ion-beam and plasma technologies and equipments

15
Ion-beam and plasma technologies and equipments Dr. Dmitriy A. Golosov Dr. Sergey M. Zavadski e-mail: [email protected] phone +375-17-2-93-80- 79 fax/phone +375-17-2-93-88-35 Minsk 2013 Presenting author Dr. Sergey M. Zavadskiy

Upload: modesta-curtis

Post on 03-Jan-2016

34 views

Category:

Documents


0 download

DESCRIPTION

Ion-beam and plasma technologies and equipments. Presenting author Dr. Sergey M. Zavadskiy. Dr. Dmitriy A. Golosov Dr. Sergey M. Zavadski e-mail: [email protected] phone +375-17-2-93-80-79 fax/phone +375-17-2-93-88-35. Minsk 2013. 1. Thin film research laboratory. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Ion-beam and plasma technologies and equipments

Ion-beam and plasma technologies and equipments

Dr. Dmitriy A. Golosov Dr. Sergey M. Zavadskie-mail: [email protected]

phone +375-17-2-93-80-79fax/phone +375-17-2-93-88-35

Minsk 2013

Presenting author Dr. Sergey M. Zavadskiy

Page 2: Ion-beam and plasma technologies and equipments

1. 1. Thin film research laboratoryThin film research laboratory

The Thin Film Research Laboratory is engaged in research and development of equipment and technologies for ion-plasma deposition of thin films applied in optics, micro- and optoelectronics, as well as of wear-resistant, protective – decorative thin films.

The Laboratory activities and fields of research:·        Development of technological ion sources, such as ion beam sputtering, double ion-beam sputtering, ion-beam assisted deposition (IBAD)·        Design of magnetron sputtering and unbalanced magnetron sputtering systems, including those intended for low-pressure magnetron sputtering ·        Processes of reactive ion-beam and magnetron sputtering·        Processes of unbalanced magnetron sputtering·        Ion beam neutralization·        Development of ion-plasma deposition processes for reflecting multilayer structures characterized by high constancy of parameters·        Development of compositions and processes for deposition of high-K and low-K dielectrics·        Development of compositions and processes for deposition of magneto-resistive thin films·        Development of compositions and processes for deposition of solid electrolyte and cathode layers for solid oxide fuel cell ·        Ion polishing of optical parts

Page 3: Ion-beam and plasma technologies and equipments

4. DOUBLE-BEAM ION SOURCE BASED ON HALL-CURRENT 4. DOUBLE-BEAM ION SOURCE BASED ON HALL-CURRENT ACCELERATOR DBIS-001ACCELERATOR DBIS-001

 Applications·         Ion-beam sputtering;·         Reactive ion-beam sputtering;·         Double ion-beam sputtering;·         Ion pre-cleaning of surfaces;·         Ion-beam assisted deposition;·         Ion mixing;·         Ion etching. Specifications of an ion source with a target of 80 mmSputtering stage:·         Anode voltage 450 – 6000 V;·         Ion energy 300 – 2000 eV;·         Discharge current up to 300 mA;·         Ion beam current up to 250 mA;·         Working pressure 0.01 - 0.06 Pa;·         Gas flow up to 50 sccm;·         Working gases Ar, O2, N2, CH4, etc.

·         Deposition rate up to 0.8 nm/sec Assisting stage:·         Anode voltage 450 – 3000 V (max. - 6000 V);·         Ion energy 300 – 1000 eV (max. - 2000 eV);·         Ion beam current up to 120 mA;·         Working pressure 0.01 - 0.06 Pa;·         Gas flow up to 30 sccm;·         Working gases Ar, O2, N2, CH4, etc.

Page 4: Ion-beam and plasma technologies and equipments

The sputtering ion source based on Hall-current accelerator is designed for deposition of thin films of dielectric, metals and semiconductors. Applications·        Ion-beam sputtering;·        Reactive ion-beam sputtering. Specifications of an ion source with a target of 80 mm·        Anodic voltage 450 – 6000 V;·        Ion energy 300 – 2000 eV;·        Discharge current up to 300 mA·        Ion beam current up to 250 mA;·        Working pressure 0.01 - 0.06 Pa;·        Gas flow up to 50 sccm;·        Work gases Ar, O2, N2, CH4, etc.

·        Deposition rate up to 0.8 nm/sec The ion source allows sputtering of metallic, semiconductor and dielectric (SiO2, BN, graphite, etc.) targets. It may be equipped with a rotary target holder

for four targets of different material to form multilayer structures within a single vacuum cycle (Fig. 2). It is possible to obtain component films by applying mixtures of rare and reactive gases (oxygen, nitrogen, etc.) when sputtering metallic targets.

22. . SPUTTERING ION SOURCE BASED ON HALL-CURRENT SPUTTERING ION SOURCE BASED ON HALL-CURRENT ACCELERATOR SPIS-002ACCELERATOR SPIS-002

Page 5: Ion-beam and plasma technologies and equipments

3. ION SOURCE BASED ON HALL-CURRENT ACCELARATOR 3. ION SOURCE BASED ON HALL-CURRENT ACCELARATOR FOR ION-ASSISTED DEPOSITION ASIS-002FOR ION-ASSISTED DEPOSITION ASIS-002

Applications·        Ion-beam assisted deposition (IBAD) in combination with electron-beam laser or arc evaporators and ion-beam sputtering systems;·        Ion mixing;·        Ion pre-cleaning;·        Ion-beam etching with chemically active gases used;·        Direct beam deposition (DiBD)·        Ion-beam assisted magnetron sputtering (IBAM) Advantages·        High layer adhesion;·        Possible to control internal stresses within the layer;·        Low porosity of deposited layers;·        Controllable stoichiometry when depositing compositions. Specifications of the ion source·        Anode voltage 1200 - 6000 V ·        Ion energy 400 - 2000 eV·        Ion beam current up to 200 mA·        Working pressure 0.01 - 0.06 Pa·        Gas flow up to 40 sccm;·        Working gases Ar, O2, N2, hydrocarbons,

chlorine- and fluorine containing gases.

Page 6: Ion-beam and plasma technologies and equipments

5. RF/DC 5. RF/DC MAGNETRON SPUTTERING SYSTEM MMAGNETRON SPUTTERING SYSTEM MIRAGE-010.080IRAGE-010.080

Specifications ·        magnetic system . . . . . . . . . . . . . . . . . . . . . . . . . . Nd-Fe-B permanent magnets;·        target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mm (thickness 1 – 6 mm)*;·        substrate size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6060 mm**;·        discharge voltage DC . . . . . . . . . . . . . . . . . . . . . . .300 – 600 V;·        discharge current DC. . . . . . . . . . . . . . . . . . . . . . . up to 3.0 A;·        RF power (13.56 МГц) . . . . . . . . . . . . . . . . . . . . . up to 1.0 kW;·        working gases . . . . . . . . . rare or mixture of rare and reactive gases (O2, N2, CxHy);

·        gas flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 – 60 sccm;·        working pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.06 - 1.0 Pa;·        deposition rate (Al target)

DC 1 kW . . . . . . . . . . . . . . . . . . . . . . . . up to 20.0 nm/s; RF (13.56 MHz, 1000 W) . . . . . . . . . . . .up to 5.0 nm/s;

·        overall dimensions . . . . . . . . . . . . . . . . . . . . . . . . 127×80 mm;·        mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . no more than 5.0 kg.

 

Application·        DC magnetron sputtering;·        Pulse MF magnetron sputtering;·        RF magnetron sputtering ·        DC/RF reactive magnetron sputtering;

·        Pulse magnetron sputtering.

Page 7: Ion-beam and plasma technologies and equipments

6. RF/DC 6. RF/DC MAGNETRON SPUTTERING SYSTEM MAGNETRON SPUTTERING SYSTEM RIF-001.036 RIF-001.036

ApplicationsDC/RF magnetron sputtering system RIF-001.036 is designed for deposition precious metals and metals of platinum group, semiconductor and dielectric thin film by are methods of DC, RF (13.56 MHz), pulse MF (10 – 200 kHz) magnetron sputtering and reactive magnetron sputtering. Specifications ·        magnetic system . . . . . . . . . . . . Nd-Fe-B permanent magnets;·        target . . . . . . . . . . . . . . . . . . . 36 mm (thickness 1 – 4 mm);·        substrate size . . . . . . . . . . . . . . . . . . . . . . . . .3030 mm;·        discharge voltage DC . . . . . . . . . . . . . . . . . . 300 – 600 V;·        discharge current DC. . . . . . . . . . . . . . . . . . .up to 1.0 А;·        RF power (13.56 MHz) . . . . . . . . . . . . . . . . up to 200 W;·        working gases . . . . . . . . . rare or mixture of rare and reactive gases (O2, N2, CxHy);

·        gas flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 – 60 sccm;·        working pressure . . . . . . . . . . . . . . . . . . . . . . . . .0.06 - 1.0 Pa;·        deposition rate (Al target)

DC 200 W . . . . . . . . . . . . . . . . . . . . . up to 20.0 nm/s; ·        RF (13.56 MHz, 200 W) . . . . . . . . . . up to 5.0 nm/s;·        overall dimensions . . . . . . . . . . . . . . . . . . . . . . 127×80 mm;mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .no more than 2.0 kg.

Page 8: Ion-beam and plasma technologies and equipments

7. ION-BEAM AND ION-PLASMA THIN FILM TECHNOLOGIES7. ION-BEAM AND ION-PLASMA THIN FILM TECHNOLOGIES

One of the laboratory's areas of expertise is development and implementation of new multi-tasking thin-film technology.

The interests include: ion-beam and ion-plasma deposition technologies for multi-layer

structures for optics and optoelectronics (films of SiO2, ZnO, TiO2, Y2O3, Ta2O5, In2O3, AlN, Al2O3, ITO etc.) on large-format substrates;

·        ion-plasma deposition technologies for reflecting structures (laser mirrors with high laser radiation tolerance, IR mirrors and heat shields with high stability of parameters under high temperatures and humidity);

·        multi-layer structure deposition technologies based on refractory compositions (TiB2, Si3N4, AlN, CrN, TiN, etc);

·        development of processes for super-hard coatings based on diamond-like coatings (DLC), cubic Boron nitride (c-BN), and Carbon nitride (-C3N4) by methods of IBAD, unbalanced magnetron sputtering and double-beam ion sputtering;

development of compositions and processes for high-K and low-K dielectrics.

Page 9: Ion-beam and plasma technologies and equipments

8. PROTECTIVE THERMOCONDUCTING COATING FOR 8. PROTECTIVE THERMOCONDUCTING COATING FOR THERMOPRINTING HEADTHERMOPRINTING HEAD

REQUIREMENTS:•High thermal conductivity•High wear-resistance

Themoprinting head with deposited by reactive magnetron sputtering AlN coating

Thickness of AlN film > 1.2 mWear-resistance > 25 km of paper

Page 10: Ion-beam and plasma technologies and equipments

9. PRODUCTION OF HEATER ON THE ALUMINUM SUBSTRATE9. PRODUCTION OF HEATER ON THE ALUMINUM SUBSTRATE

Advantages       Low mass       High power      Possibility to mounting on heating object

Specifications  Overall dimensions 60481,

60241,

30481 mm       Working voltage 12, 36, 220 V      Power density up to 8.5 W/cm2

      Overheating temperature > 60o C

Developed the composition of multicomponent resistive alloy and technology of ion-beam deposition

Page 11: Ion-beam and plasma technologies and equipments

10. 10. The technology and equipment for vacuum decorative The technology and equipment for vacuum decorative metallization of ABS plasticmetallization of ABS plastic

Magnetron sputtering system МSPR.830.001 with target 830×100 mm

Developed the technology and equipment for vacuum decorative metallization of ABS plastic. Its technology and equipment now used in foreign company «Alcopack»

Page 12: Ion-beam and plasma technologies and equipments

11. 11. The technology and equipment for depositing The technology and equipment for depositing IR mirror IR mirror onto onto the inner surface of Epiquar – 121/8.00.00 products the inner surface of Epiquar – 121/8.00.00 products

Ion-plasma system for deposition IR mirror onto the inner surface of products

Page 13: Ion-beam and plasma technologies and equipments

a – Al mirror after depositionb – Al mirror in two month later after deposition c – structure Al/SiO2 in two month later after deposition d – structure Al/SiO2 after thermal processing at 300 С (30 min)

1122. . REFLECTION SPECTRUMS OF IR MIRRORSREFLECTION SPECTRUMS OF IR MIRRORS

90

100

80

400 1050 1700 2350

R, %

a

b

c

d

l , m m

The Epiquar – 121/8.00.00 product with deposited Al/SiO2 IR mirror

Page 14: Ion-beam and plasma technologies and equipments

REQUIREMENTS:·        sheet resistance < 300 Ohm/·        Покрытия должны выдерживать нагрев открытым пламенем грелки в течение 6 с без изменения сопротивления. ·        Исключается отслаивание и расстрескивание покрытия после воздействия открытого пламени.·        Change of sheet resistance after influence of fire no more than 10 %

Developed the ion plasma technology of high thermostability conducting coatings for CRT displays electron gun.

Productivity up to 2400 parts in shift.Manufactured more than 1 000 000 parts.

1133. . The ion plasma technology of high thermostability The ion plasma technology of high thermostability

conducting coatings for CRT displays electron gunconducting coatings for CRT displays electron gun

Page 15: Ion-beam and plasma technologies and equipments

Thermo-resistors with deposited Ni/Cr contact layers

1144. . The technology of magnetron deposition for Ni/Cr contact The technology of magnetron deposition for Ni/Cr contact layers for thermo-resistorslayers for thermo-resistors

Double layer films deposited on two side of thermo-resistor

Productivity up to 1800 substrate at one timeProcess time 50 min

Developed the technology for magnetron deposition of Ni/Cr contact layers for thermo-resistors.

Its technology now used in Vitebsk factory of radio component «Monolit»