ir and raman spectroscopy - fhi€¦ · 1.1.molecular vibrations and normal modes ir and raman...

64
IR and Raman spectroscopy Peter Hildebrandt

Upload: others

Post on 15-Dec-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

IR and Raman spectroscopy

Peter Hildebrandt

Page 2: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

Content

1. Basics of vibrational spectroscopy

2. Special approaches

3. Time-resolved methods

Page 3: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

1. Basics of vibrational spectroscopy1.1. Molecular vibrations and normal modes

1.2. Normal mode analysis

1.3. Probing molecular vibrations

1.3.1. Fourier-transform infrared spectroscopy

1.3.2. Raman spectroscopy

1.4. Infrared intensities

1.5. Raman intensities

Page 4: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

1.1.Molecular vibrations and normal modes

IR and Raman spectroscopy - vibrational spectroscopy:

probing well-defined vibrations of atoms within a molecule

What controls the molecular vibrations and how are they characterized?

Motions of the atoms in a molecule are not random!

well-defined number of vibrational degrees of freedom

3N-6 and 3N-5 for non-linear and linear molecules, respectively

Siebert & Hildebrandt, 2007)

Page 5: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

Definition of the molecular vibrations: Eigenwert problem normal modes

for a non-linear N-atomic molecule: 3N-6 normal modes

example: benzene

1(A1g): 3062 cm-1 14(E1u): 1037 cm-1

in each normal mode:all atoms vibrate with thesame frequency butdifferent amplitudes

Thus: normal modes are characterised by frequencies (given in cm-1) and the extent by which individual atoms (or coordinates) are involved.

1.1. Molecular vibrations and normal modes

Page 6: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

Determination of normal modes – a problem of classical physics

Approach: Point masses connected with springs Harmonic motion

Crucial parameters determining the normal modes:- Geometry of the molecule (spatial arrangement of the spheres)- strength of the springs (force constants)

very sensitive fingerprint of the molecular structure

1.1. Molecular vibrations and normal modes

Siebert & Hildebrandt, 2007)

Page 7: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

1.2. Normal mode analysis

Mass-weighted Cartesian displacement coordinates

111 xmq 112 ymq 113 zmq 224 xmq etc.

xi

yi

zi

A. Describing the movement of the atoms in terms of mass-weighted Cartesian displacement coordinates

e.g. xi = xi – ai (i: all atoms)

Siebert & Hildebrandt, 2007)

Page 8: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

kinetic energy T

potential energy V for small displacements (harmonic approximation)

N

iiqT

3

1

2

21

N

jijiij qqfV

3

1,21

B. Expressing the kinetic and potential energy

Total energy: VTE

1.2. Normal mode analysis

N

jiiijj qfq

3

1,0

Newton´s equation of motion

Page 9: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

C. Solving the eigenwert problem

Set of 3N linear second-order differential equations

tAq ii2/1cos

N

ijiij AAf

3

10

Secular determinant:

f11- f12 f13 ….. f1,3N

f21 f22- f23 ….. f2,3N

f31 f23 f33- ….. f3,3N

f3N,1 f3N,2 f3N,3 ….. f3N,3N-

0 =

3N solutions, 3N frequencies

Removal of 6 solutions für fij=0 (translation, rotation)

3N-6 non-zero solutions for frequencies

1.2. Normal mode analysis

Page 10: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

D. Coordinate transformation:

Cartesian coordinates to normal coordinates

One normal mode accounts for one normal mode – unique relationship!

Simplifies the mathematical and theoretical treatment of molecular vibrations but is not illustrative!

N

iikik xlQ

3

1

1.2. Normal mode analysis

Intuitive coordinates – internal coordinates:

Stretching

Bending

Out-of-plane deformation

Torsion

Page 11: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

01 FG

N

tttt ssm

G1

`,,´,1

1.2. Normal mode analysis

E. Solving the eigenwert problem

Constructing the G- und F-Matrix and inserting into Newton´s equation of motion

Example: three-atomic molecule

3

1

2

r12r13

G-Matrix known, if the structure is known

F-Matrix a priori unknown

Solving the FG-matrix leads to (3N-6) solutions

Page 12: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

1.2. Normal mode analysis

Objectives of the theoretical treatment of the vibrational problem:

Calculating vibrational spectra rather than analysing vibrational spectra

Comparing the experimental vibrational spectra with spectra calculated for different structures

Quantum chemical methods

Optimizing the geometry for a molecule

Calculating the force field

Solving the normal mode problem

Main problem:How to determine the force constant matrix?

Quantum chemical calculations

Page 13: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

1.2. Normal mode analysis

sample

experimentalspectra

comparison

poor agreement:new structure assumption

good agreement:presumed structure is the true one

geometryoptimization

presumed structure

spectra calculation

Page 14: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

1.3. Probing molecular vibrations

Raman spectroscopyinelastic scattering of photons

Infrared spectroscopydirect absorption of photons

Siebert & Hildebrandt, 2007)

Page 15: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

Raman spectroscopyinelastic scattering of photons

n : normal mode frequency

white light

white light― n

0 0 ― n

h n

Infrared spectroscopydirect absorption of photons

1.3. Probing molecular vibrations

Page 16: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

detected intensity interferogram: I=f(x)

Fourier transformation

spectrum: I = f()

1.3.1. Fourier-Transform IR spectroscopy

Page 17: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

1.3.2. Raman Spectroscopy

cw laser from

240 – 1064 nm

pulsed laser from

180 – 1064 nm

Page 18: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

1.4. Infrared intensities

m

n

z

y

x

2)( xyzmnkmn QI

63

1

*

0

*0N

knkm

k

xnmxxmn Q

Q

nxmxmn ˆ*

k

N

i k

xxx Q

Q

63

1 0

0

= 0, orthogonality

0, if dipole moment varies with Qk

0, if m = n 1

Page 19: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

1.5. Raman intensities

m

n

r

Eindxyz

tEE 00 2cos

Oszillating EM radiation

induces dipole in the molecule

222)( EQI xyzmnxyzindmnkmn

Raman intensity

Calculating the scattering tensor by second–order perturbation theory

r rnrrnrmnxyz i

nMrrMmi

nMrrMmh 00

1

Page 20: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

2. Special approaches2.1. IR difference spectroscopy

2.2. Resonance Raman spectroscopy

2.3. Surface enhanced (resonance) Raman and infrared absorption spectroscopy

2.4. Limitations of Surface enhanced vibrational spectroscopies and how to overcome them

2.5. SERR and SEIRA spectroelectrochemistry

Page 21: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

Intrinsic problem of Raman and IR spectroscopy:low sensitivity and selectivity

Therefore:- Resonance Raman spectroscopy- surface enhanced resonance Raman spectroscopy- IR difference spectroscopy- surface enhanced infrared absorption difference spectroscopy

2. Special approaches

Page 22: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

2.1. IR difference spectroscopy

BR 570 K590h

IR difference spectra: structural changes induced by a reactionSiebert et al. 1985

A historical example: Bacteriorhodopsin

N+

H

[Lys]1315

Page 23: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

2.2. Resonance Raman spectroscopy

Raman vs. resonance Raman

electronically excited state

electronic ground state

Resonance Raman (RR): enhancement of the

vibrational bands of a chromophore upon excitation in resonance with an electronic transition

00 ― n

h n

0 0 ― n

h n

Page 24: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

Resonance Raman intensities

m

n

r

22)( EQI xyzmnkmn

Raman intensity

G

E

r rnrrnrmnxyz i

nMrrMmi

nMrrMmh 00

1

for 0 EG

r rEG

EGEGmnxyz i

nrrmMMh 0

,,1

approximation for strong transitions

2.2. Resonance Raman spectroscopy

Page 25: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

rkEGrEG

kEGEGmnxyz ii

sMM

00

,,

r rEG

EGEGmnxyz i

nrrmMMh 0

,,1

Non-zero Franck-Condon factor

products only for modes including

coordinates with an excited state

displacement

2.2. Resonance Raman spectroscopy

Siebert & Hildebrandt, 2007)

Page 26: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

bacteriorhodopsin

N+

H

[Lys]1315

500 1000 1500nm

x 300

800 1000 1200 1400 1600 1600 1700 18001500

/ cm-1 / cm-1

resonant excitation non-resonant excitation

Resonance Raman selectively probes the vibrational bands of a chromophore in a macromolecular matrix

Althaus et al. 1995

2.2. Resonance Raman spectroscopy

Page 27: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

Observation: molecules adsorbed on rough (nm-scale) Ag or Au surface experience an enhancement of the Raman scattering – surface enhanced Raman (SER) effect.

SER-active systems:- Electrochemically roughened electrodes- Colloidal metal particles- Evaporated (sputtered) or (electro-)chemically deposited metal films

2.3. Surface enhanced (resonance) Raman and infrared absorption spectroscopy

Page 28: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

2.3. Surface enhanced Raman and IR effect

Theorie - SER:

Delocalised electrons in metals can undergo collective oscillations (plasmons) that can be excited by electromagnetic radiation

Eigenfrequencies of plasmons are determined by boundary conditions - Morphology- Dielectric properties

)( 00 E

)( 0indE

)()()( 0000 indtot EEE

000

0000 21

)(

)()()( g

E

EEF

indE

Upon resonant excitation, the oscillating electric field of the radiation fieldInduces an electric field in the metal

Total electric field

Enhancement factor for the field at the incident frequency

Page 29: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

200

0)()(

)(~solv

imrer n

i

)( 0 kRaE

200 2121)( RakSER ggF

2.3. Surface enhanced Raman and IR effect

2)(~1)(~

0

00

r

rg )(~0 r

The magnitude of the enhancement depends on the frequency-dependent dielectric properties of the metal

complex dielectric constant

In a similar way, one may derive a field enhancement for the Raman scattered light which depends on )( 0totE

Since the intensity is proportional to the square of the electric field strength, the SER enhancement factor is given by:

Total enhancement ca. 1o5 - 106

If real part -2 and imaginary part 0, largest enhancement

Page 30: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

2.3. Surface enhanced Raman and IR effect

SERR and SEIRA: all photophysical processes at metal surfaces can be enhanced via the frequency-

dependent electric field enhancement

combination of RR and SER: surface enhanced resonance Raman – SERR: excitation in resonance with both an electronic transition of the adsorbate and the surface plasmon eigenfrequency of the metal Single-molecule sensitivity!

IR - Absorption: surface enhanced infrared absorption – SEIRAenhancement of the incident electric field in the infrared! (Au, Ag)

)()()( 0000 indtot EEE

Total electric field

Total enhancement thus ca. less than the square root of the SER effect:100 – 1000

Page 31: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

2.3. Surface enhanced Raman and IR effect

Calculations of the enhancement factor for various geometric shapes (Ag)

enha

ncem

ent

Page 32: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

2.3. Surface enhanced Raman and IR effect

Distance-dependence of the SER and SEIRA effect

12

)0()(

daaFdF SERSER

SERR6

)0()(

daaFdF SEIRASEIRA

SEIRA

Siebert & Hildebrandt, 2007)

Siebert & Hildebrandt, 2007)

Page 33: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

… and how to overcome them

AuAg

Plasmon resonance of polydisperse nanostructures

Preferred spectral range for combining RR and SER

But: Au displays a much broader electrochemical potential range and is

chemically more stable

2.4. Limitations of Surface enhanced vibrational spectroscopies

Page 34: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

Layered hybrid devices

Ag

Coating by a dielectric layer (SAM, SiO2)

dielectric layer: 2 – 30 nm

Deposition of a metal film or semiconductor film (Au, Pt, TiO2)

Metal film: ca. 20 nm

Functionalisation of the outer metal layer for protein binding

75 nm

0.3 V-0.3 V

Electrochemical roughening of Ag electrode

Nanostructured Ag

2.4. Limitations of Surface enhanced vibrational spectroscopies

Page 35: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

Layered hybrid devices

2.4. Limitations of Surface enhanced vibrational spectroscopies

Page 36: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

Layered hybrid devices

2.4. Limitations of Surface enhanced vibrational spectroscopies

Page 37: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

Layered devices

Distance-dependence of the enhancement

Ag

experimental theoretical

0.6 0.8 1.0 1.2 1.4

0

5

10

15

20

25

g 0

r/R

Ag-spacer-Au

Ag

Cyt413 nm

2.4. Limitations of Surface enhanced vibrational spectroscopies

Page 38: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

Layered devices

Potential application for in-situ studies in heterogeneous catalysis

2.4. Limitations of Surface enhanced vibrational spectroscopies

Page 39: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

probing electron transfer processes

SEIRA

SERR

2.5. SERR and SEIRA spectroelectrochemistry

Siebert & Hildebrandt, 2007)

Siebert & Hildebrandt, 2007)

Page 40: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

SSSSSSSS

Electrostatic (CO2-, PO3

2-, NH3+)

SSSSSSSS

Hydrophobic (e.g. CH3)

SSSSSSSS

Mixed SAMs (e.g. OH/CH3)

SSSSSSSS

Polar (e.g. OH)

SSSS

SSS

SO

NH

Covalent (cross linking)

SSSS

SSS

S OO

N

Coordinative (e.g. Py)

Immobilization of cytochrome c on “membrane models“

SERR: applicable to proteins bound to biocompatibly coated metal surfaces

2.5. SERR and SEIRA spectroelectrochemistry

Page 41: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

His

Met

Fe2+

His

Met

Fe3+

Example: redox processes of cytochrome c

2.5. SERR and SEIRA spectroelectrochemistry

Potential-dependent SERR measurements to probe the redox equilibrium of the immobilised protein

Page 42: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within
Page 43: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

3. Time-resolved methods3.1. Principles of time-resolved IR and RR experiments

3.2. Time-resolved pump-probe Raman spectroscopy with cw excitation

3.3. Time-resolved IR experiments

3.4. Rapid mixing techniques and time-resolved spectroscopy

3.5. Potential-jump time-resolved SERR and SEIRA spectroscopy

3.6. Time-resolved techniques - summary

Page 44: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

Principle approaches:

Time scale Method comments

Resonance Raman > 100 ns Cw excitation Low photon flux

> 10 ps Pulsed excitation High photon flux

> 100 fs Stimulated Raman Very demanding set-up

IR > 1 ms Rapid scan

> 10 ns Step scan

> 100 fs transient absorption Very demanding set-up

3. Time-resolved methods

Page 45: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

3.1. Principles of time-resolved IR and RR experiments

Triggering the processes to be studied by light (photo-processes or photoinduced release of reactands) temperature, pressure, or potential jump rapid mixing with the reaction partner

Page 46: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

3.2. Time-resolved pump-probe Raman spectroscopy

vst

laserds minfor nst 100min Time resolution

Pump-probe experiments with cw excitation

Page 47: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

cst

mms 1min for pst 3min Time resolution

Pump-probe experiments with pulsed excitation

3.2. Time-resolved pump-probe Raman spectroscopy

Page 48: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

Sensory rhodopsin II from Natronobacterium pharaonis

3.2. Time-resolved pump-probe Raman spectroscopy

Page 49: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

Challenge:

Time-resolved approach must cover a dynamic range of more than six decades

Gated-cw pump probe experiments

3.2. Time-resolved pump-probe Raman spectroscopy

Sensory rhodopsin II from Natronobacterium pharaonis

Page 50: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

pump

probe

3.2. Time-resolved pump-probe Raman spectroscopy

Siebert & Hildebrandt, 2007)

Page 51: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

1500 1520 1540 1560 1580 1600 1620 1640 1660 1680

Inte

nsity

/ a.

u.

Wavenumbers / cm-1

M400

NpSRII500

3.2. Time-resolved pump-probe Raman spectroscopy

Page 52: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

0 10 20 30 40 50 60 70 80

Inte

nsity

/ a.

u.

δ/μs

0 500 1000 1500 2000 2500 3000 3500

Inte

nsity

/ a.

u.

δ/μs

M400 formation M400 decay

100 101 102 103 104 105 106 107

Inte

nsity

/ a.

u.

δ/μs

M400 kinetics

Same results as for transient absorption spectroscopy

3.2. Time-resolved pump-probe Raman spectroscopy

Page 53: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

3.3. Time-resolved IR techniques

- Rapid scan

measuring consecutive interferograms (ca. 10 ms)

- Step scanMeasuring signal decays after each mirror step (< 100 ns)

Siebert & Hildebrandt, 2007)

Page 54: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

Example: photocycle of bacteriorhodopsin

3.3. Time-resolved IR techniques

Gerwert et al.)

Page 55: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

Example: photocycle of bacteriorhodopsin

3.3. Time-resolved IR techniques

Gerwert et al.)

Page 56: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

3.4. Rapid mixing techniques and time-resolved spectroscopy

Rapid mixing of components A and B with tmix 0.1 - 5 ms ......

.... and monitoring the reaction using the ....

mixingchamberA B

Page 57: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

... continuous-flow method time resolution: t = tmix + with

RR spectroscopy (min < tmix)

mixingchamber

observation

A B

s

....stopped-flow methodtime resolution: t = tmix +

rapid scan RR and FT IR ( = 10 ms)

stop

mixingchamber

A B

observation

.... freeze-quench methodtime resolution: t = tmix + tcool with tcool 2 ms

RR spectroscopy

mixingchamber

s

isopentane-120oC

A B

3.4. Rapid mixing techniques and time-resolved spectroscopy

Page 58: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

Example: re-folding of cytochrome c rapid mixing of unfolded cytochrome c in GuHCl with a GuHCl-free

solution continuous-flow method with RR detection

-4 -3 -2 -1log (time)

0.00.20.40.60.8

Con

c.U F

H2O-Fe

His-Fe-His

H2O-Fe-His

His-Fe-His

Fe

His

Met

HisHis His

H2O

H2O

His

partiallyunfolded

foldedRousseau et al. 1998

3.4. Rapid mixing techniques and time-resolved spectroscopy

Page 59: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

3.5. Potential-jump time-resolved SERR and SEIRA spectroscopy

- Rapid potential jump to perturb the equilibrium of protein immobilised on an electrode- probing the relaxation process by TR SERR or step-scan or rapid scan SEIRA- time resolution limited by the reorganisation of the electrical double layer

for probing the dynamics of interfacial processes

Page 60: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

His

Met

Fe3+

His

Met

Fe2+

B1red B1ox

Example: interfacial redox process of cytochrome c

one-step relaxation process

3.5. Potential-jump time-resolved SERR and SEIRA spectroscopy

Page 61: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

His

Met

Fe3+

His

Met

Fe2+

B1red B1ox

Example: interfacial redox process of cytochrome c

one-step relaxation process

3.5. Potential-jump time-resolved SERR and SEIRA spectroscopy

Page 62: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

-turn IIIaa 67-70

heme

Lys 86,87Lys 72,73

Protein structural changes monitored by SEIRA spectroscopy

Amide I band changes of the -turn III segment 67-70 occur simultaneously

with electron transfer

3.5. Potential-jump time-resolved SERR and SEIRA spectroscopy

Page 63: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

RR Photoinduced processesPump-probe

cw (> 100 ns)pulsed (> 10 ps)

PhotoreceptorsLigand bindingbimolecular reactions with caged compoundsIR rapid scan (> 10 ms)

step scan (> 100 ns)

RR Bimolecular reactionsRapid mixing

cw (> 100 s) Protein foldingEnzymatic reactionsLigand bindingIR rapid scan (> 10 ms)

SERR Potential-dependent processes at electrodesPotential-jump

cw (> 10 s) Re-orientationConformational transitions electron transfer

SEIRA rapid scan (> 10 ms)step scan (> 10 s)

3.6. Time-resolved techniques – summary

Page 64: IR and Raman spectroscopy - FHI€¦ · 1.1.Molecular vibrations and normal modes IR and Raman spectroscopy - vibrational spectroscopy: probing well-defined vibrations of atoms within

Literature

Most of the figures shown in this presentation have been taken from this book