irfb4332pbf

Upload: nicinha

Post on 05-Oct-2015

214 views

Category:

Documents


0 download

DESCRIPTION

Datasheet of igbt

TRANSCRIPT

  • www.irf.com 19/8/08

    IRFB4332PbF

    Notesthrough are on page 8

    DescriptionHEXFET Power MOSFETMOSFET !"#MOSFET$%&'()*++*MOSFET

    ,++

    Features Advanced Process Technology Key Parameters Optimized for PDP Sustain, Energy Recovery and Pass Switch Applications Low EPULSE Rating to Reduce Power Dissipation in PDP Sustain, Energy Recovery and Pass Switch Applications Low QG for Fast Response High Repetitive Peak Current Capability for Reliable Operation Short Fall & Rise Times for Fast Switching175C Operating Junction Temperature for Improved Ruggedness Repetitive Avalanche Capability for Robustness and Reliability

    S

    D

    G

    TO-220AB

    D

    SD

    G

    G D SGate Drain Source

    VDS min 250 VVDS (Avalanche) typ. 300 VRDS(ON) typ. @ 10V 29 mTJ max 175 C

    Key Parameters

    Absolute Maximum RatingsParameter Units

    VGS Gate-to-Source Voltage V

    ID @ TC = 25C Continuous Drain Current, VGS @ 10V A

    ID @ TC = 100C Continuous Drain Current, VGS @ 10V

    IDM Pulsed Drain Current

    IRP @ TC = 100C Repetitive Peak Current

    PD @TC = 25C Power Dissipation W

    PD @TC = 100C Power Dissipation

    Linear Derating Factor W/C

    TJ Operating Junction and C

    TSTG Storage Temperature Range

    Soldering Temperature for 10 seconds

    Mounting Torque, 6-32 or M3 Screw N

    Thermal ResistanceParameter Typ. Max. Units

    RJC Junction-to-Case 0.38RCS Case-to-Sink, Flat, Greased Surface 0.50 C/WRJA Junction-to-Ambient 62

    Max.

    42

    230

    60

    30

    120

    300

    -40 to + 175

    10lbin (1.1Nm)

    390

    200

    2.6

  • 2 www.irf.com

    S

    D

    G

    Electrical Characteristics @ TJ = 25C (unless otherwise specified)Parameter Min. Typ. Max. Units

    BVDSS Drain-to-Source Breakdown Voltage 250 V

    VDSS/TJ Breakdown Voltage Temp. Coefficient 170 mV/CRDS(on) Static Drain-to-Source On-Resistance 29 33 mVGS(th) Gate Threshold Voltage 3.0 5.0 V

    VGS(th)/TJ Gate Threshold Voltage Coefficient -14 mV/CIDSS Drain-to-Source Leakage Current 20 A

    1.0 mA

    IGSS Gate-to-Source Forward Leakage 100 nA

    Gate-to-Source Reverse Leakage -100

    gfs Forward Transconductance 100 S

    Qg Total Gate Charge 99 150 nC

    Qgd Gate-to-Drain Charge 35

    tst Shoot Through Blocking Time 100 ns

    EPULSE Energy per Pulse J

    Ciss Input Capacitance 5860

    Coss Output Capacitance 530 pF

    Crss Reverse Transfer Capacitance 130

    Coss eff. Effective Output Capacitance 360

    LD Internal Drain Inductance 4.5 Between lead,

    nH 6mm (0.25in.)

    LS Internal Source Inductance 7.5 from package

    Avalanche CharacteristicsParameter Units

    EAS Single Pulse Avalanche Energy mJ

    EAR Repetitive Avalanche Energy mJ

    VDS(Avalanche) Repetitive Avalanche Voltage V

    IAS Avalanche Current A

    Diode Characteristics Parameter Min. Typ. Max. Units

    IS @ TC = 25C Continuous Source Current 60

    (Body Diode) A

    ISM Pulsed Source Current 230

    (Body Diode)

    VSD Diode Forward Voltage 1.3 V

    trr Reverse Recovery Time 190 290 ns

    Qrr Reverse Recovery Charge 820 1230 nC

    MOSFET symbol

    VDS = 25V, ID = 35A

    VDD = 125V, ID = 35A, VGS = 10V

    Conditions

    and center of die contact

    VDD = 200V, VGS = 15V, RG= 4.7

    VDS = 200V, RG= 5.1, TJ = 25CL = 220nH, C= 0.3F, VGS = 15V

    VDS = 200V, RG= 5.1, TJ = 100C

    VDS = 25V

    VDS = VGS, ID = 250A

    VDS = 250V, VGS = 0V

    VGS = 0V, VDS = 0V to 200V

    VDS = 250V, VGS = 0V, TJ = 125C

    VGS = 20V

    VGS = -20V

    VGS = 0V

    L = 220nH, C= 0.3F, VGS = 15V

    ConditionsVGS = 0V, ID = 250A

    Reference to 25C, ID = 1mA

    VGS = 10V, ID = 35A

    TJ = 25C, IF = 35A, VDD = 50V

    di/dt = 100A/s

    TJ = 25C, IS = 35A, VGS = 0V

    showing the

    integral reverse

    p-n junction diode.

    Typ. Max.

    = 1.0MHz,

    230

    39

    35

    300

    520

    920

  • www.irf.com 3

    Fig 6. Typical EPULSE vs. Drain CurrentFig 5. Typical EPULSE vs. Drain-to-Source Voltage

    Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics

    Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature

    0.1 1 10 100

    VDS, Drain-to-Source Voltage (V)

    1

    10

    100

    1000

    I D, D

    rain

    -to-

    Sou

    rce

    Cur

    rent

    (A

    )

    60s PULSE WIDTHTj = 25C

    5.5V

    VGSTOP 15V

    10V8.0V7.0V6.5V6.0V

    BOTTOM 5.5V

    0.1 1 10 100

    VDS, Drain-to-Source Voltage (V)

    1

    10

    100

    1000

    I D, D

    rain

    -to-

    Sou

    rce

    Cur

    rent

    (A

    )

    60s PULSE WIDTHTj = 175C

    5.5V

    VGSTOP 15V

    10V8.0V7.0V6.5V6.0V

    BOTTOM 5.5V

    4.0 5.0 6.0 7.0 8.0

    VGS, Gate-to-Source Voltage (V)

    0.01

    0.1

    1

    10

    100

    1000

    I D, D

    rain

    -to-

    Sou

    rce

    Cur

    rent

    ( )

    VDS = 25V

    60s PULSE WIDTH

    TJ = 25C

    TJ = 175C

    -60 -40 -20 0 20 40 60 80 100 120 140 160 180

    TJ , Junction Temperature (C)

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    RD

    S(o

    n) ,

    Dra

    in-t

    o-S

    ourc

    e O

    n R

    esis

    tanc

    e

    (

    Nor

    mal

    ized

    )

    ID = 35A

    VGS = 10V

    150 160 170 180 190 200

    VDS, Drain-to -Source Voltage (V)

    0

    200

    400

    600

    800

    1000

    Ene

    rgy

    per

    puls

    e (

    J)

    L = 220nHC = 0.3F 100C 25C

    100 110 120 130 140 150 160 170

    ID, Peak Drain Current (A)

    0

    200

    400

    600

    800

    1000

    Ene

    rgy

    per

    puls

    e (

    J)

    L = 220nHC = Variable 100C 25C

  • 4 www.irf.comFig 11. Maximum Drain Current vs. Case Temperature

    Fig 8. Typical Source-Drain Diode Forward Voltage

    Fig 12. Maximum Safe Operating Area

    Fig 7. Typical EPULSE vs.Temperature

    Fig 10. Typical Gate Charge vs.Gate-to-Source VoltageFig 9. Typical Capacitance vs.Drain-to-Source Voltage

    25 50 75 100 125 150

    Temperature (C)

    0

    200

    400

    600

    800

    1000

    1200

    1400E

    nerg

    y pe

    r pu

    lse

    (J)

    L = 220nH

    C= 0.3FC= 0.2FC= 0.1F

    1 10 100 1000

    VDS, Drain-to-Source Voltage (V)

    0

    2000

    4000

    6000

    8000

    10000

    C, C

    apac

    itanc

    e (p

    F)

    Coss

    Crss

    Ciss

    VGS = 0V, f = 1 MHZCiss = Cgs + Cgd, Cds SHORTED

    Crss = Cgd Coss = Cds + Cgd

    0 40 80 120 160

    QG Total Gate Charge (nC)

    0

    4

    8

    12

    16

    20

    VG

    S, G

    ate-

    to-S

    ourc

    e V

    olta

    ge (

    V) VDS= 200V

    VDS= 125V

    VDS= 50V

    ID= 35A

    25 50 75 100 125 150 175

    TJ, Junction Temperature (C)

    0

    10

    20

    30

    40

    50

    60

    I D,

    Dra

    in C

    urre

    nt (

    A)

    1 10 100 1000

    VDS, Drain-to-Source Voltage (V)

    0.1

    1

    10

    100

    1000

    I D,

    Dra

    in-t

    o-S

    ourc

    e C

    urre

    nt (

    A)

    Tc = 25CTj = 175CSingle Pulse

    1sec

    10sec

    OPERATION IN THIS AREA LIMITED BY RDS(on)

    100sec

    0.2 0.4 0.6 0.8 1.0 1.2

    VSD, Source-to-Drain Voltage (V)

    0.1

    1

    10

    100

    1000

    I SD

    , Rev

    erse

    Dra

    in C

    urre

    nt (

    A)

    TJ = 25C

    TJ = 175C

    VGS = 0V

  • www.irf.com 5Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case

    Fig 15. Threshold Voltage vs. Temperature

    Fig 14. Maximum Avalanche Energy Vs. TemperatureFig 13. On-Resistance Vs. Gate Voltage

    Fig 16. Typical Repetitive peak Current vs.Case temperature

    5 6 7 8 9 10

    VGS, Gate-to-Source Voltage (V)

    0.00

    0.10

    0.20

    0.30

    0.40

    RD

    S(o

    n),

    Dra

    in-t

    o -S

    ourc

    e O

    n R

    esis

    tanc

    e ( )

    TJ = 25C

    TJ = 125C

    ID = 35A

    25 50 75 100 125 150 175

    Starting TJ, Junction Temperature (C)

    0

    200

    400

    600

    800

    1000

    EA

    S,

    Sin

    gle

    Pul

    se A

    vala

    nche

    Ene

    rgy

    (mJ) I D

    TOP 8.3A 13ABOTTOM 35A

    -75 -50 -25 0 25 50 75 100 125 150 175

    TJ , Temperature ( C )

    1.0

    2.0

    3.0

    4.0

    5.0

    VG

    S(t

    h) G

    ate

    thre

    shol

    d V

    olta

    ge (

    V)

    ID = 250A

    25 50 75 100 125 150 175

    Case Temperature (C)

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    Rep

    etiti

    ve P

    eak

    Cur

    rent

    (A

    )

    ton= 1s Duty cycle = 0.25 Half Sine Wave Square Pulse

    1E-006 1E-005 0.0001 0.001 0.01 0.1

    t1 , Rectangular Pulse Duration (sec)

    0.001

    0.01

    0.1

    1

    The

    rmal

    Res

    pons

    e (

    Z th

    JC )

    0.20

    0.10

    D = 0.50

    0.020.01

    0.05

    SINGLE PULSE( THERMAL RESPONSE )

    Notes:1. Duty Factor D = t1/t22. Peak Tj = P dm x Zthjc + Tc

    Ri (C/W) (sec)0.077468 0.000097

    0.169886 0.001689

    0.13319 0.012629

    JJ

    11 2

    2 33

    R1R1 R2

    R2 R3R3

    C

    Ci= i/RiCi= i/Ri

  • 6 www.irf.com

    Fig 19b. Unclamped Inductive WaveformsFig 19a. Unclamped Inductive Test Circuit

    tp

    V(BR)DSS

    IAS

    RG

    IAS

    0.01tp

    D.U.T

    LVDS

    +- VDD

    DRIVER

    A

    15V

    20VVGS

    Fig 20a. Gate Charge Test Circuit Fig 20b. Gate Charge Waveform

    Vds

    Vgs

    Id

    Vgs(th)

    Qgs1 Qgs2 Qgd Qgodr

    D.U.T.VDS

    IDIG

    3mA

    VGS

    .3F

    50K.2F12V

    Current RegulatorSame Type as D.U.T.

    Current Sampling Resistors

    +

    -

    Fig 18. for HEXFET Power MOSFETs

    P.W.Period

    di/dt

    Diode Recoverydv/dt

    Ripple 5%

    Body Diode Forward DropRe-AppliedVoltage

    ReverseRecoveryCurrent

    Body Diode ForwardCurrent

    VGS=10V

    VDD

    ISD

    Driver Gate Drive

    D.U.T. ISD Waveform

    D.U.T. VDS Waveform

    Inductor Curent

    D = P.W.Period

    +

    -

    +

    +

    +-

    -

    -

    !"#""

    $%% "#""

  • www.irf.com 7

    Fig 21a. tst and EPULSE Test Circuit Fig 21b. tst Test Waveforms

    Fig 21c. EPULSE Test Waveforms

    PULSE A

    PULSE B

    tST

    DRIVER

    DUT

    L

    C

    VCC

    RG

    RG

    B

    A

    Ipulse

  • 8 www.irf.com

    Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market.

    Qualification Standards can be found on IRs Web site.

    IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105TAC Fax: (310) 252-7903

    Visit us at www.irf.com for sales contact information. 09/08

    Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25C, L = 0.39mH, RG = 25, IAS = 35A.

    Pulse width 400s; duty cycle 2%. R is measured at Half sine wave with duty cycle = 0.25, ton=1sec. Applicable to Sustain and Energy Recovery applications.

    TO-220AB packages are not recommended for Surface Mount Application.

    INTERNATIONAL PART NUMBER

    RECTIFIER

    LOT CODEASSEMBLY

    LOGO

    YEAR 0 = 2000DATE CODE

    WEEK 19LINE C

    LOT CODE 1789

    EXAMPLE: THIS IS AN IRF1010

    Note: "P" in assembly line pos itionindicates "Lead - Free"

    IN THE ASSEMBLY LINE "C"ASSEMBLED ON WW 19, 2000