ipieca bruxelles 1er mars 2011 co 2 : how refineries managed with ets ipieca - bruxelles 1st march...

28
IPIECA Bruxelles 1er mars 2011 CO 2 : How refineries managed with ETS IPIECA - Bruxelles 1st march 2011

Upload: diego-christie

Post on 28-Mar-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: IPIECA Bruxelles 1er mars 2011 CO 2 : How refineries managed with ETS IPIECA - Bruxelles 1st march 2011

IPIECA Bruxelles 1er mars 2011

CO2 : How refineries managed with ETS

IPIECA - Bruxelles 1st march 2011

Page 2: IPIECA Bruxelles 1er mars 2011 CO 2 : How refineries managed with ETS IPIECA - Bruxelles 1st march 2011

IPIECA Bruxelles 1er mars 2011

CO2 in Europe

Introduction – market rules for ETS

Principles

CO2 emissions in refineries pre-existing tools

Adaptation of the tools

Uncertainty – still in progress

Page 3: IPIECA Bruxelles 1er mars 2011 CO 2 : How refineries managed with ETS IPIECA - Bruxelles 1st march 2011

IPIECA Bruxelles 1er mars 2011

CO2 in Europe

A commercial product since 2005

It has to be « weighed » in such a manner that the buyer is confident in the quantity he paid for.

European rules are documented in the EU Commission Decision on MRG (Monitoring and reporting guidelines).

How does it work ? Monitoring plan Yearly verification

Page 4: IPIECA Bruxelles 1er mars 2011 CO 2 : How refineries managed with ETS IPIECA - Bruxelles 1st march 2011

RegulationPhase Refinery Authority Verifier Referential when

write the monitoring plan

approve the monitoring plan

Calculate CO2 emissions

verify calculations

produce a verification report and the verification opinion

attach the verification opinion

< 15 th february (France)

Validate data or,If data is not verified as satisfactory, authorities may forbid any further transfers of allowances until a revised report is verified as satisfactory

< 30 th april

< 10th february

(France only)

European decision

MRG

at each revision

Monitoring plan

Calculation of CO2

emissions

restitution of quotas

Approved monitoring

plan

IPIECA Bruxelles 1er mars 2011

Page 5: IPIECA Bruxelles 1er mars 2011 CO 2 : How refineries managed with ETS IPIECA - Bruxelles 1st march 2011

IPIECA Bruxelles 1er mars 2011

Method of calculation of CO2 emissions- Principles

Completeness: The search for sources of emissions of individual atmospheric pollutants must cover

all activities on site.

Traceability - transparency: The assumptions made and the methods used for data reporting must be documented. Records must be kept in order to ensure the traceability of data for checking. All documents relating to the process must be accessible for audit.

Consistency: The atmospheric pollutant emission balances must be based on a set of data

consistent with the refinery’s other balance figures.

Accuracy: Emissions must be calculated, insofar as possible, using methods available providing

the best degree of accuracy. The uncertainty with which the result is expressed must be the subject of a

documented and auditable calculation; Analysis of its components should enable identification of the improvements to be

made in order to reduce them and make provision for the corresponding actions when the degree of uncertainty is considered insufficient.

Page 6: IPIECA Bruxelles 1er mars 2011 CO 2 : How refineries managed with ETS IPIECA - Bruxelles 1st march 2011

IPIECA Bruxelles 1er mars 2011

Calculation of CO2 emissions

Generic expression :

CO2 =

Qi(t) = Flow rate (fuel, flue gas, throughput… ) on which is based calculation of CO2 emission of the source i, at time t

Ci(t)= C content of source i

Complete combustion is assumed (oxidation factor=1)

xFlow rate (t/h)

C content (%wt) CO2 (t/h)

12/44

0 1

tCtQ i

T

t

n

ii

Page 7: IPIECA Bruxelles 1er mars 2011 CO 2 : How refineries managed with ETS IPIECA - Bruxelles 1st march 2011

IPIECA Bruxelles 1er mars 2011

Process of CO2 emission

CO2

Pro

duc

ts

Crude

Fuels

air, O2, H2O

Furnaces

Flares

Reactors

internal

fuels

Fuel balance

Reaction balance

Flares balance

Page 8: IPIECA Bruxelles 1er mars 2011 CO 2 : How refineries managed with ETS IPIECA - Bruxelles 1st march 2011

IPIECA Bruxelles 1er mars 2011

CO2 emissions in refineries pre-existing tools

Calculation of the amount of fuel burnt: Essentially by means of pressure difference flow measurement

devices Designed to manage energy performance in absolute as well as in

trend

Production accounting: Accounting at the refinery fenceline ; reconciliation balance for

internal flows The difference in mass balance at the refinery fenceline represents

the sum of losses + fuel consumption Accounting losses constitutes the reconciliation term

Page 9: IPIECA Bruxelles 1er mars 2011 CO 2 : How refineries managed with ETS IPIECA - Bruxelles 1st march 2011

IPIECA Bruxelles 1er mars 2011

Fuel balance

Mass balance∑ in = ∑ out

Enthalpic balance∆Hfuel = ∆Hprocess + thermal

losses

Pro

duce

d F

G

Con

sum

ed F

G

∑ in ∑ out ∆Hfu

el

∆Hpr

oces

s

Losses (flue, walls)

Process in

Process out

Page 10: IPIECA Bruxelles 1er mars 2011 CO 2 : How refineries managed with ETS IPIECA - Bruxelles 1st march 2011

IPIECA Bruxelles 1er mars 2011

Fuel balance

Procédé Mesurage Contrôle – consolidation Bilan

Process 1 Système de

mesure de débit

Process n

Bilan enthalpique

réconciliation

Contrôle

Contrôle

f1

fi

fn

F1

Fi

Fn

Raw data Reconciled data

Page 11: IPIECA Bruxelles 1er mars 2011 CO 2 : How refineries managed with ETS IPIECA - Bruxelles 1st march 2011

IPIECA Bruxelles 1er mars 2011

Mass balance

Mass balance

Fuels

Flue gases

losses

Flares

Pro

duct

s -

OU

T

Tanks

IN = OUT + Delta stock + fuels + lossesLosses = physical losses (flares) + balance term

Thr

ough

put

- IN

flares accounting

Page 12: IPIECA Bruxelles 1er mars 2011 CO 2 : How refineries managed with ETS IPIECA - Bruxelles 1st march 2011

Usual tool : fuel flow meter

Procédé Instrumentation Traitement mesure de débit locale Q P T

P

Mesure de débit

pdC

Q 241

2

4

Flow rate measurement by means of a pressure differential device

Qwt CO2 = Qfuel *%Cfuel *44/12

IPIECA Bruxelles 1er mars 2011

Page 13: IPIECA Bruxelles 1er mars 2011 CO 2 : How refineries managed with ETS IPIECA - Bruxelles 1st march 2011

Products to fractionation

Usual tool: FCCSimplified flow diagram

FCC feed

flue

Reactor

Regenerator

Qair

%N2air

%CO2

%O2

%CO%N2

Others…

Flue gas

catalyst

(based on dry flue gas)

N2

(1) - Mass balance N2 : QN2 smoke + QN2 to fractionation+ 1/2 x QNOx = QN2 in

(2) - Qsmoke =

(3) - Qwt CO2 = (%vol CO2 + %vol CO ) * Qsmoke * MWCO2 / 22400

Soit : Qwt CO2 = f(%vol CO2 , %vol CO , %O2 ,…, Qair , N2 effluent)

fumées

fuméesN

N

Q

2%2

IPIECA Bruxelles 1er mars 2011

Page 14: IPIECA Bruxelles 1er mars 2011 CO 2 : How refineries managed with ETS IPIECA - Bruxelles 1st march 2011

IPIECA Bruxelles 1er mars 2011

How refineries met the requirements

Completeness No difficulty to meet

Traceability - Transparency Fuel accounting procedures were not well documented and the

accounting itself was poorly traced. Actions :

Generalization of procedures registered in the documentation system under quality insurance.

Generalization of registering all modifications made to the raw set of data in order to obtain the official set

Consistency Harmonisation of procedures for material balance Some difficulties in harmonizing monthly data with later corrections

(annual data for CO2 vs monthly data for other purposes)

Page 15: IPIECA Bruxelles 1er mars 2011 CO 2 : How refineries managed with ETS IPIECA - Bruxelles 1st march 2011

IPIECA Bruxelles 1er mars 2011

Accuracy : Requirements from the European Decision on MRG

Fuels Definition : fuels are grouped by « source stream », defined as

« specific fuel type ». Flow rate measurement : annual consumption must be calculated

with an uncertainty less than 1,5% C content :

Liquid : analysis has to be performed by a laboratory certified ISO 17025 or equivalent

Gas : the chromatograph must have an initial verification and an annual cross-check.

Frequency of sampling : in the base case, 1/day for Fuel Gas

FCC CO2 : annual CO2 emissions from the FCC must be calculated with

an uncertainty less than 2,5% On-line analyser : same requirement as for the chromatograph,

assuming a particular interpretation of the Decision.

Page 16: IPIECA Bruxelles 1er mars 2011 CO 2 : How refineries managed with ETS IPIECA - Bruxelles 1st march 2011

IPIECA Bruxelles 1er mars 2011

Accuracy : gap analysis

Material balance at the refinery fenceline is not accurate enough for the purpose of ETS :

Accuracy of the overall balance is set by that of the certified meters i.e. 0,3% The term losses + fuels constitutes approximately 6% of the crude throughput The reconciliation term may therefore constitute 0,3 / 6 = 5 % of the fuel consumption

Flow measurement of fuels by simple pressure differential devices does not meet the required accuracy level.

Page 17: IPIECA Bruxelles 1er mars 2011 CO 2 : How refineries managed with ETS IPIECA - Bruxelles 1st march 2011

IPIECA Bruxelles 1er mars 2011

Accuracy : Uncertainty calculation

Principles: Error propagation law : the simplified rules in the MRG give a good

basis for practical use Measurement uncertainty factors are classified according to their

level of correlation into 2 categories: correlated or independant.

Practical adaptation : Elimination of some over-simplified methods, such as attributing a

standard relative uncertainty to measurements obtained by a pressure differential device (see above)

Calculation of the total annual amount of a flow : correlation between parameters in 2-dimensions

Time correlation Correlation between measurement devices at the same time

Page 18: IPIECA Bruxelles 1er mars 2011 CO 2 : How refineries managed with ETS IPIECA - Bruxelles 1st march 2011

IPIECA Bruxelles 1er mars 2011

uncertainty calculation : mass flow with pressure differential device

product conditions

Measurement of ∆P

∆P device Pipe Assembling

Data treatment

Mass flow

SG 15

viscosity

temperature

pression

conversion

compression

Numerical treatment

sensibilities

Zero drift

Scale drift

diameter

Surface condition

diameter

Pipe roughness

tappings

Straight lengths

Ambiant conditions

edge sharpness

Page 19: IPIECA Bruxelles 1er mars 2011 CO 2 : How refineries managed with ETS IPIECA - Bruxelles 1st march 2011

IPIECA Bruxelles 1er mars 2011

C content for fuels

No reference standard

Organization of Round Robin tests inter companies and inter countries

Round Robin tests for Fuel Gas : According to DIN 51666, in progress for EN homologation 1 test / year on 2 measurements by each laboratory, on the same sample A little better than the repeatability and reproducibility of the norm

Beware of the risk of air contamination of the sample

Round Robin tests for Fuel Oil : According to ASTM D 5291

No problem

Page 20: IPIECA Bruxelles 1er mars 2011 CO 2 : How refineries managed with ETS IPIECA - Bruxelles 1st march 2011

IPIECA Bruxelles 1er mars 2011

FCC CO2 emissions

2

2

CO

Q

Q

UCO =

2

%

2

2

22

2

222

fumées

Neau

fumées

N

entrantairmasse

QCO

Q

U

N

U

Q

U

CO

Umentfractionneversfuméesentrantairmasse

Air flow-rate measurement (Qmasse air)

Industrial device better than 1,5% uncertainty?

Pitot : no norm available

Other : calibration devices for ranges 105 Nm3 /h ?

CO2 concentration in flue gases:

Uncertainty

Uncertainty on instantaneous measurement >> 2,5 %

Uncertainty on annual amount of CO2:

Reduced by means of periodic gauging : complex mechanisms

Result: ?

Page 21: IPIECA Bruxelles 1er mars 2011 CO 2 : How refineries managed with ETS IPIECA - Bruxelles 1st march 2011

IPIECA Bruxelles 1er mars 2011

FCC CO2 emissions: Uncertainties

FCC SO2 or CO2 N2 Air rate H2O & N2 tofractionation

Result

3% 3% 2% 0,5% 4,7%

Page 22: IPIECA Bruxelles 1er mars 2011 CO 2 : How refineries managed with ETS IPIECA - Bruxelles 1st march 2011

IPIECA Bruxelles 1er mars 2011

Organisation

CO2 calculations require new tools, also changes in the usual refinery organisation :

Tightening of fuel balances : methods similar to legal metrology

Coordination between services : Maintenance, material acccounting, environment and mathematical uncertainty calculation

Page 23: IPIECA Bruxelles 1er mars 2011 CO 2 : How refineries managed with ETS IPIECA - Bruxelles 1st march 2011

IPIECA Bruxelles 1er mars 2011

Back-up

Incertitude du débit mesuré par plaque à orifice

Sensibilité de l’incertitude de mesure de débit vs étendue d’échelle

Exemple de feuille de calcul pour la somme de combustibles

RRT FG

Influence de la réconciliation de données sur l’incertitude

Page 24: IPIECA Bruxelles 1er mars 2011 CO 2 : How refineries managed with ETS IPIECA - Bruxelles 1st march 2011

IPIECA Bruxelles 1er mars 2011

Incertitude sur une mesure de débit par plaque à orifice (1)

La norme ISO 5167-1 donne l’expression de l’incertitude du débit Q :

Les principaux paramètres d’influence sont : La masse volumique aux conditions de fonctionnement Le diamètre de la plaque à orifice Et dans une moindre mesure le coefficient de décharge C

Par ailleurs, la formule représente l’incertitude pour un débit égal à l’échelle de mesure. Le pourcentage du débit mesuré par rapport à l’échelle de l’appareil est un paramètre de premier ordre pour le calcul de l’incertitude

2222

4

22

4

422)(

4

1)(

4

1)(

1

2)(

1

2)()()(

U

p

pU

d

dU

D

DUU

C

CU

Q

QU

Page 25: IPIECA Bruxelles 1er mars 2011 CO 2 : How refineries managed with ETS IPIECA - Bruxelles 1st march 2011

Incertitude sur une mesure de débit par plaque à orifice (2)

Variation de l’incertitude pour 2 couples de valeurs d’incertitudes sur le diamètre de la plaque à orifice et du transmetteur de delta P et en fonction des incertitudes sur la masse volumique et du pourcentage de la mesure par rapport à l’échelle de mesure.

pour incertitude Phi à 1,0%et incertitude delta P à 1,0% 100% 80% 50% 30% 10%

1,0% 2,1% 2,2% 2,8% 5,9% 50%2,0% 2,2% 2,3% 3,0% 6,0% 50%4,0% 2,8% 2,9% 3,4% 6,2% 50%10,0% 5,4% 5,4% 5,7% 7,7% 50%20,0% 10,2% 10,2% 10,4% 11,6% 51%

% de l'échelle

incertitude de la MV à P et T

IPIECA Bruxelles 1er mars 2011

Page 26: IPIECA Bruxelles 1er mars 2011 CO 2 : How refineries managed with ETS IPIECA - Bruxelles 1st march 2011

IPIECA Bruxelles 1er mars 2011

Calcul d’incertitudeCalcul d’incertitude

combustible fluxmoyenne mesure PI

échelle débit-mètre

corrélée non corréléecombinée sous-

totalcombinée total

corrélée non corrélée

7.03 16.37 0.09 0.402.90 8.026 0.04 0.237.17 16.32 0.09 0.403.03 8.026 0.04 0.225.49 9.76 0.07 0.213.07 6.13 0.04 0.14

CH5 1.16 4.7 1.2% 6.0% 1.2% 6.0%CH7 1.21 4.7 1.2% 5.5% 1.2% 5.5%

13.07 37% 7.9% 8.3E-4

FCC 0.00 3.257 11.5% 0.0%TAG 0.00 7.47 5.1% 0.0%CH8 0.60 3.257 11.5% 9.5%

0.04 0.04 0.1% 0.0%1.04 60 2.0% 0.0%1.28 60 2.0% 0.0%0.03 0.04 0.1% 0.0%

TAG/ISO 0.00 2.765 0.5% 0.0%

2.99 8% 4.3% 1.3E-5

35.74 100% 3.24%

2.9%

3.0%

4.3%

15.2%

15.0%

14.1%

TOEFG HP

somme partielle

FO

somme partielle

DEE

somme globale

calcul d'incertitude

Page 27: IPIECA Bruxelles 1er mars 2011 CO 2 : How refineries managed with ETS IPIECA - Bruxelles 1st march 2011

IPIECA Bruxelles 1er mars 2011

RRT for FG

gaz prélevé

lieucaractéristiques

nb labos exploités

r (%) R (%)

raf CReGg C/100

gkg CO2/

kg

1 15/1/07 5/4/07RN-B111 Ouest

gaz lourd : C3 + c4 = 23 %

6 1 6 78,71 2,89 0,10% 1,80%

2 3/10/07 19/11/07RN- Réformeur 6

60 % H2 6 1 6 72,91 2,67 0,21% 3,00% 2,20%

3 6/2/08 9/9/08 RN - D11très riche en N2 (16 %)

11 2 11 60,52 2,22 0,56% 2,30% 2,20%

4 26/1/09 15/6/09 FZN - vapo 91 % de C1 10 1 9 74,27 2,72 0,08% 0,24% 2,20%

5 7/5/10 24/1/11 FZN-raf41% H2 +

51% (C1+C2)11 2 11 68,35 2,51 0,42% 2,19% 2,20%

June 2010 26 23 60,64 2,22 0,71% 3,13%June 2010 26 22 57,37 2,10 0,68% 3,14%

other RRT

repère de

l'essai

date échantillon

date rapport

Repro de la norme

valeur moyenne

labos concernés résultat

nb de labos

Page 28: IPIECA Bruxelles 1er mars 2011 CO 2 : How refineries managed with ETS IPIECA - Bruxelles 1st march 2011

IPIECA Bruxelles 1er mars 2011

Incidence de la réconciliation du bilan combustibleRéconciliation de données:

Améliore la précision du bilan brut issu des systèmes de mesurage

Agit selon 2 mécanismes : Correction d’erreurs

détection des mesures de débit défaillantes. substituer une valeur vraisemblable

Réduction de l’incertitude proprement dite

Prise en compte de mesures de débit redondantes Algorithme de minimisation des erreurs

Prise en compte: Réseau de combustibles avec n producteurs et p consommateurs Facteur de réduction de l’incertitude (dans un cas simple):

pn

nf r