copy

LTL formula ϕϕϕ��� GNBA GGG for Words(ϕ)Words(ϕ)Words(ϕ)

states of GGG === elementary formula-sets B ⊆ cl(ϕ)B ⊆ cl(ϕ)B ⊆ cl(ϕ)

s.t. each word σ = A0 A1 A2... ∈Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ)σ = A0 A1 A2... ∈ Words(ϕ) can beextended to an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . in GGG

Example: ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b)ϕ = a U(¬a ∧ b) ψ = ¬a ∧ bψ = ¬a ∧ bψ = ¬a ∧ b

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ

↓ ↓ ↓ ↓ ↓ ↓a¬b¬ψϕ

a¬b¬ψϕ

ab¬ψϕ

¬abψϕ

¬a¬b¬ψ¬ϕ

¬a¬b¬ψ¬ϕ

. . .. . .. . .

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ↓ ↓ ↓ ↓ ↓ ↓a¬b¬ψϕ

a¬b¬ψϕ

ab¬ψϕ

¬abψϕ

¬a¬b¬ψ¬ϕ

¬a¬b¬ψ¬ϕ

. . .. . .. . .

{a} {a} {a, b} {b} ∅ ∅ . . . |= ϕ

↓ ↓ ↓ ↓ ↓ ↓a¬b¬ψϕ

a¬b¬ψϕ

ab¬ψϕ

¬abψϕ

¬a¬b¬ψ¬ϕ

¬a¬b¬ψ¬ϕ

. . .. . .. . .

225 / 527

Page 226: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

GNBA for LTL-formula ϕϕϕ ltlmc3.2-57a

G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F)

state space: QQQ ==={B ⊆ cl(ϕ) : B

{B ⊆ cl(ϕ) : B

{B ⊆ cl(ϕ) : B is elementary

}}}initial states: Q0Q0Q0 ===

{B ∈ Q : ϕ ∈ B

}{B ∈ Q : ϕ ∈ B

}{B ∈ Q : ϕ ∈ B

}transition relation: for B ∈ QB ∈ QB ∈ Q and A ∈ 2APA ∈ 2APA ∈ 2AP :

if A �= B ∩ APA �= B ∩ APA �= B ∩ AP then δ(B,A) = ∅δ(B ,A) = ∅δ(B ,A) = ∅

if A = B ∩ APA = B ∩ APA = B ∩ AP then δ(B,A) =δ(B ,A) =δ(B ,A) = set of all B ′ ∈ QB ′ ∈ QB ′ ∈ Q s.t.

©ψ ∈ B©ψ ∈ B©ψ ∈ B iff ψ ∈ B ′ψ ∈ B ′ψ ∈ B ′

ψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ B iff (ψ2 ∈ B) ∨ (ψ1 ∈ B ∧ ψ1 Uψ2 ∈ B ′)(ψ2 ∈ B) ∨ (ψ1 ∈ B ∧ ψ1 Uψ2 ∈ B ′)(ψ2 ∈ B) ∨ (ψ1 ∈ B ∧ ψ1 Uψ2 ∈ B ′)

acceptance set F ={Fψ1 Uψ2

: ψ1 Uψ2 ∈ cl(ϕ)}

F ={F ψ1 Uψ2 : ψ1 Uψ2 ∈ cl(ϕ)

}F =

{F ψ1 Uψ2

: ψ1 Uψ2 ∈ cl(ϕ)}

where Fψ1 Uψ2=

{B ∈ Q : ψ1 Uψ2 /∈ B ∨ ψ2 ∈ B

}F ψ1 Uψ2

={B ∈ Q : ψ1 Uψ2 /∈ B ∨ ψ2 ∈ B

}Fψ1 Uψ2

={B ∈ Q : ψ1 Uψ2 /∈ B ∨ ψ2 ∈ B

}226 / 527

Page 227: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Elementary formula-sets ltlmc3.2-50a-copy

B ⊆ cl(ϕ)B ⊆ cl(ϕ)B ⊆ cl(ϕ) is elementary iff:

(i) BBB is maximal consistent w.r.t. prop. logic,i.e., if ψψψ, ψ1 ∧ ψ2 ∈ cl(ϕ)ψ1 ∧ ψ2 ∈ cl(ϕ)ψ1 ∧ ψ2 ∈ cl(ϕ) then:

ψ �∈ Bψ �∈ Bψ �∈ B iff ¬ψ ∈ B¬ψ ∈ B¬ψ ∈ B

ψ1 ∧ ψ2 ∈ Bψ1 ∧ ψ2 ∈ Bψ1 ∧ ψ2 ∈ B iff ψ1 ∈ Bψ1 ∈ Bψ1 ∈ B and ψ2 ∈ Bψ2 ∈ Bψ2 ∈ B

true ∈ cl(ϕ)true ∈ cl(ϕ)true ∈ cl(ϕ) implies true ∈ Btrue ∈ Btrue ∈ B

(ii) BBB is locally consistent with respect to until UUU,i.e., if ψ1 Uψ2 ∈ cl(ϕ)ψ1 Uψ2 ∈ cl(ϕ)ψ1 Uψ2 ∈ cl(ϕ) then:

if ψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ B and ψ2 �∈ Bψ2 �∈ Bψ2 �∈ B then ψ1 ∈ Bψ1 ∈ Bψ1 ∈ B

if ψ2 ∈ Bψ2 ∈ Bψ2 ∈ B then ψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ B227 / 527

Page 228: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Soundness ltlmc3.2-soundness-LTL-2-GNBA2

Let ϕϕϕ be an LTL-formula and G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F) bethe constructed GNBA.

Claim: Words(ϕ) = Lω(G)Words(ϕ) = Lω(G)Words(ϕ) = Lω(G)

“⊆⊆⊆” show: each infinite word A0 A1 A2 ... ∈ (2AP)ωA0 A1 A2 ... ∈ (2AP)ωA0 A1 A2 ... ∈ (2AP)ω

with A0 A1 A2 ... |= ϕA0 A1 A2 ... |= ϕA0 A1 A2 ... |= ϕ

has an accepting run in GGG

“⊇⊇⊇” show: for all infinite words A0 A1 A2 ... ∈ Lω(G)A0 A1 A2 ... ∈ Lω(G)A0 A1 A2 ... ∈ Lω(G) :

A0 A1 A2 ... |= ϕA0 A1 A2 ... |= ϕA0 A1 A2 ... |= ϕ

228 / 527

Page 229: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Soundness ltlmc3.2-soundness-LTL-2-GNBA2

Let ϕϕϕ be an LTL-formula and G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F) bethe constructed GNBA.

Claim: Words(ϕ) = Lω(G)Words(ϕ) = Lω(G)Words(ϕ) = Lω(G)

“⊆⊆⊆” show: each infinite word A0 A1 A2 ... ∈ (2AP)ωA0 A1 A2 ... ∈ (2AP)ωA0 A1 A2 ... ∈ (2AP)ω

with A0 A1 A2 ... |= ϕA0 A1 A2 ... |= ϕA0 A1 A2 ... |= ϕ

has an accepting run in GGG

“⊇⊇⊇” show: for all infinite words A0 A1 A2 ... ∈ Lω(G)A0 A1 A2 ... ∈ Lω(G)A0 A1 A2 ... ∈ Lω(G) :

A0 A1 A2 ... |= ϕA0 A1 A2 ... |= ϕA0 A1 A2 ... |= ϕ

229 / 527

Page 230: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Proof of Lω(G) ⊆ Words(ϕ)Lω(G) ⊆ Words(ϕ)Lω(G) ⊆ Words(ϕ) ltlmc3.2-59

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

230 / 527

Page 231: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Proof of Lω(G) ⊆ Words(ϕ)Lω(G) ⊆ Words(ϕ)Lω(G) ⊆ Words(ϕ) ltlmc3.2-59

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

The claim yields that for each σ = A0 A1 A2 . . . ∈ Lω(G)σ = A0 A1 A2 . . . ∈ Lω(G)σ = A0 A1 A2 . . . ∈ Lω(G):

231 / 527

Page 232: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Proof of Lω(G) ⊆ Words(ϕ)Lω(G) ⊆ Words(ϕ)Lω(G) ⊆ Words(ϕ) ltlmc3.2-59

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

The claim yields that for each σ = A0 A1 A2 . . . ∈ Lω(G)σ = A0 A1 A2 . . . ∈ Lω(G)σ = A0 A1 A2 . . . ∈ Lω(G):=⇒=⇒=⇒ there is an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . for σσσ

232 / 527

Page 233: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Proof of Lω(G) ⊆ Words(ϕ)Lω(G) ⊆ Words(ϕ)Lω(G) ⊆ Words(ϕ) ltlmc3.2-59

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

The claim yields that for each σ = A0 A1 A2 . . . ∈ Lω(G)σ = A0 A1 A2 . . . ∈ Lω(G)σ = A0 A1 A2 . . . ∈ Lω(G):=⇒=⇒=⇒ there is an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . for σσσ

=⇒=⇒=⇒ B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG

233 / 527

Page 234: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Proof of Lω(G) ⊆ Words(ϕ)Lω(G) ⊆ Words(ϕ)Lω(G) ⊆ Words(ϕ) ltlmc3.2-59

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

The claim yields that for each σ = A0 A1 A2 . . . ∈ Lω(G)σ = A0 A1 A2 . . . ∈ Lω(G)σ = A0 A1 A2 . . . ∈ Lω(G):=⇒=⇒=⇒ there is an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . for σσσ

=⇒=⇒=⇒ B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t. ϕ ∈ B0ϕ ∈ B0ϕ ∈ B0

234 / 527

Page 235: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Proof of Lω(G) ⊆ Words(ϕ)Lω(G) ⊆ Words(ϕ)Lω(G) ⊆ Words(ϕ) ltlmc3.2-59

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

The claim yields that for each σ = A0 A1 A2 . . . ∈ Lω(G)σ = A0 A1 A2 . . . ∈ Lω(G)σ = A0 A1 A2 . . . ∈ Lω(G):=⇒=⇒=⇒ there is an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . for σσσ

=⇒=⇒=⇒ B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t. ϕ ∈ B0ϕ ∈ B0ϕ ∈ B0

↑↑↑as B0 ∈ Q0B0 ∈ Q0B0 ∈ Q0

235 / 527

Page 236: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Proof of Lω(G) ⊆ Words(ϕ)Lω(G) ⊆ Words(ϕ)Lω(G) ⊆ Words(ϕ) ltlmc3.2-59

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F (*)

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

The claim yields that for each σ = A0 A1 A2 . . . ∈ Lω(G)σ = A0 A1 A2 . . . ∈ Lω(G)σ = A0 A1 A2 . . . ∈ Lω(G):=⇒=⇒=⇒ there is an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . for σσσ

=⇒=⇒=⇒ B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t. ϕ ∈ B0ϕ ∈ B0ϕ ∈ B0

and (*) holds ↑↑↑as B0 ∈ Q0B0 ∈ Q0B0 ∈ Q0

236 / 527

Page 237: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Proof of Lω(G) ⊆ Words(ϕ)Lω(G) ⊆ Words(ϕ)Lω(G) ⊆ Words(ϕ) ltlmc3.2-59

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F (*)

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

The claim yields that for each σ = A0 A1 A2 . . . ∈ Lω(G)σ = A0 A1 A2 . . . ∈ Lω(G)σ = A0 A1 A2 . . . ∈ Lω(G):=⇒=⇒=⇒ there is an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . for σσσ

=⇒=⇒=⇒ B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t. ϕ ∈ B0ϕ ∈ B0ϕ ∈ B0

and (*) holds ↑↑↑as B0 ∈ Q0B0 ∈ Q0B0 ∈ Q0

=⇒=⇒=⇒ σ = A0 A1 A2 . . . |= ϕσ = A0 A1 A2 . . . |= ϕσ = A0 A1 A2 . . . |= ϕ237 / 527

Page 238: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Proof of Lω(G) ⊆ Words(ϕ)Lω(G) ⊆ Words(ϕ)Lω(G) ⊆ Words(ϕ) ltlmc3.2-59

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F (*)

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

The claim yields that for each σ = A0 A1 A2 . . . ∈ Lω(G)σ = A0 A1 A2 . . . ∈ Lω(G)σ = A0 A1 A2 . . . ∈ Lω(G):=⇒=⇒=⇒ there is an accepting run B0 B1 B2 . . .B0 B1 B2 . . .B0 B1 B2 . . . for σσσ

=⇒=⇒=⇒ B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t. ϕ ∈ B0ϕ ∈ B0ϕ ∈ B0

and (*) holds ↑↑↑as B0 ∈ Q0B0 ∈ Q0B0 ∈ Q0

=⇒=⇒=⇒ σ = A0 A1 A2 . . . |= ϕσ = A0 A1 A2 . . . |= ϕσ = A0 A1 A2 . . . |= ϕ238 / 527

Page 239: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Proof of Lω(G) ⊆ Words(ϕ)Lω(G) ⊆ Words(ϕ)Lω(G) ⊆ Words(ϕ) ltlmc3.2-59

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F (*)

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Proof by structural induction on ψψψ

239 / 527

Page 240: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Proof of Lω(G) ⊆ Words(ϕ)Lω(G) ⊆ Words(ϕ)Lω(G) ⊆ Words(ϕ) ltlmc3.2-59

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F (*)

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Proof by structural induction on ψψψ

base of induction:ψ = trueψ = trueψ = trueψ = a ∈ APψ = a ∈ APψ = a ∈ AP

240 / 527

Page 241: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Proof of Lω(G) ⊆ Words(ϕ)Lω(G) ⊆ Words(ϕ)Lω(G) ⊆ Words(ϕ) ltlmc3.2-59

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F (*)

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Proof by structural induction on ψψψ

base of induction:ψ = trueψ = trueψ = trueψ = a ∈ APψ = a ∈ APψ = a ∈ AP

induction step:ψ = ¬ψ′ψ = ¬ψ′ψ = ¬ψ′ψ = ψ1 ∧ ψ2ψ = ψ1 ∧ ψ2ψ = ψ1 ∧ ψ2

ψ =©ψ′ψ =©ψ′ψ =©ψ′ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2

241 / 527

Page 242: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Base of induction ltlmc3.2-60

Claim: If B0A0→ B1B0A0→ B1B0A0→ B1

A1→ B2A2→ ...

A1→ B2A2→ ...

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Base of induction:

242 / 527

Page 243: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Base of induction ltlmc3.2-60

Claim: If B0A0→ B1B0A0→ B1B0A0→ B1

A1→ B2A2→ ...

A1→ B2A2→ ...

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Base of induction:

Suppose ψ = true ∈ cl(ϕ)ψ = true ∈ cl(ϕ)ψ = true ∈ cl(ϕ).

243 / 527

Page 244: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Base of induction ltlmc3.2-60

Claim: If B0A0→ B1B0A0→ B1B0A0→ B1

A1→ B2A2→ ...

A1→ B2A2→ ...

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Base of induction:

Suppose ψ = true ∈ cl(ϕ)ψ = true ∈ cl(ϕ)ψ = true ∈ cl(ϕ). Then true ∈ B0true ∈ B0true ∈ B0

note: truetruetrue is contained in all elementary formula-sets

244 / 527

Page 245: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Base of induction ltlmc3.2-60

Claim: If B0A0→ B1B0A0→ B1B0A0→ B1

A1→ B2A2→ ...

A1→ B2A2→ ...

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Base of induction:

Suppose ψ = true ∈ cl(ϕ)ψ = true ∈ cl(ϕ)ψ = true ∈ cl(ϕ). Then true ∈ B0true ∈ B0true ∈ B0 andA0 A1 A2 . . . |= trueA0 A1 A2 . . . |= trueA0 A1 A2 . . . |= true

note: truetruetrue is contained in all elementary formula-setstruetruetrue holds for all paths/traces

245 / 527

Page 246: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Base of induction ltlmc3.2-60

Claim: If B0A0→ B1B0A0→ B1B0A0→ B1

A1→ B2A2→ ...

A1→ B2A2→ ...

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Base of induction:

Suppose ψ = true ∈ cl(ϕ)ψ = true ∈ cl(ϕ)ψ = true ∈ cl(ϕ). Then true ∈ B0true ∈ B0true ∈ B0 andA0 A1 A2 . . . |= trueA0 A1 A2 . . . |= trueA0 A1 A2 . . . |= true

Let ψ = a ∈ APψ = a ∈ APψ = a ∈ AP.

246 / 527

Page 247: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Base of induction ltlmc3.2-60

Claim: If B0A0→ B1B0A0→ B1B0A0→ B1

A1→ B2A2→ ...

A1→ B2A2→ ...

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Base of induction:

Suppose ψ = true ∈ cl(ϕ)ψ = true ∈ cl(ϕ)ψ = true ∈ cl(ϕ). Then true ∈ B0true ∈ B0true ∈ B0 andA0 A1 A2 . . . |= trueA0 A1 A2 . . . |= trueA0 A1 A2 . . . |= true

Let ψ = a ∈ APψ = a ∈ APψ = a ∈ AP. Then:

a ∈ B0a ∈ B0a ∈ B0

247 / 527

Page 248: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Base of induction ltlmc3.2-60

Claim: If B0A0→ B1B0A0→ B1B0A0→ B1

A1→ B2A2→ ...

A1→ B2A2→ ...

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Base of induction:

Suppose ψ = true ∈ cl(ϕ)ψ = true ∈ cl(ϕ)ψ = true ∈ cl(ϕ). Then true ∈ B0true ∈ B0true ∈ B0 andA0 A1 A2 . . . |= trueA0 A1 A2 . . . |= trueA0 A1 A2 . . . |= true

Let ψ = a ∈ APψ = a ∈ APψ = a ∈ AP. Then:

a ∈ B0 ⇐⇒ a ∈ A0a ∈ B0 ⇐⇒ a ∈ A0a ∈ B0 ⇐⇒ a ∈ A0

248 / 527

Page 249: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Base of induction ltlmc3.2-60

Claim: If B0A0→ B1B0A0→ B1B0A0→ B1

A1→ B2A2→ ...

A1→ B2A2→ ...

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Base of induction:

Suppose ψ = true ∈ cl(ϕ)ψ = true ∈ cl(ϕ)ψ = true ∈ cl(ϕ). Then true ∈ B0true ∈ B0true ∈ B0 andA0 A1 A2 . . . |= trueA0 A1 A2 . . . |= trueA0 A1 A2 . . . |= true

Let ψ = a ∈ APψ = a ∈ APψ = a ∈ AP. Then:

a ∈ B0 ⇐⇒ a ∈ A0a ∈ B0 ⇐⇒ a ∈ A0a ∈ B0 ⇐⇒ a ∈ A0

249 / 527

Page 250: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Base of induction ltlmc3.2-60

Claim: If B0A0→ B1B0A0→ B1B0A0→ B1

A1→ B2A2→ ...

A1→ B2A2→ ...

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F A0 = B0 ∩ APA0 = B0 ∩ APA0 = B0 ∩ AP

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Base of induction:

Suppose ψ = true ∈ cl(ϕ)ψ = true ∈ cl(ϕ)ψ = true ∈ cl(ϕ). Then true ∈ B0true ∈ B0true ∈ B0 andA0 A1 A2 . . . |= trueA0 A1 A2 . . . |= trueA0 A1 A2 . . . |= true

Let ψ = a ∈ APψ = a ∈ APψ = a ∈ AP. Then:

a ∈ B0 ⇐⇒ a ∈ A0a ∈ B0 ⇐⇒ a ∈ A0a ∈ B0 ⇐⇒ a ∈ A0

250 / 527

Page 251: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Base of induction ltlmc3.2-60

Claim: If B0A0→ B1B0A0→ B1B0A0→ B1

A1→ B2A2→ ...

A1→ B2A2→ ...

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F A0 = B0 ∩ APA0 = B0 ∩ APA0 = B0 ∩ AP

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Base of induction:

Suppose ψ = true ∈ cl(ϕ)ψ = true ∈ cl(ϕ)ψ = true ∈ cl(ϕ). Then true ∈ B0true ∈ B0true ∈ B0 andA0 A1 A2 . . . |= trueA0 A1 A2 . . . |= trueA0 A1 A2 . . . |= true

Let ψ = a ∈ APψ = a ∈ APψ = a ∈ AP. Then:

a ∈ B0 ⇐⇒ a ∈ A0 ⇐⇒ A0 A1 A2 . . . |= aa ∈ B0 ⇐⇒ a ∈ A0 ⇐⇒ A0 A1 A2 . . . |= aa ∈ B0 ⇐⇒ a ∈ A0 ⇐⇒ A0 A1 A2 . . . |= a

251 / 527

Page 252: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: negation ltlmc3.2-61

252 / 527

Page 253: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: negation ltlmc3.2-61

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step: for ψ = ¬ψ′ψ = ¬ψ′ψ = ¬ψ′:

253 / 527

Page 254: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: negation ltlmc3.2-61

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step: for ψ = ¬ψ′ψ = ¬ψ′ψ = ¬ψ′:ψ ∈ B0ψ ∈ B0ψ ∈ B0

254 / 527

Page 255: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: negation ltlmc3.2-61

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step: for ψ = ¬ψ′ψ = ¬ψ′ψ = ¬ψ′:ψ ∈ B0ψ ∈ B0ψ ∈ B0

iff ψ′ �∈ B0ψ′ �∈ B0ψ′ �∈ B0 (maximal consistency)

255 / 527

Page 256: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: negation ltlmc3.2-61

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step: for ψ = ¬ψ′ψ = ¬ψ′ψ = ¬ψ′:ψ ∈ B0ψ ∈ B0ψ ∈ B0

iff ψ′ �∈ B0ψ′ �∈ B0ψ′ �∈ B0 (maximal consistency)

iff A0 A1 A2 . . . �|= ψ′A0 A1 A2 . . . �|= ψ′A0 A1 A2 . . . �|= ψ′ (induction hypothesis)

256 / 527

Page 257: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: negation ltlmc3.2-61

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step: for ψ = ¬ψ′ψ = ¬ψ′ψ = ¬ψ′:ψ ∈ B0ψ ∈ B0ψ ∈ B0

iff ψ′ �∈ B0ψ′ �∈ B0ψ′ �∈ B0 (maximal consistency)

iff A0 A1 A2 . . . �|= ψ′A0 A1 A2 . . . �|= ψ′A0 A1 A2 . . . �|= ψ′ (induction hypothesis)

iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ (semantics of ¬¬¬)257 / 527

Page 258: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Elementary formula-sets ltlmc3.2-50a-copy2

B ⊆ cl(ϕ)B ⊆ cl(ϕ)B ⊆ cl(ϕ) is elementary iff:

(i) BBB is maximal consistent w.r.t. prop. logic,i.e., if ψψψ, ψ1 ∧ ψ2 ∈ cl(ϕ)ψ1 ∧ ψ2 ∈ cl(ϕ)ψ1 ∧ ψ2 ∈ cl(ϕ) then:

ψ �∈ Bψ �∈ Bψ �∈ B iff ¬ψ ∈ B¬ψ ∈ B¬ψ ∈ B

ψ1 ∧ ψ2 ∈ Bψ1 ∧ ψ2 ∈ Bψ1 ∧ ψ2 ∈ B iff ψ1 ∈ Bψ1 ∈ Bψ1 ∈ B and ψ2 ∈ Bψ2 ∈ Bψ2 ∈ B

true ∈ cl(ϕ)true ∈ cl(ϕ)true ∈ cl(ϕ) implies true ∈ Btrue ∈ Btrue ∈ B

(ii) BBB is locally consistent with respect to until UUU,i.e., if ψ1 Uψ2 ∈ cl(ϕ)ψ1 Uψ2 ∈ cl(ϕ)ψ1 Uψ2 ∈ cl(ϕ) then:

if ψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ B and ψ2 �∈ Bψ2 �∈ Bψ2 �∈ B then ψ1 ∈ Bψ1 ∈ Bψ1 ∈ B

if ψ2 ∈ Bψ2 ∈ Bψ2 ∈ B then ψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ B258 / 527

Page 259: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Elementary formula-sets ltlmc3.2-50a-copy2

B ⊆ cl(ϕ)B ⊆ cl(ϕ)B ⊆ cl(ϕ) is elementary iff:

(i) BBB is maximal consistent w.r.t. prop. logic,i.e., if ψψψ, ψ1 ∧ ψ2 ∈ cl(ϕ)ψ1 ∧ ψ2 ∈ cl(ϕ)ψ1 ∧ ψ2 ∈ cl(ϕ) then:

ψ �∈ Bψ �∈ Bψ �∈ B iff ¬ψ ∈ B¬ψ ∈ B¬ψ ∈ B

ψ1 ∧ ψ2 ∈ Bψ1 ∧ ψ2 ∈ Bψ1 ∧ ψ2 ∈ B iff ψ1 ∈ Bψ1 ∈ Bψ1 ∈ B and ψ2 ∈ Bψ2 ∈ Bψ2 ∈ B

true ∈ cl(ϕ)true ∈ cl(ϕ)true ∈ cl(ϕ) implies true ∈ Btrue ∈ Btrue ∈ B

(ii) BBB is locally consistent with respect to until UUU,i.e., if ψ1 Uψ2 ∈ cl(ϕ)ψ1 Uψ2 ∈ cl(ϕ)ψ1 Uψ2 ∈ cl(ϕ) then:

if ψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ B and ψ2 �∈ Bψ2 �∈ Bψ2 �∈ B then ψ1 ∈ Bψ1 ∈ Bψ1 ∈ B

if ψ2 ∈ Bψ2 ∈ Bψ2 ∈ B then ψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ B259 / 527

Page 260: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: conjunction ltlmc3.2-61a

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step: for ψ = ψ1 ∧ ψ2ψ = ψ1 ∧ ψ2ψ = ψ1 ∧ ψ2

260 / 527

Page 261: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: conjunction ltlmc3.2-61a

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step: for ψ = ψ1 ∧ ψ2ψ = ψ1 ∧ ψ2ψ = ψ1 ∧ ψ2

ψ ∈ B0ψ ∈ B0ψ ∈ B0

261 / 527

Page 262: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: conjunction ltlmc3.2-61a

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step: for ψ = ψ1 ∧ ψ2ψ = ψ1 ∧ ψ2ψ = ψ1 ∧ ψ2

ψ ∈ B0ψ ∈ B0ψ ∈ B0

iff ψ1, ψ2 ∈ B0ψ1, ψ2 ∈ B0ψ1, ψ2 ∈ B0 (maximal consistency)

262 / 527

Page 263: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: conjunction ltlmc3.2-61a

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step: for ψ = ψ1 ∧ ψ2ψ = ψ1 ∧ ψ2ψ = ψ1 ∧ ψ2

ψ ∈ B0ψ ∈ B0ψ ∈ B0

iff ψ1, ψ2 ∈ B0ψ1, ψ2 ∈ B0ψ1, ψ2 ∈ B0 (maximal consistency)

iff A0 A1 A2 . . . |= ψ1A0 A1 A2 . . . |= ψ1A0 A1 A2 . . . |= ψ1 and A0 A1 A2 . . . |= ψ2A0 A1 A2 . . . |= ψ2A0 A1 A2 . . . |= ψ2 (IH)

263 / 527

Page 264: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: conjunction ltlmc3.2-61a

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step: for ψ = ψ1 ∧ ψ2ψ = ψ1 ∧ ψ2ψ = ψ1 ∧ ψ2

ψ ∈ B0ψ ∈ B0ψ ∈ B0

iff ψ1, ψ2 ∈ B0ψ1, ψ2 ∈ B0ψ1, ψ2 ∈ B0 (maximal consistency)

iff A0 A1 A2 . . . |= ψ1A0 A1 A2 . . . |= ψ1A0 A1 A2 . . . |= ψ1 and A0 A1 A2 . . . |= ψ2A0 A1 A2 . . . |= ψ2A0 A1 A2 . . . |= ψ2 (IH)

iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ (semantics of ∧∧∧)264 / 527

Page 265: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: next step ltlmc3.2-57b

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step: for ψ =©ψ′ψ =©ψ′ψ =©ψ′:

265 / 527

Page 266: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

GNBA for LTL-formula ϕϕϕ ltlmc3.2-57b

G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F)

state space: QQQ ==={B ⊆ cl(ϕ) : B

{B ⊆ cl(ϕ) : B

{B ⊆ cl(ϕ) : B is elementary

}}}initial states: Q0Q0Q0 ===

{B ∈ Q : ϕ ∈ B

}{B ∈ Q : ϕ ∈ B

}{B ∈ Q : ϕ ∈ B

}transition relation: for B ∈ QB ∈ QB ∈ Q and A ∈ 2APA ∈ 2APA ∈ 2AP :

if A �= B ∩ APA �= B ∩ APA �= B ∩ AP then δ(B,A) = ∅δ(B ,A) = ∅δ(B ,A) = ∅

if A = B ∩ APA = B ∩ APA = B ∩ AP then δ(B,A) =δ(B ,A) =δ(B ,A) = set of all B ′ ∈ QB ′ ∈ QB ′ ∈ Q s.t.

©ψ ∈ B©ψ ∈ B©ψ ∈ B iff ψ ∈ B ′ψ ∈ B ′ψ ∈ B ′

ψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ B iff (ψ2 ∈ B) ∨ (ψ1 ∈ B ∧ ψ1 Uψ2 ∈ B ′)(ψ2 ∈ B) ∨ (ψ1 ∈ B ∧ ψ1 Uψ2 ∈ B ′)(ψ2 ∈ B) ∨ (ψ1 ∈ B ∧ ψ1 Uψ2 ∈ B ′)

acceptance set F ={Fψ1 Uψ2 : ψ1 Uψ2 ∈ cl(ϕ)

}F =

{F ψ1 Uψ2 : ψ1 Uψ2 ∈ cl(ϕ)

}F =

{F ψ1 Uψ2 : ψ1 Uψ2 ∈ cl(ϕ)

}where Fψ1 Uψ2

={B ∈ Q : ψ1 Uψ2 /∈ B ∨ ψ2 ∈ B

}F ψ1 Uψ2

={B ∈ Q : ψ1 Uψ2 /∈ B ∨ ψ2 ∈ B

}Fψ1 Uψ2

={B ∈ Q : ψ1 Uψ2 /∈ B ∨ ψ2 ∈ B

}266 / 527

Page 267: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: next step ltlmc3.2-62

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step: for ψ =©ψ′ψ =©ψ′ψ =©ψ′:

267 / 527

Page 268: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: next step ltlmc3.2-62

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step: for ψ =©ψ′ψ =©ψ′ψ =©ψ′:ψ ∈ B0ψ ∈ B0ψ ∈ B0

268 / 527

Page 269: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: next step ltlmc3.2-62

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F B1 ∈ δ(B0,A0)B1 ∈ δ(B0,A0)B1 ∈ δ(B0,A0)

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step: for ψ =©ψ′ψ =©ψ′ψ =©ψ′:ψ ∈ B0ψ ∈ B0ψ ∈ B0

iff ψ′ ∈ B1ψ′ ∈ B1ψ′ ∈ B1 (definition of δδδ)

269 / 527

Page 270: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: next step ltlmc3.2-62

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F B1 ∈ δ(B0,A0)B1 ∈ δ(B0,A0)B1 ∈ δ(B0,A0)

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step: for ψ =©ψ′ψ =©ψ′ψ =©ψ′:ψ ∈ B0ψ ∈ B0ψ ∈ B0

iff ψ′ ∈ B1ψ′ ∈ B1ψ′ ∈ B1 (definition of δδδ)

iff A1 A2 A3 . . . |= ψ′A1 A2 A3 . . . |= ψ′A1 A2 A3 . . . |= ψ′ (induction hypothesis)

270 / 527

Page 271: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: next step ltlmc3.2-62

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F B1 ∈ δ(B0,A0)B1 ∈ δ(B0,A0)B1 ∈ δ(B0,A0)

then for all formulas ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ):

ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step: for ψ =©ψ′ψ =©ψ′ψ =©ψ′:ψ ∈ B0ψ ∈ B0ψ ∈ B0

iff ψ′ ∈ B1ψ′ ∈ B1ψ′ ∈ B1 (definition of δδδ)

iff A1 A2 A3 . . . |= ψ′A1 A2 A3 . . . |= ψ′A1 A2 A3 . . . |= ψ′ (induction hypothesis)

iff A0 A1 A2 A3 . . . |= ψA0 A1 A2 A3 . . . |= ψA0 A1 A2 A3 . . . |= ψ (semantics of©©©)271 / 527

Page 272: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until ltlmc3.2-63

272 / 527

Page 273: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Recall: elementary formula-sets ltlmc3.2-63

B ⊆ cl(ϕ)B ⊆ cl(ϕ)B ⊆ cl(ϕ) is elementary iff:

(i) BBB is maximal consistent w.r.t. prop. logic,i.e., if ψψψ, ψ1 ∧ ψ2 ∈ cl(ϕ)ψ1 ∧ ψ2 ∈ cl(ϕ)ψ1 ∧ ψ2 ∈ cl(ϕ) then:

ψ �∈ Bψ �∈ Bψ �∈ B iff ¬ψ ∈ B¬ψ ∈ B¬ψ ∈ B

ψ1 ∧ ψ2 ∈ Bψ1 ∧ ψ2 ∈ Bψ1 ∧ ψ2 ∈ B iff ψ1 ∈ Bψ1 ∈ Bψ1 ∈ B and ψ2 ∈ Bψ2 ∈ Bψ2 ∈ B

true ∈ cl(ϕ)true ∈ cl(ϕ)true ∈ cl(ϕ) implies true ∈ Btrue ∈ Btrue ∈ B

(ii) BBB is locally consistent with respect to until UUU,i.e., if ψ1 Uψ2 ∈ cl(ϕ)ψ1 Uψ2 ∈ cl(ϕ)ψ1 Uψ2 ∈ cl(ϕ) then:

if ψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ B and ψ2 �∈ Bψ2 �∈ Bψ2 �∈ B then ψ1 ∈ Bψ1 ∈ Bψ1 ∈ B

if ψ2 ∈ Bψ2 ∈ Bψ2 ∈ B then ψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ B

273 / 527

Page 274: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Recall: GNBA for LTL-formula ϕϕϕ ltlmc3.2-57d

G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F)

state space: QQQ ==={B ⊆ cl(ϕ) : B

{B ⊆ cl(ϕ) : B

{B ⊆ cl(ϕ) : B is elementary

}}}initial states: Q0Q0Q0 ===

{B ∈ Q : ϕ ∈ B

}{B ∈ Q : ϕ ∈ B

}{B ∈ Q : ϕ ∈ B

}transition relation: for B ∈ QB ∈ QB ∈ Q and A ∈ 2APA ∈ 2APA ∈ 2AP :

if A �= B ∩ APA �= B ∩ APA �= B ∩ AP then δ(B,A) = ∅δ(B ,A) = ∅δ(B ,A) = ∅

if A = B ∩ APA = B ∩ APA = B ∩ AP then δ(B,A) =δ(B ,A) =δ(B ,A) = set of all B ′ ∈ QB ′ ∈ QB ′ ∈ Q s.t.

©ψ ∈ B©ψ ∈ B©ψ ∈ B iff ψ ∈ B ′ψ ∈ B ′ψ ∈ B ′

ψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ B iff (ψ2 ∈ B) ∨ (ψ1 ∈ B ∧ ψ1 Uψ2 ∈ B ′)(ψ2 ∈ B) ∨ (ψ1 ∈ B ∧ ψ1 Uψ2 ∈ B ′)(ψ2 ∈ B) ∨ (ψ1 ∈ B ∧ ψ1 Uψ2 ∈ B ′)

acceptance set F ={Fψ1 Uψ2

: ψ1 Uψ2 ∈ cl(ϕ)}

F ={F ψ1 Uψ2

: ψ1 Uψ2 ∈ cl(ϕ)}

F ={F ψ1 Uψ2

: ψ1 Uψ2 ∈ cl(ϕ)}

where Fψ1 Uψ2=

{B ∈ Q : ψ1 Uψ2 /∈ B ∨ ψ2 ∈ B

}F ψ1 Uψ2 =

{B ∈ Q : ψ1 Uψ2 /∈ B ∨ ψ2 ∈ B

}Fψ1 Uψ2

={B ∈ Q : ψ1 Uψ2 /∈ B ∨ ψ2 ∈ B

}274 / 527

Page 275: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Recall: GNBA for LTL-formula ϕϕϕ ltlmc3.2-57d

G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F)G = (Q, 2AP , δ,Q0,F)

state space: QQQ ==={B ⊆ cl(ϕ) : B

{B ⊆ cl(ϕ) : B

{B ⊆ cl(ϕ) : B is elementary

}}}initial states: Q0Q0Q0 ===

{B ∈ Q : ϕ ∈ B

}{B ∈ Q : ϕ ∈ B

}{B ∈ Q : ϕ ∈ B

}transition relation: for B ∈ QB ∈ QB ∈ Q and A ∈ 2APA ∈ 2APA ∈ 2AP :

if A �= B ∩ APA �= B ∩ APA �= B ∩ AP then δ(B,A) = ∅δ(B ,A) = ∅δ(B ,A) = ∅

if A = B ∩ APA = B ∩ APA = B ∩ AP then δ(B,A) =δ(B ,A) =δ(B ,A) = set of all B ′ ∈ QB ′ ∈ QB ′ ∈ Q s.t.

©ψ ∈ B©ψ ∈ B©ψ ∈ B iff ψ ∈ B ′ψ ∈ B ′ψ ∈ B ′

ψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ Bψ1 Uψ2 ∈ B iff (ψ2 ∈ B) ∨ (ψ1 ∈ B ∧ ψ1 Uψ2 ∈ B ′)(ψ2 ∈ B) ∨ (ψ1 ∈ B ∧ ψ1 Uψ2 ∈ B ′)(ψ2 ∈ B) ∨ (ψ1 ∈ B ∧ ψ1 Uψ2 ∈ B ′)

acceptance set F ={Fψ1 Uψ2

: ψ1 Uψ2 ∈ cl(ϕ)}

F ={F ψ1 Uψ2

: ψ1 Uψ2 ∈ cl(ϕ)}

F ={F ψ1 Uψ2

: ψ1 Uψ2 ∈ cl(ϕ)}

where Fψ1 Uψ2=

{B ∈ Q : ψ1 Uψ2 /∈ B ∨ ψ2 ∈ B

}F ψ1 Uψ2 =

{B ∈ Q : ψ1 Uψ2 /∈ B ∨ ψ2 ∈ B

}Fψ1 Uψ2

={B ∈ Q : ψ1 Uψ2 /∈ B ∨ ψ2 ∈ B

}275 / 527

Page 276: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until ltlmc3.2-63

276 / 527

Page 277: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until ltlmc3.2-63

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

277 / 527

Page 278: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “⇐=⇐=⇐=”) ltlmc3.2-63

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

“⇐=⇐=⇐=”: Suppose A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ.

278 / 527

Page 279: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “⇐=⇐=⇐=”) ltlmc3.2-63

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

“⇐=⇐=⇐=”: Suppose A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ. Let j ≥ 0j ≥ 0j ≥ 0 s.t.

Aj Aj+1 Aj+2 . . .Aj Aj+1 Aj+2 . . .Aj Aj+1 Aj+2 . . . |= ψ2|= ψ2|= ψ2

Aj−1 Aj Aj−1 . . .Aj−1 Aj Aj−1 . . .Aj−1 Aj Aj−1 . . . |= ψ1|= ψ1|= ψ1

Aj−2 Aj−1 Aj . . .Aj−2 Aj−1 Aj . . .Aj−2 Aj−1 Aj . . . |= ψ1|= ψ1|= ψ1.........

A0 A1 A2 A3 . . .A0 A1 A2 A3 . . .A0 A1 A2 A3 . . . |= ψ1|= ψ1|= ψ1

279 / 527

Page 280: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “⇐=⇐=⇐=”) ltlmc3.2-63

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

“⇐=⇐=⇐=”: Suppose A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ. Let j ≥ 0j ≥ 0j ≥ 0 s.t.

Aj Aj+1 Aj+2 . . .Aj Aj+1 Aj+2 . . .Aj Aj+1 Aj+2 . . . |= ψ2|= ψ2|= ψ2IH⇒⇒⇒ ψ2 ∈ Bjψ2 ∈ Bjψ2 ∈ Bj

Aj−1 Aj Aj−1 . . .Aj−1 Aj Aj−1 . . .Aj−1 Aj Aj−1 . . . |= ψ1|= ψ1|= ψ1 ⇒⇒⇒ ψ1 ∈ Bj−1ψ1 ∈ Bj−1ψ1 ∈ Bj−1

Aj−2 Aj−1 Aj . . .Aj−2 Aj−1 Aj . . .Aj−2 Aj−1 Aj . . . |= ψ1|= ψ1|= ψ1 ⇒⇒⇒ ψ1 ∈ Bj−2ψ1 ∈ Bj−2ψ1 ∈ Bj−2.........

...

...

...A0 A1 A2 A3 . . .A0 A1 A2 A3 . . .A0 A1 A2 A3 . . . |= ψ1|= ψ1|= ψ1 ⇒⇒⇒ ψ1 ∈ B0ψ1 ∈ B0ψ1 ∈ B0

280 / 527

Page 281: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “⇐=⇐=⇐=”) ltlmc3.2-63

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F BjBjBj is elementary

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

“⇐=⇐=⇐=”: Suppose A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ. Let j ≥ 0j ≥ 0j ≥ 0 s.t.

Aj Aj+1 Aj+2 . . .Aj Aj+1 Aj+2 . . .Aj Aj+1 Aj+2 . . . |= ψ2|= ψ2|= ψ2IH⇒⇒⇒ ψ2 ∈ Bjψ2 ∈ Bjψ2 ∈ Bj ⇒⇒⇒ ψ ∈ Bjψ ∈ Bjψ ∈ Bj

Aj−1 Aj Aj−1 . . .Aj−1 Aj Aj−1 . . .Aj−1 Aj Aj−1 . . . |= ψ1|= ψ1|= ψ1 ⇒⇒⇒ ψ1 ∈ Bj−1ψ1 ∈ Bj−1ψ1 ∈ Bj−1

Aj−2 Aj−1 Aj . . .Aj−2 Aj−1 Aj . . .Aj−2 Aj−1 Aj . . . |= ψ1|= ψ1|= ψ1 ⇒⇒⇒ ψ1 ∈ Bj−2ψ1 ∈ Bj−2ψ1 ∈ Bj−2.........

...

...

...A0 A1 A2 A3 . . .A0 A1 A2 A3 . . .A0 A1 A2 A3 . . . |= ψ1|= ψ1|= ψ1 ⇒⇒⇒ ψ1 ∈ B0ψ1 ∈ B0ψ1 ∈ B0

281 / 527

Page 282: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “⇐=⇐=⇐=”) ltlmc3.2-63

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F Bj ∈ δ(Bj−1,Aj−1)Bj ∈ δ(Bj−1,Aj−1)Bj ∈ δ(Bj−1,Aj−1)

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

“⇐=⇐=⇐=”: Suppose A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ. Let j ≥ 0j ≥ 0j ≥ 0 s.t.

Aj Aj+1 Aj+2 . . .Aj Aj+1 Aj+2 . . .Aj Aj+1 Aj+2 . . . |= ψ2|= ψ2|= ψ2IH⇒⇒⇒ ψ2 ∈ Bjψ2 ∈ Bjψ2 ∈ Bj ⇒⇒⇒ ψ ∈ Bjψ ∈ Bjψ ∈ Bj

Aj−1 Aj Aj−1 . . .Aj−1 Aj Aj−1 . . .Aj−1 Aj Aj−1 . . . |= ψ1|= ψ1|= ψ1 ⇒⇒⇒ ψ1 ∈ Bj−1ψ1 ∈ Bj−1ψ1 ∈ Bj−1 ∧∧∧ ψ ∈ Bj−1ψ ∈ Bj−1ψ ∈ Bj−1

Aj−2 Aj−1 Aj . . .Aj−2 Aj−1 Aj . . .Aj−2 Aj−1 Aj . . . |= ψ1|= ψ1|= ψ1 ⇒⇒⇒ ψ1 ∈ Bj−2ψ1 ∈ Bj−2ψ1 ∈ Bj−2.........

...

...

...A0 A1 A2 A3 . . .A0 A1 A2 A3 . . .A0 A1 A2 A3 . . . |= ψ1|= ψ1|= ψ1 ⇒⇒⇒ ψ1 ∈ B0ψ1 ∈ B0ψ1 ∈ B0

282 / 527

Page 283: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “⇐=⇐=⇐=”) ltlmc3.2-63

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F Bj−1 ∈ δ(Bj−2,Aj−2)Bj−1 ∈ δ(Bj−2,Aj−2)Bj−1 ∈ δ(Bj−2,Aj−2)

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

“⇐=⇐=⇐=”: Suppose A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ. Let j ≥ 0j ≥ 0j ≥ 0 s.t.

Aj Aj+1 Aj+2 . . .Aj Aj+1 Aj+2 . . .Aj Aj+1 Aj+2 . . . |= ψ2|= ψ2|= ψ2IH⇒⇒⇒ ψ2 ∈ Bjψ2 ∈ Bjψ2 ∈ Bj ⇒⇒⇒ ψ ∈ Bjψ ∈ Bjψ ∈ Bj

Aj−1 Aj Aj−1 . . .Aj−1 Aj Aj−1 . . .Aj−1 Aj Aj−1 . . . |= ψ1|= ψ1|= ψ1 ⇒⇒⇒ ψ1 ∈ Bj−1ψ1 ∈ Bj−1ψ1 ∈ Bj−1 ∧∧∧ ψ ∈ Bj−1ψ ∈ Bj−1ψ ∈ Bj−1

Aj−2 Aj−1 Aj . . .Aj−2 Aj−1 Aj . . .Aj−2 Aj−1 Aj . . . |= ψ1|= ψ1|= ψ1 ⇒⇒⇒ ψ1 ∈ Bj−2ψ1 ∈ Bj−2ψ1 ∈ Bj−2 ∧∧∧ ψ ∈ Bj−2ψ ∈ Bj−2ψ ∈ Bj−2.........

...

...

...A0 A1 A2 A3 . . .A0 A1 A2 A3 . . .A0 A1 A2 A3 . . . |= ψ1|= ψ1|= ψ1 ⇒⇒⇒ ψ1 ∈ B0ψ1 ∈ B0ψ1 ∈ B0

283 / 527

Page 284: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “⇐=⇐=⇐=”) ltlmc3.2-63

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F B1 ∈ δ(B0,A0)B1 ∈ δ(B0,A0)B1 ∈ δ(B0,A0)

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

“⇐=⇐=⇐=”: Suppose A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ. Let j ≥ 0j ≥ 0j ≥ 0 s.t.

Aj Aj+1 Aj+2 . . .Aj Aj+1 Aj+2 . . .Aj Aj+1 Aj+2 . . . |= ψ2|= ψ2|= ψ2IH⇒⇒⇒ ψ2 ∈ Bjψ2 ∈ Bjψ2 ∈ Bj ⇒⇒⇒ ψ ∈ Bjψ ∈ Bjψ ∈ Bj

Aj−1 Aj Aj−1 . . .Aj−1 Aj Aj−1 . . .Aj−1 Aj Aj−1 . . . |= ψ1|= ψ1|= ψ1 ⇒⇒⇒ ψ1 ∈ Bj−1ψ1 ∈ Bj−1ψ1 ∈ Bj−1 ∧∧∧ ψ ∈ Bj−1ψ ∈ Bj−1ψ ∈ Bj−1

Aj−2 Aj−1 Aj . . .Aj−2 Aj−1 Aj . . .Aj−2 Aj−1 Aj . . . |= ψ1|= ψ1|= ψ1 ⇒⇒⇒ ψ1 ∈ Bj−2ψ1 ∈ Bj−2ψ1 ∈ Bj−2 ∧∧∧ ψ ∈ Bj−2ψ ∈ Bj−2ψ ∈ Bj−2.........

...

...

............

A0 A1 A2 A3 . . .A0 A1 A2 A3 . . .A0 A1 A2 A3 . . . |= ψ1|= ψ1|= ψ1 ⇒⇒⇒ ψ1 ∈ B0ψ1 ∈ B0ψ1 ∈ B0 ∧∧∧ ψ ∈ B0ψ ∈ B0ψ ∈ B0

284 / 527

Page 285: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “=⇒=⇒=⇒”) ltlmc3.2-64

285 / 527

Page 286: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “=⇒=⇒=⇒”) ltlmc3.2-64

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

286 / 527

Page 287: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “=⇒=⇒=⇒”) ltlmc3.2-64

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

“=⇒=⇒=⇒” Suppose ψ ∈ B0ψ ∈ B0ψ ∈ B0.

287 / 527

Page 288: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “=⇒=⇒=⇒”) ltlmc3.2-64

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

“=⇒=⇒=⇒” Suppose ψ ∈ B0ψ ∈ B0ψ ∈ B0. There exists j ≥ 0j ≥ 0j ≥ 0 with ψ2 ∈ Bjψ2 ∈ Bjψ2 ∈ Bj ,

288 / 527

Page 289: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “=⇒=⇒=⇒”) ltlmc3.2-64

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

“=⇒=⇒=⇒” Suppose ψ ∈ B0ψ ∈ B0ψ ∈ B0. There exists j ≥ 0j ≥ 0j ≥ 0 with ψ2 ∈ Bjψ2 ∈ Bjψ2 ∈ Bj ,since otherwise ∀j ≥ 0. ψ2 /∈ Bj∀j ≥ 0. ψ2 /∈ Bj∀j ≥ 0. ψ2 /∈ Bj

289 / 527

Page 290: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “=⇒=⇒=⇒”) ltlmc3.2-64

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

“=⇒=⇒=⇒” Suppose ψ ∈ B0ψ ∈ B0ψ ∈ B0. There exists j ≥ 0j ≥ 0j ≥ 0 with ψ2 ∈ Bjψ2 ∈ Bjψ2 ∈ Bj ,since otherwise ∀j ≥ 0. ψ2 /∈ Bj∀j ≥ 0. ψ2 /∈ Bj∀j ≥ 0. ψ2 /∈ Bj and therefore:

ψ ∈ B0ψ ∈ B0ψ ∈ B0 ∧∧∧ ψ2 �∈ B0ψ2 �∈ B0ψ2 �∈ B0

290 / 527

Page 291: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “=⇒=⇒=⇒”) ltlmc3.2-64

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F Bi+1 ∈ δ(Bi ,Ai)Bi+1 ∈ δ(Bi ,Ai)Bi+1 ∈ δ(Bi ,Ai)

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

“=⇒=⇒=⇒” Suppose ψ ∈ B0ψ ∈ B0ψ ∈ B0. There exists j ≥ 0j ≥ 0j ≥ 0 with ψ2 ∈ Bjψ2 ∈ Bjψ2 ∈ Bj ,since otherwise ∀j ≥ 0. ψ2 /∈ Bj∀j ≥ 0. ψ2 /∈ Bj∀j ≥ 0. ψ2 /∈ Bj and therefore:

ψ ∈ B0ψ ∈ B0ψ ∈ B0 ∧∧∧ ψ2 �∈ B0ψ2 �∈ B0ψ2 �∈ B0

⇒⇒⇒ ψ ∈ B1ψ ∈ B1ψ ∈ B1

291 / 527

Page 292: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “=⇒=⇒=⇒”) ltlmc3.2-64

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F Bi+1 ∈ δ(Bi ,Ai)Bi+1 ∈ δ(Bi ,Ai)Bi+1 ∈ δ(Bi ,Ai)

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

“=⇒=⇒=⇒” Suppose ψ ∈ B0ψ ∈ B0ψ ∈ B0. There exists j ≥ 0j ≥ 0j ≥ 0 with ψ2 ∈ Bjψ2 ∈ Bjψ2 ∈ Bj ,since otherwise ∀j ≥ 0. ψ2 /∈ Bj∀j ≥ 0. ψ2 /∈ Bj∀j ≥ 0. ψ2 /∈ Bj and therefore:

ψ ∈ B0ψ ∈ B0ψ ∈ B0 ∧∧∧ ψ2 �∈ B0ψ2 �∈ B0ψ2 �∈ B0

⇒⇒⇒ ψ ∈ B1ψ ∈ B1ψ ∈ B1 ∧∧∧ ψ2 �∈ B1ψ2 �∈ B1ψ2 �∈ B1

292 / 527

Page 293: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “=⇒=⇒=⇒”) ltlmc3.2-64

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F Bi+1 ∈ δ(Bi ,Ai)Bi+1 ∈ δ(Bi ,Ai)Bi+1 ∈ δ(Bi ,Ai)

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

“=⇒=⇒=⇒” Suppose ψ ∈ B0ψ ∈ B0ψ ∈ B0. There exists j ≥ 0j ≥ 0j ≥ 0 with ψ2 ∈ Bjψ2 ∈ Bjψ2 ∈ Bj ,since otherwise ∀j ≥ 0. ψ2 /∈ Bj∀j ≥ 0. ψ2 /∈ Bj∀j ≥ 0. ψ2 /∈ Bj and therefore:

ψ ∈ B0ψ ∈ B0ψ ∈ B0 ∧∧∧ ψ2 �∈ B0ψ2 �∈ B0ψ2 �∈ B0

⇒⇒⇒ ψ ∈ B1ψ ∈ B1ψ ∈ B1 ∧∧∧ ψ2 �∈ B1ψ2 �∈ B1ψ2 �∈ B1

⇒⇒⇒ ψ ∈ B2ψ ∈ B2ψ ∈ B2

293 / 527

Page 294: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “=⇒=⇒=⇒”) ltlmc3.2-64

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F Bi+1 ∈ δ(Bi ,Ai)Bi+1 ∈ δ(Bi ,Ai)Bi+1 ∈ δ(Bi ,Ai)

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

“=⇒=⇒=⇒” Suppose ψ ∈ B0ψ ∈ B0ψ ∈ B0. There exists j ≥ 0j ≥ 0j ≥ 0 with ψ2 ∈ Bjψ2 ∈ Bjψ2 ∈ Bj ,since otherwise ∀j ≥ 0. ψ2 /∈ Bj∀j ≥ 0. ψ2 /∈ Bj∀j ≥ 0. ψ2 /∈ Bj and therefore:

ψ ∈ B0ψ ∈ B0ψ ∈ B0 ∧∧∧ ψ2 �∈ B0ψ2 �∈ B0ψ2 �∈ B0

⇒⇒⇒ ψ ∈ B1ψ ∈ B1ψ ∈ B1 ∧∧∧ ψ2 �∈ B1ψ2 �∈ B1ψ2 �∈ B1

⇒⇒⇒ ψ ∈ B2ψ ∈ B2ψ ∈ B2 ∧∧∧ ψ2 �∈ B2ψ2 �∈ B2ψ2 �∈ B2.........

294 / 527

Page 295: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “=⇒=⇒=⇒”) ltlmc3.2-64

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

“=⇒=⇒=⇒” Suppose ψ ∈ B0ψ ∈ B0ψ ∈ B0. There exists j ≥ 0j ≥ 0j ≥ 0 with ψ2 ∈ Bjψ2 ∈ Bjψ2 ∈ Bj ,since otherwise ∀j ≥ 0. ψ2 /∈ Bj∀j ≥ 0. ψ2 /∈ Bj∀j ≥ 0. ψ2 /∈ Bj and therefore:

ψ ∈ B0ψ ∈ B0ψ ∈ B0 ∧∧∧ ψ2 �∈ B0ψ2 �∈ B0ψ2 �∈ B0

⇒⇒⇒ ψ ∈ B1ψ ∈ B1ψ ∈ B1 ∧∧∧ ψ2 �∈ B1ψ2 �∈ B1ψ2 �∈ B1

⇒⇒⇒ ψ ∈ B2ψ ∈ B2ψ ∈ B2 ∧∧∧ ψ2 �∈ B2ψ2 �∈ B2ψ2 �∈ B2.........

=⇒ ∀j ≥ 0=⇒ ∀j ≥ 0=⇒ ∀j ≥ 0. Bj �∈ FψBj �∈ FψBj �∈ Fψ where

Fψ = {B : ψ �∈ BFψ = {B : ψ �∈ BFψ = {B : ψ �∈ B or ψ2 ∈ B}ψ2 ∈ B}ψ2 ∈ B}

295 / 527

Page 296: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “=⇒=⇒=⇒”) ltlmc3.2-64

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

“=⇒=⇒=⇒” Suppose ψ ∈ B0ψ ∈ B0ψ ∈ B0. There exists j ≥ 0j ≥ 0j ≥ 0 with ψ2 ∈ Bjψ2 ∈ Bjψ2 ∈ Bj ,since otherwise ∀j ≥ 0. ψ2 /∈ Bj∀j ≥ 0. ψ2 /∈ Bj∀j ≥ 0. ψ2 /∈ Bj and therefore:

ψ ∈ B0ψ ∈ B0ψ ∈ B0 ∧∧∧ ψ2 �∈ B0ψ2 �∈ B0ψ2 �∈ B0

⇒⇒⇒ ψ ∈ B1ψ ∈ B1ψ ∈ B1 ∧∧∧ ψ2 �∈ B1ψ2 �∈ B1ψ2 �∈ B1

⇒⇒⇒ ψ ∈ B2ψ ∈ B2ψ ∈ B2 ∧∧∧ ψ2 �∈ B2ψ2 �∈ B2ψ2 �∈ B2.........

=⇒ ∀j ≥ 0=⇒ ∀j ≥ 0=⇒ ∀j ≥ 0. Bj �∈ FψBj �∈ FψBj �∈ Fψ where

Fψ = {B : ψ �∈ BFψ = {B : ψ �∈ BFψ = {B : ψ �∈ B or ψ2 ∈ B}ψ2 ∈ B}ψ2 ∈ B}Contradiction!

296 / 527

Page 297: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “=⇒=⇒=⇒”) ltlmc3.2-65

297 / 527

Page 298: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “=⇒=⇒=⇒”) ltlmc3.2-65

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

Let ψ ∈ B0ψ ∈ B0ψ ∈ B0 and j ≥ 0j ≥ 0j ≥ 0 minimal s.t. ψ2 ∈ Bjψ2 ∈ Bjψ2 ∈ Bj

298 / 527

Page 299: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “=⇒=⇒=⇒”) ltlmc3.2-65

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

Let ψ ∈ B0ψ ∈ B0ψ ∈ B0 and j ≥ 0j ≥ 0j ≥ 0 minimal s.t. ψ2 ∈ Bjψ2 ∈ Bjψ2 ∈ Bj

IH=⇒=⇒=⇒ Aj Aj+1 . . .Aj Aj+1 . . .Aj Aj+1 . . . |= ψ2|= ψ2|= ψ2

299 / 527

Page 300: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “=⇒=⇒=⇒”) ltlmc3.2-65

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

Let ψ ∈ B0ψ ∈ B0ψ ∈ B0 and j ≥ 0j ≥ 0j ≥ 0 minimal s.t. ψ2 ∈ Bjψ2 ∈ Bjψ2 ∈ Bj

IH=⇒=⇒=⇒ Aj Aj+1 . . .Aj Aj+1 . . .Aj Aj+1 . . . |= ψ2|= ψ2|= ψ2

¬ψ2 ∈ Bj−1¬ψ2 ∈ Bj−1¬ψ2 ∈ Bj−1

¬ψ2 ∈ Bj−2¬ψ2 ∈ Bj−2¬ψ2 ∈ Bj−2.........

¬ψ2 ∈ B1¬ψ2 ∈ B1¬ψ2 ∈ B1

¬ψ2 ∈ B0¬ψ2 ∈ B0¬ψ2 ∈ B0300 / 527

Page 301: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “=⇒=⇒=⇒”) ltlmc3.2-65

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

Let ψ ∈ B0ψ ∈ B0ψ ∈ B0 and j ≥ 0j ≥ 0j ≥ 0 minimal s.t. ψ2 ∈ Bjψ2 ∈ Bjψ2 ∈ Bj

IH=⇒=⇒=⇒ Aj Aj+1 . . .Aj Aj+1 . . .Aj Aj+1 . . . |= ψ2|= ψ2|= ψ2

¬ψ2 ∈ Bj−1¬ψ2 ∈ Bj−1¬ψ2 ∈ Bj−1

¬ψ2 ∈ Bj−2¬ψ2 ∈ Bj−2¬ψ2 ∈ Bj−2.........

¬ψ2 ∈ B1¬ψ2 ∈ B1¬ψ2 ∈ B1

¬ψ2, ψ ∈ B0¬ψ2, ψ ∈ B0¬ψ2, ψ ∈ B0 ←−←−←− by assumption301 / 527

Page 302: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “=⇒=⇒=⇒”) ltlmc3.2-65

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

Let ψ ∈ B0ψ ∈ B0ψ ∈ B0 and j ≥ 0j ≥ 0j ≥ 0 minimal s.t. ψ2 ∈ Bjψ2 ∈ Bjψ2 ∈ Bj

IH=⇒=⇒=⇒ Aj Aj+1 . . .Aj Aj+1 . . .Aj Aj+1 . . . |= ψ2|= ψ2|= ψ2

¬ψ2 ∈ Bj−1¬ψ2 ∈ Bj−1¬ψ2 ∈ Bj−1

¬ψ2 ∈ Bj−2¬ψ2 ∈ Bj−2¬ψ2 ∈ Bj−2.........

¬ψ2 ∈ B1¬ψ2 ∈ B1¬ψ2 ∈ B1

¬ψ2, ψ1, ψ ∈ B0¬ψ2, ψ1, ψ ∈ B0¬ψ2, ψ1, ψ ∈ B0 ←←← local consistency w.r.t. UUU302 / 527

Page 303: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “=⇒=⇒=⇒”) ltlmc3.2-65

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F Bi+1 ∈ δ(Bi ,Ai)Bi+1 ∈ δ(Bi ,Ai)Bi+1 ∈ δ(Bi ,Ai)

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

Let ψ ∈ B0ψ ∈ B0ψ ∈ B0 and j ≥ 0j ≥ 0j ≥ 0 minimal s.t. ψ2 ∈ Bjψ2 ∈ Bjψ2 ∈ Bj

IH=⇒=⇒=⇒ Aj Aj+1 . . .Aj Aj+1 . . .Aj Aj+1 . . . |= ψ2|= ψ2|= ψ2

¬ψ2 ∈ Bj−1¬ψ2 ∈ Bj−1¬ψ2 ∈ Bj−1

¬ψ2 ∈ Bj−2¬ψ2 ∈ Bj−2¬ψ2 ∈ Bj−2.........

¬ψ2, ψ1, ψ ∈ B1¬ψ2, ψ1, ψ ∈ B1¬ψ2, ψ1, ψ ∈ B1

¬ψ2, ψ1, ψ ∈ B0¬ψ2, ψ1, ψ ∈ B0¬ψ2, ψ1, ψ ∈ B0 ←←← local consistency w.r.t. UUU303 / 527

Page 304: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “=⇒=⇒=⇒”) ltlmc3.2-65

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F Bi+1 ∈ δ(Bi ,Ai)Bi+1 ∈ δ(Bi ,Ai)Bi+1 ∈ δ(Bi ,Ai)

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

Let ψ ∈ B0ψ ∈ B0ψ ∈ B0 and j ≥ 0j ≥ 0j ≥ 0 minimal s.t. ψ2 ∈ Bjψ2 ∈ Bjψ2 ∈ Bj

IH=⇒=⇒=⇒ Aj Aj+1 . . .Aj Aj+1 . . .Aj Aj+1 . . . |= ψ2|= ψ2|= ψ2

¬ψ2, ψ1, ψ ∈ Bj−1¬ψ2, ψ1, ψ ∈ Bj−1¬ψ2, ψ1, ψ ∈ Bj−1

¬ψ2, ψ1, ψ ∈ Bj−2¬ψ2, ψ1, ψ ∈ Bj−2¬ψ2, ψ1, ψ ∈ Bj−2.........

¬ψ2, ψ1, ψ ∈ B1¬ψ2, ψ1, ψ ∈ B1¬ψ2, ψ1, ψ ∈ B1

¬ψ2, ψ1, ψ ∈ B0¬ψ2, ψ1, ψ ∈ B0¬ψ2, ψ1, ψ ∈ B0 ←←← local consistency w.r.t. UUU304 / 527

Page 305: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “=⇒=⇒=⇒”) ltlmc3.2-65

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

Let ψ ∈ B0ψ ∈ B0ψ ∈ B0 and j ≥ 0j ≥ 0j ≥ 0 minimal s.t. ψ2 ∈ Bjψ2 ∈ Bjψ2 ∈ Bj

IH=⇒=⇒=⇒ Aj Aj+1 . . .Aj Aj+1 . . .Aj Aj+1 . . . |= ψ2|= ψ2|= ψ2

¬ψ2, ψ1, ψ ∈ Bj−1¬ψ2, ψ1, ψ ∈ Bj−1¬ψ2, ψ1, ψ ∈ Bj−1 =⇒=⇒=⇒ Aj−1 Aj . . .Aj−1 Aj . . .Aj−1 Aj . . . |= ψ1|= ψ1|= ψ1

¬ψ2, ψ1, ψ ∈ Bj−2¬ψ2, ψ1, ψ ∈ Bj−2¬ψ2, ψ1, ψ ∈ Bj−2.........

¬ψ2, ψ1, ψ ∈ B1¬ψ2, ψ1, ψ ∈ B1¬ψ2, ψ1, ψ ∈ B1

¬ψ2, ψ1, ψ ∈ B0¬ψ2, ψ1, ψ ∈ B0¬ψ2, ψ1, ψ ∈ B0 ←←← local consistency w.r.t. UUU305 / 527

Page 306: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “=⇒=⇒=⇒”) ltlmc3.2-65

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

Let ψ ∈ B0ψ ∈ B0ψ ∈ B0 and j ≥ 0j ≥ 0j ≥ 0 minimal s.t. ψ2 ∈ Bjψ2 ∈ Bjψ2 ∈ Bj

IH=⇒=⇒=⇒ Aj Aj+1 . . .Aj Aj+1 . . .Aj Aj+1 . . . |= ψ2|= ψ2|= ψ2

¬ψ2, ψ1, ψ ∈ Bj−1¬ψ2, ψ1, ψ ∈ Bj−1¬ψ2, ψ1, ψ ∈ Bj−1 =⇒=⇒=⇒ Aj−1 Aj . . .Aj−1 Aj . . .Aj−1 Aj . . . |= ψ1|= ψ1|= ψ1

¬ψ2, ψ1, ψ ∈ Bj−2¬ψ2, ψ1, ψ ∈ Bj−2¬ψ2, ψ1, ψ ∈ Bj−2 =⇒=⇒=⇒ Aj−2 Aj−1 . . .Aj−2 Aj−1 . . .Aj−2 Aj−1 . . . |= ψ1|= ψ1|= ψ1.........

¬ψ2, ψ1, ψ ∈ B1¬ψ2, ψ1, ψ ∈ B1¬ψ2, ψ1, ψ ∈ B1

¬ψ2, ψ1, ψ ∈ B0¬ψ2, ψ1, ψ ∈ B0¬ψ2, ψ1, ψ ∈ B0 ←←← local consistency w.r.t. UUU306 / 527

Page 307: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “=⇒=⇒=⇒”) ltlmc3.2-65

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

Let ψ ∈ B0ψ ∈ B0ψ ∈ B0 and j ≥ 0j ≥ 0j ≥ 0 minimal s.t. ψ2 ∈ Bjψ2 ∈ Bjψ2 ∈ Bj

IH=⇒=⇒=⇒ Aj Aj+1 . . .Aj Aj+1 . . .Aj Aj+1 . . . |= ψ2|= ψ2|= ψ2

¬ψ2, ψ1, ψ ∈ Bj−1¬ψ2, ψ1, ψ ∈ Bj−1¬ψ2, ψ1, ψ ∈ Bj−1 =⇒=⇒=⇒ Aj−1 Aj . . .Aj−1 Aj . . .Aj−1 Aj . . . |= ψ1|= ψ1|= ψ1

¬ψ2, ψ1, ψ ∈ Bj−2¬ψ2, ψ1, ψ ∈ Bj−2¬ψ2, ψ1, ψ ∈ Bj−2 =⇒=⇒=⇒ Aj−2 Aj−1 . . .Aj−2 Aj−1 . . .Aj−2 Aj−1 . . . |= ψ1|= ψ1|= ψ1.........

...

...

............

...

...

...¬ψ2, ψ1, ψ ∈ B1¬ψ2, ψ1, ψ ∈ B1¬ψ2, ψ1, ψ ∈ B1 =⇒=⇒=⇒ A1 A2 A3 . . .A1 A2 A3 . . .A1 A2 A3 . . . |= ψ1|= ψ1|= ψ1

¬ψ2, ψ1, ψ ∈ B0¬ψ2, ψ1, ψ ∈ B0¬ψ2, ψ1, ψ ∈ B0307 / 527

Page 308: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “=⇒=⇒=⇒”) ltlmc3.2-65

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

Let ψ ∈ B0ψ ∈ B0ψ ∈ B0 and j ≥ 0j ≥ 0j ≥ 0 minimal s.t. ψ2 ∈ Bjψ2 ∈ Bjψ2 ∈ Bj

IH=⇒=⇒=⇒ Aj Aj+1 . . .Aj Aj+1 . . .Aj Aj+1 . . . |= ψ2|= ψ2|= ψ2

¬ψ2, ψ1, ψ ∈ Bj−1¬ψ2, ψ1, ψ ∈ Bj−1¬ψ2, ψ1, ψ ∈ Bj−1 =⇒=⇒=⇒ Aj−1 Aj . . .Aj−1 Aj . . .Aj−1 Aj . . . |= ψ1|= ψ1|= ψ1

¬ψ2, ψ1, ψ ∈ Bj−2¬ψ2, ψ1, ψ ∈ Bj−2¬ψ2, ψ1, ψ ∈ Bj−2 =⇒=⇒=⇒ Aj−2 Aj−1 . . .Aj−2 Aj−1 . . .Aj−2 Aj−1 . . . |= ψ1|= ψ1|= ψ1.........

...

...

............

...

...

...¬ψ2, ψ1, ψ ∈ B1¬ψ2, ψ1, ψ ∈ B1¬ψ2, ψ1, ψ ∈ B1 =⇒=⇒=⇒ A1 A2 A3 . . .A1 A2 A3 . . .A1 A2 A3 . . . |= ψ1|= ψ1|= ψ1

¬ψ2, ψ1, ψ ∈ B0¬ψ2, ψ1, ψ ∈ B0¬ψ2, ψ1, ψ ∈ B0 =⇒=⇒=⇒ A0 A1 A2 . . .A0 A1 A2 . . .A0 A1 A2 . . . |= ψ1|= ψ1|= ψ1308 / 527

Page 309: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “=⇒=⇒=⇒”) ltlmc3.2-65

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

Let ψ ∈ B0ψ ∈ B0ψ ∈ B0 and j ≥ 0j ≥ 0j ≥ 0 minimal s.t. ψ2 ∈ Bjψ2 ∈ Bjψ2 ∈ Bj

IH=⇒=⇒=⇒ Aj Aj+1 . . .Aj Aj+1 . . .Aj Aj+1 . . . |= ψ2|= ψ2|= ψ2

¬ψ2, ψ1, ψ ∈ Bj−1¬ψ2, ψ1, ψ ∈ Bj−1¬ψ2, ψ1, ψ ∈ Bj−1 =⇒=⇒=⇒ Aj−1 Aj . . .Aj−1 Aj . . .Aj−1 Aj . . . |= ψ1|= ψ1|= ψ1.........

...

...

............

...

...

...¬ψ2, ψ1, ψ ∈ B0¬ψ2, ψ1, ψ ∈ B0¬ψ2, ψ1, ψ ∈ B0 =⇒=⇒=⇒ A0 A1 A2 . . .A0 A1 A2 . . .A0 A1 A2 . . . |= ψ1|= ψ1|= ψ1

⇓⇓⇓

309 / 527

Page 310: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Induction step: until (part “=⇒=⇒=⇒”) ltlmc3.2-65

Claim: If B0A0→ B1

A1→ B2A2→ ...B0

A0→ B1A1→ B2

A2→ ...B0A0→ B1

A1→ B2A2→ ... is a path in GGG s.t.

∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F∀F ∈ F∞∃ j ≥ 0.Bj ∈ F

then for all ψ ∈ cl(ϕ)ψ ∈ cl(ϕ)ψ ∈ cl(ϕ): ψ ∈ B0ψ ∈ B0ψ ∈ B0 iff A0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψA0 A1 A2 . . . |= ψ

Induction step for ψ = ψ1 Uψ2ψ = ψ1 Uψ2ψ = ψ1 Uψ2:

Let ψ ∈ B0ψ ∈ B0ψ ∈ B0 and j ≥ 0j ≥ 0j ≥ 0 minimal s.t. ψ2 ∈ Bjψ2 ∈ Bjψ2 ∈ Bj

IH=⇒=⇒=⇒ Aj Aj+1 . . .Aj Aj+1 . . .Aj Aj+1 . . . |= ψ2|= ψ2|= ψ2

¬ψ2, ψ1, ψ ∈ Bj−1¬ψ2, ψ1, ψ ∈ Bj−1¬ψ2, ψ1, ψ ∈ Bj−1 =⇒=⇒=⇒ Aj−1 Aj . . .Aj−1 Aj . . .Aj−1 Aj . . . |= ψ1|= ψ1|= ψ1.........

...

...

............

...

...

...¬ψ2, ψ1, ψ ∈ B0¬ψ2, ψ1, ψ ∈ B0¬ψ2, ψ1, ψ ∈ B0 =⇒=⇒=⇒ A0 A1 A2 . . .A0 A1 A2 . . .A0 A1 A2 . . . |= ψ1|= ψ1|= ψ1

⇓⇓⇓A0 A1 A2 . . . |= ψ = ψ1 Uψ2A0 A1 A2 . . . |= ψ = ψ1 Uψ2A0 A1 A2 . . . |= ψ = ψ1 Uψ2

310 / 527

Page 311: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Complexity: LTL ��� NBA ltlmc3.2-67

311 / 527

Page 312: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Complexity: LTL ��� NBA ltlmc3.2-67

For each LTL formula ϕϕϕ, there is an NBA AAA s.t.

Lω(A)Lω(A)Lω(A) === Words(ϕ)Words(ϕ)Words(ϕ)

312 / 527

Page 313: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Complexity: LTL ��� NBA ltlmc3.2-67

For each LTL formula ϕϕϕ, there is an NBA AAA s.t.

Lω(A)Lω(A)Lω(A) === Words(ϕ)Words(ϕ)Words(ϕ)

LTL formula ϕϕϕ

GNBA GGG

NBA AAA313 / 527

Page 314: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Complexity: LTL ��� NBA ltlmc3.2-67

For each LTL formula ϕϕϕ, there is an NBA AAA s.t.

Lω(A)Lω(A)Lω(A) === Words(ϕ)Words(ϕ)Words(ϕ)

LTL formula ϕϕϕ

GNBA GGG

NBA AAA size: size(G) · |F|size(G) · |F|size(G) · |F|314 / 527

Page 315: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Complexity: LTL ��� NBA ltlmc3.2-67

For each LTL formula ϕϕϕ, there is an NBA AAA s.t.

Lω(A)Lω(A)Lω(A) === Words(ϕ)Words(ϕ)Words(ϕ)

LTL formula ϕϕϕ

GNBA GGG

NBA AAA size: size(G) · |F|size(G) · |F|size(G) · |F|

|F||F||F| === number ofacceptancesets in GGG

315 / 527

Page 316: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Complexity: LTL ��� NBA ltlmc3.2-67

For each LTL formula ϕϕϕ, there is an NBA AAA s.t.

Lω(A)Lω(A)Lω(A) === Words(ϕ)Words(ϕ)Words(ϕ)

LTL formula ϕϕϕ

GNBA GGG

NBA AAA size: size(G) · |F|size(G) · |F|size(G) · |F|

|F||F||F| === number ofacceptancesets in GGG

≤≤≤ |ϕ||ϕ||ϕ|

316 / 527

Page 317: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Complexity: LTL ��� NBA ltlmc3.2-67

For each LTL formula ϕϕϕ, there is an NBA AAA s.t.

Lω(A)Lω(A)Lω(A) === Words(ϕ)Words(ϕ)Words(ϕ)

LTL formula ϕϕϕ

GNBA GGG

NBA AAA

size: 2|cl(ϕ)|2|cl(ϕ)|2|cl(ϕ)|

size: size(G) · |F|size(G) · |F|size(G) · |F|

|F||F||F| === number ofacceptancesets in GGG

≤≤≤ |ϕ||ϕ||ϕ|

317 / 527

Page 318: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Complexity: LTL ��� NBA ltlmc3.2-67

For each LTL formula ϕϕϕ, there is an NBA AAA s.t.

Lω(A)Lω(A)Lω(A) === Words(ϕ)Words(ϕ)Words(ϕ) and

size(A)size(A)size(A) ≤≤≤ 2|cl(ϕ)| · |ϕ|2|cl(ϕ)| · |ϕ|2|cl(ϕ)| · |ϕ|

LTL formula ϕϕϕ

GNBA GGG

NBA AAA

size: 2|cl(ϕ)|2|cl(ϕ)|2|cl(ϕ)|

size: size(G) · |F|size(G) · |F|size(G) · |F|

|F||F||F| === number ofacceptancesets in GGG

≤≤≤ |ϕ||ϕ||ϕ|

318 / 527

Page 319: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Complexity: LTL ��� NBA ltlmc3.2-67

For each LTL formula ϕϕϕ, there is an NBA AAA s.t.

Lω(A)Lω(A)Lω(A) === Words(ϕ)Words(ϕ)Words(ϕ) and

size(A)size(A)size(A) ≤≤≤ 2|cl(ϕ)| · |ϕ|2|cl(ϕ)| · |ϕ|2|cl(ϕ)| · |ϕ| = 2O(|ϕ|)= 2O(|ϕ|)= 2O(|ϕ|)

LTL formula ϕϕϕ

GNBA GGG

NBA AAA

size: 2|cl(ϕ)|2|cl(ϕ)|2|cl(ϕ)|

size: size(G) · |F|size(G) · |F|size(G) · |F|

|F||F||F| === number ofacceptancesets in GGG

≤≤≤ |ϕ||ϕ||ϕ|

319 / 527

Page 320: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Size of NBA for LTL formulas ltlmc3.2-68

320 / 527

Page 321: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Size of NBA for LTL formulas ltlmc3.2-68

For the proposed transformation LTL��� NBA:

The constructed NBA for LTL formulas are oftenunnecessarily complicated

321 / 527

Page 322: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Size of NBA for LTL formulas ltlmc3.2-68

For the proposed transformation LTL��� NBA:

The constructed NBA for LTL formulas are oftenunnecessarily complicated

NBA for©a©a©a

q0q0q0

q1q1q1

q2q2q2 true

true

aaa

constructed GNBA has444 states and 888 edges

322 / 527

Page 323: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Size of NBA for LTL formulas ltlmc3.2-68

For the proposed transformation LTL��� NBA:

The constructed NBA for LTL formulas are oftenunnecessarily complicated

NBA for a U ba U ba U b

q0q0q0

q1q1q1

aaa

true

bbb

constructed (G)NBA has555 states and 202020 edges

323 / 527

Page 324: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

Size of NBA for LTL formulas ltlmc3.2-68

For the proposed transformation LTL��� NBA:

The constructed NBA for LTL formulas are oftenunnecessarily complicated

... but there exists LTL formulas ϕnϕnϕn such that

• |ϕn| = O(poly(n))|ϕn| = O(poly(n))|ϕn| = O(poly(n))

• each NBA for ϕnϕnϕn has at least 2n2n2n states

324 / 527

Page 325: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LT-properties that have no “small” NBA ltlmc3.2-69

325 / 527

Page 326: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LT-properties that have no “small” NBA ltlmc3.2-69

consider the following family of LT-properties (En)n≥1(En)n≥1(En)n≥1:

En =En =En =

{set of all infinite words over 2AP2AP2AP of the form

A1 A2 A3. . .An A1 A2 A3. . .An B1 B2 B3 B4 . . .A1 A2 A3. . .An A1 A2 A3. . .An B1 B2 B3 B4 . . .A1 A2 A3. . .An A1 A2 A3. . .An B1 B2 B3 B4 . . .

326 / 527

Page 327: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LT-properties that have no “small” NBA ltlmc3.2-69

consider the following family of LT-properties (En)n≥1(En)n≥1(En)n≥1:

En =En =En =

{set of all infinite words over 2AP2AP2AP of the form

A1 A2 A3. . .An A1 A2 A3. . .AnA1 A2 A3. . .An A1 A2 A3. . .AnA1 A2 A3. . .An A1 A2 A3. . .An︸ ︷︷ ︸B1 B2 B3 B4 . . .B1 B2 B3 B4 . . .B1 B2 B3 B4 . . .︸ ︷︷ ︸= xx= xx= xx

for some x ∈(2AP

)∗x ∈

(2AP

)∗x ∈

(2AP

)∗of length nnn

∈(2AP

)ω∈(2AP

)ω∈(2AP

)ωarbitrary

327 / 527

Page 328: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LT-properties that have no “small” NBA ltlmc3.2-69

consider the following family of LT-properties (En)n≥1(En)n≥1(En)n≥1:

En =En =En =

{set of all infinite words over 2AP2AP2AP of the form

A1 A2 A3. . .An A1 A2 A3. . .AnA1 A2 A3. . .An A1 A2 A3. . .AnA1 A2 A3. . .An A1 A2 A3. . .An︸ ︷︷ ︸B1 B2 B3 B4 . . .B1 B2 B3 B4 . . .B1 B2 B3 B4 . . .︸ ︷︷ ︸= xx= xx= xx

for some x ∈(2AP

)∗x ∈

(2AP

)∗x ∈

(2AP

)∗of length nnn

∈(2AP

)ω∈(2AP

)ω∈(2AP

)ωarbitrary

LTL formula ϕnϕnϕn with Words(ϕn) = EnWords(ϕn) = EnWords(ϕn) = En

328 / 527

Page 329: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LT-properties that have no “small” NBA ltlmc3.2-69

consider the following family of LT-properties (En)n≥1(En)n≥1(En)n≥1:

En =En =En =

{set of all infinite words over 2AP2AP2AP of the form

A1 A2 A3. . .An A1 A2 A3. . .AnA1 A2 A3. . .An A1 A2 A3. . .AnA1 A2 A3. . .An A1 A2 A3. . .An︸ ︷︷ ︸B1 B2 B3 B4 . . .B1 B2 B3 B4 . . .B1 B2 B3 B4 . . .︸ ︷︷ ︸= xx= xx= xx

for some x ∈(2AP

)∗x ∈

(2AP

)∗x ∈

(2AP

)∗of length nnn

∈(2AP

)ω∈(2AP

)ω∈(2AP

)ωarbitrary

LTL formula ϕnϕnϕn with Words(ϕn) = EnWords(ϕn) = EnWords(ϕn) = En

ϕn =∧

a∈AP

∧0≤i<n

(©ia↔©i+na

)ϕn =

∧a∈AP

∧0≤i<n

(©ia↔©i+na

)ϕn =

∧a∈AP

∧0≤i<n

(©ia↔©i+na

)329 / 527

Page 330: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LT-properties that have no “small” NBA ltlmc3.2-69

consider the following family of LT-properties (En)n≥1(En)n≥1(En)n≥1:

En =En =En =

{set of all infinite words over 2AP2AP2AP of the form

A1 A2 A3. . .An A1 A2 A3. . .AnA1 A2 A3. . .An A1 A2 A3. . .AnA1 A2 A3. . .An A1 A2 A3. . .An︸ ︷︷ ︸B1 B2 B3 B4 . . .B1 B2 B3 B4 . . .B1 B2 B3 B4 . . .︸ ︷︷ ︸= xx= xx= xx

for some x ∈(2AP

)∗x ∈

(2AP

)∗x ∈

(2AP

)∗of length nnn

∈(2AP

)ω∈(2AP

)ω∈(2AP

)ωarbitrary

LTL formula ϕnϕnϕn with Words(ϕn) = EnWords(ϕn) = EnWords(ϕn) = En

ϕn =∧

a∈AP

∧0≤i<n

(©ia↔©i+na

)ϕn =

∧a∈AP

∧0≤i<n

(©ia↔©i+na

)ϕn =

∧a∈AP

∧0≤i<n

(©ia↔©i+na

)←−←−←− length

O(poly(n))O(poly(n))O(poly(n))

330 / 527

Page 331: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LT-property EnEnEn for n=1n=1n=1 ltlmc3.2-69a

E1 =E1 =E1 =

{set of all infinite words over 2AP2AP2AP of the form

A A B1 B2 B3 B4 . . .A A B1 B2 B3 B4 . . .A A B1 B2 B3 B4 . . . where AAA,Bj ⊆ APBj ⊆ APBj ⊆ AP for j ≥ 0j ≥ 0j ≥ 0

331 / 527

Page 332: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LT-property EnEnEn for n=1n=1n=1 ltlmc3.2-69a

E1 =E1 =E1 =

{set of all infinite words over 2AP2AP2AP of the form

A A B1 B2 B3 B4 . . .A A B1 B2 B3 B4 . . .A A B1 B2 B3 B4 . . . where AAA,Bj ⊆ APBj ⊆ APBj ⊆ AP for j ≥ 0j ≥ 0j ≥ 0

NBA for E1E1E1 if AP = {a}AP = {a}AP = {a}:

q0q0q0

q1q1q1

q2q2q2

q2q2q2

trueaaa aaa

¬a¬a¬a ¬a¬a¬a

332 / 527

Page 333: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LT-property EnEnEn for n=1n=1n=1 ltlmc3.2-69a

E1 =E1 =E1 =

{set of all infinite words over 2AP2AP2AP of the form

A A B1 B2 B3 B4 . . .A A B1 B2 B3 B4 . . .A A B1 B2 B3 B4 . . . where AAA,Bj ⊆ APBj ⊆ APBj ⊆ AP for j ≥ 0j ≥ 0j ≥ 0

NBA for E1E1E1 if AP = {a}AP = {a}AP = {a}:

q0q0q0

q1q1q1

q2q2q2

q2q2q2

trueaaa aaa

¬a¬a¬a ¬a¬a¬a

LTL-formula:a↔©aa↔©aa↔©a

333 / 527

Page 334: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LT-property EnEnEn for n=1n=1n=1 ltlmc3.2-69a

E1 =E1 =E1 =

{set of all infinite words over 2AP2AP2AP of the form

A A B1 B2 B3 B4 . . .A A B1 B2 B3 B4 . . .A A B1 B2 B3 B4 . . . where AAA,Bj ⊆ APBj ⊆ APBj ⊆ AP for j ≥ 0j ≥ 0j ≥ 0

NBA for E1E1E1 if AP = {a, b}AP = {a, b}AP = {a, b}:

q0q0q0

q1q1q1

q2q2q2

q3q3q3

q4q4q4

q2q2q2

truea ∧ ba ∧ ba ∧ b a ∧ ba ∧ ba ∧ b

a ∧ ¬ba ∧ ¬ba ∧ ¬b a ∧ ¬ba ∧ ¬ba ∧ ¬b

¬a ∧ b¬a ∧ b¬a ∧ b ¬a ∧ b¬a ∧ b¬a ∧ b

¬a ∧ ¬b¬a ∧ ¬b¬a ∧ ¬b ¬a ∧ ¬b¬a ∧ ¬b¬a ∧ ¬b

334 / 527

Page 335: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LT-property EnEnEn for n=1n=1n=1 ltlmc3.2-69a

E1 =E1 =E1 =

{set of all infinite words over 2AP2AP2AP of the form

A A B1 B2 B3 B4 . . .A A B1 B2 B3 B4 . . .A A B1 B2 B3 B4 . . . where AAA,Bj ⊆ APBj ⊆ APBj ⊆ AP for j ≥ 0j ≥ 0j ≥ 0

NBA for E1E1E1 if AP = {a, b}AP = {a, b}AP = {a, b}:

q0q0q0

q1q1q1

q2q2q2

q3q3q3

q4q4q4

q2q2q2

truea ∧ ba ∧ ba ∧ b a ∧ ba ∧ ba ∧ b

a ∧ ¬ba ∧ ¬ba ∧ ¬b a ∧ ¬ba ∧ ¬ba ∧ ¬b

¬a ∧ b¬a ∧ b¬a ∧ b ¬a ∧ b¬a ∧ b¬a ∧ b

¬a ∧ ¬b¬a ∧ ¬b¬a ∧ ¬b ¬a ∧ ¬b¬a ∧ ¬b¬a ∧ ¬b

LTL-formula:

(a(a(a ↔↔↔ ©a)©a)©a) ∧∧∧(b(b(b ↔↔↔ ©b)©b)©b)

335 / 527

Page 336: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LT property EnEnEn for n=2n=2n=2 and AP = {a}AP = {a}AP = {a} ltlmc3.2-70

p0p0p0

q1q1q1

q0q0q0

q11q11q11

q10q10q10

q01q01q01

q00q00q00

q111q111q111

q101q101q101

q010q010q010

q000q000q000

qFqFqF

aaa

¬a¬a¬a

aaa

¬a¬a¬a

aaa

¬a¬a¬a

aaa

aaa

¬a¬a¬a

¬a¬a¬a

aaa

¬a¬a¬a

aaa

¬a¬a¬a

true

E2 ={A1A2A1A2σ : A1,A2 ⊆ AP , σ ∈

(2AP)ω

}E2 =

{A1A2A1A2σ : A1,A2 ⊆ AP , σ ∈

(2AP)ω

}E2 =

{A1A2A1A2σ : A1,A2 ⊆ AP, σ ∈

(2AP)ω

}

336 / 527

Page 337: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LT property EnEnEn for n=2n=2n=2 and AP = {a}AP = {a}AP = {a} ltlmc3.2-70

p0p0p0

q1q1q1

q0q0q0

q11q11q11

q10q10q10

q01q01q01

q00q00q00

q111q111q111

q101q101q101

q010q010q010

q000q000q000

qFqFqF

aaa

¬a¬a¬a

aaa

¬a¬a¬a

aaa

¬a¬a¬a

aaa

aaa

¬a¬a¬a

¬a¬a¬a

aaa

¬a¬a¬a

aaa

¬a¬a¬a

true

E2 ={A1A2A1A2σ : A1,A2 ⊆ AP , σ ∈

(2AP)ω

}E2 =

{A1A2A1A2σ : A1,A2 ⊆ AP , σ ∈

(2AP)ω

}E2 =

{A1A2A1A2σ : A1,A2 ⊆ AP, σ ∈

(2AP)ω

}LTL-formula: (a↔©©a) ∧ (©a↔©©©a)(a↔©©a) ∧ (©a↔©©©a)(a↔©©a) ∧ (©a↔©©©a)

337 / 527

Page 338: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LT property EnEnEn for n=2n=2n=2 and AP = {a}AP = {a}AP = {a} ltlmc3.2-70

p0p0p0

q1q1q1

q0q0q0

q11q11q11

q10q10q10

q01q01q01

q00q00q00

q111q111q111

q101q101q101

q010q010q010

q000q000q000

qFqFqF

aaa

¬a¬a¬a

aaa

¬a¬a¬a

aaa

¬a¬a¬a

aaa

aaa

¬a¬a¬a

¬a¬a¬a

aaa

¬a¬a¬a

aaa

¬a¬a¬a

true

general case: each NBA for EnEnEn has ≥ 2n≥ 2n≥ 2n states

338 / 527

Page 339: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LT property EnEnEn for n=2n=2n=2 and AP = {a}AP = {a}AP = {a} ltlmc3.2-70

p0p0p0

q1q1q1

q0q0q0

q11q11q11

q10q10q10

q01q01q01

q00q00q00

q111q111q111

q101q101q101

q010q010q010

q000q000q000

qFqFqF

aaa

¬a¬a¬a

aaa

¬a¬a¬a

aaa

¬a¬a¬a

aaa

aaa

¬a¬a¬a

¬a¬a¬a

aaa

¬a¬a¬a

aaa

¬a¬a¬a

true

general case: each NBA for EnEnEn has ≥ 2n≥ 2n≥ 2n states

En = Words(ϕn)En = Words(ϕn)En = Words(ϕn) where ϕn =∧

a∈AP

∧0≤i<n

(©ia↔©n+ia

)ϕn =

∧a∈AP

∧0≤i<n

(©ia↔©n+ia

)ϕn =

∧a∈AP

∧0≤i<n

(©ia↔©n+ia

)339 / 527

Page 340: IRISA14.pdf · Encoding of LTL semantics in a GNBA ltlmc3.2-39-copy idea: encode the semantics of the operators appearing in ϕ by appropriate components of the GNBA G: semantics

LT property EnEnEn for n=2n=2n=2 and AP = {a}AP = {a}AP = {a} ltlmc3.2-70

p0p0p0

q1q1q1

q0q0q0

q11q11q11

q10q10q10

q01q01q01

q00q00q00

q111q111q111

q101q101q101

q010q010q010

q000q000q000

qFqFqF

aaa

¬a¬a¬a

aaa

¬a¬a¬a

aaa

¬a¬a¬a

aaa

aaa

¬a¬a¬a

¬a¬a¬a

aaa

¬a¬a¬a

aaa

¬a¬a¬a

true

general case: each NBA for EnEnEn has ≥ 2n≥ 2n≥ 2n states

En = Words(ϕn)En = Words(ϕn)En = Words(ϕn) where ϕn =∧

a∈AP

∧0≤i<n

(©ia↔©n+ia

)ϕn =

∧a∈AP

∧0≤i<n

(©ia↔©n+ia

)ϕn =

∧a∈AP

∧0≤i<n

(©ia↔©n+ia

)340 / 527